direct.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/nfs_fs.h>
  47. #include <linux/nfs_page.h>
  48. #include <linux/sunrpc/clnt.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/atomic.h>
  52. #include "internal.h"
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static struct kmem_cache *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /**
  90. * nfs_direct_IO - NFS address space operation for direct I/O
  91. * @rw: direction (read or write)
  92. * @iocb: target I/O control block
  93. * @iov: array of vectors that define I/O buffer
  94. * @pos: offset in file to begin the operation
  95. * @nr_segs: size of iovec array
  96. *
  97. * The presence of this routine in the address space ops vector means
  98. * the NFS client supports direct I/O. However, we shunt off direct
  99. * read and write requests before the VFS gets them, so this method
  100. * should never be called.
  101. */
  102. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  103. {
  104. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  105. iocb->ki_filp->f_path.dentry->d_name.name,
  106. (long long) pos, nr_segs);
  107. return -EINVAL;
  108. }
  109. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  110. {
  111. unsigned int npages;
  112. unsigned int i;
  113. if (count == 0)
  114. return;
  115. pages += (pgbase >> PAGE_SHIFT);
  116. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  117. for (i = 0; i < npages; i++) {
  118. struct page *page = pages[i];
  119. if (!PageCompound(page))
  120. set_page_dirty(page);
  121. }
  122. }
  123. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  124. {
  125. unsigned int i;
  126. for (i = 0; i < npages; i++)
  127. page_cache_release(pages[i]);
  128. }
  129. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  130. {
  131. struct nfs_direct_req *dreq;
  132. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  133. if (!dreq)
  134. return NULL;
  135. kref_init(&dreq->kref);
  136. kref_get(&dreq->kref);
  137. init_completion(&dreq->completion);
  138. INIT_LIST_HEAD(&dreq->rewrite_list);
  139. dreq->iocb = NULL;
  140. dreq->ctx = NULL;
  141. spin_lock_init(&dreq->lock);
  142. atomic_set(&dreq->io_count, 0);
  143. dreq->count = 0;
  144. dreq->error = 0;
  145. dreq->flags = 0;
  146. return dreq;
  147. }
  148. static void nfs_direct_req_free(struct kref *kref)
  149. {
  150. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  151. if (dreq->ctx != NULL)
  152. put_nfs_open_context(dreq->ctx);
  153. kmem_cache_free(nfs_direct_cachep, dreq);
  154. }
  155. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  156. {
  157. kref_put(&dreq->kref, nfs_direct_req_free);
  158. }
  159. /*
  160. * Collects and returns the final error value/byte-count.
  161. */
  162. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  163. {
  164. ssize_t result = -EIOCBQUEUED;
  165. /* Async requests don't wait here */
  166. if (dreq->iocb)
  167. goto out;
  168. result = wait_for_completion_killable(&dreq->completion);
  169. if (!result)
  170. result = dreq->error;
  171. if (!result)
  172. result = dreq->count;
  173. out:
  174. return (ssize_t) result;
  175. }
  176. /*
  177. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  178. * the iocb is still valid here if this is a synchronous request.
