123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- /*
- * Copyright (C) 2008 Oracle. All rights reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License v2 as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with this program; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 021110-1307, USA.
- *
- * Based on jffs2 zlib code:
- * Copyright © 2001-2007 Red Hat, Inc.
- * Created by David Woodhouse <dwmw2@infradead.org>
- */
- #include <linux/kernel.h>
- #include <linux/slab.h>
- #include <linux/zlib.h>
- #include <linux/zutil.h>
- #include <linux/vmalloc.h>
- #include <linux/init.h>
- #include <linux/err.h>
- #include <linux/sched.h>
- #include <linux/pagemap.h>
- #include <linux/bio.h>
- #include "compression.h"
- /* Plan: call deflate() with avail_in == *sourcelen,
- avail_out = *dstlen - 12 and flush == Z_FINISH.
- If it doesn't manage to finish, call it again with
- avail_in == 0 and avail_out set to the remaining 12
- bytes for it to clean up.
- Q: Is 12 bytes sufficient?
- */
- #define STREAM_END_SPACE 12
- struct workspace {
- z_stream inf_strm;
- z_stream def_strm;
- char *buf;
- struct list_head list;
- };
- static LIST_HEAD(idle_workspace);
- static DEFINE_SPINLOCK(workspace_lock);
- static unsigned long num_workspace;
- static atomic_t alloc_workspace = ATOMIC_INIT(0);
- static DECLARE_WAIT_QUEUE_HEAD(workspace_wait);
- /*
- * this finds an available zlib workspace or allocates a new one
- * NULL or an ERR_PTR is returned if things go bad.
- */
- static struct workspace *find_zlib_workspace(void)
- {
- struct workspace *workspace;
- int ret;
- int cpus = num_online_cpus();
- again:
- spin_lock(&workspace_lock);
- if (!list_empty(&idle_workspace)) {
- workspace = list_entry(idle_workspace.next, struct workspace,
- list);
- list_del(&workspace->list);
- num_workspace--;
- spin_unlock(&workspace_lock);
- return workspace;
- }
- spin_unlock(&workspace_lock);
- if (atomic_read(&alloc_workspace) > cpus) {
- DEFINE_WAIT(wait);
- prepare_to_wait(&workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
- if (atomic_read(&alloc_workspace) > cpus)
- schedule();
- finish_wait(&workspace_wait, &wait);
- goto again;
- }
- atomic_inc(&alloc_workspace);
- workspace = kzalloc(sizeof(*workspace), GFP_NOFS);
- if (!workspace) {
- ret = -ENOMEM;
- goto fail;
- }
- workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize());
- if (!workspace->def_strm.workspace) {
- ret = -ENOMEM;
- goto fail;
- }
- workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize());
- if (!workspace->inf_strm.workspace) {
- ret = -ENOMEM;
- goto fail_inflate;
- }
- workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS);
- if (!workspace->buf) {
- ret = -ENOMEM;
- goto fail_kmalloc;
- }
- return workspace;
- fail_kmalloc:
- vfree(workspace->inf_strm.workspace);
- fail_inflate:
- vfree(workspace->def_strm.workspace);
- fail:
- kfree(workspace);
- atomic_dec(&alloc_workspace);
- wake_up(&workspace_wait);
- return ERR_PTR(ret);
- }
- /*
- * put a workspace struct back on the list or free it if we have enough
- * idle ones sitting around
- */
- static int free_workspace(struct workspace *workspace)
- {
- spin_lock(&workspace_lock);
- if (num_workspace < num_online_cpus()) {
- list_add_tail(&workspace->list, &idle_workspace);
- num_workspace++;
- spin_unlock(&workspace_lock);
- if (waitqueue_active(&workspace_wait))
- wake_up(&workspace_wait);
- return 0;
- }
- spin_unlock(&workspace_lock);
- vfree(workspace->def_strm.workspace);
- vfree(workspace->inf_strm.workspace);
- kfree(workspace->buf);
- kfree(workspace);
- atomic_dec(&alloc_workspace);
- if (waitqueue_active(&workspace_wait))
- wake_up(&workspace_wait);
- return 0;
- }
- /*
- * cleanup function for module exit
- */
- static void free_workspaces(void)
- {
- struct workspace *workspace;
- while (!list_empty(&idle_workspace)) {
- workspace = list_entry(idle_workspace.next, struct workspace,
- list);
- list_del(&workspace->list);
- vfree(workspace->def_strm.workspace);
- vfree(workspace->inf_strm.workspace);
- kfree(workspace->buf);
- kfree(workspace);
- atomic_dec(&alloc_workspace);
- }
- }
- /*
- * given an address space and start/len, compress the bytes.
