inode.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/time.h>
  32. #include <linux/stat.h>
  33. #include <linux/string.h>
  34. #include <linux/mm.h>
  35. #include <linux/smp_lock.h>
  36. #include <linux/buffer_head.h>
  37. #include "ufs_fs.h"
  38. #include "ufs.h"
  39. #include "swab.h"
  40. #include "util.h"
  41. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  42. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  43. {
  44. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  45. int ptrs = uspi->s_apb;
  46. int ptrs_bits = uspi->s_apbshift;
  47. const long direct_blocks = UFS_NDADDR,
  48. indirect_blocks = ptrs,
  49. double_blocks = (1 << (ptrs_bits * 2));
  50. int n = 0;
  51. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  52. if (i_block < direct_blocks) {
  53. offsets[n++] = i_block;
  54. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  55. offsets[n++] = UFS_IND_BLOCK;
  56. offsets[n++] = i_block;
  57. } else if ((i_block -= indirect_blocks) < double_blocks) {
  58. offsets[n++] = UFS_DIND_BLOCK;
  59. offsets[n++] = i_block >> ptrs_bits;
  60. offsets[n++] = i_block & (ptrs - 1);
  61. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  62. offsets[n++] = UFS_TIND_BLOCK;
  63. offsets[n++] = i_block >> (ptrs_bits * 2);
  64. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  65. offsets[n++] = i_block & (ptrs - 1);
  66. } else {
  67. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  68. }
  69. return n;
  70. }
  71. /*
  72. * Returns the location of the fragment from
  73. * the begining of the filesystem.
  74. */
  75. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  76. {
  77. struct ufs_inode_info *ufsi = UFS_I(inode);
  78. struct super_block *sb = inode->i_sb;
  79. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  80. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  81. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  82. sector_t offsets[4], *p;
  83. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  84. u64 ret = 0L;
  85. __fs32 block;
  86. __fs64 u2_block = 0L;
  87. unsigned flags = UFS_SB(sb)->s_flags;
  88. u64 temp = 0L;
  89. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  90. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  91. uspi->s_fpbshift, uspi->s_apbmask,
  92. (unsigned long long)mask);
  93. if (depth == 0)
  94. return 0;
  95. p = offsets;
  96. lock_kernel();
  97. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  98. goto ufs2;
  99. block = ufsi->i_u1.i_data[*p++];
  100. if (!block)
  101. goto out;
  102. while (--depth) {
  103. struct buffer_head *bh;
  104. sector_t n = *p++;
  105. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  106. if (!bh)
  107. goto out;
  108. block = ((__fs32 *) bh->b_data)[n & mask];
  109. brelse (bh);
  110. if (!block)
  111. goto out;
  112. }
  113. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  114. goto out;
  115. ufs2:
  116. u2_block = ufsi->i_u1.u2_i_data[*p++];
  117. if (!u2_block)
  118. goto out;
  119. while (--depth) {
  120. struct buffer_head *bh;
  121. sector_t n = *p++;
  122. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  123. bh = sb_bread(sb, temp +(u64) (n>>shift));
  124. if (!bh)
  125. goto out;
  126. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  127. brelse(bh);
  128. if (!u2_block)
  129. goto out;
  130. }
  131. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  132. ret = temp + (u64) (frag & uspi->s_fpbmask);
  133. out:
  134. unlock_kernel();
  135. return ret;
  136. }
  137. /**
  138. * ufs_inode_getfrag() - allocate new fragment(s)
  139. * @inode - pointer to inode
  140. * @fragment - number of `fragment' which hold pointer
  141. * to new allocated fragment(s)
  142. * @new_fragment - number of new allocated fragment(s)
  143. * @required - how many fragment(s) we require
  144. * @err - we set it if something wrong
  145. * @phys - pointer to where we save physical number of new allocated fragments,
  146. * NULL if we allocate not data(indirect blocks for example).