  179. */
  180. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  181. {
  182. if (dreq->iocb) {
  183. long res = (long) dreq->error;
  184. if (!res)
  185. res = (long) dreq->count;
  186. aio_complete(dreq->iocb, res, 0);
  187. }
  188. complete_all(&dreq->completion);
  189. nfs_direct_req_release(dreq);
  190. }
  191. /*
  192. * We must hold a reference to all the pages in this direct read request
  193. * until the RPCs complete. This could be long *after* we are woken up in
  194. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  195. */
  196. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  197. {
  198. struct nfs_read_data *data = calldata;
  199. nfs_readpage_result(task, data);
  200. }
  201. static void nfs_direct_read_release(void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  205. int status = data->task.tk_status;
  206. spin_lock(&dreq->lock);
  207. if (unlikely(status < 0)) {
  208. dreq->error = status;
  209. spin_unlock(&dreq->lock);
  210. } else {
  211. dreq->count += data->res.count;
  212. spin_unlock(&dreq->lock);
  213. nfs_direct_dirty_pages(data->pagevec,
  214. data->args.pgbase,
  215. data->res.count);
  216. }
  217. nfs_direct_release_pages(data->pagevec, data->npages);
  218. if (put_dreq(dreq))
  219. nfs_direct_complete(dreq);
  220. nfs_readdata_release(calldata);
  221. }
  222. static const struct rpc_call_ops nfs_read_direct_ops = {
  223. #if defined(CONFIG_NFS_V4_1)
  224. .rpc_call_prepare = nfs_read_prepare,
  225. #endif /* CONFIG_NFS_V4_1 */
  226. .rpc_call_done = nfs_direct_read_result,
  227. .rpc_release = nfs_direct_read_release,
  228. };
  229. /*
  230. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  231. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  232. * bail and stop sending more reads. Read length accounting is
  233. * handled automatically by nfs_direct_read_result(). Otherwise, if
  234. * no requests have been sent, just return an error.
  235. */
  236. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  237. const struct iovec *iov,
  238. loff_t pos)
  239. {
  240. struct nfs_open_context *ctx = dreq->ctx;
  241. struct inode *inode = ctx->path.dentry->d_inode;
  242. unsigned long user_addr = (unsigned long)iov->iov_base;
  243. size_t count = iov->iov_len;
  244. size_t rsize = NFS_SERVER(inode)->rsize;
  245. struct rpc_task *task;
  246. struct rpc_message msg = {
  247. .rpc_cred = ctx->cred,
  248. };
  249. struct rpc_task_setup task_setup_data = {
  250. .rpc_client = NFS_CLIENT(inode),
  251. .rpc_message = &msg,
  252. .callback_ops = &nfs_read_direct_ops,
  253. .workqueue = nfsiod_workqueue,
  254. .flags = RPC_TASK_ASYNC,
  255. };
  256. unsigned int pgbase;
  257. int result;
  258. ssize_t started = 0;
  259. do {
  260. struct nfs_read_data *data;
  261. size_t bytes;
  262. pgbase = user_addr & ~PAGE_MASK;
  263. bytes = min(rsize,count);
  264. result = -ENOMEM;
  265. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  266. if (unlikely(!data))
  267. break;
  268. down_read(&current->mm->mmap_sem);
  269. result = get_user_pages(current, current->mm, user_addr,
  270. data->npages, 1, 0, data->pagevec, NULL);
  271. up_read(&current->mm->mmap_sem);
  272. if (result < 0) {
  273. nfs_readdata_release(data);
  274. break;
  275. }
  276. if ((unsigned)result < data->npages) {
  277. bytes = result * PAGE_SIZE;
  278. if (bytes <= pgbase) {
  279. nfs_direct_release_pages(data->pagevec, result);
  280. nfs_readdata_release(data);
  281. break;
  282. }
  283. bytes -= pgbase;
  284. data->npages = result;
  285. }
  286. get_dreq(dreq);
  287. data->req = (struct nfs_page *) dreq;
  288. data->inode = inode;
  289. data->cred = msg.rpc_cred;
  290. data->args.fh = NFS_FH(inode);
  291. data->args.context = get_nfs_open_context(ctx);
  292. data->args.offset = pos;
  293. data->args.pgbase = pgbase;
  294. data->args.pages = data->pagevec;
  295. data->args.count = bytes;
  296. data->res.fattr = &data->fattr;
  297. data->res.eof = 0;
  298. data->res.count = bytes;
  299. msg.rpc_argp = &data->args;
