xfs_inode.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_filestream.h"
  52. #include "xfs_vnodeops.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_irec_t irec;
  76. xfs_bmbt_rec_host_t rec;
  77. int i;
  78. for (i = 0; i < nrecs; i++) {
  79. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  80. rec.l0 = get_unaligned(&ep->l0);
  81. rec.l1 = get_unaligned(&ep->l1);
  82. xfs_bmbt_get_all(&rec, &irec);
  83. if (fmt == XFS_EXTFMT_NOSTATE)
  84. ASSERT(irec.br_state == XFS_EXT_NORM);
  85. }
  86. }
  87. #else /* DEBUG */
  88. #define xfs_validate_extents(ifp, nrecs, fmt)
  89. #endif /* DEBUG */
  90. /*
  91. * Check that none of the inode's in the buffer have a next
  92. * unlinked field of 0.
  93. */
  94. #if defined(DEBUG)
  95. void
  96. xfs_inobp_check(
  97. xfs_mount_t *mp,
  98. xfs_buf_t *bp)
  99. {
  100. int i;
  101. int j;
  102. xfs_dinode_t *dip;
  103. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  104. for (i = 0; i < j; i++) {
  105. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  106. i * mp->m_sb.sb_inodesize);
  107. if (!dip->di_next_unlinked) {
  108. xfs_fs_cmn_err(CE_ALERT, mp,
  109. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  110. bp);
  111. ASSERT(dip->di_next_unlinked);
  112. }
  113. }
  114. }
  115. #endif
  116. /*
  117. * Find the buffer associated with the given inode map
  118. * We do basic validation checks on the buffer once it has been
  119. * retrieved from disk.
  120. */
  121. STATIC int
  122. xfs_imap_to_bp(
  123. xfs_mount_t *mp,
  124. xfs_trans_t *tp,
  125. struct xfs_imap *imap,
  126. xfs_buf_t **bpp,
  127. uint buf_flags,
  128. uint iget_flags)
  129. {
  130. int error;
  131. int i;
  132. int ni;
  133. xfs_buf_t *bp;
  134. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  135. (int)imap->im_len, buf_flags, &bp);
  136. if (error) {
  137. if (error != EAGAIN) {
  138. cmn_err(CE_WARN,
  139. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  140. "an error %d on %s. Returning error.",
  141. error, mp->m_fsname);
  142. } else {
  143. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  144. }
  145. return error;
  146. }
  147. /*
  148. * Validate the magic number and version of every inode in the buffer
  149. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  150. */
  151. #ifdef DEBUG
  152. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  153. #else /* usual case */
  154. ni = 1;
  155. #endif
  156. for (i = 0; i < ni; i++) {
  157. int di_ok;
  158. xfs_dinode_t *dip;
  159. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  160. (i << mp->m_sb.sb_inodelog));
  161. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  162. XFS_DINODE_GOOD_VERSION(dip->di_version);
  163. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  164. XFS_ERRTAG_ITOBP_INOTOBP,
  165. XFS_RANDOM_ITOBP_INOTOBP))) {
  166. if (iget_flags & XFS_IGET_BULKSTAT) {
  167. xfs_trans_brelse(tp, bp);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  171. XFS_ERRLEVEL_HIGH, mp, dip);
  172. #ifdef DEBUG
  173. cmn_err(CE_PANIC,
  174. "Device %s - bad inode magic/vsn "
  175. "daddr %lld #%d (magic=%x)",
  176. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  177. (unsigned long long)imap->im_blkno, i,
  178. be16_to_cpu(dip->di_magic));
  179. #endif
  180. xfs_trans_brelse(tp, bp);
  181. return XFS_ERROR(EFSCORRUPTED);
  182. }
  183. }
  184. xfs_inobp_check(mp, bp);
  185. /*
  186. * Mark the buffer as an inode buffer now that it looks good
  187. */
  188. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  189. *bpp = bp;
  190. return 0;
  191. }
  192. /*
  193. * This routine is called to map an inode number within a file
  194. * system to the buffer containing the on-disk version of the
  195. * inode. It returns a pointer to the buffer containing the
  196. * on-disk inode in the bpp parameter, and in the dip parameter
  197. * it returns a pointer to the on-disk inode within that buffer.
  198. *
  199. * If a non-zero error is returned, then the contents of bpp and
  200. * dipp are undefined.
  201. *
  202. * Use xfs_imap() to determine the size and location of the
  203. * buffer to read from disk.
  204. */
  205. int
  206. xfs_inotobp(
  207. xfs_mount_t *mp,
  208. xfs_trans_t *tp,
  209. xfs_ino_t ino,
  210. xfs_dinode_t **dipp,
  211. xfs_buf_t **bpp,
  212. int *offset,
  213. uint imap_flags)
  214. {
  215. struct xfs_imap imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * The inode is expected to already been mapped to its buffer and read
  241. * in once, thus we can use the mapping information stored in the inode
  242. * rather than calling xfs_imap(). This allows us to avoid the overhead
  243. * of looking at the inode btree for small block file systems
  244. * (see xfs_imap()).
  245. */
  246. int
  247. xfs_itobp(
  248. xfs_mount_t *mp,
  249. xfs_trans_t *tp,
  250. xfs_inode_t *ip,
  251. xfs_dinode_t **dipp,
  252. xfs_buf_t **bpp,
  253. uint buf_flags)
  254. {
  255. xfs_buf_t *bp;
  256. int error;
  257. ASSERT(ip->i_imap.im_blkno != 0);
  258. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  259. if (error)
  260. return error;
  261. if (!bp) {
  262. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  263. ASSERT(tp == NULL);
  264. *bpp = NULL;
  265. return EAGAIN;
  266. }
  267. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  268. *bpp = bp;
  269. return 0;
  270. }
  271. /*
  272. * Move inode type and inode format specific information from the
  273. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  274. * this means set if_rdev to the proper value. For files, directories,
  275. * and symlinks this means to bring in the in-line data or extent
  276. * pointers. For a file in B-tree format, only the root is immediately
  277. * brought in-core. The rest will be in-lined in if_extents when it
  278. * is first referenced (see xfs_iread_extents()).
  279. */
  280. STATIC int
  281. xfs_iformat(
  282. xfs_inode_t *ip,
  283. xfs_dinode_t *dip)
  284. {
  285. xfs_attr_shortform_t *atp;
  286. int size;
  287. int error;
  288. xfs_fsize_t di_size;
  289. ip->i_df.if_ext_max =
  290. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  291. error = 0;
  292. if (unlikely(be32_to_cpu(dip->di_nextents) +
  293. be16_to_cpu(dip->di_anextents) >
  294. be64_to_cpu(dip->di_nblocks))) {
  295. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  296. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  297. (unsigned long long)ip->i_ino,
  298. (int)(be32_to_cpu(dip->di_nextents) +
  299. be16_to_cpu(dip->di_anextents)),
  300. (unsigned long long)
  301. be64_to_cpu(dip->di_nblocks));
  302. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  303. ip->i_mount, dip);
  304. return XFS_ERROR(EFSCORRUPTED);
  305. }
  306. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  307. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  308. "corrupt dinode %Lu, forkoff = 0x%x.",
  309. (unsigned long long)ip->i_ino,
  310. dip->di_forkoff);
  311. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  312. ip->i_mount, dip);
  313. return XFS_ERROR(EFSCORRUPTED);
  314. }
  315. switch (ip->i_d.di_mode & S_IFMT) {
  316. case S_IFIFO:
  317. case S_IFCHR:
  318. case S_IFBLK:
  319. case S_IFSOCK:
  320. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  321. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  322. ip->i_mount, dip);
  323. return XFS_ERROR(EFSCORRUPTED);
  324. }
  325. ip->i_d.di_size = 0;
  326. ip->i_size = 0;
  327. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  328. break;
  329. case S_IFREG:
  330. case S_IFLNK:
  331. case S_IFDIR:
  332. switch (dip->di_format) {
  333. case XFS_DINODE_FMT_LOCAL:
  334. /*
  335. * no local regular files yet
  336. */
  337. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  338. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  339. "corrupt inode %Lu "
  340. "(local format for regular file).",
  341. (unsigned long long) ip->i_ino);
  342. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  343. XFS_ERRLEVEL_LOW,
  344. ip->i_mount, dip);
  345. return XFS_ERROR(EFSCORRUPTED);
  346. }
  347. di_size = be64_to_cpu(dip->di_size);
  348. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  349. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  350. "corrupt inode %Lu "
  351. "(bad size %Ld for local inode).",
  352. (unsigned long long) ip->i_ino,
  353. (long long) di_size);
  354. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  355. XFS_ERRLEVEL_LOW,
  356. ip->i_mount, dip);
  357. return XFS_ERROR(EFSCORRUPTED);
  358. }
  359. size = (int)di_size;
  360. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  361. break;
  362. case XFS_DINODE_FMT_EXTENTS:
  363. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  364. break;
  365. case XFS_DINODE_FMT_BTREE:
  366. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  367. break;
  368. default:
  369. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  370. ip->i_mount);
  371. return XFS_ERROR(EFSCORRUPTED);
  372. }
  373. break;
  374. default:
  375. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. if (error) {
  379. return error;
  380. }
  381. if (!XFS_DFORK_Q(dip))
  382. return 0;
  383. ASSERT(ip->i_afp == NULL);
  384. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  385. ip->i_afp->if_ext_max =
  386. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  387. switch (dip->di_aformat) {
  388. case XFS_DINODE_FMT_LOCAL:
  389. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  390. size = be16_to_cpu(atp->hdr.totsize);
  391. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  392. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  393. "corrupt inode %Lu "
  394. "(bad attr fork size %Ld).",
  395. (unsigned long long) ip->i_ino,
  396. (long long) size);
  397. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  398. XFS_ERRLEVEL_LOW,
  399. ip->i_mount, dip);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  403. break;
  404. case XFS_DINODE_FMT_EXTENTS:
  405. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  406. break;
  407. case XFS_DINODE_FMT_BTREE:
  408. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  409. break;
  410. default:
  411. error = XFS_ERROR(EFSCORRUPTED);
  412. break;
  413. }
  414. if (error) {
  415. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  416. ip->i_afp = NULL;
  417. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  418. }
  419. return error;
  420. }
  421. /*
  422. * The file is in-lined in the on-disk inode.
  423. * If it fits into if_inline_data, then copy
  424. * it there, otherwise allocate a buffer for it
  425. * and copy the data there. Either way, set
  426. * if_data to point at the data.
  427. * If we allocate a buffer for the data, make
  428. * sure that its size is a multiple of 4 and
  429. * record the real size in i_real_bytes.
  430. */
  431. STATIC int
  432. xfs_iformat_local(
  433. xfs_inode_t *ip,
  434. xfs_dinode_t *dip,
  435. int whichfork,
  436. int size)
  437. {
  438. xfs_ifork_t *ifp;
  439. int real_size;
  440. /*
  441. * If the size is unreasonable, then something
  442. * is wrong and we just bail out rather than crash in
  443. * kmem_alloc() or memcpy() below.
  444. */
  445. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  446. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  447. "corrupt inode %Lu "
  448. "(bad size %d for local fork, size = %d).",
  449. (unsigned long long) ip->i_ino, size,
  450. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  451. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  452. ip->i_mount, dip);
  453. return XFS_ERROR(EFSCORRUPTED);
  454. }
  455. ifp = XFS_IFORK_PTR(ip, whichfork);
  456. real_size = 0;
  457. if (size == 0)
  458. ifp->if_u1.if_data = NULL;
  459. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  460. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  461. else {
  462. real_size = roundup(size, 4);
  463. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  464. }
  465. ifp->if_bytes = size;
  466. ifp->if_real_bytes = real_size;
  467. if (size)
  468. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  469. ifp->if_flags &= ~XFS_IFEXTENTS;
  470. ifp->if_flags |= XFS_IFINLINE;
  471. return 0;
  472. }
  473. /*
  474. * The file consists of a set of extents all
  475. * of which fit into the on-disk inode.
  476. * If there are few enough extents to fit into
  477. * the if_inline_ext, then copy them there.
  478. * Otherwise allocate a buffer for them and copy
  479. * them into it. Either way, set if_extents
  480. * to point at the extents.
  481. */
  482. STATIC int
  483. xfs_iformat_extents(
  484. xfs_inode_t *ip,
  485. xfs_dinode_t *dip,
  486. int whichfork)
  487. {
  488. xfs_bmbt_rec_t *dp;
  489. xfs_ifork_t *ifp;
  490. int nex;
  491. int size;
  492. int i;
  493. ifp = XFS_IFORK_PTR(ip, whichfork);
  494. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  495. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  496. /*
  497. * If the number of extents is unreasonable, then something
  498. * is wrong and we just bail out rather than crash in
  499. * kmem_alloc() or memcpy() below.
  500. */
  501. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  502. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  503. "corrupt inode %Lu ((a)extents = %d).",
  504. (unsigned long long) ip->i_ino, nex);
  505. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  506. ip->i_mount, dip);
  507. return XFS_ERROR(EFSCORRUPTED);
  508. }
  509. ifp->if_real_bytes = 0;
  510. if (nex == 0)
  511. ifp->if_u1.if_extents = NULL;
  512. else if (nex <= XFS_INLINE_EXTS)
  513. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  514. else
  515. xfs_iext_add(ifp, 0, nex);
  516. ifp->if_bytes = size;
  517. if (size) {
  518. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  519. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  520. for (i = 0; i < nex; i++, dp++) {
  521. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  522. ep->l0 = get_unaligned_be64(&dp->l0);
  523. ep->l1 = get_unaligned_be64(&dp->l1);
  524. }
  525. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  526. if (whichfork != XFS_DATA_FORK ||
  527. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  528. if (unlikely(xfs_check_nostate_extents(
  529. ifp, 0, nex))) {
  530. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  531. XFS_ERRLEVEL_LOW,
  532. ip->i_mount);
  533. return XFS_ERROR(EFSCORRUPTED);
  534. }
  535. }
  536. ifp->if_flags |= XFS_IFEXTENTS;
  537. return 0;
  538. }
  539. /*
  540. * The file has too many extents to fit into
  541. * the inode, so they are in B-tree format.
  542. * Allocate a buffer for the root of the B-tree
  543. * and copy the root into it. The i_extents
  544. * field will remain NULL until all of the
  545. * extents are read in (when they are needed).
  546. */
  547. STATIC int
  548. xfs_iformat_btree(
  549. xfs_inode_t *ip,
  550. xfs_dinode_t *dip,
  551. int whichfork)
  552. {
  553. xfs_bmdr_block_t *dfp;
  554. xfs_ifork_t *ifp;
  555. /* REFERENCED */
  556. int nrecs;
  557. int size;
  558. ifp = XFS_IFORK_PTR(ip, whichfork);
  559. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  560. size = XFS_BMAP_BROOT_SPACE(dfp);
  561. nrecs = be16_to_cpu(dfp->bb_numrecs);
  562. /*
  563. * blow out if -- fork has less extents than can fit in
  564. * fork (fork shouldn't be a btree format), root btree
  565. * block has more records than can fit into the fork,
  566. * or the number of extents is greater than the number of
  567. * blocks.
  568. */
  569. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  570. || XFS_BMDR_SPACE_CALC(nrecs) >
  571. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  572. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  573. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  574. "corrupt inode %Lu (btree).",
  575. (unsigned long long) ip->i_ino);
  576. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  577. ip->i_mount);
  578. return XFS_ERROR(EFSCORRUPTED);
  579. }
  580. ifp->if_broot_bytes = size;
  581. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  582. ASSERT(ifp->if_broot != NULL);
  583. /*
  584. * Copy and convert from the on-disk structure
  585. * to the in-memory structure.
