root-tree.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "transaction.h"
  20. #include "disk-io.h"
  21. #include "print-tree.h"
  22. /*
  23. * search forward for a root, starting with objectid 'search_start'
  24. * if a root key is found, the objectid we find is filled into 'found_objectid'
  25. * and 0 is returned. < 0 is returned on error, 1 if there is nothing
  26. * left in the tree.
  27. */
  28. int btrfs_search_root(struct btrfs_root *root, u64 search_start,
  29. u64 *found_objectid)
  30. {
  31. struct btrfs_path *path;
  32. struct btrfs_key search_key;
  33. int ret;
  34. root = root->fs_info->tree_root;
  35. search_key.objectid = search_start;
  36. search_key.type = (u8)-1;
  37. search_key.offset = (u64)-1;
  38. path = btrfs_alloc_path();
  39. BUG_ON(!path);
  40. again:
  41. ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
  42. if (ret < 0)
  43. goto out;
  44. if (ret == 0) {
  45. ret = 1;
  46. goto out;
  47. }
  48. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
  49. ret = btrfs_next_leaf(root, path);
  50. if (ret)
  51. goto out;
  52. }
  53. btrfs_item_key_to_cpu(path->nodes[0], &search_key, path->slots[0]);
  54. if (search_key.type != BTRFS_ROOT_ITEM_KEY) {
  55. search_key.offset++;
  56. btrfs_release_path(root, path);
  57. goto again;
  58. }
  59. ret = 0;
  60. *found_objectid = search_key.objectid;
  61. out:
  62. btrfs_free_path(path);
  63. return ret;
  64. }
  65. /*
  66. * lookup the root with the highest offset for a given objectid. The key we do
  67. * find is copied into 'key'. If we find something return 0, otherwise 1, < 0
  68. * on error.
  69. */
  70. int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
  71. struct btrfs_root_item *item, struct btrfs_key *key)
  72. {
  73. struct btrfs_path *path;
  74. struct btrfs_key search_key;
  75. struct btrfs_key found_key;
  76. struct extent_buffer *l;
  77. int ret;
  78. int slot;
  79. search_key.objectid = objectid;
  80. search_key.type = BTRFS_ROOT_ITEM_KEY;
  81. search_key.offset = (u64)-1;
  82. path = btrfs_alloc_path();
  83. BUG_ON(!path);
  84. ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
  85. if (ret < 0)
  86. goto out;
  87. BUG_ON(ret == 0);
  88. l = path->nodes[0];
  89. BUG_ON(path->slots[0] == 0);
  90. slot = path->slots[0] - 1;
  91. btrfs_item_key_to_cpu(l, &found_key, slot);
  92. if (found_key.objectid != objectid) {
  93. ret = 1;
  94. goto out;
  95. }
  96. read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
  97. sizeof(*item));
  98. memcpy(key, &found_key, sizeof(found_key));
  99. ret = 0;
  100. out:
  101. btrfs_free_path(path);
  102. return ret;
  103. }
  104. int btrfs_set_root_node(struct btrfs_root_item *item,
  105. struct extent_buffer *node)
  106. {
  107. btrfs_set_root_bytenr(item, node->start);
  108. btrfs_set_root_level(item, btrfs_header_level(node));
  109. btrfs_set_root_generation(item, btrfs_header_generation(node));
  110. return 0;
  111. }
  112. /*
  113. * copy the data in 'item' into the btree
  114. */
  115. int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
  116. *root, struct btrfs_key *key, struct btrfs_root_item
  117. *item)
  118. {
  119. struct btrfs_path *path;
  120. struct extent_buffer *l;
  121. int ret;
  122. int slot;
  123. unsigned long ptr;
  124. path = btrfs_alloc_path();
  125. BUG_ON(!path);
  126. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  127. if (ret < 0)
  128. goto out;
  129. if (ret != 0) {
  130. btrfs_print_leaf(root, path->nodes[0]);
  131. printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
  132. (unsigned long long)key->objectid, key->type,
  133. (unsigned long long)key->offset);
  134. BUG_ON(1);
  135. }
  136. l = path->nodes[0];
  137. slot = path->slots[0];
  138. ptr = btrfs_item_ptr_offset(l, slot);
  139. write_extent_buffer(l, item, ptr, sizeof(*item));
  140. btrfs_mark_buffer_dirty(path->nodes[0]);
  141. out:
  142. btrfs_release_path(root, path);
  143. btrfs_free_path(path);
  144. return ret;
  145. }
  146. int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
  147. *root, struct btrfs_key *key, struct btrfs_root_item
  148. *item)
  149. {
  150. int ret;
  151. ret = btrfs_insert_item(trans, root, key, item, sizeof(*item));
  152. return ret;
  153. }
  154. /*
  155. * at mount time we want to find all the old transaction snapshots that were in
  156. * the process of being deleted if we crashed. This is any root item with an
  157. * offset lower than the latest root. They need to be queued for deletion to
  158. * finish what was happening when we crashed.