  300. msg.rpc_resp = &data->res;
  301. task_setup_data.task = &data->task;
  302. task_setup_data.callback_data = data;
  303. NFS_PROTO(inode)->read_setup(data, &msg);
  304. task = rpc_run_task(&task_setup_data);
  305. if (IS_ERR(task))
  306. break;
  307. rpc_put_task(task);
  308. dprintk("NFS: %5u initiated direct read call "
  309. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  310. data->task.tk_pid,
  311. inode->i_sb->s_id,
  312. (long long)NFS_FILEID(inode),
  313. bytes,
  314. (unsigned long long)data->args.offset);
  315. started += bytes;
  316. user_addr += bytes;
  317. pos += bytes;
  318. /* FIXME: Remove this unnecessary math from final patch */
  319. pgbase += bytes;
  320. pgbase &= ~PAGE_MASK;
  321. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  322. count -= bytes;
  323. } while (count != 0);
  324. if (started)
  325. return started;
  326. return result < 0 ? (ssize_t) result : -EFAULT;
  327. }
  328. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  329. const struct iovec *iov,
  330. unsigned long nr_segs,
  331. loff_t pos)
  332. {
  333. ssize_t result = -EINVAL;
  334. size_t requested_bytes = 0;
  335. unsigned long seg;
  336. get_dreq(dreq);
  337. for (seg = 0; seg < nr_segs; seg++) {
  338. const struct iovec *vec = &iov[seg];
  339. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  340. if (result < 0)
  341. break;
  342. requested_bytes += result;
  343. if ((size_t)result < vec->iov_len)
  344. break;
  345. pos += vec->iov_len;
  346. }
  347. if (put_dreq(dreq))
  348. nfs_direct_complete(dreq);
  349. if (requested_bytes != 0)
  350. return 0;
  351. if (result < 0)
  352. return result;
  353. return -EIO;
  354. }
  355. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  356. unsigned long nr_segs, loff_t pos)
  357. {
  358. ssize_t result = 0;
  359. struct inode *inode = iocb->ki_filp->f_mapping->host;
  360. struct nfs_direct_req *dreq;
  361. dreq = nfs_direct_req_alloc();
  362. if (!dreq)
  363. return -ENOMEM;
  364. dreq->inode = inode;
  365. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  366. if (!is_sync_kiocb(iocb))
  367. dreq->iocb = iocb;
  368. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  369. if (!result)
  370. result = nfs_direct_wait(dreq);
  371. nfs_direct_req_release(dreq);
  372. return result;
  373. }
  374. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  375. {
  376. while (!list_empty(&dreq->rewrite_list)) {
  377. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  378. list_del(&data->pages);
  379. nfs_direct_release_pages(data->pagevec, data->npages);
  380. nfs_writedata_release(data);
  381. }
  382. }
  383. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  384. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  385. {
  386. struct inode *inode = dreq->inode;
  387. struct list_head *p;
  388. struct nfs_write_data *data;
  389. struct rpc_task *task;
  390. struct rpc_message msg = {
  391. .rpc_cred = dreq->ctx->cred,
  392. };
  393. struct rpc_task_setup task_setup_data = {
  394. .rpc_client = NFS_CLIENT(inode),
  395. .callback_ops = &nfs_write_direct_ops,
  396. .workqueue = nfsiod_workqueue,
  397. .flags = RPC_TASK_ASYNC,
  398. };
  399. dreq->count = 0;
  400. get_dreq(dreq);
  401. list_for_each(p, &dreq->rewrite_list) {
  402. data = list_entry(p, struct nfs_write_data, pages);
  403. get_dreq(dreq);
  404. /* Use stable writes */
  405. data->args.stable = NFS_FILE_SYNC;
  406. /*
  407. * Reset data->res.
  408. */
  409. nfs_fattr_init(&data->fattr);
  410. data->res.count = data->args.count;
  411. memset(&data->verf, 0, sizeof(data->verf));
  412. /*
  413. * Reuse data->task; data->args should not have changed
  414. * since the original request was sent.
  415. */
  416. task_setup_data.task = &data->task;
  417. task_setup_data.callback_data = data;
  418. msg.rpc_argp = &data->args;
  419. msg.rpc_resp = &data->res;
  420. NFS_PROTO(inode)->write_setup(data, &msg);
  421. /*
  422. * We're called via an RPC callback, so BKL is already held.