  586. */
  587. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  588. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  589. ifp->if_broot, size);
  590. ifp->if_flags &= ~XFS_IFEXTENTS;
  591. ifp->if_flags |= XFS_IFBROOT;
  592. return 0;
  593. }
  594. void
  595. xfs_dinode_from_disk(
  596. xfs_icdinode_t *to,
  597. xfs_dinode_t *from)
  598. {
  599. to->di_magic = be16_to_cpu(from->di_magic);
  600. to->di_mode = be16_to_cpu(from->di_mode);
  601. to->di_version = from ->di_version;
  602. to->di_format = from->di_format;
  603. to->di_onlink = be16_to_cpu(from->di_onlink);
  604. to->di_uid = be32_to_cpu(from->di_uid);
  605. to->di_gid = be32_to_cpu(from->di_gid);
  606. to->di_nlink = be32_to_cpu(from->di_nlink);
  607. to->di_projid = be16_to_cpu(from->di_projid);
  608. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  609. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  610. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  611. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  612. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  613. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  614. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  615. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  616. to->di_size = be64_to_cpu(from->di_size);
  617. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  618. to->di_extsize = be32_to_cpu(from->di_extsize);
  619. to->di_nextents = be32_to_cpu(from->di_nextents);
  620. to->di_anextents = be16_to_cpu(from->di_anextents);
  621. to->di_forkoff = from->di_forkoff;
  622. to->di_aformat = from->di_aformat;
  623. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  624. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  625. to->di_flags = be16_to_cpu(from->di_flags);
  626. to->di_gen = be32_to_cpu(from->di_gen);
  627. }
  628. void
  629. xfs_dinode_to_disk(
  630. xfs_dinode_t *to,
  631. xfs_icdinode_t *from)
  632. {
  633. to->di_magic = cpu_to_be16(from->di_magic);
  634. to->di_mode = cpu_to_be16(from->di_mode);
  635. to->di_version = from ->di_version;
  636. to->di_format = from->di_format;
  637. to->di_onlink = cpu_to_be16(from->di_onlink);
  638. to->di_uid = cpu_to_be32(from->di_uid);
  639. to->di_gid = cpu_to_be32(from->di_gid);
  640. to->di_nlink = cpu_to_be32(from->di_nlink);
  641. to->di_projid = cpu_to_be16(from->di_projid);
  642. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  643. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  644. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  645. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  646. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  647. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  648. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  649. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  650. to->di_size = cpu_to_be64(from->di_size);
  651. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  652. to->di_extsize = cpu_to_be32(from->di_extsize);
  653. to->di_nextents = cpu_to_be32(from->di_nextents);
  654. to->di_anextents = cpu_to_be16(from->di_anextents);
  655. to->di_forkoff = from->di_forkoff;
  656. to->di_aformat = from->di_aformat;
  657. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  658. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  659. to->di_flags = cpu_to_be16(from->di_flags);
  660. to->di_gen = cpu_to_be32(from->di_gen);
  661. }
  662. STATIC uint
  663. _xfs_dic2xflags(
  664. __uint16_t di_flags)
  665. {
  666. uint flags = 0;
  667. if (di_flags & XFS_DIFLAG_ANY) {
  668. if (di_flags & XFS_DIFLAG_REALTIME)
  669. flags |= XFS_XFLAG_REALTIME;
  670. if (di_flags & XFS_DIFLAG_PREALLOC)
  671. flags |= XFS_XFLAG_PREALLOC;
  672. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  673. flags |= XFS_XFLAG_IMMUTABLE;
  674. if (di_flags & XFS_DIFLAG_APPEND)
  675. flags |= XFS_XFLAG_APPEND;
  676. if (di_flags & XFS_DIFLAG_SYNC)
  677. flags |= XFS_XFLAG_SYNC;
  678. if (di_flags & XFS_DIFLAG_NOATIME)
  679. flags |= XFS_XFLAG_NOATIME;
  680. if (di_flags & XFS_DIFLAG_NODUMP)
  681. flags |= XFS_XFLAG_NODUMP;
  682. if (di_flags & XFS_DIFLAG_RTINHERIT)
  683. flags |= XFS_XFLAG_RTINHERIT;
  684. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  685. flags |= XFS_XFLAG_PROJINHERIT;
  686. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  687. flags |= XFS_XFLAG_NOSYMLINKS;
  688. if (di_flags & XFS_DIFLAG_EXTSIZE)
  689. flags |= XFS_XFLAG_EXTSIZE;
  690. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  691. flags |= XFS_XFLAG_EXTSZINHERIT;
  692. if (di_flags & XFS_DIFLAG_NODEFRAG)
  693. flags |= XFS_XFLAG_NODEFRAG;
  694. if (di_flags & XFS_DIFLAG_FILESTREAM)
  695. flags |= XFS_XFLAG_FILESTREAM;
  696. }
  697. return flags;
  698. }
  699. uint
  700. xfs_ip2xflags(
  701. xfs_inode_t *ip)
  702. {
  703. xfs_icdinode_t *dic = &ip->i_d;
  704. return _xfs_dic2xflags(dic->di_flags) |
  705. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  706. }
  707. uint
  708. xfs_dic2xflags(
  709. xfs_dinode_t *dip)
  710. {
  711. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  712. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  713. }
  714. /*
  715. * Read the disk inode attributes into the in-core inode structure.
  716. */
  717. int
  718. xfs_iread(
  719. xfs_mount_t *mp,
  720. xfs_trans_t *tp,
  721. xfs_inode_t *ip,
  722. xfs_daddr_t bno,
  723. uint iget_flags)
  724. {
  725. xfs_buf_t *bp;
  726. xfs_dinode_t *dip;
  727. int error;
  728. /*
  729. * Fill in the location information in the in-core inode.
  730. */
  731. ip->i_imap.im_blkno = bno;
  732. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  733. if (error)
  734. return error;
  735. ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
  736. /*
  737. * Get pointers to the on-disk inode and the buffer containing it.
  738. */
  739. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  740. XFS_BUF_LOCK, iget_flags);
  741. if (error)
  742. return error;
  743. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  744. /*
  745. * If we got something that isn't an inode it means someone
  746. * (nfs or dmi) has a stale handle.
  747. */
  748. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  749. #ifdef DEBUG
  750. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  751. "dip->di_magic (0x%x) != "
  752. "XFS_DINODE_MAGIC (0x%x)",
  753. be16_to_cpu(dip->di_magic),
  754. XFS_DINODE_MAGIC);
  755. #endif /* DEBUG */
  756. error = XFS_ERROR(EINVAL);
  757. goto out_brelse;
  758. }
  759. /*
  760. * If the on-disk inode is already linked to a directory
  761. * entry, copy all of the inode into the in-core inode.
  762. * xfs_iformat() handles copying in the inode format
  763. * specific information.
  764. * Otherwise, just get the truly permanent information.
  765. */
  766. if (dip->di_mode) {
  767. xfs_dinode_from_disk(&ip->i_d, dip);
  768. error = xfs_iformat(ip, dip);
  769. if (error) {
  770. #ifdef DEBUG
  771. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  772. "xfs_iformat() returned error %d",
  773. error);
  774. #endif /* DEBUG */
  775. goto out_brelse;
  776. }
  777. } else {
  778. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  779. ip->i_d.di_version = dip->di_version;
  780. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  781. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  782. /*
  783. * Make sure to pull in the mode here as well in
  784. * case the inode is released without being used.
  785. * This ensures that xfs_inactive() will see that
  786. * the inode is already free and not try to mess
  787. * with the uninitialized part of it.
  788. */
  789. ip->i_d.di_mode = 0;
  790. /*
  791. * Initialize the per-fork minima and maxima for a new
  792. * inode here. xfs_iformat will do it for old inodes.
  793. */
  794. ip->i_df.if_ext_max =
  795. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  796. }
  797. /*
  798. * The inode format changed when we moved the link count and
  799. * made it 32 bits long. If this is an old format inode,
  800. * convert it in memory to look like a new one. If it gets
  801. * flushed to disk we will convert back before flushing or
  802. * logging it. We zero out the new projid field and the old link
  803. * count field. We'll handle clearing the pad field (the remains
  804. * of the old uuid field) when we actually convert the inode to
  805. * the new format. We don't change the version number so that we
  806. * can distinguish this from a real new format inode.
  807. */
  808. if (ip->i_d.di_version == 1) {
  809. ip->i_d.di_nlink = ip->i_d.di_onlink;
  810. ip->i_d.di_onlink = 0;
  811. ip->i_d.di_projid = 0;
  812. }
  813. ip->i_delayed_blks = 0;
  814. ip->i_size = ip->i_d.di_size;
  815. /*
  816. * Mark the buffer containing the inode as something to keep
  817. * around for a while. This helps to keep recently accessed
  818. * meta-data in-core longer.
  819. */
  820. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  821. /*
  822. * Use xfs_trans_brelse() to release the buffer containing the
  823. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  824. * in xfs_itobp() above. If tp is NULL, this is just a normal
  825. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  826. * will only release the buffer if it is not dirty within the
  827. * transaction. It will be OK to release the buffer in this case,
  828. * because inodes on disk are never destroyed and we will be
  829. * locking the new in-core inode before putting it in the hash
  830. * table where other processes can find it. Thus we don't have
  831. * to worry about the inode being changed just because we released
  832. * the buffer.
  833. */
  834. out_brelse:
  835. xfs_trans_brelse(tp, bp);
  836. return error;
  837. }
  838. /*
  839. * Read in extents from a btree-format inode.
  840. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  841. */
  842. int
  843. xfs_iread_extents(
  844. xfs_trans_t *tp,
  845. xfs_inode_t *ip,
  846. int whichfork)
  847. {
  848. int error;
  849. xfs_ifork_t *ifp;
  850. xfs_extnum_t nextents;
  851. size_t size;
  852. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  853. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  854. ip->i_mount);
  855. return XFS_ERROR(EFSCORRUPTED);
  856. }
  857. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  858. size = nextents * sizeof(xfs_bmbt_rec_t);
  859. ifp = XFS_IFORK_PTR(ip, whichfork);
  860. /*
  861. * We know that the size is valid (it's checked in iformat_btree)
  862. */
  863. ifp->if_lastex = NULLEXTNUM;
  864. ifp->if_bytes = ifp->if_real_bytes = 0;
  865. ifp->if_flags |= XFS_IFEXTENTS;
  866. xfs_iext_add(ifp, 0, nextents);
  867. error = xfs_bmap_read_extents(tp, ip, whichfork);
  868. if (error) {
  869. xfs_iext_destroy(ifp);
  870. ifp->if_flags &= ~XFS_IFEXTENTS;
  871. return error;
  872. }
  873. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  874. return 0;
  875. }
  876. /*
  877. * Allocate an inode on disk and return a copy of its in-core version.
  878. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  879. * appropriately within the inode. The uid and gid for the inode are
  880. * set according to the contents of the given cred structure.
  881. *
  882. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  883. * has a free inode available, call xfs_iget()
  884. * to obtain the in-core version of the allocated inode. Finally,
  885. * fill in the inode and log its initial contents. In this case,
  886. * ialloc_context would be set to NULL and call_again set to false.
  887. *
  888. * If xfs_dialloc() does not have an available inode,
  889. * it will replenish its supply by doing an allocation. Since we can
  890. * only do one allocation within a transaction without deadlocks, we
  891. * must commit the current transaction before returning the inode itself.
  892. * In this case, therefore, we will set call_again to true and return.
  893. * The caller should then commit the current transaction, start a new
  894. * transaction, and call xfs_ialloc() again to actually get the inode.
  895. *
  896. * To ensure that some other process does not grab the inode that
  897. * was allocated during the first call to xfs_ialloc(), this routine
  898. * also returns the [locked] bp pointing to the head of the freelist
  899. * as ialloc_context. The caller should hold this buffer across
  900. * the commit and pass it back into this routine on the second call.
  901. *
  902. * If we are allocating quota inodes, we do not have a parent inode
  903. * to attach to or associate with (i.e. pip == NULL) because they
  904. * are not linked into the directory structure - they are attached
  905. * directly to the superblock - and so have no parent.
  906. */
  907. int
  908. xfs_ialloc(
  909. xfs_trans_t *tp,
  910. xfs_inode_t *pip,
  911. mode_t mode,
  912. xfs_nlink_t nlink,
  913. xfs_dev_t rdev,
  914. cred_t *cr,
  915. xfs_prid_t prid,
  916. int okalloc,
  917. xfs_buf_t **ialloc_context,
  918. boolean_t *call_again,
  919. xfs_inode_t **ipp)
  920. {
  921. xfs_ino_t ino;
  922. xfs_inode_t *ip;
  923. uint flags;
  924. int error;
  925. timespec_t tv;
  926. int filestreams = 0;
  927. /*
  928. * Call the space management code to pick
  929. * the on-disk inode to be allocated.
  930. */
  931. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  932. ialloc_context, call_again, &ino);
  933. if (error)
  934. return error;
  935. if (*call_again || ino == NULLFSINO) {
  936. *ipp = NULL;
  937. return 0;
  938. }
  939. ASSERT(*ialloc_context == NULL);
  940. /*
  941. * Get the in-core inode with the lock held exclusively.
  942. * This is because we're setting fields here we need
  943. * to prevent others from looking at until we're done.
  944. */
  945. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  946. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  947. if (error)
  948. return error;
  949. ASSERT(ip != NULL);
  950. ip->i_d.di_mode = (__uint16_t)mode;
  951. ip->i_d.di_onlink = 0;
  952. ip->i_d.di_nlink = nlink;
  953. ASSERT(ip->i_d.di_nlink == nlink);
  954. ip->i_d.di_uid = current_fsuid();
  955. ip->i_d.di_gid = current_fsgid();
  956. ip->i_d.di_projid = prid;
  957. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  958. /*
  959. * If the superblock version is up to where we support new format
  960. * inodes and this is currently an old format inode, then change
  961. * the inode version number now. This way we only do the conversion
  962. * here rather than here and in the flush/logging code.
  963. */
  964. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  965. ip->i_d.di_version == 1) {
  966. ip->i_d.di_version = 2;
  967. /*
  968. * We've already zeroed the old link count, the projid field,
  969. * and the pad field.
  970. */
  971. }
  972. /*
  973. * Project ids won't be stored on disk if we are using a version 1 inode.
  974. */
  975. if ((prid != 0) && (ip->i_d.di_version == 1))
  976. xfs_bump_ino_vers2(tp, ip);
  977. if (pip && XFS_INHERIT_GID(pip)) {
  978. ip->i_d.di_gid = pip->i_d.di_gid;
  979. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  980. ip->i_d.di_mode |= S_ISGID;
  981. }
  982. }
  983. /*
  984. * If the group ID of the new file does not match the effective group
  985. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  986. * (and only if the irix_sgid_inherit compatibility variable is set).
  987. */
  988. if ((irix_sgid_inherit) &&
  989. (ip->i_d.di_mode & S_ISGID) &&
  990. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  991. ip->i_d.di_mode &= ~S_ISGID;
  992. }
  993. ip->i_d.di_size = 0;
  994. ip->i_size = 0;
  995. ip->i_d.di_nextents = 0;
  996. ASSERT(ip->i_d.di_nblocks == 0);
  997. nanotime(&tv);
  998. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  999. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1000. ip->i_d.di_atime = ip->i_d.di_mtime;
  1001. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1002. /*
  1003. * di_gen will have been taken care of in xfs_iread.
  1004. */
  1005. ip->i_d.di_extsize = 0;
  1006. ip->i_d.di_dmevmask = 0;
  1007. ip->i_d.di_dmstate = 0;
  1008. ip->i_d.di_flags = 0;
  1009. flags = XFS_ILOG_CORE;
  1010. switch (mode & S_IFMT) {
  1011. case S_IFIFO:
  1012. case S_IFCHR:
  1013. case S_IFBLK:
  1014. case S_IFSOCK:
  1015. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1016. ip->i_df.if_u2.if_rdev = rdev;
  1017. ip->i_df.if_flags = 0;
  1018. flags |= XFS_ILOG_DEV;
  1019. break;
  1020. case S_IFREG:
  1021. /*
  1022. * we can't set up filestreams until after the VFS inode
  1023. * is set up properly.
  1024. */
  1025. if (pip && xfs_inode_is_filestream(pip))
  1026. filestreams = 1;
  1027. /* fall through */
  1028. case S_IFDIR:
  1029. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1030. uint di_flags = 0;
  1031. if ((mode & S_IFMT) == S_IFDIR) {
  1032. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1033. di_flags |= XFS_DIFLAG_RTINHERIT;
  1034. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1035. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1036. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1037. }
  1038. } else if ((mode & S_IFMT) == S_IFREG) {
  1039. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1040. di_flags |= XFS_DIFLAG_REALTIME;
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1042. di_flags |= XFS_DIFLAG_EXTSIZE;
  1043. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1044. }
  1045. }
  1046. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1047. xfs_inherit_noatime)
  1048. di_flags |= XFS_DIFLAG_NOATIME;
  1049. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1050. xfs_inherit_nodump)
  1051. di_flags |= XFS_DIFLAG_NODUMP;
  1052. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1053. xfs_inherit_sync)
  1054. di_flags |= XFS_DIFLAG_SYNC;
  1055. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1056. xfs_inherit_nosymlinks)
  1057. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1058. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1059. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1060. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1061. xfs_inherit_nodefrag)
  1062. di_flags |= XFS_DIFLAG_NODEFRAG;
  1063. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1064. di_flags |= XFS_DIFLAG_FILESTREAM;
  1065. ip->i_d.di_flags |= di_flags;
  1066. }
  1067. /* FALLTHROUGH */
  1068. case S_IFLNK:
  1069. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1070. ip->i_df.if_flags = XFS_IFEXTENTS;
  1071. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1072. ip->i_df.if_u1.if_extents = NULL;
  1073. break;
  1074. default:
  1075. ASSERT(0);
  1076. }
  1077. /*
  1078. * Attribute fork settings for new inode.
  1079. */
  1080. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1081. ip->i_d.di_anextents = 0;
  1082. /*
  1083. * Log the new values stuffed into the inode.
