read.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * linux/fs/nfs/read.c
  3. *
  4. * Block I/O for NFS
  5. *
  6. * Partial copy of Linus' read cache modifications to fs/nfs/file.c
  7. * modified for async RPC by okir@monad.swb.de
  8. */
  9. #include <linux/time.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/fcntl.h>
  13. #include <linux/stat.h>
  14. #include <linux/mm.h>
  15. #include <linux/slab.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sunrpc/clnt.h>
  18. #include <linux/nfs_fs.h>
  19. #include <linux/nfs_page.h>
  20. #include <asm/system.h>
  21. #include "nfs4_fs.h"
  22. #include "internal.h"
  23. #include "iostat.h"
  24. #include "fscache.h"
  25. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  26. static int nfs_pagein_multi(struct inode *, struct list_head *, unsigned int, size_t, int);
  27. static int nfs_pagein_one(struct inode *, struct list_head *, unsigned int, size_t, int);
  28. static const struct rpc_call_ops nfs_read_partial_ops;
  29. static const struct rpc_call_ops nfs_read_full_ops;
  30. static struct kmem_cache *nfs_rdata_cachep;
  31. static mempool_t *nfs_rdata_mempool;
  32. #define MIN_POOL_READ (32)
  33. struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
  34. {
  35. struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, GFP_NOFS);
  36. if (p) {
  37. memset(p, 0, sizeof(*p));
  38. INIT_LIST_HEAD(&p->pages);
  39. p->npages = pagecount;
  40. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  41. if (pagecount <= ARRAY_SIZE(p->page_array))
  42. p->pagevec = p->page_array;
  43. else {
  44. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  45. if (!p->pagevec) {
  46. mempool_free(p, nfs_rdata_mempool);
  47. p = NULL;
  48. }
  49. }
  50. }
  51. return p;
  52. }
  53. static void nfs_readdata_free(struct nfs_read_data *p)
  54. {
  55. if (p && (p->pagevec != &p->page_array[0]))
  56. kfree(p->pagevec);
  57. mempool_free(p, nfs_rdata_mempool);
  58. }
  59. void nfs_readdata_release(void *data)
  60. {
  61. struct nfs_read_data *rdata = data;
  62. put_nfs_open_context(rdata->args.context);
  63. nfs_readdata_free(rdata);
  64. }
  65. static
  66. int nfs_return_empty_page(struct page *page)
  67. {
  68. zero_user(page, 0, PAGE_CACHE_SIZE);
  69. SetPageUptodate(page);
  70. unlock_page(page);
  71. return 0;
  72. }
  73. static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
  74. {
  75. unsigned int remainder = data->args.count - data->res.count;
  76. unsigned int base = data->args.pgbase + data->res.count;
  77. unsigned int pglen;
  78. struct page **pages;
  79. if (data->res.eof == 0 || remainder == 0)
  80. return;
  81. /*
  82. * Note: "remainder" can never be negative, since we check for
  83. * this in the XDR code.
  84. */
  85. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  86. base &= ~PAGE_CACHE_MASK;
  87. pglen = PAGE_CACHE_SIZE - base;
  88. for (;;) {
  89. if (remainder <= pglen) {
  90. zero_user(*pages, base, remainder);
  91. break;
  92. }
  93. zero_user(*pages, base, pglen);
  94. pages++;
  95. remainder -= pglen;
  96. pglen = PAGE_CACHE_SIZE;
  97. base = 0;
  98. }
  99. }
  100. int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
  101. struct page *page)
  102. {
  103. LIST_HEAD(one_request);
  104. struct nfs_page *new;
  105. unsigned int len;
  106. len = nfs_page_length(page);
  107. if (len == 0)
  108. return nfs_return_empty_page(page);
  109. new = nfs_create_request(ctx, inode, page, 0, len);
  110. if (IS_ERR(new)) {
  111. unlock_page(page);
  112. return PTR_ERR(new);
  113. }
  114. if (len < PAGE_CACHE_SIZE)
  115. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  116. nfs_list_add_request(new, &one_request);