  423. */
  424. task = rpc_run_task(&task_setup_data);
  425. if (!IS_ERR(task))
  426. rpc_put_task(task);
  427. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  428. data->task.tk_pid,
  429. inode->i_sb->s_id,
  430. (long long)NFS_FILEID(inode),
  431. data->args.count,
  432. (unsigned long long)data->args.offset);
  433. }
  434. if (put_dreq(dreq))
  435. nfs_direct_write_complete(dreq, inode);
  436. }
  437. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  438. {
  439. struct nfs_write_data *data = calldata;
  440. /* Call the NFS version-specific code */
  441. NFS_PROTO(data->inode)->commit_done(task, data);
  442. }
  443. static void nfs_direct_commit_release(void *calldata)
  444. {
  445. struct nfs_write_data *data = calldata;
  446. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  447. int status = data->task.tk_status;
  448. if (status < 0) {
  449. dprintk("NFS: %5u commit failed with error %d.\n",
  450. data->task.tk_pid, status);
  451. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  452. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  453. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  454. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  455. }
  456. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  457. nfs_direct_write_complete(dreq, data->inode);
  458. nfs_commitdata_release(calldata);
  459. }
  460. static const struct rpc_call_ops nfs_commit_direct_ops = {
  461. #if defined(CONFIG_NFS_V4_1)
  462. .rpc_call_prepare = nfs_write_prepare,
  463. #endif /* CONFIG_NFS_V4_1 */
  464. .rpc_call_done = nfs_direct_commit_result,
  465. .rpc_release = nfs_direct_commit_release,
  466. };
  467. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  468. {
  469. struct nfs_write_data *data = dreq->commit_data;
  470. struct rpc_task *task;
  471. struct rpc_message msg = {
  472. .rpc_argp = &data->args,
  473. .rpc_resp = &data->res,
  474. .rpc_cred = dreq->ctx->cred,
  475. };
  476. struct rpc_task_setup task_setup_data = {
  477. .task = &data->task,
  478. .rpc_client = NFS_CLIENT(dreq->inode),
  479. .rpc_message = &msg,
  480. .callback_ops = &nfs_commit_direct_ops,
  481. .callback_data = data,
  482. .workqueue = nfsiod_workqueue,
  483. .flags = RPC_TASK_ASYNC,
  484. };
  485. data->inode = dreq->inode;
  486. data->cred = msg.rpc_cred;
  487. data->args.fh = NFS_FH(data->inode);
  488. data->args.offset = 0;
  489. data->args.count = 0;
  490. data->args.context = get_nfs_open_context(dreq->ctx);
  491. data->res.count = 0;
  492. data->res.fattr = &data->fattr;
  493. data->res.verf = &data->verf;
  494. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  495. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  496. dreq->commit_data = NULL;
  497. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  498. task = rpc_run_task(&task_setup_data);
  499. if (!IS_ERR(task))
  500. rpc_put_task(task);
  501. }
  502. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  503. {
  504. int flags = dreq->flags;
  505. dreq->flags = 0;
  506. switch (flags) {
  507. case NFS_ODIRECT_DO_COMMIT:
  508. nfs_direct_commit_schedule(dreq);
  509. break;
  510. case NFS_ODIRECT_RESCHED_WRITES:
  511. nfs_direct_write_reschedule(dreq);
  512. break;
  513. default:
  514. if (dreq->commit_data != NULL)
  515. nfs_commit_free(dreq->commit_data);
  516. nfs_direct_free_writedata(dreq);
  517. nfs_zap_mapping(inode, inode->i_mapping);
  518. nfs_direct_complete(dreq);
  519. }
  520. }
  521. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  522. {
  523. dreq->commit_data = nfs_commitdata_alloc();
  524. if (dreq->commit_data != NULL)
  525. dreq->commit_data->req = (struct nfs_page *) dreq;
  526. }
  527. #else
  528. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  529. {
  530. dreq->commit_data = NULL;
  531. }
  532. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  533. {
  534. nfs_direct_free_writedata(dreq);
  535. nfs_zap_mapping(inode, inode->i_mapping);
  536. nfs_direct_complete(dreq);
  537. }
  538. #endif
  539. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  540. {
  541. struct nfs_write_data *data = calldata;
  542. if (nfs_writeback_done(task, data) != 0)
  543. return;
  544. }
  545. /*
  546. * NB: Return the value of the first error return code. Subsequent
  547. * errors after the first one are ignored.