  1084. */
  1085. xfs_trans_log_inode(tp, ip, flags);
  1086. /* now that we have an i_mode we can setup inode ops and unlock */
  1087. xfs_setup_inode(ip);
  1088. /* now we have set up the vfs inode we can associate the filestream */
  1089. if (filestreams) {
  1090. error = xfs_filestream_associate(pip, ip);
  1091. if (error < 0)
  1092. return -error;
  1093. if (!error)
  1094. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1095. }
  1096. *ipp = ip;
  1097. return 0;
  1098. }
  1099. /*
  1100. * Check to make sure that there are no blocks allocated to the
  1101. * file beyond the size of the file. We don't check this for
  1102. * files with fixed size extents or real time extents, but we
  1103. * at least do it for regular files.
  1104. */
  1105. #ifdef DEBUG
  1106. void
  1107. xfs_isize_check(
  1108. xfs_mount_t *mp,
  1109. xfs_inode_t *ip,
  1110. xfs_fsize_t isize)
  1111. {
  1112. xfs_fileoff_t map_first;
  1113. int nimaps;
  1114. xfs_bmbt_irec_t imaps[2];
  1115. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1116. return;
  1117. if (XFS_IS_REALTIME_INODE(ip))
  1118. return;
  1119. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1120. return;
  1121. nimaps = 2;
  1122. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1123. /*
  1124. * The filesystem could be shutting down, so bmapi may return
  1125. * an error.
  1126. */
  1127. if (xfs_bmapi(NULL, ip, map_first,
  1128. (XFS_B_TO_FSB(mp,
  1129. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1130. map_first),
  1131. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1132. NULL, NULL))
  1133. return;
  1134. ASSERT(nimaps == 1);
  1135. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1136. }
  1137. #endif /* DEBUG */
  1138. /*
  1139. * Calculate the last possible buffered byte in a file. This must
  1140. * include data that was buffered beyond the EOF by the write code.
  1141. * This also needs to deal with overflowing the xfs_fsize_t type
  1142. * which can happen for sizes near the limit.
  1143. *
  1144. * We also need to take into account any blocks beyond the EOF. It
  1145. * may be the case that they were buffered by a write which failed.
  1146. * In that case the pages will still be in memory, but the inode size
  1147. * will never have been updated.
  1148. */
  1149. xfs_fsize_t
  1150. xfs_file_last_byte(
  1151. xfs_inode_t *ip)
  1152. {
  1153. xfs_mount_t *mp;
  1154. xfs_fsize_t last_byte;
  1155. xfs_fileoff_t last_block;
  1156. xfs_fileoff_t size_last_block;
  1157. int error;
  1158. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1159. mp = ip->i_mount;
  1160. /*
  1161. * Only check for blocks beyond the EOF if the extents have
  1162. * been read in. This eliminates the need for the inode lock,
  1163. * and it also saves us from looking when it really isn't
  1164. * necessary.
  1165. */
  1166. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1167. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1168. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1169. XFS_DATA_FORK);
  1170. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1171. if (error) {
  1172. last_block = 0;
  1173. }
  1174. } else {
  1175. last_block = 0;
  1176. }
  1177. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1178. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1179. last_byte = XFS_FSB_TO_B(mp, last_block);
  1180. if (last_byte < 0) {
  1181. return XFS_MAXIOFFSET(mp);
  1182. }
  1183. last_byte += (1 << mp->m_writeio_log);
  1184. if (last_byte < 0) {
  1185. return XFS_MAXIOFFSET(mp);
  1186. }
  1187. return last_byte;
  1188. }
  1189. #if defined(XFS_RW_TRACE)
  1190. STATIC void
  1191. xfs_itrunc_trace(
  1192. int tag,
  1193. xfs_inode_t *ip,
  1194. int flag,
  1195. xfs_fsize_t new_size,
  1196. xfs_off_t toss_start,
  1197. xfs_off_t toss_finish)
  1198. {
  1199. if (ip->i_rwtrace == NULL) {
  1200. return;
  1201. }
  1202. ktrace_enter(ip->i_rwtrace,
  1203. (void*)((long)tag),
  1204. (void*)ip,
  1205. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1206. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1207. (void*)((long)flag),
  1208. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1209. (void*)(unsigned long)(new_size & 0xffffffff),
  1210. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1211. (void*)(unsigned long)(toss_start & 0xffffffff),
  1212. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1213. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1214. (void*)(unsigned long)current_cpu(),
  1215. (void*)(unsigned long)current_pid(),
  1216. (void*)NULL,
  1217. (void*)NULL,
  1218. (void*)NULL);
  1219. }
  1220. #else
  1221. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1222. #endif
  1223. /*
  1224. * Start the truncation of the file to new_size. The new size
  1225. * must be smaller than the current size. This routine will
  1226. * clear the buffer and page caches of file data in the removed
  1227. * range, and xfs_itruncate_finish() will remove the underlying
  1228. * disk blocks.
  1229. *
  1230. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1231. * must NOT have the inode lock held at all. This is because we're
  1232. * calling into the buffer/page cache code and we can't hold the
  1233. * inode lock when we do so.
  1234. *
  1235. * We need to wait for any direct I/Os in flight to complete before we
  1236. * proceed with the truncate. This is needed to prevent the extents
  1237. * being read or written by the direct I/Os from being removed while the
  1238. * I/O is in flight as there is no other method of synchronising
  1239. * direct I/O with the truncate operation. Also, because we hold
  1240. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1241. * started until the truncate completes and drops the lock. Essentially,
  1242. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1243. * ordering between direct I/Os and the truncate operation.
  1244. *
  1245. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1246. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1247. * in the case that the caller is locking things out of order and
  1248. * may not be able to call xfs_itruncate_finish() with the inode lock
  1249. * held without dropping the I/O lock. If the caller must drop the
  1250. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1251. * must be called again with all the same restrictions as the initial
  1252. * call.
  1253. */
  1254. int
  1255. xfs_itruncate_start(
  1256. xfs_inode_t *ip,
  1257. uint flags,
  1258. xfs_fsize_t new_size)
  1259. {
  1260. xfs_fsize_t last_byte;
  1261. xfs_off_t toss_start;
  1262. xfs_mount_t *mp;
  1263. int error = 0;
  1264. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1265. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1266. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1267. (flags == XFS_ITRUNC_MAYBE));
  1268. mp = ip->i_mount;
  1269. /* wait for the completion of any pending DIOs */
  1270. if (new_size == 0 || new_size < ip->i_size)
  1271. xfs_ioend_wait(ip);
  1272. /*
  1273. * Call toss_pages or flushinval_pages to get rid of pages
  1274. * overlapping the region being removed. We have to use
  1275. * the less efficient flushinval_pages in the case that the
  1276. * caller may not be able to finish the truncate without
  1277. * dropping the inode's I/O lock. Make sure
  1278. * to catch any pages brought in by buffers overlapping
  1279. * the EOF by searching out beyond the isize by our
  1280. * block size. We round new_size up to a block boundary
  1281. * so that we don't toss things on the same block as
  1282. * new_size but before it.
  1283. *
  1284. * Before calling toss_page or flushinval_pages, make sure to
  1285. * call remapf() over the same region if the file is mapped.
  1286. * This frees up mapped file references to the pages in the
  1287. * given range and for the flushinval_pages case it ensures
  1288. * that we get the latest mapped changes flushed out.
  1289. */
  1290. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1291. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1292. if (toss_start < 0) {
  1293. /*
  1294. * The place to start tossing is beyond our maximum
  1295. * file size, so there is no way that the data extended
  1296. * out there.
  1297. */
  1298. return 0;
  1299. }
  1300. last_byte = xfs_file_last_byte(ip);
  1301. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1302. last_byte);
  1303. if (last_byte > toss_start) {
  1304. if (flags & XFS_ITRUNC_DEFINITE) {
  1305. xfs_tosspages(ip, toss_start,
  1306. -1, FI_REMAPF_LOCKED);
  1307. } else {
  1308. error = xfs_flushinval_pages(ip, toss_start,
  1309. -1, FI_REMAPF_LOCKED);
  1310. }
  1311. }
  1312. #ifdef DEBUG
  1313. if (new_size == 0) {
  1314. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1315. }
  1316. #endif
  1317. return error;
  1318. }
  1319. /*
  1320. * Shrink the file to the given new_size. The new size must be smaller than
  1321. * the current size. This will free up the underlying blocks in the removed
  1322. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1323. *
  1324. * The transaction passed to this routine must have made a permanent log
  1325. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1326. * given transaction and start new ones, so make sure everything involved in
  1327. * the transaction is tidy before calling here. Some transaction will be
  1328. * returned to the caller to be committed. The incoming transaction must
  1329. * already include the inode, and both inode locks must be held exclusively.
  1330. * The inode must also be "held" within the transaction. On return the inode
  1331. * will be "held" within the returned transaction. This routine does NOT
  1332. * require any disk space to be reserved for it within the transaction.
  1333. *
  1334. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1335. * indicates the fork which is to be truncated. For the attribute fork we only
  1336. * support truncation to size 0.
  1337. *
  1338. * We use the sync parameter to indicate whether or not the first transaction
  1339. * we perform might have to be synchronous. For the attr fork, it needs to be
  1340. * so if the unlink of the inode is not yet known to be permanent in the log.
  1341. * This keeps us from freeing and reusing the blocks of the attribute fork
  1342. * before the unlink of the inode becomes permanent.
  1343. *
  1344. * For the data fork, we normally have to run synchronously if we're being
  1345. * called out of the inactive path or we're being called out of the create path
  1346. * where we're truncating an existing file. Either way, the truncate needs to
  1347. * be sync so blocks don't reappear in the file with altered data in case of a
  1348. * crash. wsync filesystems can run the first case async because anything that
  1349. * shrinks the inode has to run sync so by the time we're called here from
  1350. * inactive, the inode size is permanently set to 0.
  1351. *
  1352. * Calls from the truncate path always need to be sync unless we're in a wsync
  1353. * filesystem and the file has already been unlinked.
  1354. *
  1355. * The caller is responsible for correctly setting the sync parameter. It gets
  1356. * too hard for us to guess here which path we're being called out of just
  1357. * based on inode state.
  1358. *
  1359. * If we get an error, we must return with the inode locked and linked into the
  1360. * current transaction. This keeps things simple for the higher level code,
  1361. * because it always knows that the inode is locked and held in the transaction
  1362. * that returns to it whether errors occur or not. We don't mark the inode
  1363. * dirty on error so that transactions can be easily aborted if possible.
  1364. */
  1365. int
  1366. xfs_itruncate_finish(
  1367. xfs_trans_t **tp,
  1368. xfs_inode_t *ip,
  1369. xfs_fsize_t new_size,
  1370. int fork,
  1371. int sync)
  1372. {
  1373. xfs_fsblock_t first_block;
  1374. xfs_fileoff_t first_unmap_block;
  1375. xfs_fileoff_t last_block;
  1376. xfs_filblks_t unmap_len=0;
  1377. xfs_mount_t *mp;
  1378. xfs_trans_t *ntp;
  1379. int done;
  1380. int committed;
  1381. xfs_bmap_free_t free_list;
  1382. int error;
  1383. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1384. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1385. ASSERT(*tp != NULL);
  1386. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1387. ASSERT(ip->i_transp == *tp);
  1388. ASSERT(ip->i_itemp != NULL);
  1389. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1390. ntp = *tp;
  1391. mp = (ntp)->t_mountp;
  1392. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1393. /*
  1394. * We only support truncating the entire attribute fork.
  1395. */
  1396. if (fork == XFS_ATTR_FORK) {
  1397. new_size = 0LL;
  1398. }
  1399. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1400. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1401. /*
  1402. * The first thing we do is set the size to new_size permanently
  1403. * on disk. This way we don't have to worry about anyone ever
  1404. * being able to look at the data being freed even in the face
  1405. * of a crash. What we're getting around here is the case where
  1406. * we free a block, it is allocated to another file, it is written
  1407. * to, and then we crash. If the new data gets written to the
  1408. * file but the log buffers containing the free and reallocation
  1409. * don't, then we'd end up with garbage in the blocks being freed.
  1410. * As long as we make the new_size permanent before actually
  1411. * freeing any blocks it doesn't matter if they get writtten to.
  1412. *
  1413. * The callers must signal into us whether or not the size
  1414. * setting here must be synchronous. There are a few cases
  1415. * where it doesn't have to be synchronous. Those cases
  1416. * occur if the file is unlinked and we know the unlink is
  1417. * permanent or if the blocks being truncated are guaranteed
  1418. * to be beyond the inode eof (regardless of the link count)
  1419. * and the eof value is permanent. Both of these cases occur
  1420. * only on wsync-mounted filesystems. In those cases, we're
  1421. * guaranteed that no user will ever see the data in the blocks
  1422. * that are being truncated so the truncate can run async.
  1423. * In the free beyond eof case, the file may wind up with
  1424. * more blocks allocated to it than it needs if we crash
  1425. * and that won't get fixed until the next time the file
  1426. * is re-opened and closed but that's ok as that shouldn't
  1427. * be too many blocks.
  1428. *
  1429. * However, we can't just make all wsync xactions run async
  1430. * because there's one call out of the create path that needs
  1431. * to run sync where it's truncating an existing file to size
  1432. * 0 whose size is > 0.
  1433. *
  1434. * It's probably possible to come up with a test in this
  1435. * routine that would correctly distinguish all the above
  1436. * cases from the values of the function parameters and the
  1437. * inode state but for sanity's sake, I've decided to let the
  1438. * layers above just tell us. It's simpler to correctly figure
  1439. * out in the layer above exactly under what conditions we
  1440. * can run async and I think it's easier for others read and
  1441. * follow the logic in case something has to be changed.
  1442. * cscope is your friend -- rcc.
  1443. *
  1444. * The attribute fork is much simpler.
  1445. *
  1446. * For the attribute fork we allow the caller to tell us whether
  1447. * the unlink of the inode that led to this call is yet permanent
  1448. * in the on disk log. If it is not and we will be freeing extents
  1449. * in this inode then we make the first transaction synchronous
  1450. * to make sure that the unlink is permanent by the time we free
  1451. * the blocks.
  1452. */
  1453. if (fork == XFS_DATA_FORK) {
  1454. if (ip->i_d.di_nextents > 0) {
  1455. /*
  1456. * If we are not changing the file size then do
  1457. * not update the on-disk file size - we may be
  1458. * called from xfs_inactive_free_eofblocks(). If we
  1459. * update the on-disk file size and then the system
  1460. * crashes before the contents of the file are
  1461. * flushed to disk then the files may be full of
  1462. * holes (ie NULL files bug).
  1463. */
  1464. if (ip->i_size != new_size) {
  1465. ip->i_d.di_size = new_size;
  1466. ip->i_size = new_size;
  1467. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1468. }
  1469. }
  1470. } else if (sync) {
  1471. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1472. if (ip->i_d.di_anextents > 0)
  1473. xfs_trans_set_sync(ntp);
  1474. }
  1475. ASSERT(fork == XFS_DATA_FORK ||
  1476. (fork == XFS_ATTR_FORK &&
  1477. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1478. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1479. /*
  1480. * Since it is possible for space to become allocated beyond
  1481. * the end of the file (in a crash where the space is allocated
  1482. * but the inode size is not yet updated), simply remove any
  1483. * blocks which show up between the new EOF and the maximum
  1484. * possible file size. If the first block to be removed is
  1485. * beyond the maximum file size (ie it is the same as last_block),
  1486. * then there is nothing to do.
  1487. */
  1488. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1489. ASSERT(first_unmap_block <= last_block);
  1490. done = 0;
  1491. if (last_block == first_unmap_block) {
  1492. done = 1;
  1493. } else {
  1494. unmap_len = last_block - first_unmap_block + 1;
  1495. }
  1496. while (!done) {
  1497. /*
  1498. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1499. * will tell us whether it freed the entire range or
  1500. * not. If this is a synchronous mount (wsync),
  1501. * then we can tell bunmapi to keep all the
  1502. * transactions asynchronous since the unlink
  1503. * transaction that made this inode inactive has
  1504. * already hit the disk. There's no danger of
  1505. * the freed blocks being reused, there being a
  1506. * crash, and the reused blocks suddenly reappearing
  1507. * in this file with garbage in them once recovery
  1508. * runs.
  1509. */
  1510. xfs_bmap_init(&free_list, &first_block);
  1511. error = xfs_bunmapi(ntp, ip,
  1512. first_unmap_block, unmap_len,
  1513. xfs_bmapi_aflag(fork) |
  1514. (sync ? 0 : XFS_BMAPI_ASYNC),
  1515. XFS_ITRUNC_MAX_EXTENTS,
  1516. &first_block, &free_list,
  1517. NULL, &done);
  1518. if (error) {
  1519. /*
  1520. * If the bunmapi call encounters an error,
  1521. * return to the caller where the transaction
  1522. * can be properly aborted. We just need to
  1523. * make sure we're not holding any resources
  1524. * that we were not when we came in.
  1525. */
  1526. xfs_bmap_cancel(&free_list);
  1527. return error;
  1528. }
  1529. /*
  1530. * Duplicate the transaction that has the permanent
  1531. * reservation and commit the old transaction.