  117. if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
  118. nfs_pagein_multi(inode, &one_request, 1, len, 0);
  119. else
  120. nfs_pagein_one(inode, &one_request, 1, len, 0);
  121. return 0;
  122. }
  123. static void nfs_readpage_release(struct nfs_page *req)
  124. {
  125. struct inode *d_inode = req->wb_context->path.dentry->d_inode;
  126. if (PageUptodate(req->wb_page))
  127. nfs_readpage_to_fscache(d_inode, req->wb_page, 0);
  128. unlock_page(req->wb_page);
  129. dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
  130. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  131. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  132. req->wb_bytes,
  133. (long long)req_offset(req));
  134. nfs_clear_request(req);
  135. nfs_release_request(req);
  136. }
  137. /*
  138. * Set up the NFS read request struct
  139. */
  140. static int nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
  141. const struct rpc_call_ops *call_ops,
  142. unsigned int count, unsigned int offset)
  143. {
  144. struct inode *inode = req->wb_context->path.dentry->d_inode;
  145. int swap_flags = IS_SWAPFILE(inode) ? NFS_RPC_SWAPFLAGS : 0;
  146. struct rpc_task *task;
  147. struct rpc_message msg = {
  148. .rpc_argp = &data->args,
  149. .rpc_resp = &data->res,
  150. .rpc_cred = req->wb_context->cred,
  151. };
  152. struct rpc_task_setup task_setup_data = {
  153. .task = &data->task,
  154. .rpc_client = NFS_CLIENT(inode),
  155. .rpc_message = &msg,
  156. .callback_ops = call_ops,
  157. .callback_data = data,
  158. .workqueue = nfsiod_workqueue,
  159. .flags = RPC_TASK_ASYNC | swap_flags,
  160. };
  161. data->req = req;
  162. data->inode = inode;
  163. data->cred = msg.rpc_cred;
  164. data->args.fh = NFS_FH(inode);
  165. data->args.offset = req_offset(req) + offset;
  166. data->args.pgbase = req->wb_pgbase + offset;
  167. data->args.pages = data->pagevec;
  168. data->args.count = count;
  169. data->args.context = get_nfs_open_context(req->wb_context);
  170. data->res.fattr = &data->fattr;
  171. data->res.count = count;
  172. data->res.eof = 0;
  173. nfs_fattr_init(&data->fattr);
  174. /* Set up the initial task struct. */
  175. NFS_PROTO(inode)->read_setup(data, &msg);
  176. dprintk("NFS: %5u initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  177. data->task.tk_pid,
  178. inode->i_sb->s_id,
  179. (long long)NFS_FILEID(inode),
  180. count,
  181. (unsigned long long)data->args.offset);
  182. task = rpc_run_task(&task_setup_data);
  183. if (IS_ERR(task))
  184. return PTR_ERR(task);
  185. rpc_put_task(task);
  186. return 0;
  187. }
  188. static void
  189. nfs_async_read_error(struct list_head *head)
  190. {
  191. struct nfs_page *req;
  192. while (!list_empty(head)) {
  193. req = nfs_list_entry(head->next);
  194. nfs_list_remove_request(req);
  195. SetPageError(req->wb_page);
  196. nfs_readpage_release(req);
  197. }
  198. }
  199. /*
  200. * Generate multiple requests to fill a single page.
  201. *
  202. * We optimize to reduce the number of read operations on the wire. If we
  203. * detect that we're reading a page, or an area of a page, that is past the
  204. * end of file, we do not generate NFS read operations but just clear the
  205. * parts of the page that would have come back zero from the server anyway.
  206. *
  207. * We rely on the cached value of i_size to make this determination; another
  208. * client can fill pages on the server past our cached end-of-file, but we
  209. * won't see the new data until our attribute cache is updated. This is more
  210. * or less conventional NFS client behavior.