  147. * @new - we set it if we allocate new block
  148. * @locked_page - for ufs_new_fragments()
  149. */
  150. static struct buffer_head *
  151. ufs_inode_getfrag(struct inode *inode, u64 fragment,
  152. sector_t new_fragment, unsigned int required, int *err,
  153. long *phys, int *new, struct page *locked_page)
  154. {
  155. struct ufs_inode_info *ufsi = UFS_I(inode);
  156. struct super_block *sb = inode->i_sb;
  157. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  158. struct buffer_head * result;
  159. unsigned blockoff, lastblockoff;
  160. u64 tmp, goal, lastfrag, block, lastblock;
  161. void *p, *p2;
  162. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
  163. "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
  164. (unsigned long long)new_fragment, required, !phys);
  165. /* TODO : to be done for write support
  166. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  167. goto ufs2;
  168. */
  169. block = ufs_fragstoblks (fragment);
  170. blockoff = ufs_fragnum (fragment);
  171. p = ufs_get_direct_data_ptr(uspi, ufsi, block);
  172. goal = 0;
  173. repeat:
  174. tmp = ufs_data_ptr_to_cpu(sb, p);
  175. lastfrag = ufsi->i_lastfrag;
  176. if (tmp && fragment < lastfrag) {
  177. if (!phys) {
  178. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  179. if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
  180. UFSD("EXIT, result %llu\n",
  181. (unsigned long long)tmp + blockoff);
  182. return result;
  183. }
  184. brelse (result);
  185. goto repeat;
  186. } else {
  187. *phys = uspi->s_sbbase + tmp + blockoff;
  188. return NULL;
  189. }
  190. }
  191. lastblock = ufs_fragstoblks (lastfrag);
  192. lastblockoff = ufs_fragnum (lastfrag);
  193. /*
  194. * We will extend file into new block beyond last allocated block
  195. */
  196. if (lastblock < block) {
  197. /*
  198. * We must reallocate last allocated block
  199. */
  200. if (lastblockoff) {
  201. p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
  202. tmp = ufs_new_fragments(inode, p2, lastfrag,
  203. ufs_data_ptr_to_cpu(sb, p2),
  204. uspi->s_fpb - lastblockoff,
  205. err, locked_page);
  206. if (!tmp) {
  207. if (lastfrag != ufsi->i_lastfrag)
  208. goto repeat;
  209. else
  210. return NULL;
  211. }
  212. lastfrag = ufsi->i_lastfrag;
  213. }
  214. tmp = ufs_data_ptr_to_cpu(sb,
  215. ufs_get_direct_data_ptr(uspi, ufsi,
  216. lastblock));
  217. if (tmp)
  218. goal = tmp + uspi->s_fpb;
  219. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  220. goal, required + blockoff,
  221. err,
  222. phys != NULL ? locked_page : NULL);
  223. } else if (lastblock == block) {
  224. /*
  225. * We will extend last allocated block
  226. */
  227. tmp = ufs_new_fragments(inode, p, fragment -
  228. (blockoff - lastblockoff),
  229. ufs_data_ptr_to_cpu(sb, p),
  230. required + (blockoff - lastblockoff),
  231. err, phys != NULL ? locked_page : NULL);
  232. } else /* (lastblock > block) */ {
  233. /*
  234. * We will allocate new block before last allocated block
  235. */
  236. if (block) {
  237. tmp = ufs_data_ptr_to_cpu(sb,
  238. ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
  239. if (tmp)
  240. goal = tmp + uspi->s_fpb;
  241. }
  242. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  243. goal, uspi->s_fpb, err,
  244. phys != NULL ? locked_page : NULL);
  245. }
  246. if (!tmp) {
  247. if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
  248. (blockoff && lastfrag != ufsi->i_lastfrag))
  249. goto repeat;
  250. *err = -ENOSPC;
  251. return NULL;
  252. }
  253. if (!phys) {
  254. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  255. } else {
  256. *phys = uspi->s_sbbase + tmp + blockoff;
  257. result = NULL;
  258. *err = 0;
  259. *new = 1;
  260. }
  261. inode->i_ctime = CURRENT_TIME_SEC;
  262. if (IS_SYNC(inode))
  263. ufs_sync_inode (inode);
  264. mark_inode_dirty(inode);
  265. UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
  266. return result;
  267. /* This part : To be implemented ....