  1532. */
  1533. error = xfs_bmap_finish(tp, &free_list, &committed);
  1534. ntp = *tp;
  1535. if (committed) {
  1536. /* link the inode into the next xact in the chain */
  1537. xfs_trans_ijoin(ntp, ip,
  1538. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1539. xfs_trans_ihold(ntp, ip);
  1540. }
  1541. if (error) {
  1542. /*
  1543. * If the bmap finish call encounters an error, return
  1544. * to the caller where the transaction can be properly
  1545. * aborted. We just need to make sure we're not
  1546. * holding any resources that we were not when we came
  1547. * in.
  1548. *
  1549. * Aborting from this point might lose some blocks in
  1550. * the file system, but oh well.
  1551. */
  1552. xfs_bmap_cancel(&free_list);
  1553. return error;
  1554. }
  1555. if (committed) {
  1556. /*
  1557. * Mark the inode dirty so it will be logged and
  1558. * moved forward in the log as part of every commit.
  1559. */
  1560. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1561. }
  1562. ntp = xfs_trans_dup(ntp);
  1563. error = xfs_trans_commit(*tp, 0);
  1564. *tp = ntp;
  1565. /* link the inode into the next transaction in the chain */
  1566. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1567. xfs_trans_ihold(ntp, ip);
  1568. if (error)
  1569. return error;
  1570. /*
  1571. * transaction commit worked ok so we can drop the extra ticket
  1572. * reference that we gained in xfs_trans_dup()
  1573. */
  1574. xfs_log_ticket_put(ntp->t_ticket);
  1575. error = xfs_trans_reserve(ntp, 0,
  1576. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1577. XFS_TRANS_PERM_LOG_RES,
  1578. XFS_ITRUNCATE_LOG_COUNT);
  1579. if (error)
  1580. return error;
  1581. }
  1582. /*
  1583. * Only update the size in the case of the data fork, but
  1584. * always re-log the inode so that our permanent transaction
  1585. * can keep on rolling it forward in the log.
  1586. */
  1587. if (fork == XFS_DATA_FORK) {
  1588. xfs_isize_check(mp, ip, new_size);
  1589. /*
  1590. * If we are not changing the file size then do
  1591. * not update the on-disk file size - we may be
  1592. * called from xfs_inactive_free_eofblocks(). If we
  1593. * update the on-disk file size and then the system
  1594. * crashes before the contents of the file are
  1595. * flushed to disk then the files may be full of
  1596. * holes (ie NULL files bug).
  1597. */
  1598. if (ip->i_size != new_size) {
  1599. ip->i_d.di_size = new_size;
  1600. ip->i_size = new_size;
  1601. }
  1602. }
  1603. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1604. ASSERT((new_size != 0) ||
  1605. (fork == XFS_ATTR_FORK) ||
  1606. (ip->i_delayed_blks == 0));
  1607. ASSERT((new_size != 0) ||
  1608. (fork == XFS_ATTR_FORK) ||
  1609. (ip->i_d.di_nextents == 0));
  1610. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1611. return 0;
  1612. }
  1613. /*
  1614. * This is called when the inode's link count goes to 0.
  1615. * We place the on-disk inode on a list in the AGI. It
  1616. * will be pulled from this list when the inode is freed.
  1617. */
  1618. int
  1619. xfs_iunlink(
  1620. xfs_trans_t *tp,
  1621. xfs_inode_t *ip)
  1622. {
  1623. xfs_mount_t *mp;
  1624. xfs_agi_t *agi;
  1625. xfs_dinode_t *dip;
  1626. xfs_buf_t *agibp;
  1627. xfs_buf_t *ibp;
  1628. xfs_agino_t agino;
  1629. short bucket_index;
  1630. int offset;
  1631. int error;
  1632. ASSERT(ip->i_d.di_nlink == 0);
  1633. ASSERT(ip->i_d.di_mode != 0);
  1634. ASSERT(ip->i_transp == tp);
  1635. mp = tp->t_mountp;
  1636. /*
  1637. * Get the agi buffer first. It ensures lock ordering
  1638. * on the list.
  1639. */
  1640. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1641. if (error)
  1642. return error;
  1643. agi = XFS_BUF_TO_AGI(agibp);
  1644. /*
  1645. * Get the index into the agi hash table for the
  1646. * list this inode will go on.
  1647. */
  1648. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1649. ASSERT(agino != 0);
  1650. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1651. ASSERT(agi->agi_unlinked[bucket_index]);
  1652. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1653. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1654. /*
  1655. * There is already another inode in the bucket we need
  1656. * to add ourselves to. Add us at the front of the list.
  1657. * Here we put the head pointer into our next pointer,
  1658. * and then we fall through to point the head at us.
  1659. */
  1660. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1661. if (error)
  1662. return error;
  1663. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1664. /* both on-disk, don't endian flip twice */
  1665. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1666. offset = ip->i_imap.im_boffset +
  1667. offsetof(xfs_dinode_t, di_next_unlinked);
  1668. xfs_trans_inode_buf(tp, ibp);
  1669. xfs_trans_log_buf(tp, ibp, offset,
  1670. (offset + sizeof(xfs_agino_t) - 1));
  1671. xfs_inobp_check(mp, ibp);
  1672. }
  1673. /*
  1674. * Point the bucket head pointer at the inode being inserted.
  1675. */
  1676. ASSERT(agino != 0);
  1677. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1678. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1679. (sizeof(xfs_agino_t) * bucket_index);
  1680. xfs_trans_log_buf(tp, agibp, offset,
  1681. (offset + sizeof(xfs_agino_t) - 1));
  1682. return 0;
  1683. }
  1684. /*
  1685. * Pull the on-disk inode from the AGI unlinked list.
  1686. */
  1687. STATIC int
  1688. xfs_iunlink_remove(
  1689. xfs_trans_t *tp,
  1690. xfs_inode_t *ip)
  1691. {
  1692. xfs_ino_t next_ino;
  1693. xfs_mount_t *mp;
  1694. xfs_agi_t *agi;
  1695. xfs_dinode_t *dip;
  1696. xfs_buf_t *agibp;
  1697. xfs_buf_t *ibp;
  1698. xfs_agnumber_t agno;
  1699. xfs_agino_t agino;
  1700. xfs_agino_t next_agino;
  1701. xfs_buf_t *last_ibp;
  1702. xfs_dinode_t *last_dip = NULL;
  1703. short bucket_index;
  1704. int offset, last_offset = 0;
  1705. int error;
  1706. mp = tp->t_mountp;
  1707. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1708. /*
  1709. * Get the agi buffer first. It ensures lock ordering
  1710. * on the list.
  1711. */
  1712. error = xfs_read_agi(mp, tp, agno, &agibp);
  1713. if (error)
  1714. return error;
  1715. agi = XFS_BUF_TO_AGI(agibp);
  1716. /*
  1717. * Get the index into the agi hash table for the
  1718. * list this inode will go on.
  1719. */
  1720. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1721. ASSERT(agino != 0);
  1722. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1723. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1724. ASSERT(agi->agi_unlinked[bucket_index]);
  1725. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1726. /*
  1727. * We're at the head of the list. Get the inode's
  1728. * on-disk buffer to see if there is anyone after us
  1729. * on the list. Only modify our next pointer if it
  1730. * is not already NULLAGINO. This saves us the overhead
  1731. * of dealing with the buffer when there is no need to
  1732. * change it.
  1733. */
  1734. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1735. if (error) {
  1736. cmn_err(CE_WARN,
  1737. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1738. error, mp->m_fsname);
  1739. return error;
  1740. }
  1741. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1742. ASSERT(next_agino != 0);
  1743. if (next_agino != NULLAGINO) {
  1744. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1745. offset = ip->i_imap.im_boffset +
  1746. offsetof(xfs_dinode_t, di_next_unlinked);
  1747. xfs_trans_inode_buf(tp, ibp);
  1748. xfs_trans_log_buf(tp, ibp, offset,
  1749. (offset + sizeof(xfs_agino_t) - 1));
  1750. xfs_inobp_check(mp, ibp);
  1751. } else {
  1752. xfs_trans_brelse(tp, ibp);
  1753. }
  1754. /*
  1755. * Point the bucket head pointer at the next inode.
  1756. */
  1757. ASSERT(next_agino != 0);
  1758. ASSERT(next_agino != agino);
  1759. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1760. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1761. (sizeof(xfs_agino_t) * bucket_index);
  1762. xfs_trans_log_buf(tp, agibp, offset,
  1763. (offset + sizeof(xfs_agino_t) - 1));
  1764. } else {
  1765. /*
  1766. * We need to search the list for the inode being freed.
  1767. */
  1768. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1769. last_ibp = NULL;
  1770. while (next_agino != agino) {
  1771. /*
  1772. * If the last inode wasn't the one pointing to
  1773. * us, then release its buffer since we're not
  1774. * going to do anything with it.
  1775. */
  1776. if (last_ibp != NULL) {
  1777. xfs_trans_brelse(tp, last_ibp);
  1778. }
  1779. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1780. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1781. &last_ibp, &last_offset, 0);
  1782. if (error) {
  1783. cmn_err(CE_WARN,
  1784. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1785. error, mp->m_fsname);
  1786. return error;
  1787. }
  1788. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1789. ASSERT(next_agino != NULLAGINO);
  1790. ASSERT(next_agino != 0);
  1791. }
  1792. /*
  1793. * Now last_ibp points to the buffer previous to us on
  1794. * the unlinked list. Pull us from the list.
  1795. */
  1796. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1797. if (error) {
  1798. cmn_err(CE_WARN,
  1799. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1800. error, mp->m_fsname);
  1801. return error;
  1802. }
  1803. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1804. ASSERT(next_agino != 0);
  1805. ASSERT(next_agino != agino);
  1806. if (next_agino != NULLAGINO) {
  1807. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1808. offset = ip->i_imap.im_boffset +
  1809. offsetof(xfs_dinode_t, di_next_unlinked);
  1810. xfs_trans_inode_buf(tp, ibp);
  1811. xfs_trans_log_buf(tp, ibp, offset,
  1812. (offset + sizeof(xfs_agino_t) - 1));
  1813. xfs_inobp_check(mp, ibp);
  1814. } else {
  1815. xfs_trans_brelse(tp, ibp);
  1816. }
  1817. /*
  1818. * Point the previous inode on the list to the next inode.
  1819. */
  1820. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1821. ASSERT(next_agino != 0);
  1822. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1823. xfs_trans_inode_buf(tp, last_ibp);
  1824. xfs_trans_log_buf(tp, last_ibp, offset,
  1825. (offset + sizeof(xfs_agino_t) - 1));
  1826. xfs_inobp_check(mp, last_ibp);
  1827. }
  1828. return 0;
  1829. }
  1830. STATIC void
  1831. xfs_ifree_cluster(
  1832. xfs_inode_t *free_ip,
  1833. xfs_trans_t *tp,
  1834. xfs_ino_t inum)
  1835. {
  1836. xfs_mount_t *mp = free_ip->i_mount;
  1837. int blks_per_cluster;
  1838. int nbufs;
  1839. int ninodes;
  1840. int i, j, found, pre_flushed;
  1841. xfs_daddr_t blkno;
  1842. xfs_buf_t *bp;
  1843. xfs_inode_t *ip, **ip_found;
  1844. xfs_inode_log_item_t *iip;
  1845. xfs_log_item_t *lip;
  1846. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1847. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1848. blks_per_cluster = 1;
  1849. ninodes = mp->m_sb.sb_inopblock;
  1850. nbufs = XFS_IALLOC_BLOCKS(mp);
  1851. } else {
  1852. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1853. mp->m_sb.sb_blocksize;
  1854. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1855. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1856. }
  1857. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1858. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1859. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1860. XFS_INO_TO_AGBNO(mp, inum));
  1861. /*
  1862. * Look for each inode in memory and attempt to lock it,
  1863. * we can be racing with flush and tail pushing here.
  1864. * any inode we get the locks on, add to an array of
  1865. * inode items to process later.
  1866. *
  1867. * The get the buffer lock, we could beat a flush
  1868. * or tail pushing thread to the lock here, in which
  1869. * case they will go looking for the inode buffer
  1870. * and fail, we need some other form of interlock
  1871. * here.
  1872. */
  1873. found = 0;
  1874. for (i = 0; i < ninodes; i++) {
  1875. read_lock(&pag->pag_ici_lock);
  1876. ip = radix_tree_lookup(&pag->pag_ici_root,
  1877. XFS_INO_TO_AGINO(mp, (inum + i)));
  1878. /* Inode not in memory or we found it already,
  1879. * nothing to do
  1880. */
  1881. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1882. read_unlock(&pag->pag_ici_lock);
  1883. continue;
  1884. }
  1885. if (xfs_inode_clean(ip)) {
  1886. read_unlock(&pag->pag_ici_lock);
  1887. continue;
  1888. }
  1889. /* If we can get the locks then add it to the
  1890. * list, otherwise by the time we get the bp lock
  1891. * below it will already be attached to the
  1892. * inode buffer.
  1893. */
  1894. /* This inode will already be locked - by us, lets
  1895. * keep it that way.
  1896. */
  1897. if (ip == free_ip) {
  1898. if (xfs_iflock_nowait(ip)) {
  1899. xfs_iflags_set(ip, XFS_ISTALE);
  1900. if (xfs_inode_clean(ip)) {
  1901. xfs_ifunlock(ip);
  1902. } else {
  1903. ip_found[found++] = ip;
  1904. }
  1905. }
  1906. read_unlock(&pag->pag_ici_lock);
  1907. continue;
  1908. }
  1909. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1910. if (xfs_iflock_nowait(ip)) {
  1911. xfs_iflags_set(ip, XFS_ISTALE);
  1912. if (xfs_inode_clean(ip)) {
  1913. xfs_ifunlock(ip);
  1914. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1915. } else {
  1916. ip_found[found++] = ip;
  1917. }
  1918. } else {
  1919. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1920. }
  1921. }
  1922. read_unlock(&pag->pag_ici_lock);
  1923. }
  1924. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1925. mp->m_bsize * blks_per_cluster,
  1926. XFS_BUF_LOCK);
  1927. pre_flushed = 0;
  1928. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1929. while (lip) {
  1930. if (lip->li_type == XFS_LI_INODE) {
  1931. iip = (xfs_inode_log_item_t *)lip;
  1932. ASSERT(iip->ili_logged == 1);
  1933. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1934. xfs_trans_ail_copy_lsn(mp->m_ail,
  1935. &iip->ili_flush_lsn,
  1936. &iip->ili_item.li_lsn);
  1937. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1938. pre_flushed++;
  1939. }
  1940. lip = lip->li_bio_list;
  1941. }
  1942. for (i = 0; i < found; i++) {
  1943. ip = ip_found[i];
  1944. iip = ip->i_itemp;
  1945. if (!iip) {
  1946. ip->i_update_core = 0;
  1947. xfs_ifunlock(ip);
  1948. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1949. continue;
  1950. }
  1951. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1952. iip->ili_format.ilf_fields = 0;
  1953. iip->ili_logged = 1;
  1954. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1955. &iip->ili_item.li_lsn);
  1956. xfs_buf_attach_iodone(bp,
  1957. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1958. xfs_istale_done, (xfs_log_item_t *)iip);
  1959. if (ip != free_ip) {
  1960. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1961. }
  1962. }
  1963. if (found || pre_flushed)
  1964. xfs_trans_stale_inode_buf(tp, bp);
  1965. xfs_trans_binval(tp, bp);
  1966. }
  1967. kmem_free(ip_found);
  1968. xfs_put_perag(mp, pag);
  1969. }
  1970. /*
  1971. * This is called to return an inode to the inode free list.
  1972. * The inode should already be truncated to 0 length and have
  1973. * no pages associated with it. This routine also assumes that
  1974. * the inode is already a part of the transaction.
  1975. *
  1976. * The on-disk copy of the inode will have been added to the list
  1977. * of unlinked inodes in the AGI. We need to remove the inode from
  1978. * that list atomically with respect to freeing it here.
  1979. */
  1980. int
  1981. xfs_ifree(
  1982. xfs_trans_t *tp,
  1983. xfs_inode_t *ip,
  1984. xfs_bmap_free_t *flist)
  1985. {
  1986. int error;
  1987. int delete;
  1988. xfs_ino_t first_ino;
  1989. xfs_dinode_t *dip;
  1990. xfs_buf_t *ibp;
  1991. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1992. ASSERT(ip->i_transp == tp);
  1993. ASSERT(ip->i_d.di_nlink == 0);
  1994. ASSERT(ip->i_d.di_nextents == 0);
  1995. ASSERT(ip->i_d.di_anextents == 0);
  1996. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1997. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1998. ASSERT(ip->i_d.di_nblocks == 0);
  1999. /*
  2000. * Pull the on-disk inode from the AGI unlinked list.