- *
- * pages are allocated to hold the compressed result and stored
- * in 'pages'
- *
- * out_pages is used to return the number of pages allocated. There
- * may be pages allocated even if we return an error
- *
- * total_in is used to return the number of bytes actually read. It
- * may be smaller then len if we had to exit early because we
- * ran out of room in the pages array or because we cross the
- * max_out threshold.
- *
- * total_out is used to return the total number of compressed bytes
- *
- * max_out tells us the max number of bytes that we're allowed to
- * stuff into pages
- */
- int btrfs_zlib_compress_pages(struct address_space *mapping,
- u64 start, unsigned long len,
- struct page **pages,
- unsigned long nr_dest_pages,
- unsigned long *out_pages,
- unsigned long *total_in,
- unsigned long *total_out,
- unsigned long max_out)
- {
- int ret;
- struct workspace *workspace;
- char *data_in;
- char *cpage_out;
- int nr_pages = 0;
- struct page *in_page = NULL;
- struct page *out_page = NULL;
- int out_written = 0;
- int in_read = 0;
- unsigned long bytes_left;
- *out_pages = 0;
- *total_out = 0;
- *total_in = 0;
- workspace = find_zlib_workspace();
- if (!workspace)
- return -1;
- if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) {
- printk(KERN_WARNING "deflateInit failed\n");
- ret = -1;
- goto out;
- }
- workspace->def_strm.total_in = 0;
- workspace->def_strm.total_out = 0;
- in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
- data_in = kmap(in_page);
- out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
- cpage_out = kmap(out_page);
- pages[0] = out_page;
- nr_pages = 1;
- workspace->def_strm.next_in = data_in;
- workspace->def_strm.next_out = cpage_out;
- workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
- workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE);
- out_written = 0;
- in_read = 0;
- while (workspace->def_strm.total_in < len) {
- ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH);
- if (ret != Z_OK) {
- printk(KERN_DEBUG "btrfs deflate in loop returned %d\n",
- ret);
- zlib_deflateEnd(&workspace->def_strm);
- ret = -1;
- goto out;
- }
- /* we're making it bigger, give up */
- if (workspace->def_strm.total_in > 8192 &&
- workspace->def_strm.total_in <
- workspace->def_strm.total_out) {
- ret = -1;
- goto out;
- }
- /* we need another page for writing out. Test this
- * before the total_in so we will pull in a new page for
- * the stream end if required
- */
- if (workspace->def_strm.avail_out == 0) {
- kunmap(out_page);
- if (nr_pages == nr_dest_pages) {
- out_page = NULL;
- ret = -1;
- goto out;
- }
- out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
- cpage_out = kmap(out_page);
- pages[nr_pages] = out_page;
- nr_pages++;
- workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
- workspace->def_strm.next_out = cpage_out;
- }
- /* we're all done */
- if (workspace->def_strm.total_in >= len)
- break;
- /* we've read in a full page, get a new one */
- if (workspace->def_strm.avail_in == 0) {
- if (workspace->def_strm.total_out > max_out)
- break;
- bytes_left = len - workspace->def_strm.total_in;
- kunmap(in_page);
- page_cache_release(in_page);
- start += PAGE_CACHE_SIZE;
- in_page = find_get_page(mapping,
- start >> PAGE_CACHE_SHIFT);
- data_in = kmap(in_page);
- workspace->def_strm.avail_in = min(bytes_left,
- PAGE_CACHE_SIZE);
- workspace->def_strm.next_in = data_in;
- }
- }
- workspace->def_strm.avail_in = 0;
- ret = zlib_deflate(&workspace->def_strm, Z_FINISH);
- zlib_deflateEnd(&workspace->def_strm);
- if (ret != Z_STREAM_END) {
- ret = -1;
- goto out;
- }
- if (workspace->def_strm.total_out >= workspace->def_strm.total_in) {
- ret = -1;
- goto out;
- }
- ret = 0;
- *total_out = workspace->def_strm.total_out;
- *total_in = workspace->def_strm.total_in;
- out:
- *out_pages = nr_pages;
- if (out_page)
- kunmap(out_page);
- if (in_page) {
- kunmap(in_page);
- page_cache_release(in_page);
- }
- free_workspace(workspace);
- return ret;
- }
- /*
- * pages_in is an array of pages with compressed data.