  159. */
  160. int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
  161. {
  162. struct btrfs_root *dead_root;
  163. struct btrfs_item *item;
  164. struct btrfs_root_item *ri;
  165. struct btrfs_key key;
  166. struct btrfs_key found_key;
  167. struct btrfs_path *path;
  168. int ret;
  169. u32 nritems;
  170. struct extent_buffer *leaf;
  171. int slot;
  172. key.objectid = objectid;
  173. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  174. key.offset = 0;
  175. path = btrfs_alloc_path();
  176. if (!path)
  177. return -ENOMEM;
  178. again:
  179. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  180. if (ret < 0)
  181. goto err;
  182. while (1) {
  183. leaf = path->nodes[0];
  184. nritems = btrfs_header_nritems(leaf);
  185. slot = path->slots[0];
  186. if (slot >= nritems) {
  187. ret = btrfs_next_leaf(root, path);
  188. if (ret)
  189. break;
  190. leaf = path->nodes[0];
  191. nritems = btrfs_header_nritems(leaf);
  192. slot = path->slots[0];
  193. }
  194. item = btrfs_item_nr(leaf, slot);
  195. btrfs_item_key_to_cpu(leaf, &key, slot);
  196. if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
  197. goto next;
  198. if (key.objectid < objectid)
  199. goto next;
  200. if (key.objectid > objectid)
  201. break;
  202. ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
  203. if (btrfs_disk_root_refs(leaf, ri) != 0)
  204. goto next;
  205. memcpy(&found_key, &key, sizeof(key));
  206. key.offset++;
  207. btrfs_release_path(root, path);
  208. dead_root =
  209. btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
  210. &found_key);
  211. if (IS_ERR(dead_root)) {
  212. ret = PTR_ERR(dead_root);
  213. goto err;
  214. }
  215. ret = btrfs_add_dead_root(dead_root);
  216. if (ret)
  217. goto err;
  218. goto again;
  219. next:
  220. slot++;
  221. path->slots[0]++;
  222. }
  223. ret = 0;
  224. err:
  225. btrfs_free_path(path);
  226. return ret;
  227. }
  228. /* drop the root item for 'key' from 'root' */
  229. int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  230. struct btrfs_key *key)
  231. {
  232. struct btrfs_path *path;
  233. int ret;
  234. u32 refs;
  235. struct btrfs_root_item *ri;
  236. struct extent_buffer *leaf;
  237. path = btrfs_alloc_path();
  238. BUG_ON(!path);
  239. ret = btrfs_search_slot(trans, root, key, path, -1, 1);
  240. if (ret < 0)
  241. goto out;
  242. BUG_ON(ret != 0);
  243. leaf = path->nodes[0];
  244. ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
  245. refs = btrfs_disk_root_refs(leaf, ri);
  246. BUG_ON(refs != 0);
  247. ret = btrfs_del_item(trans, root, path);
  248. out:
  249. btrfs_release_path(root, path);
  250. btrfs_free_path(path);
  251. return ret;
  252. }
  253. #if 0 /* this will get used when snapshot deletion is implemented */
  254. int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
  255. struct btrfs_root *tree_root,
  256. u64 root_id, u8 type, u64 ref_id)
  257. {
  258. struct btrfs_key key;
  259. int ret;
  260. struct btrfs_path *path;
  261. path = btrfs_alloc_path();
  262. key.objectid = root_id;
  263. key.type = type;
  264. key.offset = ref_id;
  265. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  266. BUG_ON(ret);
  267. ret = btrfs_del_item(trans, tree_root, path);
  268. BUG_ON(ret);
  269. btrfs_free_path(path);
  270. return ret;
  271. }
  272. #endif
  273. int btrfs_find_root_ref(struct btrfs_root *tree_root,
  274. struct btrfs_path *path,
  275. u64 root_id, u64 ref_id)
  276. {
  277. struct btrfs_key key;
  278. int ret;
  279. key.objectid = root_id;
  280. key.type = BTRFS_ROOT_REF_KEY;
  281. key.offset = ref_id;
  282. ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
  283. return ret;
  284. }
  285. /*
  286. * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
  287. * or BTRFS_ROOT_BACKREF_KEY.
  288. *
  289. * The dirid, sequence, name and name_len refer to the directory entry
  290. * that is referencing the root.
  291. *
  292. * For a forward ref, the root_id is the id of the tree referencing
  293. * the root and ref_id is the id of the subvol or snapshot.
  294. *
  295. * For a back ref the root_id is the id of the subvol or snapshot and
  296. * ref_id is the id of the tree referencing it.
  297. */
  298. int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
  299. struct btrfs_root *tree_root,
  300. u64 root_id, u8 type, u64 ref_id,
  301. u64 dirid, u64 sequence,
  302. const char *name, int name_len)
  303. {
  304. struct btrfs_key key;
  305. int ret;
  306. struct btrfs_path *path;
  307. struct btrfs_root_ref *ref;
  308. struct extent_buffer *leaf;
  309. unsigned long ptr;
  310. path = btrfs_alloc_path();
  311. key.objectid = root_id;
  312. key.type = type;
  313. key.offset = ref_id;
  314. ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
  315. sizeof(*ref) + name_len);
  316. BUG_ON(ret);
  317. leaf = path->nodes[0];
  318. ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
  319. btrfs_set_root_ref_dirid(leaf, ref, dirid);
  320. btrfs_set_root_ref_sequence(leaf, ref, sequence);
  321. btrfs_set_root_ref_name_len(leaf, ref, name_len);
  322. ptr = (unsigned long)(ref + 1);
  323. write_extent_buffer(leaf, name, ptr, name_len);
  324. btrfs_mark_buffer_dirty(leaf);
  325. btrfs_free_path(path);
  326. return ret;
  327. }