  268. Required only for writing, not required for READ-ONLY.
  269. ufs2:
  270. u2_block = ufs_fragstoblks(fragment);
  271. u2_blockoff = ufs_fragnum(fragment);
  272. p = ufsi->i_u1.u2_i_data + block;
  273. goal = 0;
  274. repeat2:
  275. tmp = fs32_to_cpu(sb, *p);
  276. lastfrag = ufsi->i_lastfrag;
  277. */
  278. }
  279. /**
  280. * ufs_inode_getblock() - allocate new block
  281. * @inode - pointer to inode
  282. * @bh - pointer to block which hold "pointer" to new allocated block
  283. * @fragment - number of `fragment' which hold pointer
  284. * to new allocated block
  285. * @new_fragment - number of new allocated fragment
  286. * (block will hold this fragment and also uspi->s_fpb-1)
  287. * @err - see ufs_inode_getfrag()
  288. * @phys - see ufs_inode_getfrag()
  289. * @new - see ufs_inode_getfrag()
  290. * @locked_page - see ufs_inode_getfrag()
  291. */
  292. static struct buffer_head *
  293. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  294. u64 fragment, sector_t new_fragment, int *err,
  295. long *phys, int *new, struct page *locked_page)
  296. {
  297. struct super_block *sb = inode->i_sb;
  298. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  299. struct buffer_head * result;
  300. unsigned blockoff;
  301. u64 tmp, goal, block;
  302. void *p;
  303. block = ufs_fragstoblks (fragment);
  304. blockoff = ufs_fragnum (fragment);
  305. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
  306. inode->i_ino, (unsigned long long)fragment,
  307. (unsigned long long)new_fragment, !phys);
  308. result = NULL;
  309. if (!bh)
  310. goto out;
  311. if (!buffer_uptodate(bh)) {
  312. ll_rw_block (READ, 1, &bh);
  313. wait_on_buffer (bh);
  314. if (!buffer_uptodate(bh))
  315. goto out;
  316. }
  317. if (uspi->fs_magic == UFS2_MAGIC)
  318. p = (__fs64 *)bh->b_data + block;
  319. else
  320. p = (__fs32 *)bh->b_data + block;
  321. repeat:
  322. tmp = ufs_data_ptr_to_cpu(sb, p);
  323. if (tmp) {
  324. if (!phys) {
  325. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  326. if (tmp == ufs_data_ptr_to_cpu(sb, p))
  327. goto out;
  328. brelse (result);
  329. goto repeat;
  330. } else {
  331. *phys = uspi->s_sbbase + tmp + blockoff;
  332. goto out;
  333. }
  334. }
  335. if (block && (uspi->fs_magic == UFS2_MAGIC ?
  336. (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
  337. (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
  338. goal = tmp + uspi->s_fpb;
  339. else
  340. goal = bh->b_blocknr + uspi->s_fpb;
  341. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  342. uspi->s_fpb, err, locked_page);
  343. if (!tmp) {
  344. if (ufs_data_ptr_to_cpu(sb, p))
  345. goto repeat;
  346. goto out;
  347. }
  348. if (!phys) {
  349. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  350. } else {
  351. *phys = uspi->s_sbbase + tmp + blockoff;
  352. *new = 1;
  353. }
  354. mark_buffer_dirty(bh);
  355. if (IS_SYNC(inode))
  356. sync_dirty_buffer(bh);
  357. inode->i_ctime = CURRENT_TIME_SEC;
  358. mark_inode_dirty(inode);
  359. UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
  360. out:
  361. brelse (bh);
  362. UFSD("EXIT\n");
  363. return result;
  364. }
  365. /**
  366. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  367. * readpage, writepage and so on
  368. */
  369. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  370. {
  371. struct super_block * sb = inode->i_sb;
  372. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  373. struct buffer_head * bh;
  374. int ret, err, new;
  375. unsigned long ptr,phys;
  376. u64 phys64 = 0;
  377. if (!create) {
  378. phys64 = ufs_frag_map(inode, fragment);
  379. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  380. if (phys64)
  381. map_bh(bh_result, sb, phys64);
  382. return 0;
  383. }
  384. /* This code entered only while writing ....? */
  385. err = -EIO;
  386. new = 0;
  387. ret = 0;
  388. bh = NULL;
  389. lock_kernel();
  390. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  391. if (fragment >
  392. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  393. << uspi->s_fpbshift))
  394. goto abort_too_big;
  395. err = 0;
  396. ptr = fragment;
  397. /*
  398. * ok, these macros clean the logic up a bit and make
  399. * it much more readable:
  400. */
  401. #define GET_INODE_DATABLOCK(x) \
  402. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
  403. bh_result->b_page)
  404. #define GET_INODE_PTR(x) \
  405. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
  406. bh_result->b_page)
  407. #define GET_INDIRECT_DATABLOCK(x) \
  408. ufs_inode_getblock(inode, bh, x, fragment, \
  409. &err, &phys, &new, bh_result->b_page)
  410. #define GET_INDIRECT_PTR(x) \
  411. ufs_inode_getblock(inode, bh, x, fragment, \
  412. &err, NULL, NULL, NULL)
  413. if (ptr < UFS_NDIR_FRAGMENT) {
  414. bh = GET_INODE_DATABLOCK(ptr);
  415. goto out;
  416. }
  417. ptr -= UFS_NDIR_FRAGMENT;
