erase.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. /*
  2. * JFFS2 -- Journalling Flash File System, Version 2.
  3. *
  4. * Copyright © 2001-2007 Red Hat, Inc.
  5. *
  6. * Created by David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * For licensing information, see the file 'LICENCE' in this directory.
  9. *
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/slab.h>
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/compiler.h>
  15. #include <linux/crc32.h>
  16. #include <linux/sched.h>
  17. #include <linux/pagemap.h>
  18. #include "nodelist.h"
  19. struct erase_priv_struct {
  20. struct jffs2_eraseblock *jeb;
  21. struct jffs2_sb_info *c;
  22. };
  23. #ifndef __ECOS
  24. static void jffs2_erase_callback(struct erase_info *);
  25. #endif
  26. static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset);
  27. static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
  28. static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
  29. static void jffs2_erase_block(struct jffs2_sb_info *c,
  30. struct jffs2_eraseblock *jeb)
  31. {
  32. int ret;
  33. uint32_t bad_offset;
  34. #ifdef __ECOS
  35. ret = jffs2_flash_erase(c, jeb);
  36. if (!ret) {
  37. jffs2_erase_succeeded(c, jeb);
  38. return;
  39. }
  40. bad_offset = jeb->offset;
  41. #else /* Linux */
  42. struct erase_info *instr;
  43. D1(printk(KERN_DEBUG "jffs2_erase_block(): erase block %#08x (range %#08x-%#08x)\n",
  44. jeb->offset, jeb->offset, jeb->offset + c->sector_size));
  45. instr = kmalloc(sizeof(struct erase_info) + sizeof(struct erase_priv_struct), GFP_KERNEL);
  46. if (!instr) {
  47. printk(KERN_WARNING "kmalloc for struct erase_info in jffs2_erase_block failed. Refiling block for later\n");
  48. mutex_lock(&c->erase_free_sem);
  49. spin_lock(&c->erase_completion_lock);
  50. list_move(&jeb->list, &c->erase_pending_list);
  51. c->erasing_size -= c->sector_size;
  52. c->dirty_size += c->sector_size;
  53. jeb->dirty_size = c->sector_size;
  54. spin_unlock(&c->erase_completion_lock);
  55. mutex_unlock(&c->erase_free_sem);
  56. return;
  57. }
  58. memset(instr, 0, sizeof(*instr));
  59. instr->mtd = c->mtd;
  60. instr->addr = jeb->offset;
  61. instr->len = c->sector_size;
  62. instr->callback = jffs2_erase_callback;
  63. instr->priv = (unsigned long)(&instr[1]);
  64. instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
  65. ((struct erase_priv_struct *)instr->priv)->jeb = jeb;
  66. ((struct erase_priv_struct *)instr->priv)->c = c;
  67. ret = c->mtd->erase(c->mtd, instr);
  68. if (!ret)
  69. return;
  70. bad_offset = instr->fail_addr;
  71. kfree(instr);
  72. #endif /* __ECOS */
  73. if (ret == -ENOMEM || ret == -EAGAIN) {
  74. /* Erase failed immediately. Refile it on the list */
  75. D1(printk(KERN_DEBUG "Erase at 0x%08x failed: %d. Refiling on erase_pending_list\n", jeb->offset, ret));
  76. mutex_lock(&c->erase_free_sem);
  77. spin_lock(&c->erase_completion_lock);
  78. list_move(&jeb->list, &c->erase_pending_list);
  79. c->erasing_size -= c->sector_size;
  80. c->dirty_size += c->sector_size;
  81. jeb->dirty_size = c->sector_size;
  82. spin_unlock(&c->erase_completion_lock);
  83. mutex_unlock(&c->erase_free_sem);
  84. return;
  85. }
  86. if (ret == -EROFS)