  211. */
  212. static int nfs_pagein_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
  213. {
  214. struct nfs_page *req = nfs_list_entry(head->next);
  215. struct page *page = req->wb_page;
  216. struct nfs_read_data *data;
  217. size_t rsize = NFS_SERVER(inode)->rsize, nbytes;
  218. unsigned int offset;
  219. int requests = 0;
  220. int ret = 0;
  221. LIST_HEAD(list);
  222. nfs_list_remove_request(req);
  223. nbytes = count;
  224. do {
  225. size_t len = min(nbytes,rsize);
  226. data = nfs_readdata_alloc(1);
  227. if (!data)
  228. goto out_bad;
  229. list_add(&data->pages, &list);
  230. requests++;
  231. nbytes -= len;
  232. } while(nbytes != 0);
  233. atomic_set(&req->wb_complete, requests);
  234. ClearPageError(page);
  235. offset = 0;
  236. nbytes = count;
  237. do {
  238. int ret2;
  239. data = list_entry(list.next, struct nfs_read_data, pages);
  240. list_del_init(&data->pages);
  241. data->pagevec[0] = page;
  242. if (nbytes < rsize)
  243. rsize = nbytes;
  244. ret2 = nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
  245. rsize, offset);
  246. if (ret == 0)
  247. ret = ret2;
  248. offset += rsize;
  249. nbytes -= rsize;
  250. } while (nbytes != 0);
  251. return ret;
  252. out_bad:
  253. while (!list_empty(&list)) {
  254. data = list_entry(list.next, struct nfs_read_data, pages);
  255. list_del(&data->pages);
  256. nfs_readdata_free(data);
  257. }
  258. SetPageError(page);
  259. nfs_readpage_release(req);
  260. return -ENOMEM;
  261. }
  262. static int nfs_pagein_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
  263. {
  264. struct nfs_page *req;
  265. struct page **pages;
  266. struct nfs_read_data *data;
  267. int ret = -ENOMEM;
  268. data = nfs_readdata_alloc(npages);
  269. if (!data)
  270. goto out_bad;
  271. pages = data->pagevec;
  272. while (!list_empty(head)) {
  273. req = nfs_list_entry(head->next);
  274. nfs_list_remove_request(req);
  275. nfs_list_add_request(req, &data->pages);
  276. ClearPageError(req->wb_page);
  277. *pages++ = req->wb_page;
  278. }
  279. req = nfs_list_entry(data->pages.next);
  280. return nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
  281. out_bad:
  282. nfs_async_read_error(head);
  283. return ret;
  284. }
  285. /*
  286. * This is the callback from RPC telling us whether a reply was
  287. * received or some error occurred (timeout or socket shutdown).
  288. */
  289. int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
  290. {
  291. int status;
  292. dprintk("NFS: %s: %5u, (status %d)\n", __func__, task->tk_pid,
  293. task->tk_status);
  294. status = NFS_PROTO(data->inode)->read_done(task, data);
  295. if (status != 0)
  296. return status;
  297. nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, data->res.count);
  298. if (task->tk_status == -ESTALE) {
  299. set_bit(NFS_INO_STALE, &NFS_I(data->inode)->flags);
  300. nfs_mark_for_revalidate(data->inode);
  301. }
  302. return 0;
  303. }
  304. static void nfs_readpage_retry(struct rpc_task *task, struct nfs_read_data *data)
  305. {
  306. struct nfs_readargs *argp = &data->args;
  307. struct nfs_readres *resp = &data->res;
  308. if (resp->eof || resp->count == argp->count)
  309. goto out;
  310. /* This is a short read! */
  311. nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
  312. /* Has the server at least made some progress? */
  313. if (resp->count == 0)
  314. goto out;
  315. /* Yes, so retry the read at the end of the data */
  316. argp->offset += resp->count;
  317. argp->pgbase += resp->count;
  318. argp->count -= resp->count;
  319. nfs4_restart_rpc(task, NFS_SERVER(data->inode)->nfs_client);
  320. return;
  321. out:
  322. nfs4_sequence_free_slot(NFS_SERVER(data->inode)->nfs_client,
  323. &data->res.seq_res);
  324. return;
  325. }
  326. /*
  327. * Handle a read reply that fills part of a page.