  548. */
  549. static void nfs_direct_write_release(void *calldata)
  550. {
  551. struct nfs_write_data *data = calldata;
  552. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  553. int status = data->task.tk_status;
  554. spin_lock(&dreq->lock);
  555. if (unlikely(status < 0)) {
  556. /* An error has occurred, so we should not commit */
  557. dreq->flags = 0;
  558. dreq->error = status;
  559. }
  560. if (unlikely(dreq->error != 0))
  561. goto out_unlock;
  562. dreq->count += data->res.count;
  563. if (data->res.verf->committed != NFS_FILE_SYNC) {
  564. switch (dreq->flags) {
  565. case 0:
  566. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  567. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  568. break;
  569. case NFS_ODIRECT_DO_COMMIT:
  570. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  571. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  572. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  573. }
  574. }
  575. }
  576. out_unlock:
  577. spin_unlock(&dreq->lock);
  578. if (put_dreq(dreq))
  579. nfs_direct_write_complete(dreq, data->inode);
  580. }
  581. static const struct rpc_call_ops nfs_write_direct_ops = {
  582. #if defined(CONFIG_NFS_V4_1)
  583. .rpc_call_prepare = nfs_write_prepare,
  584. #endif /* CONFIG_NFS_V4_1 */
  585. .rpc_call_done = nfs_direct_write_result,
  586. .rpc_release = nfs_direct_write_release,
  587. };
  588. /*
  589. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  590. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  591. * bail and stop sending more writes. Write length accounting is
  592. * handled automatically by nfs_direct_write_result(). Otherwise, if
  593. * no requests have been sent, just return an error.
  594. */
  595. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  596. const struct iovec *iov,
  597. loff_t pos, int sync)
  598. {
  599. struct nfs_open_context *ctx = dreq->ctx;
  600. struct inode *inode = ctx->path.dentry->d_inode;
  601. unsigned long user_addr = (unsigned long)iov->iov_base;
  602. size_t count = iov->iov_len;
  603. struct rpc_task *task;
  604. struct rpc_message msg = {
  605. .rpc_cred = ctx->cred,
  606. };
  607. struct rpc_task_setup task_setup_data = {
  608. .rpc_client = NFS_CLIENT(inode),
  609. .rpc_message = &msg,
  610. .callback_ops = &nfs_write_direct_ops,
  611. .workqueue = nfsiod_workqueue,
  612. .flags = RPC_TASK_ASYNC,
  613. };
  614. size_t wsize = NFS_SERVER(inode)->wsize;
  615. unsigned int pgbase;
  616. int result;
  617. ssize_t started = 0;
  618. do {
  619. struct nfs_write_data *data;
  620. size_t bytes;
  621. pgbase = user_addr & ~PAGE_MASK;
  622. bytes = min(wsize,count);
  623. result = -ENOMEM;
  624. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  625. if (unlikely(!data))
  626. break;
  627. down_read(&current->mm->mmap_sem);
  628. result = get_user_pages(current, current->mm, user_addr,
  629. data->npages, 0, 0, data->pagevec, NULL);
  630. up_read(&current->mm->mmap_sem);
  631. if (result < 0) {
  632. nfs_writedata_release(data);
  633. break;
  634. }
  635. if ((unsigned)result < data->npages) {
  636. bytes = result * PAGE_SIZE;
  637. if (bytes <= pgbase) {
  638. nfs_direct_release_pages(data->pagevec, result);
  639. nfs_writedata_release(data);
  640. break;
  641. }
  642. bytes -= pgbase;
  643. data->npages = result;
  644. }
  645. get_dreq(dreq);
  646. list_move_tail(&data->pages, &dreq->rewrite_list);
  647. data->req = (struct nfs_page *) dreq;
  648. data->inode = inode;
  649. data->cred = msg.rpc_cred;
  650. data->args.fh = NFS_FH(inode);
  651. data->args.context = get_nfs_open_context(ctx);
  652. data->args.offset = pos;
  653. data->args.pgbase = pgbase;