  87. printk(KERN_WARNING "Erase at 0x%08x failed immediately: -EROFS. Is the sector locked?\n", jeb->offset);
  88. else
  89. printk(KERN_WARNING "Erase at 0x%08x failed immediately: errno %d\n", jeb->offset, ret);
  90. jffs2_erase_failed(c, jeb, bad_offset);
  91. }
  92. void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count)
  93. {
  94. struct jffs2_eraseblock *jeb;
  95. mutex_lock(&c->erase_free_sem);
  96. spin_lock(&c->erase_completion_lock);
  97. while (!list_empty(&c->erase_complete_list) ||
  98. !list_empty(&c->erase_pending_list)) {
  99. if (!list_empty(&c->erase_complete_list)) {
  100. jeb = list_entry(c->erase_complete_list.next, struct jffs2_eraseblock, list);
  101. list_move(&jeb->list, &c->erase_checking_list);
  102. spin_unlock(&c->erase_completion_lock);
  103. mutex_unlock(&c->erase_free_sem);
  104. jffs2_mark_erased_block(c, jeb);
  105. if (!--count) {
  106. D1(printk(KERN_DEBUG "Count reached. jffs2_erase_pending_blocks leaving\n"));
  107. goto done;
  108. }
  109. } else if (!list_empty(&c->erase_pending_list)) {
  110. jeb = list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list);
  111. D1(printk(KERN_DEBUG "Starting erase of pending block 0x%08x\n", jeb->offset));
  112. list_del(&jeb->list);
  113. c->erasing_size += c->sector_size;
  114. c->wasted_size -= jeb->wasted_size;
  115. c->free_size -= jeb->free_size;
  116. c->used_size -= jeb->used_size;
  117. c->dirty_size -= jeb->dirty_size;
  118. jeb->wasted_size = jeb->used_size = jeb->dirty_size = jeb->free_size = 0;
  119. jffs2_free_jeb_node_refs(c, jeb);
  120. list_add(&jeb->list, &c->erasing_list);
  121. spin_unlock(&c->erase_completion_lock);
  122. mutex_unlock(&c->erase_free_sem);
  123. jffs2_erase_block(c, jeb);
  124. } else {
  125. BUG();
  126. }
  127. /* Be nice */
  128. yield();
  129. mutex_lock(&c->erase_free_sem);
  130. spin_lock(&c->erase_completion_lock);
  131. }
  132. spin_unlock(&c->erase_completion_lock);
  133. mutex_unlock(&c->erase_free_sem);
  134. done:
  135. D1(printk(KERN_DEBUG "jffs2_erase_pending_blocks completed\n"));
  136. }
  137. static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
  138. {
  139. D1(printk(KERN_DEBUG "Erase completed successfully at 0x%08x\n", jeb->offset));
  140. mutex_lock(&c->erase_free_sem);
  141. spin_lock(&c->erase_completion_lock);
  142. list_move_tail(&jeb->list, &c->erase_complete_list);
  143. spin_unlock(&c->erase_completion_lock);
  144. mutex_unlock(&c->erase_free_sem);
  145. /* Ensure that kupdated calls us again to mark them clean */
  146. jffs2_erase_pending_trigger(c);
  147. }
  148. static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
  149. {
  150. /* For NAND, if the failure did not occur at the device level for a
  151. specific physical page, don't bother updating the bad block table. */
  152. if (jffs2_cleanmarker_oob(c) && (bad_offset != (uint32_t)MTD_FAIL_ADDR_UNKNOWN)) {
  153. /* We had a device-level failure to erase. Let's see if we've
  154. failed too many times. */
  155. if (!jffs2_write_nand_badblock(c, jeb, bad_offset)) {
  156. /* We'd like to give this block another try. */
  157. mutex_lock(&c->erase_free_sem);
  158. spin_lock(&c->erase_completion_lock);
  159. list_move(&jeb->list, &c->erase_pending_list);