  2001. */
  2002. error = xfs_iunlink_remove(tp, ip);
  2003. if (error != 0) {
  2004. return error;
  2005. }
  2006. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2007. if (error != 0) {
  2008. return error;
  2009. }
  2010. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2011. ip->i_d.di_flags = 0;
  2012. ip->i_d.di_dmevmask = 0;
  2013. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2014. ip->i_df.if_ext_max =
  2015. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2016. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2017. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2018. /*
  2019. * Bump the generation count so no one will be confused
  2020. * by reincarnations of this inode.
  2021. */
  2022. ip->i_d.di_gen++;
  2023. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2024. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  2025. if (error)
  2026. return error;
  2027. /*
  2028. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2029. * from picking up this inode when it is reclaimed (its incore state
  2030. * initialzed but not flushed to disk yet). The in-core di_mode is
  2031. * already cleared and a corresponding transaction logged.
  2032. * The hack here just synchronizes the in-core to on-disk
  2033. * di_mode value in advance before the actual inode sync to disk.
  2034. * This is OK because the inode is already unlinked and would never
  2035. * change its di_mode again for this inode generation.
  2036. * This is a temporary hack that would require a proper fix
  2037. * in the future.
  2038. */
  2039. dip->di_mode = 0;
  2040. if (delete) {
  2041. xfs_ifree_cluster(ip, tp, first_ino);
  2042. }
  2043. return 0;
  2044. }
  2045. /*
  2046. * Reallocate the space for if_broot based on the number of records
  2047. * being added or deleted as indicated in rec_diff. Move the records
  2048. * and pointers in if_broot to fit the new size. When shrinking this
  2049. * will eliminate holes between the records and pointers created by
  2050. * the caller. When growing this will create holes to be filled in
  2051. * by the caller.
  2052. *
  2053. * The caller must not request to add more records than would fit in
  2054. * the on-disk inode root. If the if_broot is currently NULL, then
  2055. * if we adding records one will be allocated. The caller must also
  2056. * not request that the number of records go below zero, although
  2057. * it can go to zero.
  2058. *
  2059. * ip -- the inode whose if_broot area is changing
  2060. * ext_diff -- the change in the number of records, positive or negative,
  2061. * requested for the if_broot array.
  2062. */
  2063. void
  2064. xfs_iroot_realloc(
  2065. xfs_inode_t *ip,
  2066. int rec_diff,
  2067. int whichfork)
  2068. {
  2069. struct xfs_mount *mp = ip->i_mount;
  2070. int cur_max;
  2071. xfs_ifork_t *ifp;
  2072. struct xfs_btree_block *new_broot;
  2073. int new_max;
  2074. size_t new_size;
  2075. char *np;
  2076. char *op;
  2077. /*
  2078. * Handle the degenerate case quietly.
  2079. */
  2080. if (rec_diff == 0) {
  2081. return;
  2082. }
  2083. ifp = XFS_IFORK_PTR(ip, whichfork);
  2084. if (rec_diff > 0) {
  2085. /*
  2086. * If there wasn't any memory allocated before, just
  2087. * allocate it now and get out.
  2088. */
  2089. if (ifp->if_broot_bytes == 0) {
  2090. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2091. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2092. ifp->if_broot_bytes = (int)new_size;
  2093. return;
  2094. }
  2095. /*
  2096. * If there is already an existing if_broot, then we need
  2097. * to realloc() it and shift the pointers to their new
  2098. * location. The records don't change location because
  2099. * they are kept butted up against the btree block header.
  2100. */
  2101. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2102. new_max = cur_max + rec_diff;
  2103. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2104. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2105. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2106. KM_SLEEP);
  2107. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2108. ifp->if_broot_bytes);
  2109. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2110. (int)new_size);
  2111. ifp->if_broot_bytes = (int)new_size;
  2112. ASSERT(ifp->if_broot_bytes <=
  2113. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2114. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2115. return;
  2116. }
  2117. /*
  2118. * rec_diff is less than 0. In this case, we are shrinking the
  2119. * if_broot buffer. It must already exist. If we go to zero
  2120. * records, just get rid of the root and clear the status bit.
  2121. */
  2122. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2123. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2124. new_max = cur_max + rec_diff;
  2125. ASSERT(new_max >= 0);
  2126. if (new_max > 0)
  2127. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2128. else
  2129. new_size = 0;
  2130. if (new_size > 0) {
  2131. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2132. /*
  2133. * First copy over the btree block header.
  2134. */
  2135. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2136. } else {
  2137. new_broot = NULL;
  2138. ifp->if_flags &= ~XFS_IFBROOT;
  2139. }
  2140. /*
  2141. * Only copy the records and pointers if there are any.
  2142. */
  2143. if (new_max > 0) {
  2144. /*
  2145. * First copy the records.
  2146. */
  2147. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2148. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2149. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2150. /*
  2151. * Then copy the pointers.
  2152. */
  2153. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2154. ifp->if_broot_bytes);
  2155. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2156. (int)new_size);
  2157. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2158. }
  2159. kmem_free(ifp->if_broot);
  2160. ifp->if_broot = new_broot;
  2161. ifp->if_broot_bytes = (int)new_size;
  2162. ASSERT(ifp->if_broot_bytes <=
  2163. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2164. return;
  2165. }
  2166. /*
  2167. * This is called when the amount of space needed for if_data
  2168. * is increased or decreased. The change in size is indicated by
  2169. * the number of bytes that need to be added or deleted in the
  2170. * byte_diff parameter.
  2171. *
  2172. * If the amount of space needed has decreased below the size of the
  2173. * inline buffer, then switch to using the inline buffer. Otherwise,
  2174. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2175. * to what is needed.
  2176. *
  2177. * ip -- the inode whose if_data area is changing
  2178. * byte_diff -- the change in the number of bytes, positive or negative,
  2179. * requested for the if_data array.
  2180. */
  2181. void
  2182. xfs_idata_realloc(
  2183. xfs_inode_t *ip,
  2184. int byte_diff,
  2185. int whichfork)
  2186. {
  2187. xfs_ifork_t *ifp;
  2188. int new_size;
  2189. int real_size;
  2190. if (byte_diff == 0) {
  2191. return;
  2192. }
  2193. ifp = XFS_IFORK_PTR(ip, whichfork);
  2194. new_size = (int)ifp->if_bytes + byte_diff;
  2195. ASSERT(new_size >= 0);
  2196. if (new_size == 0) {
  2197. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2198. kmem_free(ifp->if_u1.if_data);
  2199. }
  2200. ifp->if_u1.if_data = NULL;
  2201. real_size = 0;
  2202. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2203. /*
  2204. * If the valid extents/data can fit in if_inline_ext/data,
  2205. * copy them from the malloc'd vector and free it.
  2206. */
  2207. if (ifp->if_u1.if_data == NULL) {
  2208. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2209. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2210. ASSERT(ifp->if_real_bytes != 0);
  2211. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2212. new_size);
  2213. kmem_free(ifp->if_u1.if_data);
  2214. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2215. }
  2216. real_size = 0;
  2217. } else {
  2218. /*
  2219. * Stuck with malloc/realloc.
  2220. * For inline data, the underlying buffer must be
  2221. * a multiple of 4 bytes in size so that it can be
  2222. * logged and stay on word boundaries. We enforce
  2223. * that here.
  2224. */
  2225. real_size = roundup(new_size, 4);
  2226. if (ifp->if_u1.if_data == NULL) {
  2227. ASSERT(ifp->if_real_bytes == 0);
  2228. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2229. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2230. /*
  2231. * Only do the realloc if the underlying size
  2232. * is really changing.
  2233. */
  2234. if (ifp->if_real_bytes != real_size) {
  2235. ifp->if_u1.if_data =
  2236. kmem_realloc(ifp->if_u1.if_data,
  2237. real_size,
  2238. ifp->if_real_bytes,
  2239. KM_SLEEP);
  2240. }
  2241. } else {
  2242. ASSERT(ifp->if_real_bytes == 0);
  2243. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2244. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2245. ifp->if_bytes);
  2246. }
  2247. }
  2248. ifp->if_real_bytes = real_size;
  2249. ifp->if_bytes = new_size;
  2250. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2251. }
  2252. void
  2253. xfs_idestroy_fork(
  2254. xfs_inode_t *ip,
  2255. int whichfork)
  2256. {
  2257. xfs_ifork_t *ifp;
  2258. ifp = XFS_IFORK_PTR(ip, whichfork);
  2259. if (ifp->if_broot != NULL) {
  2260. kmem_free(ifp->if_broot);
  2261. ifp->if_broot = NULL;
  2262. }
  2263. /*
  2264. * If the format is local, then we can't have an extents
  2265. * array so just look for an inline data array. If we're
  2266. * not local then we may or may not have an extents list,
  2267. * so check and free it up if we do.
  2268. */
  2269. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2270. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2271. (ifp->if_u1.if_data != NULL)) {
  2272. ASSERT(ifp->if_real_bytes != 0);
  2273. kmem_free(ifp->if_u1.if_data);
  2274. ifp->if_u1.if_data = NULL;
  2275. ifp->if_real_bytes = 0;
  2276. }
  2277. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2278. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2279. ((ifp->if_u1.if_extents != NULL) &&
  2280. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2281. ASSERT(ifp->if_real_bytes != 0);
  2282. xfs_iext_destroy(ifp);
  2283. }
  2284. ASSERT(ifp->if_u1.if_extents == NULL ||
  2285. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2286. ASSERT(ifp->if_real_bytes == 0);
  2287. if (whichfork == XFS_ATTR_FORK) {
  2288. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2289. ip->i_afp = NULL;
  2290. }
  2291. }
  2292. /*
  2293. * Increment the pin count of the given buffer.
  2294. * This value is protected by ipinlock spinlock in the mount structure.
  2295. */
  2296. void
  2297. xfs_ipin(
  2298. xfs_inode_t *ip)
  2299. {
  2300. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2301. atomic_inc(&ip->i_pincount);
  2302. }
  2303. /*
  2304. * Decrement the pin count of the given inode, and wake up
  2305. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2306. * inode must have been previously pinned with a call to xfs_ipin().
  2307. */
  2308. void
  2309. xfs_iunpin(
  2310. xfs_inode_t *ip)
  2311. {
  2312. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2313. if (atomic_dec_and_test(&ip->i_pincount))
  2314. wake_up(&ip->i_ipin_wait);
  2315. }
  2316. /*
  2317. * This is called to unpin an inode. It can be directed to wait or to return
  2318. * immediately without waiting for the inode to be unpinned. The caller must
  2319. * have the inode locked in at least shared mode so that the buffer cannot be
  2320. * subsequently pinned once someone is waiting for it to be unpinned.
  2321. */
  2322. STATIC void
  2323. __xfs_iunpin_wait(
  2324. xfs_inode_t *ip,
  2325. int wait)
  2326. {
  2327. xfs_inode_log_item_t *iip = ip->i_itemp;
  2328. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2329. if (atomic_read(&ip->i_pincount) == 0)
  2330. return;
  2331. /* Give the log a push to start the unpinning I/O */
  2332. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2333. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2334. if (wait)
  2335. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2336. }
  2337. static inline void
  2338. xfs_iunpin_wait(
  2339. xfs_inode_t *ip)
  2340. {
  2341. __xfs_iunpin_wait(ip, 1);
  2342. }
  2343. static inline void
  2344. xfs_iunpin_nowait(
  2345. xfs_inode_t *ip)
  2346. {
  2347. __xfs_iunpin_wait(ip, 0);
  2348. }
  2349. /*
  2350. * xfs_iextents_copy()
  2351. *
  2352. * This is called to copy the REAL extents (as opposed to the delayed
  2353. * allocation extents) from the inode into the given buffer. It
  2354. * returns the number of bytes copied into the buffer.
  2355. *
  2356. * If there are no delayed allocation extents, then we can just
  2357. * memcpy() the extents into the buffer. Otherwise, we need to
  2358. * examine each extent in turn and skip those which are delayed.
  2359. */
  2360. int
  2361. xfs_iextents_copy(
  2362. xfs_inode_t *ip,
  2363. xfs_bmbt_rec_t *dp,
  2364. int whichfork)
  2365. {
  2366. int copied;
  2367. int i;
  2368. xfs_ifork_t *ifp;
  2369. int nrecs;
  2370. xfs_fsblock_t start_block;
  2371. ifp = XFS_IFORK_PTR(ip, whichfork);
  2372. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2373. ASSERT(ifp->if_bytes > 0);
  2374. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2375. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2376. ASSERT(nrecs > 0);
  2377. /*
  2378. * There are some delayed allocation extents in the
  2379. * inode, so copy the extents one at a time and skip
  2380. * the delayed ones. There must be at least one
  2381. * non-delayed extent.
  2382. */
  2383. copied = 0;
  2384. for (i = 0; i < nrecs; i++) {
  2385. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2386. start_block = xfs_bmbt_get_startblock(ep);
  2387. if (isnullstartblock(start_block)) {
  2388. /*
  2389. * It's a delayed allocation extent, so skip it.
  2390. */
  2391. continue;
  2392. }
  2393. /* Translate to on disk format */
  2394. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2395. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2396. dp++;
  2397. copied++;
  2398. }
  2399. ASSERT(copied != 0);
  2400. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2401. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2402. }
  2403. /*
  2404. * Each of the following cases stores data into the same region
  2405. * of the on-disk inode, so only one of them can be valid at
  2406. * any given time. While it is possible to have conflicting formats
  2407. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2408. * in EXTENTS format, this can only happen when the fork has
  2409. * changed formats after being modified but before being flushed.
  2410. * In these cases, the format always takes precedence, because the
  2411. * format indicates the current state of the fork.
  2412. */
  2413. /*ARGSUSED*/
  2414. STATIC void
  2415. xfs_iflush_fork(
  2416. xfs_inode_t *ip,
  2417. xfs_dinode_t *dip,
  2418. xfs_inode_log_item_t *iip,
  2419. int whichfork,
  2420. xfs_buf_t *bp)
  2421. {
  2422. char *cp;
  2423. xfs_ifork_t *ifp;
  2424. xfs_mount_t *mp;
  2425. #ifdef XFS_TRANS_DEBUG
  2426. int first;
  2427. #endif
  2428. static const short brootflag[2] =
  2429. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2430. static const short dataflag[2] =
  2431. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2432. static const short extflag[2] =
  2433. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2434. if (!iip)
  2435. return;
  2436. ifp = XFS_IFORK_PTR(ip, whichfork);
  2437. /*
  2438. * This can happen if we gave up in iformat in an error path,
  2439. * for the attribute fork.
  2440. */
  2441. if (!ifp) {
  2442. ASSERT(whichfork == XFS_ATTR_FORK);
  2443. return;
  2444. }
  2445. cp = XFS_DFORK_PTR(dip, whichfork);
  2446. mp = ip->i_mount;
  2447. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2448. case XFS_DINODE_FMT_LOCAL:
  2449. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2450. (ifp->if_bytes > 0)) {
  2451. ASSERT(ifp->if_u1.if_data != NULL);
  2452. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2453. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2454. }
  2455. break;
  2456. case XFS_DINODE_FMT_EXTENTS:
  2457. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2458. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2459. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2460. (ifp->if_bytes == 0));
  2461. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2462. (ifp->if_bytes > 0));
  2463. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2464. (ifp->if_bytes > 0)) {
  2465. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2466. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2467. whichfork);
  2468. }
  2469. break;
  2470. case XFS_DINODE_FMT_BTREE:
  2471. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2472. (ifp->if_broot_bytes > 0)) {
  2473. ASSERT(ifp->if_broot != NULL);
  2474. ASSERT(ifp->if_broot_bytes <=
  2475. (XFS_IFORK_SIZE(ip, whichfork) +
  2476. XFS_BROOT_SIZE_ADJ));
  2477. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2478. (xfs_bmdr_block_t *)cp,
  2479. XFS_DFORK_SIZE(dip, mp, whichfork));
  2480. }
  2481. break;
  2482. case XFS_DINODE_FMT_DEV:
  2483. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2484. ASSERT(whichfork == XFS_DATA_FORK);
  2485. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2486. }
  2487. break;
  2488. case XFS_DINODE_FMT_UUID:
  2489. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2490. ASSERT(whichfork == XFS_DATA_FORK);
  2491. memcpy(XFS_DFORK_DPTR(dip),
  2492. &ip->i_df.if_u2.if_uuid,
  2493. sizeof(uuid_t));
  2494. }
  2495. break;
  2496. default:
  2497. ASSERT(0);
  2498. break;
  2499. }
  2500. }
  2501. STATIC int
  2502. xfs_iflush_cluster(
  2503. xfs_inode_t *ip,
  2504. xfs_buf_t *bp)
  2505. {
  2506. xfs_mount_t *mp = ip->i_mount;
  2507. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2508. unsigned long first_index, mask;
  2509. unsigned long inodes_per_cluster;
  2510. int ilist_size;
  2511. xfs_inode_t **ilist;
  2512. xfs_inode_t *iq;
  2513. int nr_found;
  2514. int clcount = 0;
  2515. int bufwasdelwri;
  2516. int i;
  2517. ASSERT(pag->pagi_inodeok);
  2518. ASSERT(pag->pag_ici_init);
  2519. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2520. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2521. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2522. if (!ilist)
  2523. return 0;
  2524. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2525. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2526. read_lock(&pag->pag_ici_lock);
  2527. /* really need a gang lookup range call here */
  2528. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2529. first_index, inodes_per_cluster);
  2530. if (nr_found == 0)
  2531. goto out_free;
  2532. for (i = 0; i < nr_found; i++) {
  2533. iq = ilist[i];
  2534. if (iq == ip)
  2535. continue;
  2536. /* if the inode lies outside this cluster, we're done. */
  2537. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2538. break;
  2539. /*
  2540. * Do an un-protected check to see if the inode is dirty and
  2541. * is a candidate for flushing. These checks will be repeated
  2542. * later after the appropriate locks are acquired.