  418. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  419. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  420. goto get_indirect;
  421. }
  422. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  423. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  424. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  425. goto get_double;
  426. }
  427. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  428. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  429. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  430. get_double:
  431. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  432. get_indirect:
  433. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  434. #undef GET_INODE_DATABLOCK
  435. #undef GET_INODE_PTR
  436. #undef GET_INDIRECT_DATABLOCK
  437. #undef GET_INDIRECT_PTR
  438. out:
  439. if (err)
  440. goto abort;
  441. if (new)
  442. set_buffer_new(bh_result);
  443. map_bh(bh_result, sb, phys);
  444. abort:
  445. unlock_kernel();
  446. return err;
  447. abort_too_big:
  448. ufs_warning(sb, "ufs_get_block", "block > big");
  449. goto abort;
  450. }
  451. static struct buffer_head *ufs_getfrag(struct inode *inode,
  452. unsigned int fragment,
  453. int create, int *err)
  454. {
  455. struct buffer_head dummy;
  456. int error;
  457. dummy.b_state = 0;
  458. dummy.b_blocknr = -1000;
  459. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  460. *err = error;
  461. if (!error && buffer_mapped(&dummy)) {
  462. struct buffer_head *bh;
  463. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  464. if (buffer_new(&dummy)) {
  465. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  466. set_buffer_uptodate(bh);
  467. mark_buffer_dirty(bh);
  468. }
  469. return bh;
  470. }
  471. return NULL;
  472. }
  473. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  474. int create, int * err)
  475. {
  476. struct buffer_head * bh;
  477. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  478. bh = ufs_getfrag (inode, fragment, create, err);
  479. if (!bh || buffer_uptodate(bh))
  480. return bh;
  481. ll_rw_block (READ, 1, &bh);
  482. wait_on_buffer (bh);
  483. if (buffer_uptodate(bh))
  484. return bh;
  485. brelse (bh);
  486. *err = -EIO;
  487. return NULL;
  488. }
  489. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  490. {
  491. return block_write_full_page(page,ufs_getfrag_block,wbc);
  492. }
  493. static int ufs_readpage(struct file *file, struct page *page)
  494. {
  495. return block_read_full_page(page,ufs_getfrag_block);
  496. }
  497. int __ufs_write_begin(struct file *file, struct address_space *mapping,
  498. loff_t pos, unsigned len, unsigned flags,
  499. struct page **pagep, void **fsdata)
  500. {
  501. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  502. ufs_getfrag_block);
  503. }
  504. static int ufs_write_begin(struct file *file, struct address_space *mapping,
  505. loff_t pos, unsigned len, unsigned flags,
  506. struct page **pagep, void **fsdata)
  507. {
  508. *pagep = NULL;
  509. return __ufs_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
  510. }
  511. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  512. {
  513. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  514. }
  515. const struct address_space_operations ufs_aops = {
  516. .readpage = ufs_readpage,
  517. .writepage = ufs_writepage,
  518. .sync_page = block_sync_page,
  519. .write_begin = ufs_write_begin,
  520. .write_end = generic_write_end,
  521. .bmap = ufs_bmap
  522. };
  523. static void ufs_set_inode_ops(struct inode *inode)
  524. {
  525. if (S_ISREG(inode->i_mode)) {
  526. inode->i_op = &ufs_file_inode_operations;
  527. inode->i_fop = &ufs_file_operations;
  528. inode->i_mapping->a_ops = &ufs_aops;
  529. } else if (S_ISDIR(inode->i_mode)) {
  530. inode->i_op = &ufs_dir_inode_operations;
  531. inode->i_fop = &ufs_dir_operations;
  532. inode->i_mapping->a_ops = &ufs_aops;
  533. } else if (S_ISLNK(inode->i_mode)) {
  534. if (!inode->i_blocks)
  535. inode->i_op = &ufs_fast_symlink_inode_operations;
  536. else {
  537. inode->i_op = &page_symlink_inode_operations;
  538. inode->i_mapping->a_ops = &ufs_aops;
  539. }
  540. } else
  541. init_special_inode(inode, inode->i_mode,
  542. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  543. }
  544. static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  545. {
  546. struct ufs_inode_info *ufsi = UFS_I(inode);
  547. struct super_block *sb = inode->i_sb;
  548. mode_t mode;
  549. /*
  550. * Copy data to the in-core inode.
  551. */
  552. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  553. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  554. if (inode->i_nlink == 0) {
  555. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  556. return -1;
  557. }
  558. /*
  559. * Linux now has 32-bit uid and gid, so we can support EFT.
  560. */