  160. c->erasing_size -= c->sector_size;
  161. c->dirty_size += c->sector_size;
  162. jeb->dirty_size = c->sector_size;
  163. spin_unlock(&c->erase_completion_lock);
  164. mutex_unlock(&c->erase_free_sem);
  165. return;
  166. }
  167. }
  168. mutex_lock(&c->erase_free_sem);
  169. spin_lock(&c->erase_completion_lock);
  170. c->erasing_size -= c->sector_size;
  171. c->bad_size += c->sector_size;
  172. list_move(&jeb->list, &c->bad_list);
  173. c->nr_erasing_blocks--;
  174. spin_unlock(&c->erase_completion_lock);
  175. mutex_unlock(&c->erase_free_sem);
  176. wake_up(&c->erase_wait);
  177. }
  178. #ifndef __ECOS
  179. static void jffs2_erase_callback(struct erase_info *instr)
  180. {
  181. struct erase_priv_struct *priv = (void *)instr->priv;
  182. if(instr->state != MTD_ERASE_DONE) {
  183. printk(KERN_WARNING "Erase at 0x%08llx finished, but state != MTD_ERASE_DONE. State is 0x%x instead.\n",
  184. (unsigned long long)instr->addr, instr->state);
  185. jffs2_erase_failed(priv->c, priv->jeb, instr->fail_addr);
  186. } else {
  187. jffs2_erase_succeeded(priv->c, priv->jeb);
  188. }
  189. kfree(instr);
  190. }
  191. #endif /* !__ECOS */
  192. /* Hmmm. Maybe we should accept the extra space it takes and make
  193. this a standard doubly-linked list? */
  194. static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
  195. struct jffs2_raw_node_ref *ref, struct jffs2_eraseblock *jeb)
  196. {
  197. struct jffs2_inode_cache *ic = NULL;
  198. struct jffs2_raw_node_ref **prev;
  199. prev = &ref->next_in_ino;
  200. /* Walk the inode's list once, removing any nodes from this eraseblock */
  201. while (1) {
  202. if (!(*prev)->next_in_ino) {
  203. /* We're looking at the jffs2_inode_cache, which is
  204. at the end of the linked list. Stash it and continue
  205. from the beginning of the list */
  206. ic = (struct jffs2_inode_cache *)(*prev);
  207. prev = &ic->nodes;
  208. continue;
  209. }
  210. if (SECTOR_ADDR((*prev)->flash_offset) == jeb->offset) {
  211. /* It's in the block we're erasing */
  212. struct jffs2_raw_node_ref *this;
  213. this = *prev;
  214. *prev = this->next_in_ino;
  215. this->next_in_ino = NULL;
  216. if (this == ref)
  217. break;
  218. continue;
  219. }
  220. /* Not to be deleted. Skip */
  221. prev = &((*prev)->next_in_ino);
  222. }
  223. /* PARANOIA */
  224. if (!ic) {
  225. JFFS2_WARNING("inode_cache/xattr_datum/xattr_ref"
  226. " not found in remove_node_refs()!!\n");
  227. return;
  228. }
  229. D1(printk(KERN_DEBUG "Removed nodes in range 0x%08x-0x%08x from ino #%u\n",
  230. jeb->offset, jeb->offset + c->sector_size, ic->ino));
  231. D2({
  232. int i=0;
  233. struct jffs2_raw_node_ref *this;
  234. printk(KERN_DEBUG "After remove_node_refs_from_ino_list: \n");
  235. this = ic->nodes;
  236. printk(KERN_DEBUG);
  237. while(this) {
  238. printk(KERN_CONT "0x%08x(%d)->",
  239. ref_offset(this), ref_flags(this));
  240. if (++i == 5) {
  241. printk(KERN_DEBUG);
  242. i=0;
  243. }
  244. this = this->next_in_ino;
  245. }
  246. printk(KERN_CONT "\n");
  247. });
  248. switch (ic->class) {
  249. #ifdef CONFIG_JFFS2_FS_XATTR
  250. case RAWNODE_CLASS_XATTR_DATUM:
  251. jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
  252. break;