  2543. */
  2544. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2545. continue;
  2546. /*
  2547. * Try to get locks. If any are unavailable or it is pinned,
  2548. * then this inode cannot be flushed and is skipped.
  2549. */
  2550. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2551. continue;
  2552. if (!xfs_iflock_nowait(iq)) {
  2553. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2554. continue;
  2555. }
  2556. if (xfs_ipincount(iq)) {
  2557. xfs_ifunlock(iq);
  2558. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2559. continue;
  2560. }
  2561. /*
  2562. * arriving here means that this inode can be flushed. First
  2563. * re-check that it's dirty before flushing.
  2564. */
  2565. if (!xfs_inode_clean(iq)) {
  2566. int error;
  2567. error = xfs_iflush_int(iq, bp);
  2568. if (error) {
  2569. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2570. goto cluster_corrupt_out;
  2571. }
  2572. clcount++;
  2573. } else {
  2574. xfs_ifunlock(iq);
  2575. }
  2576. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2577. }
  2578. if (clcount) {
  2579. XFS_STATS_INC(xs_icluster_flushcnt);
  2580. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2581. }
  2582. out_free:
  2583. read_unlock(&pag->pag_ici_lock);
  2584. kmem_free(ilist);
  2585. return 0;
  2586. cluster_corrupt_out:
  2587. /*
  2588. * Corruption detected in the clustering loop. Invalidate the
  2589. * inode buffer and shut down the filesystem.
  2590. */
  2591. read_unlock(&pag->pag_ici_lock);
  2592. /*
  2593. * Clean up the buffer. If it was B_DELWRI, just release it --
  2594. * brelse can handle it with no problems. If not, shut down the
  2595. * filesystem before releasing the buffer.
  2596. */
  2597. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2598. if (bufwasdelwri)
  2599. xfs_buf_relse(bp);
  2600. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2601. if (!bufwasdelwri) {
  2602. /*
  2603. * Just like incore_relse: if we have b_iodone functions,
  2604. * mark the buffer as an error and call them. Otherwise
  2605. * mark it as stale and brelse.
  2606. */
  2607. if (XFS_BUF_IODONE_FUNC(bp)) {
  2608. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2609. XFS_BUF_UNDONE(bp);
  2610. XFS_BUF_STALE(bp);
  2611. XFS_BUF_ERROR(bp,EIO);
  2612. xfs_biodone(bp);
  2613. } else {
  2614. XFS_BUF_STALE(bp);
  2615. xfs_buf_relse(bp);
  2616. }
  2617. }
  2618. /*
  2619. * Unlocks the flush lock
  2620. */
  2621. xfs_iflush_abort(iq);
  2622. kmem_free(ilist);
  2623. return XFS_ERROR(EFSCORRUPTED);
  2624. }
  2625. /*
  2626. * xfs_iflush() will write a modified inode's changes out to the
  2627. * inode's on disk home. The caller must have the inode lock held
  2628. * in at least shared mode and the inode flush completion must be
  2629. * active as well. The inode lock will still be held upon return from
  2630. * the call and the caller is free to unlock it.
  2631. * The inode flush will be completed when the inode reaches the disk.
  2632. * The flags indicate how the inode's buffer should be written out.
  2633. */
  2634. int
  2635. xfs_iflush(
  2636. xfs_inode_t *ip,
  2637. uint flags)
  2638. {
  2639. xfs_inode_log_item_t *iip;
  2640. xfs_buf_t *bp;
  2641. xfs_dinode_t *dip;
  2642. xfs_mount_t *mp;
  2643. int error;
  2644. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2645. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2646. XFS_STATS_INC(xs_iflush_count);
  2647. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2648. ASSERT(!completion_done(&ip->i_flush));
  2649. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2650. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2651. iip = ip->i_itemp;
  2652. mp = ip->i_mount;
  2653. /*
  2654. * If the inode isn't dirty, then just release the inode
  2655. * flush lock and do nothing.
  2656. */
  2657. if (xfs_inode_clean(ip)) {
  2658. xfs_ifunlock(ip);
  2659. return 0;
  2660. }
  2661. /*
  2662. * We can't flush the inode until it is unpinned, so wait for it if we
  2663. * are allowed to block. We know noone new can pin it, because we are
  2664. * holding the inode lock shared and you need to hold it exclusively to
  2665. * pin the inode.
  2666. *
  2667. * If we are not allowed to block, force the log out asynchronously so
  2668. * that when we come back the inode will be unpinned. If other inodes
  2669. * in the same cluster are dirty, they will probably write the inode
  2670. * out for us if they occur after the log force completes.
  2671. */
  2672. if (noblock && xfs_ipincount(ip)) {
  2673. xfs_iunpin_nowait(ip);
  2674. xfs_ifunlock(ip);
  2675. return EAGAIN;
  2676. }
  2677. xfs_iunpin_wait(ip);
  2678. /*
  2679. * This may have been unpinned because the filesystem is shutting
  2680. * down forcibly. If that's the case we must not write this inode
  2681. * to disk, because the log record didn't make it to disk!
  2682. */
  2683. if (XFS_FORCED_SHUTDOWN(mp)) {
  2684. ip->i_update_core = 0;
  2685. if (iip)
  2686. iip->ili_format.ilf_fields = 0;
  2687. xfs_ifunlock(ip);
  2688. return XFS_ERROR(EIO);
  2689. }
  2690. /*
  2691. * Decide how buffer will be flushed out. This is done before
  2692. * the call to xfs_iflush_int because this field is zeroed by it.
  2693. */
  2694. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2695. /*
  2696. * Flush out the inode buffer according to the directions
  2697. * of the caller. In the cases where the caller has given
  2698. * us a choice choose the non-delwri case. This is because
  2699. * the inode is in the AIL and we need to get it out soon.
  2700. */
  2701. switch (flags) {
  2702. case XFS_IFLUSH_SYNC:
  2703. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2704. flags = 0;
  2705. break;
  2706. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2707. case XFS_IFLUSH_ASYNC:
  2708. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2709. flags = INT_ASYNC;
  2710. break;
  2711. case XFS_IFLUSH_DELWRI:
  2712. flags = INT_DELWRI;
  2713. break;
  2714. default:
  2715. ASSERT(0);
  2716. flags = 0;
  2717. break;
  2718. }
  2719. } else {
  2720. switch (flags) {
  2721. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2722. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2723. case XFS_IFLUSH_DELWRI:
  2724. flags = INT_DELWRI;
  2725. break;
  2726. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2727. case XFS_IFLUSH_ASYNC:
  2728. flags = INT_ASYNC;
  2729. break;
  2730. case XFS_IFLUSH_SYNC:
  2731. flags = 0;
  2732. break;
  2733. default:
  2734. ASSERT(0);
  2735. flags = 0;
  2736. break;
  2737. }
  2738. }
  2739. /*
  2740. * Get the buffer containing the on-disk inode.
  2741. */
  2742. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2743. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2744. if (error || !bp) {
  2745. xfs_ifunlock(ip);
  2746. return error;
  2747. }
  2748. /*
  2749. * First flush out the inode that xfs_iflush was called with.
  2750. */
  2751. error = xfs_iflush_int(ip, bp);
  2752. if (error)
  2753. goto corrupt_out;
  2754. /*
  2755. * If the buffer is pinned then push on the log now so we won't
  2756. * get stuck waiting in the write for too long.
  2757. */
  2758. if (XFS_BUF_ISPINNED(bp))
  2759. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2760. /*
  2761. * inode clustering:
  2762. * see if other inodes can be gathered into this write
  2763. */
  2764. error = xfs_iflush_cluster(ip, bp);
  2765. if (error)
  2766. goto cluster_corrupt_out;
  2767. if (flags & INT_DELWRI) {
  2768. xfs_bdwrite(mp, bp);
  2769. } else if (flags & INT_ASYNC) {
  2770. error = xfs_bawrite(mp, bp);
  2771. } else {
  2772. error = xfs_bwrite(mp, bp);
  2773. }
  2774. return error;
  2775. corrupt_out:
  2776. xfs_buf_relse(bp);
  2777. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2778. cluster_corrupt_out:
  2779. /*
  2780. * Unlocks the flush lock
  2781. */
  2782. xfs_iflush_abort(ip);
  2783. return XFS_ERROR(EFSCORRUPTED);
  2784. }
  2785. STATIC int
  2786. xfs_iflush_int(
  2787. xfs_inode_t *ip,
  2788. xfs_buf_t *bp)
  2789. {
  2790. xfs_inode_log_item_t *iip;
  2791. xfs_dinode_t *dip;
  2792. xfs_mount_t *mp;
  2793. #ifdef XFS_TRANS_DEBUG
  2794. int first;
  2795. #endif
  2796. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2797. ASSERT(!completion_done(&ip->i_flush));
  2798. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2799. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2800. iip = ip->i_itemp;
  2801. mp = ip->i_mount;
  2802. /*
  2803. * If the inode isn't dirty, then just release the inode
  2804. * flush lock and do nothing.
  2805. */
  2806. if (xfs_inode_clean(ip)) {
  2807. xfs_ifunlock(ip);
  2808. return 0;
  2809. }
  2810. /* set *dip = inode's place in the buffer */
  2811. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2812. /*
  2813. * Clear i_update_core before copying out the data.
  2814. * This is for coordination with our timestamp updates
  2815. * that don't hold the inode lock. They will always
  2816. * update the timestamps BEFORE setting i_update_core,
  2817. * so if we clear i_update_core after they set it we
  2818. * are guaranteed to see their updates to the timestamps.
  2819. * I believe that this depends on strongly ordered memory
  2820. * semantics, but we have that. We use the SYNCHRONIZE
  2821. * macro to make sure that the compiler does not reorder
  2822. * the i_update_core access below the data copy below.
  2823. */
  2824. ip->i_update_core = 0;
  2825. SYNCHRONIZE();
  2826. /*
  2827. * Make sure to get the latest atime from the Linux inode.
  2828. */
  2829. xfs_synchronize_atime(ip);
  2830. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2831. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2832. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2833. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2834. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2835. goto corrupt_out;
  2836. }
  2837. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2838. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2839. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2840. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2841. ip->i_ino, ip, ip->i_d.di_magic);
  2842. goto corrupt_out;
  2843. }
  2844. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2845. if (XFS_TEST_ERROR(
  2846. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2847. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2848. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2849. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2850. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2851. ip->i_ino, ip);
  2852. goto corrupt_out;
  2853. }
  2854. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2855. if (XFS_TEST_ERROR(
  2856. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2857. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2858. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2859. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2860. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2861. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2862. ip->i_ino, ip);
  2863. goto corrupt_out;
  2864. }
  2865. }
  2866. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2867. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2868. XFS_RANDOM_IFLUSH_5)) {
  2869. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2870. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2871. ip->i_ino,
  2872. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2873. ip->i_d.di_nblocks,
  2874. ip);
  2875. goto corrupt_out;
  2876. }
  2877. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2878. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2879. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2880. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2881. ip->i_ino, ip->i_d.di_forkoff, ip);
  2882. goto corrupt_out;
  2883. }
  2884. /*
  2885. * bump the flush iteration count, used to detect flushes which
  2886. * postdate a log record during recovery.
  2887. */
  2888. ip->i_d.di_flushiter++;
  2889. /*
  2890. * Copy the dirty parts of the inode into the on-disk
  2891. * inode. We always copy out the core of the inode,
  2892. * because if the inode is dirty at all the core must
  2893. * be.
  2894. */
  2895. xfs_dinode_to_disk(dip, &ip->i_d);
  2896. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2897. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2898. ip->i_d.di_flushiter = 0;
  2899. /*
  2900. * If this is really an old format inode and the superblock version
  2901. * has not been updated to support only new format inodes, then
  2902. * convert back to the old inode format. If the superblock version
  2903. * has been updated, then make the conversion permanent.
  2904. */
  2905. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2906. if (ip->i_d.di_version == 1) {
  2907. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2908. /*
  2909. * Convert it back.
  2910. */
  2911. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2912. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2913. } else {
  2914. /*
  2915. * The superblock version has already been bumped,
  2916. * so just make the conversion to the new inode
  2917. * format permanent.
  2918. */
  2919. ip->i_d.di_version = 2;
  2920. dip->di_version = 2;
  2921. ip->i_d.di_onlink = 0;
  2922. dip->di_onlink = 0;
  2923. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2924. memset(&(dip->di_pad[0]), 0,
  2925. sizeof(dip->di_pad));
  2926. ASSERT(ip->i_d.di_projid == 0);
  2927. }
  2928. }
  2929. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2930. if (XFS_IFORK_Q(ip))
  2931. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2932. xfs_inobp_check(mp, bp);
  2933. /*
  2934. * We've recorded everything logged in the inode, so we'd
  2935. * like to clear the ilf_fields bits so we don't log and
  2936. * flush things unnecessarily. However, we can't stop
  2937. * logging all this information until the data we've copied
  2938. * into the disk buffer is written to disk. If we did we might
  2939. * overwrite the copy of the inode in the log with all the
  2940. * data after re-logging only part of it, and in the face of
  2941. * a crash we wouldn't have all the data we need to recover.
  2942. *
  2943. * What we do is move the bits to the ili_last_fields field.
  2944. * When logging the inode, these bits are moved back to the
  2945. * ilf_fields field. In the xfs_iflush_done() routine we
  2946. * clear ili_last_fields, since we know that the information
  2947. * those bits represent is permanently on disk. As long as
  2948. * the flush completes before the inode is logged again, then
  2949. * both ilf_fields and ili_last_fields will be cleared.
  2950. *
  2951. * We can play with the ilf_fields bits here, because the inode
  2952. * lock must be held exclusively in order to set bits there
  2953. * and the flush lock protects the ili_last_fields bits.
  2954. * Set ili_logged so the flush done
  2955. * routine can tell whether or not to look in the AIL.
  2956. * Also, store the current LSN of the inode so that we can tell
  2957. * whether the item has moved in the AIL from xfs_iflush_done().
  2958. * In order to read the lsn we need the AIL lock, because
  2959. * it is a 64 bit value that cannot be read atomically.
  2960. */
  2961. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2962. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2963. iip->ili_format.ilf_fields = 0;
  2964. iip->ili_logged = 1;
  2965. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2966. &iip->ili_item.li_lsn);
  2967. /*
  2968. * Attach the function xfs_iflush_done to the inode's
  2969. * buffer. This will remove the inode from the AIL
  2970. * and unlock the inode's flush lock when the inode is
  2971. * completely written to disk.
  2972. */
  2973. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2974. xfs_iflush_done, (xfs_log_item_t *)iip);
  2975. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2976. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2977. } else {
  2978. /*
  2979. * We're flushing an inode which is not in the AIL and has
  2980. * not been logged but has i_update_core set. For this
  2981. * case we can use a B_DELWRI flush and immediately drop
  2982. * the inode flush lock because we can avoid the whole
  2983. * AIL state thing. It's OK to drop the flush lock now,
  2984. * because we've already locked the buffer and to do anything
  2985. * you really need both.
  2986. */
  2987. if (iip != NULL) {
  2988. ASSERT(iip->ili_logged == 0);
  2989. ASSERT(iip->ili_last_fields == 0);
  2990. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2991. }
  2992. xfs_ifunlock(ip);
  2993. }
  2994. return 0;
  2995. corrupt_out:
  2996. return XFS_ERROR(EFSCORRUPTED);
  2997. }
  2998. #ifdef XFS_ILOCK_TRACE
  2999. void
  3000. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3001. {
  3002. ktrace_enter(ip->i_lock_trace,
  3003. (void *)ip,
  3004. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3005. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3006. (void *)ra, /* caller of ilock */
  3007. (void *)(unsigned long)current_cpu(),
  3008. (void *)(unsigned long)current_pid(),
  3009. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3010. }
  3011. #endif
  3012. /*
  3013. * Return a pointer to the extent record at file index idx.