  561. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  562. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  563. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  564. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  565. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  566. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  567. inode->i_mtime.tv_nsec = 0;
  568. inode->i_atime.tv_nsec = 0;
  569. inode->i_ctime.tv_nsec = 0;
  570. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  571. inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
  572. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  573. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  574. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  575. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  576. memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
  577. sizeof(ufs_inode->ui_u2.ui_addr));
  578. } else {
  579. memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
  580. sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
  581. ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
  582. }
  583. return 0;
  584. }
  585. static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  586. {
  587. struct ufs_inode_info *ufsi = UFS_I(inode);
  588. struct super_block *sb = inode->i_sb;
  589. mode_t mode;
  590. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  591. /*
  592. * Copy data to the in-core inode.
  593. */
  594. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  595. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  596. if (inode->i_nlink == 0) {
  597. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  598. return -1;
  599. }
  600. /*
  601. * Linux now has 32-bit uid and gid, so we can support EFT.
  602. */
  603. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  604. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  605. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  606. inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
  607. inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
  608. inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
  609. inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
  610. inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
  611. inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
  612. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  613. inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  614. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  615. /*
  616. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  617. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  618. */
  619. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  620. memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
  621. sizeof(ufs2_inode->ui_u2.ui_addr));
  622. } else {
  623. memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
  624. sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
  625. ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
  626. }
  627. return 0;
  628. }
  629. struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
  630. {
  631. struct ufs_inode_info *ufsi;
  632. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  633. struct buffer_head * bh;
  634. struct inode *inode;
  635. int err;
  636. UFSD("ENTER, ino %lu\n", ino);
  637. if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
  638. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  639. ino);
  640. return ERR_PTR(-EIO);
  641. }
  642. inode = iget_locked(sb, ino);
  643. if (!inode)
  644. return ERR_PTR(-ENOMEM);
  645. if (!(inode->i_state & I_NEW))
  646. return inode;
  647. ufsi = UFS_I(inode);
  648. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  649. if (!bh) {
  650. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  651. inode->i_ino);
  652. goto bad_inode;
  653. }
  654. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  655. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  656. err = ufs2_read_inode(inode,
  657. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  658. } else {
  659. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  660. err = ufs1_read_inode(inode,
  661. ufs_inode + ufs_inotofsbo(inode->i_ino));
  662. }
  663. if (err)
  664. goto bad_inode;
  665. inode->i_version++;
  666. ufsi->i_lastfrag =
  667. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  668. ufsi->i_dir_start_lookup = 0;
  669. ufsi->i_osync = 0;
  670. ufs_set_inode_ops(inode);
  671. brelse(bh);
  672. UFSD("EXIT\n");
  673. unlock_new_inode(inode);
  674. return inode;
  675. bad_inode:
  676. iget_failed(inode);
  677. return ERR_PTR(-EIO);
  678. }
  679. static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  680. {
  681. struct super_block *sb = inode->i_sb;
  682. struct ufs_inode_info *ufsi = UFS_I(inode);
  683. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  684. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  685. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  686. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  687. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  688. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  689. ufs_inode->ui_atime.tv_usec = 0;