  253. case RAWNODE_CLASS_XATTR_REF:
  254. jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
  255. break;
  256. #endif
  257. default:
  258. if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
  259. jffs2_del_ino_cache(c, ic);
  260. }
  261. }
  262. void jffs2_free_jeb_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
  263. {
  264. struct jffs2_raw_node_ref *block, *ref;
  265. D1(printk(KERN_DEBUG "Freeing all node refs for eraseblock offset 0x%08x\n", jeb->offset));
  266. block = ref = jeb->first_node;
  267. while (ref) {
  268. if (ref->flash_offset == REF_LINK_NODE) {
  269. ref = ref->next_in_ino;
  270. jffs2_free_refblock(block);
  271. block = ref;
  272. continue;
  273. }
  274. if (ref->flash_offset != REF_EMPTY_NODE && ref->next_in_ino)
  275. jffs2_remove_node_refs_from_ino_list(c, ref, jeb);
  276. /* else it was a non-inode node or already removed, so don't bother */
  277. ref++;
  278. }
  279. jeb->first_node = jeb->last_node = NULL;
  280. }
  281. static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t *bad_offset)
  282. {
  283. void *ebuf;
  284. uint32_t ofs;
  285. size_t retlen;
  286. int ret = -EIO;
  287. if (c->mtd->point) {
  288. unsigned long *wordebuf;
  289. ret = c->mtd->point(c->mtd, jeb->offset, c->sector_size,
  290. &retlen, &ebuf, NULL);
  291. if (ret) {
  292. D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
  293. goto do_flash_read;
  294. }
  295. if (retlen < c->sector_size) {
  296. /* Don't muck about if it won't let us point to the whole erase sector */
  297. D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", retlen));
  298. c->mtd->unpoint(c->mtd, jeb->offset, retlen);
  299. goto do_flash_read;
  300. }
  301. wordebuf = ebuf-sizeof(*wordebuf);
  302. retlen /= sizeof(*wordebuf);
  303. do {
  304. if (*++wordebuf != ~0)
  305. break;
  306. } while(--retlen);
  307. c->mtd->unpoint(c->mtd, jeb->offset, c->sector_size);
  308. if (retlen) {
  309. printk(KERN_WARNING "Newly-erased block contained word 0x%lx at offset 0x%08tx\n",
  310. *wordebuf, jeb->offset + c->sector_size-retlen*sizeof(*wordebuf));
  311. return -EIO;
  312. }
  313. return 0;
  314. }
  315. do_flash_read:
  316. ebuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  317. if (!ebuf) {
  318. printk(KERN_WARNING "Failed to allocate page buffer for verifying erase at 0x%08x. Refiling\n", jeb->offset);
  319. return -EAGAIN;
  320. }
  321. D1(printk(KERN_DEBUG "Verifying erase at 0x%08x\n", jeb->offset));
  322. for (ofs = jeb->offset; ofs < jeb->offset + c->sector_size; ) {
  323. uint32_t readlen = min((uint32_t)PAGE_SIZE, jeb->offset + c->sector_size - ofs);
  324. int i;
  325. *bad_offset = ofs;
  326. ret = c->mtd->read(c->mtd, ofs, readlen, &retlen, ebuf);
  327. if (ret) {
  328. printk(KERN_WARNING "Read of newly-erased block at 0x%08x failed: %d. Putting on bad_list\n", ofs, ret);
  329. ret = -EIO;
  330. goto fail;
  331. }
  332. if (retlen != readlen) {
  333. printk(KERN_WARNING "Short read from newly-erased block at 0x%08x. Wanted %d, got %zd\n", ofs, readlen, retlen);
  334. ret = -EIO;
  335. goto fail;
  336. }
  337. for (i=0; i<readlen; i += sizeof(unsigned long)) {
  338. /* It's OK. We know it's properly aligned */
  339. unsigned long *datum = ebuf + i;