  328. */
  329. static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
  330. {
  331. struct nfs_read_data *data = calldata;
  332. if (nfs_readpage_result(task, data) != 0)
  333. return;
  334. if (task->tk_status < 0)
  335. return;
  336. nfs_readpage_truncate_uninitialised_page(data);
  337. nfs_readpage_retry(task, data);
  338. }
  339. static void nfs_readpage_release_partial(void *calldata)
  340. {
  341. struct nfs_read_data *data = calldata;
  342. struct nfs_page *req = data->req;
  343. struct page *page = req->wb_page;
  344. int status = data->task.tk_status;
  345. if (status < 0)
  346. SetPageError(page);
  347. if (atomic_dec_and_test(&req->wb_complete)) {
  348. if (!PageError(page))
  349. SetPageUptodate(page);
  350. nfs_readpage_release(req);
  351. }
  352. nfs_readdata_release(calldata);
  353. }
  354. #if defined(CONFIG_NFS_V4_1)
  355. void nfs_read_prepare(struct rpc_task *task, void *calldata)
  356. {
  357. struct nfs_read_data *data = calldata;
  358. if (nfs4_setup_sequence(NFS_SERVER(data->inode)->nfs_client,
  359. &data->args.seq_args, &data->res.seq_res,
  360. 0, task))
  361. return;
  362. rpc_call_start(task);
  363. }
  364. #endif /* CONFIG_NFS_V4_1 */
  365. static const struct rpc_call_ops nfs_read_partial_ops = {
  366. #if defined(CONFIG_NFS_V4_1)
  367. .rpc_call_prepare = nfs_read_prepare,
  368. #endif /* CONFIG_NFS_V4_1 */
  369. .rpc_call_done = nfs_readpage_result_partial,
  370. .rpc_release = nfs_readpage_release_partial,
  371. };
  372. static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
  373. {
  374. unsigned int count = data->res.count;
  375. unsigned int base = data->args.pgbase;
  376. struct page **pages;
  377. if (data->res.eof)
  378. count = data->args.count;
  379. if (unlikely(count == 0))
  380. return;
  381. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  382. base &= ~PAGE_CACHE_MASK;
  383. count += base;
  384. for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
  385. SetPageUptodate(*pages);
  386. if (count == 0)
  387. return;
  388. /* Was this a short read? */
  389. if (data->res.eof || data->res.count == data->args.count)
  390. SetPageUptodate(*pages);
  391. }
  392. /*
  393. * This is the callback from RPC telling us whether a reply was
  394. * received or some error occurred (timeout or socket shutdown).
  395. */
  396. static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
  397. {
  398. struct nfs_read_data *data = calldata;
  399. if (nfs_readpage_result(task, data) != 0)
  400. return;
  401. if (task->tk_status < 0)
  402. return;
  403. /*
  404. * Note: nfs_readpage_retry may change the values of
  405. * data->args. In the multi-page case, we therefore need
  406. * to ensure that we call nfs_readpage_set_pages_uptodate()
  407. * first.
  408. */
  409. nfs_readpage_truncate_uninitialised_page(data);
  410. nfs_readpage_set_pages_uptodate(data);
  411. nfs_readpage_retry(task, data);
  412. }
  413. static void nfs_readpage_release_full(void *calldata)
  414. {
  415. struct nfs_read_data *data = calldata;
  416. while (!list_empty(&data->pages)) {
  417. struct nfs_page *req = nfs_list_entry(data->pages.next);
  418. nfs_list_remove_request(req);
  419. nfs_readpage_release(req);
  420. }
  421. nfs_readdata_release(calldata);
  422. }
  423. static const struct rpc_call_ops nfs_read_full_ops = {
  424. #if defined(CONFIG_NFS_V4_1)
  425. .rpc_call_prepare = nfs_read_prepare,
  426. #endif /* CONFIG_NFS_V4_1 */
  427. .rpc_call_done = nfs_readpage_result_full,
  428. .rpc_release = nfs_readpage_release_full,
  429. };
  430. /*
  431. * Read a page over NFS.
  432. * We read the page synchronously in the following case:
  433. * - The error flag is set for this page. This happens only when a
  434. * previous async read operation failed.
  435. */
  436. int nfs_readpage(struct file *file, struct page *page)
  437. {
  438. struct nfs_open_context *ctx;
  439. struct inode *inode = page->mapping->host;
  440. int error;
  441. dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
  442. page, PAGE_CACHE_SIZE, page->index);
  443. nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
  444. nfs_add_stats(inode, NFSIOS_READPAGES, 1);
  445. /*
  446. * Try to flush any pending writes to the file..
  447. *
  448. * NOTE! Because we own the page lock, there cannot
  449. * be any new pending writes generated at this point
  450. * for this page (other pages can be written to).