  3014. */
  3015. xfs_bmbt_rec_host_t *
  3016. xfs_iext_get_ext(
  3017. xfs_ifork_t *ifp, /* inode fork pointer */
  3018. xfs_extnum_t idx) /* index of target extent */
  3019. {
  3020. ASSERT(idx >= 0);
  3021. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3022. return ifp->if_u1.if_ext_irec->er_extbuf;
  3023. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3024. xfs_ext_irec_t *erp; /* irec pointer */
  3025. int erp_idx = 0; /* irec index */
  3026. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3027. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3028. return &erp->er_extbuf[page_idx];
  3029. } else if (ifp->if_bytes) {
  3030. return &ifp->if_u1.if_extents[idx];
  3031. } else {
  3032. return NULL;
  3033. }
  3034. }
  3035. /*
  3036. * Insert new item(s) into the extent records for incore inode
  3037. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3038. */
  3039. void
  3040. xfs_iext_insert(
  3041. xfs_ifork_t *ifp, /* inode fork pointer */
  3042. xfs_extnum_t idx, /* starting index of new items */
  3043. xfs_extnum_t count, /* number of inserted items */
  3044. xfs_bmbt_irec_t *new) /* items to insert */
  3045. {
  3046. xfs_extnum_t i; /* extent record index */
  3047. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3048. xfs_iext_add(ifp, idx, count);
  3049. for (i = idx; i < idx + count; i++, new++)
  3050. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3051. }
  3052. /*
  3053. * This is called when the amount of space required for incore file
  3054. * extents needs to be increased. The ext_diff parameter stores the
  3055. * number of new extents being added and the idx parameter contains
  3056. * the extent index where the new extents will be added. If the new
  3057. * extents are being appended, then we just need to (re)allocate and
  3058. * initialize the space. Otherwise, if the new extents are being
  3059. * inserted into the middle of the existing entries, a bit more work
  3060. * is required to make room for the new extents to be inserted. The
  3061. * caller is responsible for filling in the new extent entries upon
  3062. * return.
  3063. */
  3064. void
  3065. xfs_iext_add(
  3066. xfs_ifork_t *ifp, /* inode fork pointer */
  3067. xfs_extnum_t idx, /* index to begin adding exts */
  3068. int ext_diff) /* number of extents to add */
  3069. {
  3070. int byte_diff; /* new bytes being added */
  3071. int new_size; /* size of extents after adding */
  3072. xfs_extnum_t nextents; /* number of extents in file */
  3073. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3074. ASSERT((idx >= 0) && (idx <= nextents));
  3075. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3076. new_size = ifp->if_bytes + byte_diff;
  3077. /*
  3078. * If the new number of extents (nextents + ext_diff)
  3079. * fits inside the inode, then continue to use the inline
  3080. * extent buffer.
  3081. */
  3082. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3083. if (idx < nextents) {
  3084. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3085. &ifp->if_u2.if_inline_ext[idx],
  3086. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3087. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3088. }
  3089. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3090. ifp->if_real_bytes = 0;
  3091. ifp->if_lastex = nextents + ext_diff;
  3092. }
  3093. /*
  3094. * Otherwise use a linear (direct) extent list.
  3095. * If the extents are currently inside the inode,
  3096. * xfs_iext_realloc_direct will switch us from
  3097. * inline to direct extent allocation mode.
  3098. */
  3099. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3100. xfs_iext_realloc_direct(ifp, new_size);
  3101. if (idx < nextents) {
  3102. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3103. &ifp->if_u1.if_extents[idx],
  3104. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3105. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3106. }
  3107. }
  3108. /* Indirection array */
  3109. else {
  3110. xfs_ext_irec_t *erp;
  3111. int erp_idx = 0;
  3112. int page_idx = idx;
  3113. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3114. if (ifp->if_flags & XFS_IFEXTIREC) {
  3115. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3116. } else {
  3117. xfs_iext_irec_init(ifp);
  3118. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3119. erp = ifp->if_u1.if_ext_irec;
  3120. }
  3121. /* Extents fit in target extent page */
  3122. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3123. if (page_idx < erp->er_extcount) {
  3124. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3125. &erp->er_extbuf[page_idx],
  3126. (erp->er_extcount - page_idx) *
  3127. sizeof(xfs_bmbt_rec_t));
  3128. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3129. }
  3130. erp->er_extcount += ext_diff;
  3131. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3132. }
  3133. /* Insert a new extent page */
  3134. else if (erp) {
  3135. xfs_iext_add_indirect_multi(ifp,
  3136. erp_idx, page_idx, ext_diff);
  3137. }
  3138. /*
  3139. * If extent(s) are being appended to the last page in
  3140. * the indirection array and the new extent(s) don't fit
  3141. * in the page, then erp is NULL and erp_idx is set to
  3142. * the next index needed in the indirection array.
  3143. */
  3144. else {
  3145. int count = ext_diff;
  3146. while (count) {
  3147. erp = xfs_iext_irec_new(ifp, erp_idx);
  3148. erp->er_extcount = count;
  3149. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3150. if (count) {
  3151. erp_idx++;
  3152. }
  3153. }
  3154. }
  3155. }
  3156. ifp->if_bytes = new_size;
  3157. }
  3158. /*
  3159. * This is called when incore extents are being added to the indirection
  3160. * array and the new extents do not fit in the target extent list. The
  3161. * erp_idx parameter contains the irec index for the target extent list
  3162. * in the indirection array, and the idx parameter contains the extent
  3163. * index within the list. The number of extents being added is stored
  3164. * in the count parameter.
  3165. *
  3166. * |-------| |-------|
  3167. * | | | | idx - number of extents before idx
  3168. * | idx | | count |
  3169. * | | | | count - number of extents being inserted at idx
  3170. * |-------| |-------|
  3171. * | count | | nex2 | nex2 - number of extents after idx + count
  3172. * |-------| |-------|
  3173. */
  3174. void
  3175. xfs_iext_add_indirect_multi(
  3176. xfs_ifork_t *ifp, /* inode fork pointer */
  3177. int erp_idx, /* target extent irec index */
  3178. xfs_extnum_t idx, /* index within target list */
  3179. int count) /* new extents being added */
  3180. {
  3181. int byte_diff; /* new bytes being added */
  3182. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3183. xfs_extnum_t ext_diff; /* number of extents to add */
  3184. xfs_extnum_t ext_cnt; /* new extents still needed */
  3185. xfs_extnum_t nex2; /* extents after idx + count */
  3186. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3187. int nlists; /* number of irec's (lists) */
  3188. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3189. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3190. nex2 = erp->er_extcount - idx;
  3191. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3192. /*
  3193. * Save second part of target extent list
  3194. * (all extents past */
  3195. if (nex2) {
  3196. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3197. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3198. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3199. erp->er_extcount -= nex2;
  3200. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3201. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3202. }
  3203. /*
  3204. * Add the new extents to the end of the target
  3205. * list, then allocate new irec record(s) and
  3206. * extent buffer(s) as needed to store the rest
  3207. * of the new extents.
  3208. */
  3209. ext_cnt = count;
  3210. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3211. if (ext_diff) {
  3212. erp->er_extcount += ext_diff;
  3213. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3214. ext_cnt -= ext_diff;
  3215. }
  3216. while (ext_cnt) {
  3217. erp_idx++;
  3218. erp = xfs_iext_irec_new(ifp, erp_idx);
  3219. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3220. erp->er_extcount = ext_diff;
  3221. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3222. ext_cnt -= ext_diff;
  3223. }
  3224. /* Add nex2 extents back to indirection array */
  3225. if (nex2) {
  3226. xfs_extnum_t ext_avail;
  3227. int i;
  3228. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3229. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3230. i = 0;
  3231. /*
  3232. * If nex2 extents fit in the current page, append
  3233. * nex2_ep after the new extents.
  3234. */
  3235. if (nex2 <= ext_avail) {
  3236. i = erp->er_extcount;
  3237. }
  3238. /*
  3239. * Otherwise, check if space is available in the
  3240. * next page.
  3241. */
  3242. else if ((erp_idx < nlists - 1) &&
  3243. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3244. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3245. erp_idx++;
  3246. erp++;
  3247. /* Create a hole for nex2 extents */
  3248. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3249. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3250. }
  3251. /*
  3252. * Final choice, create a new extent page for
  3253. * nex2 extents.
  3254. */
  3255. else {
  3256. erp_idx++;
  3257. erp = xfs_iext_irec_new(ifp, erp_idx);
  3258. }
  3259. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3260. kmem_free(nex2_ep);
  3261. erp->er_extcount += nex2;
  3262. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3263. }
  3264. }
  3265. /*
  3266. * This is called when the amount of space required for incore file
  3267. * extents needs to be decreased. The ext_diff parameter stores the
  3268. * number of extents to be removed and the idx parameter contains
  3269. * the extent index where the extents will be removed from.
  3270. *
  3271. * If the amount of space needed has decreased below the linear
  3272. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3273. * extent array. Otherwise, use kmem_realloc() to adjust the
  3274. * size to what is needed.
  3275. */
  3276. void
  3277. xfs_iext_remove(
  3278. xfs_ifork_t *ifp, /* inode fork pointer */
  3279. xfs_extnum_t idx, /* index to begin removing exts */
  3280. int ext_diff) /* number of extents to remove */
  3281. {
  3282. xfs_extnum_t nextents; /* number of extents in file */
  3283. int new_size; /* size of extents after removal */
  3284. ASSERT(ext_diff > 0);
  3285. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3286. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3287. if (new_size == 0) {
  3288. xfs_iext_destroy(ifp);
  3289. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3290. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3291. } else if (ifp->if_real_bytes) {
  3292. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3293. } else {
  3294. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3295. }
  3296. ifp->if_bytes = new_size;
  3297. }
  3298. /*
  3299. * This removes ext_diff extents from the inline buffer, beginning
  3300. * at extent index idx.
  3301. */
  3302. void
  3303. xfs_iext_remove_inline(
  3304. xfs_ifork_t *ifp, /* inode fork pointer */
  3305. xfs_extnum_t idx, /* index to begin removing exts */
  3306. int ext_diff) /* number of extents to remove */
  3307. {
  3308. int nextents; /* number of extents in file */
  3309. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3310. ASSERT(idx < XFS_INLINE_EXTS);
  3311. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3312. ASSERT(((nextents - ext_diff) > 0) &&
  3313. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3314. if (idx + ext_diff < nextents) {
  3315. memmove(&ifp->if_u2.if_inline_ext[idx],
  3316. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3317. (nextents - (idx + ext_diff)) *
  3318. sizeof(xfs_bmbt_rec_t));
  3319. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3320. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3321. } else {
  3322. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3323. ext_diff * sizeof(xfs_bmbt_rec_t));
  3324. }
  3325. }
  3326. /*
  3327. * This removes ext_diff extents from a linear (direct) extent list,
  3328. * beginning at extent index idx. If the extents are being removed
  3329. * from the end of the list (ie. truncate) then we just need to re-
  3330. * allocate the list to remove the extra space. Otherwise, if the
  3331. * extents are being removed from the middle of the existing extent
  3332. * entries, then we first need to move the extent records beginning
  3333. * at idx + ext_diff up in the list to overwrite the records being
  3334. * removed, then remove the extra space via kmem_realloc.
  3335. */
  3336. void
  3337. xfs_iext_remove_direct(
  3338. xfs_ifork_t *ifp, /* inode fork pointer */
  3339. xfs_extnum_t idx, /* index to begin removing exts */
  3340. int ext_diff) /* number of extents to remove */
  3341. {
  3342. xfs_extnum_t nextents; /* number of extents in file */
  3343. int new_size; /* size of extents after removal */
  3344. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3345. new_size = ifp->if_bytes -
  3346. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3347. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3348. if (new_size == 0) {
  3349. xfs_iext_destroy(ifp);
  3350. return;
  3351. }
  3352. /* Move extents up in the list (if needed) */
  3353. if (idx + ext_diff < nextents) {
  3354. memmove(&ifp->if_u1.if_extents[idx],
  3355. &ifp->if_u1.if_extents[idx + ext_diff],
  3356. (nextents - (idx + ext_diff)) *
  3357. sizeof(xfs_bmbt_rec_t));
  3358. }
  3359. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3360. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3361. /*
  3362. * Reallocate the direct extent list. If the extents
  3363. * will fit inside the inode then xfs_iext_realloc_direct
  3364. * will switch from direct to inline extent allocation
  3365. * mode for us.
  3366. */
  3367. xfs_iext_realloc_direct(ifp, new_size);
  3368. ifp->if_bytes = new_size;
  3369. }
  3370. /*
  3371. * This is called when incore extents are being removed from the
  3372. * indirection array and the extents being removed span multiple extent
  3373. * buffers. The idx parameter contains the file extent index where we
  3374. * want to begin removing extents, and the count parameter contains
  3375. * how many extents need to be removed.
  3376. *
  3377. * |-------| |-------|
  3378. * | nex1 | | | nex1 - number of extents before idx
  3379. * |-------| | count |
  3380. * | | | | count - number of extents being removed at idx
  3381. * | count | |-------|
  3382. * | | | nex2 | nex2 - number of extents after idx + count
  3383. * |-------| |-------|
  3384. */
  3385. void
  3386. xfs_iext_remove_indirect(
  3387. xfs_ifork_t *ifp, /* inode fork pointer */
  3388. xfs_extnum_t idx, /* index to begin removing extents */
  3389. int count) /* number of extents to remove */
  3390. {
  3391. xfs_ext_irec_t *erp; /* indirection array pointer */
  3392. int erp_idx = 0; /* indirection array index */
  3393. xfs_extnum_t ext_cnt; /* extents left to remove */
  3394. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3395. xfs_extnum_t nex1; /* number of extents before idx */
  3396. xfs_extnum_t nex2; /* extents after idx + count */
  3397. int nlists; /* entries in indirection array */
  3398. int page_idx = idx; /* index in target extent list */
  3399. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3400. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3401. ASSERT(erp != NULL);
  3402. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3403. nex1 = page_idx;
  3404. ext_cnt = count;
  3405. while (ext_cnt) {
  3406. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3407. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3408. /*
  3409. * Check for deletion of entire list;
  3410. * xfs_iext_irec_remove() updates extent offsets.
  3411. */
  3412. if (ext_diff == erp->er_extcount) {
  3413. xfs_iext_irec_remove(ifp, erp_idx);
  3414. ext_cnt -= ext_diff;
  3415. nex1 = 0;
  3416. if (ext_cnt) {
  3417. ASSERT(erp_idx < ifp->if_real_bytes /
  3418. XFS_IEXT_BUFSZ);
  3419. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3420. nex1 = 0;
  3421. continue;
  3422. } else {
  3423. break;
  3424. }
  3425. }
  3426. /* Move extents up (if needed) */
  3427. if (nex2) {
  3428. memmove(&erp->er_extbuf[nex1],
  3429. &erp->er_extbuf[nex1 + ext_diff],
  3430. nex2 * sizeof(xfs_bmbt_rec_t));
  3431. }
  3432. /* Zero out rest of page */
  3433. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3434. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3435. /* Update remaining counters */
  3436. erp->er_extcount -= ext_diff;
  3437. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3438. ext_cnt -= ext_diff;
  3439. nex1 = 0;
  3440. erp_idx++;
  3441. erp++;
  3442. }
  3443. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3444. xfs_iext_irec_compact(ifp);
  3445. }
  3446. /*
  3447. * Create, destroy, or resize a linear (direct) block of extents.
  3448. */
  3449. void
  3450. xfs_iext_realloc_direct(
  3451. xfs_ifork_t *ifp, /* inode fork pointer */
  3452. int new_size) /* new size of extents */
  3453. {
  3454. int rnew_size; /* real new size of extents */
  3455. rnew_size = new_size;
  3456. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3457. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3458. (new_size != ifp->if_real_bytes)));
  3459. /* Free extent records */
  3460. if (new_size == 0) {
  3461. xfs_iext_destroy(ifp);
  3462. }
  3463. /* Resize direct extent list and zero any new bytes */
  3464. else if (ifp->if_real_bytes) {
  3465. /* Check if extents will fit inside the inode */
  3466. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3467. xfs_iext_direct_to_inline(ifp, new_size /
  3468. (uint)sizeof(xfs_bmbt_rec_t));
  3469. ifp->if_bytes = new_size;
  3470. return;
  3471. }
  3472. if (!is_power_of_2(new_size)){
  3473. rnew_size = roundup_pow_of_two(new_size);
  3474. }
  3475. if (rnew_size != ifp->if_real_bytes) {
  3476. ifp->if_u1.if_extents =
  3477. kmem_realloc(ifp->if_u1.if_extents,
  3478. rnew_size,
  3479. ifp->if_real_bytes, KM_NOFS);
  3480. }
  3481. if (rnew_size > ifp->if_real_bytes) {
  3482. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3483. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3484. rnew_size - ifp->if_real_bytes);
  3485. }
  3486. }
  3487. /*
  3488. * Switch from the inline extent buffer to a direct
  3489. * extent list. Be sure to include the inline extent
  3490. * bytes in new_size.