  690. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  691. ufs_inode->ui_ctime.tv_usec = 0;
  692. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  693. ufs_inode->ui_mtime.tv_usec = 0;
  694. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  695. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  696. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  697. if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
  698. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  699. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  700. }
  701. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  702. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  703. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  704. } else if (inode->i_blocks) {
  705. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
  706. sizeof(ufs_inode->ui_u2.ui_addr));
  707. }
  708. else {
  709. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  710. sizeof(ufs_inode->ui_u2.ui_symlink));
  711. }
  712. if (!inode->i_nlink)
  713. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  714. }
  715. static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
  716. {
  717. struct super_block *sb = inode->i_sb;
  718. struct ufs_inode_info *ufsi = UFS_I(inode);
  719. UFSD("ENTER\n");
  720. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  721. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  722. ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
  723. ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);
  724. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  725. ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
  726. ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
  727. ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
  728. ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
  729. ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
  730. ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
  731. ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
  732. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  733. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  734. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  735. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  736. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
  737. } else if (inode->i_blocks) {
  738. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
  739. sizeof(ufs_inode->ui_u2.ui_addr));
  740. } else {
  741. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  742. sizeof(ufs_inode->ui_u2.ui_symlink));
  743. }
  744. if (!inode->i_nlink)
  745. memset (ufs_inode, 0, sizeof(struct ufs2_inode));
  746. UFSD("EXIT\n");
  747. }
  748. static int ufs_update_inode(struct inode * inode, int do_sync)
  749. {
  750. struct super_block *sb = inode->i_sb;
  751. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  752. struct buffer_head * bh;
  753. UFSD("ENTER, ino %lu\n", inode->i_ino);
  754. if (inode->i_ino < UFS_ROOTINO ||
  755. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  756. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  757. return -1;
  758. }
  759. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  760. if (!bh) {
  761. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  762. return -1;
  763. }
  764. if (uspi->fs_magic == UFS2_MAGIC) {
  765. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  766. ufs2_update_inode(inode,
  767. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  768. } else {
  769. struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
  770. ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  771. }
  772. mark_buffer_dirty(bh);
  773. if (do_sync)
  774. sync_dirty_buffer(bh);
  775. brelse (bh);
  776. UFSD("EXIT\n");
  777. return 0;
  778. }
  779. int ufs_write_inode (struct inode * inode, int wait)
  780. {
  781. int ret;
  782. lock_kernel();
  783. ret = ufs_update_inode (inode, wait);
  784. unlock_kernel();
  785. return ret;
  786. }
  787. int ufs_sync_inode (struct inode *inode)
  788. {
  789. return ufs_update_inode (inode, 1);
  790. }
  791. void ufs_delete_inode (struct inode * inode)
  792. {
  793. loff_t old_i_size;
  794. truncate_inode_pages(&inode->i_data, 0);
  795. if (is_bad_inode(inode))
  796. goto no_delete;
  797. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  798. lock_kernel();
  799. mark_inode_dirty(inode);
  800. ufs_update_inode(inode, IS_SYNC(inode));
  801. old_i_size = inode->i_size;
  802. inode->i_size = 0;
  803. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  804. ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
  805. ufs_free_inode (inode);
  806. unlock_kernel();
  807. return;
  808. no_delete:
  809. clear_inode(inode); /* We must guarantee clearing of inode... */
  810. }