  451. */
  452. error = nfs_wb_page(inode, page);
  453. if (error)
  454. goto out_unlock;
  455. if (PageUptodate(page))
  456. goto out_unlock;
  457. error = -ESTALE;
  458. if (NFS_STALE(inode))
  459. goto out_unlock;
  460. if (file == NULL) {
  461. error = -EBADF;
  462. ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  463. if (ctx == NULL)
  464. goto out_unlock;
  465. } else
  466. ctx = get_nfs_open_context(nfs_file_open_context(file));
  467. if (!IS_SYNC(inode)) {
  468. error = nfs_readpage_from_fscache(ctx, inode, page);
  469. if (error == 0)
  470. goto out;
  471. }
  472. error = nfs_readpage_async(ctx, inode, page);
  473. out:
  474. put_nfs_open_context(ctx);
  475. return error;
  476. out_unlock:
  477. unlock_page(page);
  478. return error;
  479. }
  480. struct nfs_readdesc {
  481. struct nfs_pageio_descriptor *pgio;
  482. struct nfs_open_context *ctx;
  483. };
  484. static int
  485. readpage_async_filler(void *data, struct page *page)
  486. {
  487. struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
  488. struct inode *inode = page->mapping->host;
  489. struct nfs_page *new;
  490. unsigned int len;
  491. int error;
  492. len = nfs_page_length(page);
  493. if (len == 0)
  494. return nfs_return_empty_page(page);
  495. new = nfs_create_request(desc->ctx, inode, page, 0, len);
  496. if (IS_ERR(new))
  497. goto out_error;
  498. if (len < PAGE_CACHE_SIZE)
  499. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  500. if (!nfs_pageio_add_request(desc->pgio, new)) {
  501. error = desc->pgio->pg_error;
  502. goto out_unlock;
  503. }
  504. return 0;
  505. out_error:
  506. error = PTR_ERR(new);
  507. SetPageError(page);
  508. out_unlock:
  509. unlock_page(page);
  510. return error;
  511. }
  512. int nfs_readpages(struct file *filp, struct address_space *mapping,
  513. struct list_head *pages, unsigned nr_pages)
  514. {
  515. struct nfs_pageio_descriptor pgio;
  516. struct nfs_readdesc desc = {
  517. .pgio = &pgio,
  518. };
  519. struct inode *inode = mapping->host;
  520. struct nfs_server *server = NFS_SERVER(inode);
  521. size_t rsize = server->rsize;
  522. unsigned long npages;
  523. int ret = -ESTALE;
  524. dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
  525. inode->i_sb->s_id,
  526. (long long)NFS_FILEID(inode),
  527. nr_pages);
  528. nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
  529. if (NFS_STALE(inode))
  530. goto out;
  531. if (filp == NULL) {
  532. desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  533. if (desc.ctx == NULL)
  534. return -EBADF;
  535. } else
  536. desc.ctx = get_nfs_open_context(nfs_file_open_context(filp));
  537. /* attempt to read as many of the pages as possible from the cache
  538. * - this returns -ENOBUFS immediately if the cookie is negative
  539. */
  540. ret = nfs_readpages_from_fscache(desc.ctx, inode, mapping,
  541. pages, &nr_pages);
  542. if (ret == 0)
  543. goto read_complete; /* all pages were read */
  544. if (rsize < PAGE_CACHE_SIZE)
  545. nfs_pageio_init(&pgio, inode, nfs_pagein_multi, rsize, 0);
  546. else
  547. nfs_pageio_init(&pgio, inode, nfs_pagein_one, rsize, 0);
  548. ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
  549. nfs_pageio_complete(&pgio);
  550. npages = (pgio.pg_bytes_written + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  551. nfs_add_stats(inode, NFSIOS_READPAGES, npages);
  552. read_complete:
  553. put_nfs_open_context(desc.ctx);
  554. out:
  555. return ret;
  556. }
  557. int __init nfs_init_readpagecache(void)
  558. {
  559. nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
  560. sizeof(struct nfs_read_data),
  561. 0, SLAB_HWCACHE_ALIGN,
  562. NULL);
  563. if (nfs_rdata_cachep == NULL)
  564. return -ENOMEM;
  565. nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
  566. nfs_rdata_cachep);
  567. if (nfs_rdata_mempool == NULL)
  568. return -ENOMEM;
  569. return 0;
  570. }
  571. void nfs_destroy_readpagecache(void)
  572. {
  573. mempool_destroy(nfs_rdata_mempool);
  574. kmem_cache_destroy(nfs_rdata_cachep);
  575. }