  3491. */
  3492. else {
  3493. new_size += ifp->if_bytes;
  3494. if (!is_power_of_2(new_size)) {
  3495. rnew_size = roundup_pow_of_two(new_size);
  3496. }
  3497. xfs_iext_inline_to_direct(ifp, rnew_size);
  3498. }
  3499. ifp->if_real_bytes = rnew_size;
  3500. ifp->if_bytes = new_size;
  3501. }
  3502. /*
  3503. * Switch from linear (direct) extent records to inline buffer.
  3504. */
  3505. void
  3506. xfs_iext_direct_to_inline(
  3507. xfs_ifork_t *ifp, /* inode fork pointer */
  3508. xfs_extnum_t nextents) /* number of extents in file */
  3509. {
  3510. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3511. ASSERT(nextents <= XFS_INLINE_EXTS);
  3512. /*
  3513. * The inline buffer was zeroed when we switched
  3514. * from inline to direct extent allocation mode,
  3515. * so we don't need to clear it here.
  3516. */
  3517. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3518. nextents * sizeof(xfs_bmbt_rec_t));
  3519. kmem_free(ifp->if_u1.if_extents);
  3520. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3521. ifp->if_real_bytes = 0;
  3522. }
  3523. /*
  3524. * Switch from inline buffer to linear (direct) extent records.
  3525. * new_size should already be rounded up to the next power of 2
  3526. * by the caller (when appropriate), so use new_size as it is.
  3527. * However, since new_size may be rounded up, we can't update
  3528. * if_bytes here. It is the caller's responsibility to update
  3529. * if_bytes upon return.
  3530. */
  3531. void
  3532. xfs_iext_inline_to_direct(
  3533. xfs_ifork_t *ifp, /* inode fork pointer */
  3534. int new_size) /* number of extents in file */
  3535. {
  3536. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3537. memset(ifp->if_u1.if_extents, 0, new_size);
  3538. if (ifp->if_bytes) {
  3539. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3540. ifp->if_bytes);
  3541. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3542. sizeof(xfs_bmbt_rec_t));
  3543. }
  3544. ifp->if_real_bytes = new_size;
  3545. }
  3546. /*
  3547. * Resize an extent indirection array to new_size bytes.
  3548. */
  3549. void
  3550. xfs_iext_realloc_indirect(
  3551. xfs_ifork_t *ifp, /* inode fork pointer */
  3552. int new_size) /* new indirection array size */
  3553. {
  3554. int nlists; /* number of irec's (ex lists) */
  3555. int size; /* current indirection array size */
  3556. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3557. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3558. size = nlists * sizeof(xfs_ext_irec_t);
  3559. ASSERT(ifp->if_real_bytes);
  3560. ASSERT((new_size >= 0) && (new_size != size));
  3561. if (new_size == 0) {
  3562. xfs_iext_destroy(ifp);
  3563. } else {
  3564. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3565. kmem_realloc(ifp->if_u1.if_ext_irec,
  3566. new_size, size, KM_NOFS);
  3567. }
  3568. }
  3569. /*
  3570. * Switch from indirection array to linear (direct) extent allocations.
  3571. */
  3572. void
  3573. xfs_iext_indirect_to_direct(
  3574. xfs_ifork_t *ifp) /* inode fork pointer */
  3575. {
  3576. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3577. xfs_extnum_t nextents; /* number of extents in file */
  3578. int size; /* size of file extents */
  3579. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3580. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3581. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3582. size = nextents * sizeof(xfs_bmbt_rec_t);
  3583. xfs_iext_irec_compact_pages(ifp);
  3584. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3585. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3586. kmem_free(ifp->if_u1.if_ext_irec);
  3587. ifp->if_flags &= ~XFS_IFEXTIREC;
  3588. ifp->if_u1.if_extents = ep;
  3589. ifp->if_bytes = size;
  3590. if (nextents < XFS_LINEAR_EXTS) {
  3591. xfs_iext_realloc_direct(ifp, size);
  3592. }
  3593. }
  3594. /*
  3595. * Free incore file extents.
  3596. */
  3597. void
  3598. xfs_iext_destroy(
  3599. xfs_ifork_t *ifp) /* inode fork pointer */
  3600. {
  3601. if (ifp->if_flags & XFS_IFEXTIREC) {
  3602. int erp_idx;
  3603. int nlists;
  3604. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3605. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3606. xfs_iext_irec_remove(ifp, erp_idx);
  3607. }
  3608. ifp->if_flags &= ~XFS_IFEXTIREC;
  3609. } else if (ifp->if_real_bytes) {
  3610. kmem_free(ifp->if_u1.if_extents);
  3611. } else if (ifp->if_bytes) {
  3612. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3613. sizeof(xfs_bmbt_rec_t));
  3614. }
  3615. ifp->if_u1.if_extents = NULL;
  3616. ifp->if_real_bytes = 0;
  3617. ifp->if_bytes = 0;
  3618. }
  3619. /*
  3620. * Return a pointer to the extent record for file system block bno.
  3621. */
  3622. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3623. xfs_iext_bno_to_ext(
  3624. xfs_ifork_t *ifp, /* inode fork pointer */
  3625. xfs_fileoff_t bno, /* block number to search for */
  3626. xfs_extnum_t *idxp) /* index of target extent */
  3627. {
  3628. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3629. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3630. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3631. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3632. int high; /* upper boundary in search */
  3633. xfs_extnum_t idx = 0; /* index of target extent */
  3634. int low; /* lower boundary in search */
  3635. xfs_extnum_t nextents; /* number of file extents */
  3636. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3637. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3638. if (nextents == 0) {
  3639. *idxp = 0;
  3640. return NULL;
  3641. }
  3642. low = 0;
  3643. if (ifp->if_flags & XFS_IFEXTIREC) {
  3644. /* Find target extent list */
  3645. int erp_idx = 0;
  3646. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3647. base = erp->er_extbuf;
  3648. high = erp->er_extcount - 1;
  3649. } else {
  3650. base = ifp->if_u1.if_extents;
  3651. high = nextents - 1;
  3652. }
  3653. /* Binary search extent records */
  3654. while (low <= high) {
  3655. idx = (low + high) >> 1;
  3656. ep = base + idx;
  3657. startoff = xfs_bmbt_get_startoff(ep);
  3658. blockcount = xfs_bmbt_get_blockcount(ep);
  3659. if (bno < startoff) {
  3660. high = idx - 1;
  3661. } else if (bno >= startoff + blockcount) {
  3662. low = idx + 1;
  3663. } else {
  3664. /* Convert back to file-based extent index */
  3665. if (ifp->if_flags & XFS_IFEXTIREC) {
  3666. idx += erp->er_extoff;
  3667. }
  3668. *idxp = idx;
  3669. return ep;
  3670. }
  3671. }
  3672. /* Convert back to file-based extent index */
  3673. if (ifp->if_flags & XFS_IFEXTIREC) {
  3674. idx += erp->er_extoff;
  3675. }
  3676. if (bno >= startoff + blockcount) {
  3677. if (++idx == nextents) {
  3678. ep = NULL;
  3679. } else {
  3680. ep = xfs_iext_get_ext(ifp, idx);
  3681. }
  3682. }
  3683. *idxp = idx;
  3684. return ep;
  3685. }
  3686. /*
  3687. * Return a pointer to the indirection array entry containing the
  3688. * extent record for filesystem block bno. Store the index of the
  3689. * target irec in *erp_idxp.
  3690. */
  3691. xfs_ext_irec_t * /* pointer to found extent record */
  3692. xfs_iext_bno_to_irec(
  3693. xfs_ifork_t *ifp, /* inode fork pointer */
  3694. xfs_fileoff_t bno, /* block number to search for */
  3695. int *erp_idxp) /* irec index of target ext list */
  3696. {
  3697. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3698. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3699. int erp_idx; /* indirection array index */
  3700. int nlists; /* number of extent irec's (lists) */
  3701. int high; /* binary search upper limit */
  3702. int low; /* binary search lower limit */
  3703. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3704. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3705. erp_idx = 0;
  3706. low = 0;
  3707. high = nlists - 1;
  3708. while (low <= high) {
  3709. erp_idx = (low + high) >> 1;
  3710. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3711. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3712. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3713. high = erp_idx - 1;
  3714. } else if (erp_next && bno >=
  3715. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3716. low = erp_idx + 1;
  3717. } else {
  3718. break;
  3719. }
  3720. }
  3721. *erp_idxp = erp_idx;
  3722. return erp;
  3723. }
  3724. /*
  3725. * Return a pointer to the indirection array entry containing the
  3726. * extent record at file extent index *idxp. Store the index of the
  3727. * target irec in *erp_idxp and store the page index of the target
  3728. * extent record in *idxp.
  3729. */
  3730. xfs_ext_irec_t *
  3731. xfs_iext_idx_to_irec(
  3732. xfs_ifork_t *ifp, /* inode fork pointer */
  3733. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3734. int *erp_idxp, /* pointer to target irec */
  3735. int realloc) /* new bytes were just added */
  3736. {
  3737. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3738. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3739. int erp_idx; /* indirection array index */
  3740. int nlists; /* number of irec's (ex lists) */
  3741. int high; /* binary search upper limit */
  3742. int low; /* binary search lower limit */
  3743. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3744. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3745. ASSERT(page_idx >= 0 && page_idx <=
  3746. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3747. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3748. erp_idx = 0;
  3749. low = 0;
  3750. high = nlists - 1;
  3751. /* Binary search extent irec's */
  3752. while (low <= high) {
  3753. erp_idx = (low + high) >> 1;
  3754. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3755. prev = erp_idx > 0 ? erp - 1 : NULL;
  3756. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3757. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3758. high = erp_idx - 1;
  3759. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3760. (page_idx == erp->er_extoff + erp->er_extcount &&
  3761. !realloc)) {
  3762. low = erp_idx + 1;
  3763. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3764. erp->er_extcount == XFS_LINEAR_EXTS) {
  3765. ASSERT(realloc);
  3766. page_idx = 0;
  3767. erp_idx++;
  3768. erp = erp_idx < nlists ? erp + 1 : NULL;
  3769. break;
  3770. } else {
  3771. page_idx -= erp->er_extoff;
  3772. break;
  3773. }
  3774. }
  3775. *idxp = page_idx;
  3776. *erp_idxp = erp_idx;
  3777. return(erp);
  3778. }
  3779. /*
  3780. * Allocate and initialize an indirection array once the space needed
  3781. * for incore extents increases above XFS_IEXT_BUFSZ.
  3782. */
  3783. void
  3784. xfs_iext_irec_init(
  3785. xfs_ifork_t *ifp) /* inode fork pointer */
  3786. {
  3787. xfs_ext_irec_t *erp; /* indirection array pointer */
  3788. xfs_extnum_t nextents; /* number of extents in file */
  3789. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3790. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3791. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3792. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3793. if (nextents == 0) {
  3794. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3795. } else if (!ifp->if_real_bytes) {
  3796. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3797. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3798. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3799. }
  3800. erp->er_extbuf = ifp->if_u1.if_extents;
  3801. erp->er_extcount = nextents;
  3802. erp->er_extoff = 0;
  3803. ifp->if_flags |= XFS_IFEXTIREC;
  3804. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3805. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3806. ifp->if_u1.if_ext_irec = erp;
  3807. return;
  3808. }
  3809. /*
  3810. * Allocate and initialize a new entry in the indirection array.
  3811. */
  3812. xfs_ext_irec_t *
  3813. xfs_iext_irec_new(
  3814. xfs_ifork_t *ifp, /* inode fork pointer */
  3815. int erp_idx) /* index for new irec */
  3816. {
  3817. xfs_ext_irec_t *erp; /* indirection array pointer */
  3818. int i; /* loop counter */
  3819. int nlists; /* number of irec's (ex lists) */
  3820. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3821. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3822. /* Resize indirection array */
  3823. xfs_iext_realloc_indirect(ifp, ++nlists *
  3824. sizeof(xfs_ext_irec_t));
  3825. /*
  3826. * Move records down in the array so the
  3827. * new page can use erp_idx.
  3828. */
  3829. erp = ifp->if_u1.if_ext_irec;
  3830. for (i = nlists - 1; i > erp_idx; i--) {
  3831. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3832. }
  3833. ASSERT(i == erp_idx);
  3834. /* Initialize new extent record */
  3835. erp = ifp->if_u1.if_ext_irec;
  3836. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3837. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3838. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3839. erp[erp_idx].er_extcount = 0;
  3840. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3841. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3842. return (&erp[erp_idx]);
  3843. }
  3844. /*
  3845. * Remove a record from the indirection array.
  3846. */
  3847. void
  3848. xfs_iext_irec_remove(
  3849. xfs_ifork_t *ifp, /* inode fork pointer */
  3850. int erp_idx) /* irec index to remove */
  3851. {
  3852. xfs_ext_irec_t *erp; /* indirection array pointer */
  3853. int i; /* loop counter */
  3854. int nlists; /* number of irec's (ex lists) */
  3855. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3856. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3857. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3858. if (erp->er_extbuf) {
  3859. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3860. -erp->er_extcount);
  3861. kmem_free(erp->er_extbuf);
  3862. }
  3863. /* Compact extent records */
  3864. erp = ifp->if_u1.if_ext_irec;
  3865. for (i = erp_idx; i < nlists - 1; i++) {
  3866. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3867. }
  3868. /*
  3869. * Manually free the last extent record from the indirection
  3870. * array. A call to xfs_iext_realloc_indirect() with a size
  3871. * of zero would result in a call to xfs_iext_destroy() which
  3872. * would in turn call this function again, creating a nasty
  3873. * infinite loop.
  3874. */
  3875. if (--nlists) {
  3876. xfs_iext_realloc_indirect(ifp,
  3877. nlists * sizeof(xfs_ext_irec_t));
  3878. } else {
  3879. kmem_free(ifp->if_u1.if_ext_irec);
  3880. }
  3881. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3882. }
  3883. /*
  3884. * This is called to clean up large amounts of unused memory allocated
  3885. * by the indirection array. Before compacting anything though, verify
  3886. * that the indirection array is still needed and switch back to the
  3887. * linear extent list (or even the inline buffer) if possible. The
  3888. * compaction policy is as follows:
  3889. *
  3890. * Full Compaction: Extents fit into a single page (or inline buffer)
  3891. * Partial Compaction: Extents occupy less than 50% of allocated space
  3892. * No Compaction: Extents occupy at least 50% of allocated space
  3893. */
  3894. void
  3895. xfs_iext_irec_compact(
  3896. xfs_ifork_t *ifp) /* inode fork pointer */
  3897. {
  3898. xfs_extnum_t nextents; /* number of extents in file */
  3899. int nlists; /* number of irec's (ex lists) */
  3900. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3901. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3902. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3903. if (nextents == 0) {
  3904. xfs_iext_destroy(ifp);
  3905. } else if (nextents <= XFS_INLINE_EXTS) {
  3906. xfs_iext_indirect_to_direct(ifp);
  3907. xfs_iext_direct_to_inline(ifp, nextents);
  3908. } else if (nextents <= XFS_LINEAR_EXTS) {
  3909. xfs_iext_indirect_to_direct(ifp);
  3910. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3911. xfs_iext_irec_compact_pages(ifp);
  3912. }
  3913. }
  3914. /*
  3915. * Combine extents from neighboring extent pages.
  3916. */
  3917. void
  3918. xfs_iext_irec_compact_pages(
  3919. xfs_ifork_t *ifp) /* inode fork pointer */
  3920. {
  3921. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3922. int erp_idx = 0; /* indirection array index */
  3923. int nlists; /* number of irec's (ex lists) */
  3924. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3925. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3926. while (erp_idx < nlists - 1) {
  3927. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3928. erp_next = erp + 1;
  3929. if (erp_next->er_extcount <=
  3930. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3931. memcpy(&erp->er_extbuf[erp->er_extcount],
  3932. erp_next->er_extbuf, erp_next->er_extcount *
  3933. sizeof(xfs_bmbt_rec_t));
  3934. erp->er_extcount += erp_next->er_extcount;
  3935. /*
  3936. * Free page before removing extent record
  3937. * so er_extoffs don't get modified in
  3938. * xfs_iext_irec_remove.
  3939. */
  3940. kmem_free(erp_next->er_extbuf);
  3941. erp_next->er_extbuf = NULL;
  3942. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3943. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3944. } else {
  3945. erp_idx++;
  3946. }
  3947. }
  3948. }
  3949. /*
  3950. * This is called to update the er_extoff field in the indirection
  3951. * array when extents have been added or removed from one of the
  3952. * extent lists. erp_idx contains the irec index to begin updating
  3953. * at and ext_diff contains the number of extents that were added
  3954. * or removed.
  3955. */
  3956. void
  3957. xfs_iext_irec_update_extoffs(
  3958. xfs_ifork_t *ifp, /* inode fork pointer */
  3959. int erp_idx, /* irec index to update */
  3960. int ext_diff) /* number of new extents */
  3961. {
  3962. int i; /* loop counter */
  3963. int nlists; /* number of irec's (ex lists */
  3964. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3965. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3966. for (i = erp_idx; i < nlists; i++) {
  3967. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3968. }
  3969. }