  340. if (*datum + 1) {
  341. *bad_offset += i;
  342. printk(KERN_WARNING "Newly-erased block contained word 0x%lx at offset 0x%08x\n", *datum, *bad_offset);
  343. ret = -EIO;
  344. goto fail;
  345. }
  346. }
  347. ofs += readlen;
  348. cond_resched();
  349. }
  350. ret = 0;
  351. fail:
  352. kfree(ebuf);
  353. return ret;
  354. }
  355. static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
  356. {
  357. size_t retlen;
  358. int ret;
  359. uint32_t uninitialized_var(bad_offset);
  360. switch (jffs2_block_check_erase(c, jeb, &bad_offset)) {
  361. case -EAGAIN: goto refile;
  362. case -EIO: goto filebad;
  363. }
  364. /* Write the erase complete marker */
  365. D1(printk(KERN_DEBUG "Writing erased marker to block at 0x%08x\n", jeb->offset));
  366. bad_offset = jeb->offset;
  367. /* Cleanmarker in oob area or no cleanmarker at all ? */
  368. if (jffs2_cleanmarker_oob(c) || c->cleanmarker_size == 0) {
  369. if (jffs2_cleanmarker_oob(c)) {
  370. if (jffs2_write_nand_cleanmarker(c, jeb))
  371. goto filebad;
  372. }
  373. } else {
  374. struct kvec vecs[1];
  375. struct jffs2_unknown_node marker = {
  376. .magic = cpu_to_je16(JFFS2_MAGIC_BITMASK),
  377. .nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
  378. .totlen = cpu_to_je32(c->cleanmarker_size)
  379. };
  380. jffs2_prealloc_raw_node_refs(c, jeb, 1);
  381. marker.hdr_crc = cpu_to_je32(crc32(0, &marker, sizeof(struct jffs2_unknown_node)-4));
  382. vecs[0].iov_base = (unsigned char *) &marker;
  383. vecs[0].iov_len = sizeof(marker);
  384. ret = jffs2_flash_direct_writev(c, vecs, 1, jeb->offset, &retlen);
  385. if (ret || retlen != sizeof(marker)) {
  386. if (ret)
  387. printk(KERN_WARNING "Write clean marker to block at 0x%08x failed: %d\n",
  388. jeb->offset, ret);
  389. else
  390. printk(KERN_WARNING "Short write to newly-erased block at 0x%08x: Wanted %zd, got %zd\n",
  391. jeb->offset, sizeof(marker), retlen);
  392. goto filebad;
  393. }
  394. }
  395. /* Everything else got zeroed before the erase */
  396. jeb->free_size = c->sector_size;
  397. mutex_lock(&c->erase_free_sem);
  398. spin_lock(&c->erase_completion_lock);
  399. c->erasing_size -= c->sector_size;
  400. c->free_size += c->sector_size;
  401. /* Account for cleanmarker now, if it's in-band */
  402. if (c->cleanmarker_size && !jffs2_cleanmarker_oob(c))
  403. jffs2_link_node_ref(c, jeb, jeb->offset | REF_NORMAL, c->cleanmarker_size, NULL);
  404. list_move_tail(&jeb->list, &c->free_list);
  405. c->nr_erasing_blocks--;
  406. c->nr_free_blocks++;
  407. jffs2_dbg_acct_sanity_check_nolock(c, jeb);
  408. jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
  409. spin_unlock(&c->erase_completion_lock);
  410. mutex_unlock(&c->erase_free_sem);
  411. wake_up(&c->erase_wait);
  412. return;
  413. filebad:
  414. jffs2_erase_failed(c, jeb, bad_offset);
  415. return;
  416. refile:
  417. /* Stick it back on the list from whence it came and come back later */
  418. jffs2_erase_pending_trigger(c);
  419. mutex_lock(&c->erase_free_sem);
  420. spin_lock(&c->erase_completion_lock);
  421. list_move(&jeb->list, &c->erase_complete_list);
  422. spin_unlock(&c->erase_completion_lock);
  423. mutex_unlock(&c->erase_free_sem);
  424. return;
  425. }