  654. data->args.pages = data->pagevec;
  655. data->args.count = bytes;
  656. data->args.stable = sync;
  657. data->res.fattr = &data->fattr;
  658. data->res.count = bytes;
  659. data->res.verf = &data->verf;
  660. task_setup_data.task = &data->task;
  661. task_setup_data.callback_data = data;
  662. msg.rpc_argp = &data->args;
  663. msg.rpc_resp = &data->res;
  664. NFS_PROTO(inode)->write_setup(data, &msg);
  665. task = rpc_run_task(&task_setup_data);
  666. if (IS_ERR(task))
  667. break;
  668. rpc_put_task(task);
  669. dprintk("NFS: %5u initiated direct write call "
  670. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  671. data->task.tk_pid,
  672. inode->i_sb->s_id,
  673. (long long)NFS_FILEID(inode),
  674. bytes,
  675. (unsigned long long)data->args.offset);
  676. started += bytes;
  677. user_addr += bytes;
  678. pos += bytes;
  679. /* FIXME: Remove this useless math from the final patch */
  680. pgbase += bytes;
  681. pgbase &= ~PAGE_MASK;
  682. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  683. count -= bytes;
  684. } while (count != 0);
  685. if (started)
  686. return started;
  687. return result < 0 ? (ssize_t) result : -EFAULT;
  688. }
  689. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  690. const struct iovec *iov,
  691. unsigned long nr_segs,
  692. loff_t pos, int sync)
  693. {
  694. ssize_t result = 0;
  695. size_t requested_bytes = 0;
  696. unsigned long seg;
  697. get_dreq(dreq);
  698. for (seg = 0; seg < nr_segs; seg++) {
  699. const struct iovec *vec = &iov[seg];
  700. result = nfs_direct_write_schedule_segment(dreq, vec,
  701. pos, sync);
  702. if (result < 0)
  703. break;
  704. requested_bytes += result;
  705. if ((size_t)result < vec->iov_len)
  706. break;
  707. pos += vec->iov_len;
  708. }
  709. if (put_dreq(dreq))
  710. nfs_direct_write_complete(dreq, dreq->inode);
  711. if (requested_bytes != 0)
  712. return 0;
  713. if (result < 0)
  714. return result;
  715. return -EIO;
  716. }
  717. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  718. unsigned long nr_segs, loff_t pos,
  719. size_t count)
  720. {
  721. ssize_t result = 0;
  722. struct inode *inode = iocb->ki_filp->f_mapping->host;
  723. struct nfs_direct_req *dreq;
  724. size_t wsize = NFS_SERVER(inode)->wsize;
  725. int sync = NFS_UNSTABLE;
  726. dreq = nfs_direct_req_alloc();
  727. if (!dreq)
  728. return -ENOMEM;
  729. nfs_alloc_commit_data(dreq);
  730. if (dreq->commit_data == NULL || count < wsize)
  731. sync = NFS_FILE_SYNC;
  732. dreq->inode = inode;
  733. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  734. if (!is_sync_kiocb(iocb))
  735. dreq->iocb = iocb;
  736. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  737. if (!result)
  738. result = nfs_direct_wait(dreq);
  739. nfs_direct_req_release(dreq);
  740. return result;
  741. }
  742. /**
  743. * nfs_file_direct_read - file direct read operation for NFS files
  744. * @iocb: target I/O control block
  745. * @iov: vector of user buffers into which to read data
  746. * @nr_segs: size of iov vector
  747. * @pos: byte offset in file where reading starts
  748. *
  749. * We use this function for direct reads instead of calling
  750. * generic_file_aio_read() in order to avoid gfar's check to see if
  751. * the request starts before the end of the file. For that check
  752. * to work, we must generate a GETATTR before each direct read, and
  753. * even then there is a window between the GETATTR and the subsequent
  754. * READ where the file size could change. Our preference is simply
  755. * to do all reads the application wants, and the server will take
  756. * care of managing the end of file boundary.