- *
- * disk_start is the starting logical offset of this array in the file
- *
- * bvec is a bio_vec of pages from the file that we want to decompress into
- *
- * vcnt is the count of pages in the biovec
- *
- * srclen is the number of bytes in pages_in
- *
- * The basic idea is that we have a bio that was created by readpages.
- * The pages in the bio are for the uncompressed data, and they may not
- * be contiguous. They all correspond to the range of bytes covered by
- * the compressed extent.
- */
- int btrfs_zlib_decompress_biovec(struct page **pages_in,
- u64 disk_start,
- struct bio_vec *bvec,
- int vcnt,
- size_t srclen)
- {
- int ret = 0;
- int wbits = MAX_WBITS;
- struct workspace *workspace;
- char *data_in;
- size_t total_out = 0;
- unsigned long page_bytes_left;
- unsigned long page_in_index = 0;
- unsigned long page_out_index = 0;
- struct page *page_out;
- unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) /
- PAGE_CACHE_SIZE;
- unsigned long buf_start;
- unsigned long buf_offset;
- unsigned long bytes;
- unsigned long working_bytes;
- unsigned long pg_offset;
- unsigned long start_byte;
- unsigned long current_buf_start;
- char *kaddr;
- workspace = find_zlib_workspace();
- if (!workspace)
- return -ENOMEM;
- data_in = kmap(pages_in[page_in_index]);
- workspace->inf_strm.next_in = data_in;
- workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE);
- workspace->inf_strm.total_in = 0;
- workspace->inf_strm.total_out = 0;
- workspace->inf_strm.next_out = workspace->buf;
- workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
- page_out = bvec[page_out_index].bv_page;
- page_bytes_left = PAGE_CACHE_SIZE;
- pg_offset = 0;
- /* If it's deflate, and it's got no preset dictionary, then
- we can tell zlib to skip the adler32 check. */
- if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
- ((data_in[0] & 0x0f) == Z_DEFLATED) &&
- !(((data_in[0]<<8) + data_in[1]) % 31)) {
- wbits = -((data_in[0] >> 4) + 8);
- workspace->inf_strm.next_in += 2;
- workspace->inf_strm.avail_in -= 2;
- }
- if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
- printk(KERN_WARNING "inflateInit failed\n");
- ret = -1;
- goto out;
- }
- while (workspace->inf_strm.total_in < srclen) {
- ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
- if (ret != Z_OK && ret != Z_STREAM_END)
- break;
- /*
- * buf start is the byte offset we're of the start of
- * our workspace buffer
- */
- buf_start = total_out;
- /* total_out is the last byte of the workspace buffer */
- total_out = workspace->inf_strm.total_out;
- working_bytes = total_out - buf_start;
- /*
- * start byte is the first byte of the page we're currently
- * copying into relative to the start of the compressed data.
- */
- start_byte = page_offset(page_out) - disk_start;
- if (working_bytes == 0) {
- /* we didn't make progress in this inflate
- * call, we're done
- */
- if (ret != Z_STREAM_END)
- ret = -1;
- break;
- }
- /* we haven't yet hit data corresponding to this page */
- if (total_out <= start_byte)
- goto next;
- /*
- * the start of the data we care about is offset into
- * the middle of our working buffer
- */
- if (total_out > start_byte && buf_start < start_byte) {
- buf_offset = start_byte - buf_start;
- working_bytes -= buf_offset;
- } else {
- buf_offset = 0;
- }
- current_buf_start = buf_start;
- /* copy bytes from the working buffer into the pages */
- while (working_bytes > 0) {
- bytes = min(PAGE_CACHE_SIZE - pg_offset,
- PAGE_CACHE_SIZE - buf_offset);
- bytes = min(bytes, working_bytes);
- kaddr = kmap_atomic(page_out, KM_USER0);
- memcpy(kaddr + pg_offset, workspace->buf + buf_offset,
- bytes);
- kunmap_atomic(kaddr, KM_USER0);
- flush_dcache_page(page_out);
- pg_offset += bytes;
- page_bytes_left -= bytes;
- buf_offset += bytes;
- working_bytes -= bytes;
- current_buf_start += bytes;
- /* check if we need to pick another page */
- if (page_bytes_left == 0) {
- page_out_index++;
- if (page_out_index >= vcnt) {
- ret = 0;