  757. *
  758. * This function also eliminates unnecessarily updating the file's
  759. * atime locally, as the NFS server sets the file's atime, and this
  760. * client must read the updated atime from the server back into its
  761. * cache.
  762. */
  763. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  764. unsigned long nr_segs, loff_t pos)
  765. {
  766. ssize_t retval = -EINVAL;
  767. struct file *file = iocb->ki_filp;
  768. struct address_space *mapping = file->f_mapping;
  769. size_t count;
  770. count = iov_length(iov, nr_segs);
  771. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  772. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  773. file->f_path.dentry->d_parent->d_name.name,
  774. file->f_path.dentry->d_name.name,
  775. count, (long long) pos);
  776. retval = 0;
  777. if (!count)
  778. goto out;
  779. retval = nfs_sync_mapping(mapping);
  780. if (retval)
  781. goto out;
  782. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  783. if (retval > 0)
  784. iocb->ki_pos = pos + retval;
  785. out:
  786. return retval;
  787. }
  788. /**
  789. * nfs_file_direct_write - file direct write operation for NFS files
  790. * @iocb: target I/O control block
  791. * @iov: vector of user buffers from which to write data
  792. * @nr_segs: size of iov vector
  793. * @pos: byte offset in file where writing starts
  794. *
  795. * We use this function for direct writes instead of calling
  796. * generic_file_aio_write() in order to avoid taking the inode
  797. * semaphore and updating the i_size. The NFS server will set
  798. * the new i_size and this client must read the updated size
  799. * back into its cache. We let the server do generic write
  800. * parameter checking and report problems.
  801. *
  802. * We also avoid an unnecessary invocation of generic_osync_inode(),
  803. * as it is fairly meaningless to sync the metadata of an NFS file.
  804. *
  805. * We eliminate local atime updates, see direct read above.
  806. *
  807. * We avoid unnecessary page cache invalidations for normal cached
  808. * readers of this file.
  809. *
  810. * Note that O_APPEND is not supported for NFS direct writes, as there
  811. * is no atomic O_APPEND write facility in the NFS protocol.
  812. */
  813. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  814. unsigned long nr_segs, loff_t pos)
  815. {
  816. ssize_t retval = -EINVAL;
  817. struct file *file = iocb->ki_filp;
  818. struct address_space *mapping = file->f_mapping;
  819. size_t count;
  820. count = iov_length(iov, nr_segs);
  821. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  822. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  823. file->f_path.dentry->d_parent->d_name.name,
  824. file->f_path.dentry->d_name.name,
  825. count, (long long) pos);
  826. retval = generic_write_checks(file, &pos, &count, 0);
  827. if (retval)
  828. goto out;
  829. retval = -EINVAL;
  830. if ((ssize_t) count < 0)
  831. goto out;
  832. retval = 0;
  833. if (!count)
  834. goto out;
  835. retval = nfs_sync_mapping(mapping);
  836. if (retval)
  837. goto out;
  838. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  839. if (retval > 0)
  840. iocb->ki_pos = pos + retval;
  841. out:
  842. return retval;
  843. }
  844. /**
  845. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  846. *
  847. */
  848. int __init nfs_init_directcache(void)
  849. {
  850. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  851. sizeof(struct nfs_direct_req),
  852. 0, (SLAB_RECLAIM_ACCOUNT|
  853. SLAB_MEM_SPREAD),
  854. NULL);
  855. if (nfs_direct_cachep == NULL)
  856. return -ENOMEM;
  857. return 0;
  858. }
  859. /**
  860. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  861. *
  862. */
  863. void nfs_destroy_directcache(void)
  864. {
  865. kmem_cache_destroy(nfs_direct_cachep);
  866. }