- goto done;
- }
- page_out = bvec[page_out_index].bv_page;
- pg_offset = 0;
- page_bytes_left = PAGE_CACHE_SIZE;
- start_byte = page_offset(page_out) - disk_start;
- /*
- * make sure our new page is covered by this
- * working buffer
- */
- if (total_out <= start_byte)
- goto next;
- /* the next page in the biovec might not
- * be adjacent to the last page, but it
- * might still be found inside this working
- * buffer. bump our offset pointer
- */
- if (total_out > start_byte &&
- current_buf_start < start_byte) {
- buf_offset = start_byte - buf_start;
- working_bytes = total_out - start_byte;
- current_buf_start = buf_start +
- buf_offset;
- }
- }
- }
- next:
- workspace->inf_strm.next_out = workspace->buf;
- workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
- if (workspace->inf_strm.avail_in == 0) {
- unsigned long tmp;
- kunmap(pages_in[page_in_index]);
- page_in_index++;
- if (page_in_index >= total_pages_in) {
- data_in = NULL;
- break;
- }
- data_in = kmap(pages_in[page_in_index]);
- workspace->inf_strm.next_in = data_in;
- tmp = srclen - workspace->inf_strm.total_in;
- workspace->inf_strm.avail_in = min(tmp,
- PAGE_CACHE_SIZE);
- }
- }
- if (ret != Z_STREAM_END)
- ret = -1;
- else
- ret = 0;
- done:
- zlib_inflateEnd(&workspace->inf_strm);
- if (data_in)
- kunmap(pages_in[page_in_index]);
- out:
- free_workspace(workspace);
- return ret;
- }
- /*
- * a less complex decompression routine. Our compressed data fits in a
- * single page, and we want to read a single page out of it.
- * start_byte tells us the offset into the compressed data we're interested in
- */
- int btrfs_zlib_decompress(unsigned char *data_in,
- struct page *dest_page,
- unsigned long start_byte,
- size_t srclen, size_t destlen)
- {
- int ret = 0;
- int wbits = MAX_WBITS;
- struct workspace *workspace;
- unsigned long bytes_left = destlen;
- unsigned long total_out = 0;
- char *kaddr;
- if (destlen > PAGE_CACHE_SIZE)
- return -ENOMEM;
- workspace = find_zlib_workspace();
- if (!workspace)
- return -ENOMEM;
- workspace->inf_strm.next_in = data_in;
- workspace->inf_strm.avail_in = srclen;
- workspace->inf_strm.total_in = 0;
- workspace->inf_strm.next_out = workspace->buf;
- workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
- workspace->inf_strm.total_out = 0;
- /* If it's deflate, and it's got no preset dictionary, then
- we can tell zlib to skip the adler32 check. */
- if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
- ((data_in[0] & 0x0f) == Z_DEFLATED) &&
- !(((data_in[0]<<8) + data_in[1]) % 31)) {
- wbits = -((data_in[0] >> 4) + 8);
- workspace->inf_strm.next_in += 2;
- workspace->inf_strm.avail_in -= 2;
- }
- if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
- printk(KERN_WARNING "inflateInit failed\n");
- ret = -1;
- goto out;
- }
- while (bytes_left > 0) {
- unsigned long buf_start;
- unsigned long buf_offset;
- unsigned long bytes;
- unsigned long pg_offset = 0;
- ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
- if (ret != Z_OK && ret != Z_STREAM_END)
- break;
- buf_start = total_out;
- total_out = workspace->inf_strm.total_out;
- if (total_out == buf_start) {
- ret = -1;
- break;
- }
- if (total_out <= start_byte)
- goto next;
- if (total_out > start_byte && buf_start < start_byte)
- buf_offset = start_byte - buf_start;
- else
- buf_offset = 0;
- bytes = min(PAGE_CACHE_SIZE - pg_offset,
- PAGE_CACHE_SIZE - buf_offset);
- bytes = min(bytes, bytes_left);
- kaddr = kmap_atomic(dest_page, KM_USER0);
- memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes);
- kunmap_atomic(kaddr, KM_USER0);
- pg_offset += bytes;
- bytes_left -= bytes;
- next:
- workspace->inf_strm.next_out = workspace->buf;
- workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
- }
- if (ret != Z_STREAM_END && bytes_left != 0)
- ret = -1;
- else
- ret = 0;
- zlib_inflateEnd(&workspace->inf_strm);
- out:
- free_workspace(workspace);
- return ret;
- }
- void btrfs_zlib_exit(void)
- {
- free_workspaces();
- }
|