ctree.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_disk_key disk_key;
  183. WARN_ON(root->ref_cows && trans->transid !=
  184. root->fs_info->running_transaction->transid);
  185. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  186. level = btrfs_header_level(buf);
  187. nritems = btrfs_header_nritems(buf);
  188. if (level == 0)
  189. btrfs_item_key(buf, &disk_key, 0);
  190. else
  191. btrfs_node_key(buf, &disk_key, 0);
  192. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  193. new_root_objectid, &disk_key, level,
  194. buf->start, 0);
  195. if (IS_ERR(cow))
  196. return PTR_ERR(cow);
  197. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  198. btrfs_set_header_bytenr(cow, cow->start);
  199. btrfs_set_header_generation(cow, trans->transid);
  200. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  201. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  202. BTRFS_HEADER_FLAG_RELOC);
  203. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  204. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  205. else
  206. btrfs_set_header_owner(cow, new_root_objectid);
  207. write_extent_buffer(cow, root->fs_info->fsid,
  208. (unsigned long)btrfs_header_fsid(cow),
  209. BTRFS_FSID_SIZE);
  210. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  211. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  212. ret = btrfs_inc_ref(trans, root, cow, 1);
  213. else
  214. ret = btrfs_inc_ref(trans, root, cow, 0);
  215. if (ret)
  216. return ret;
  217. btrfs_mark_buffer_dirty(cow);
  218. *cow_ret = cow;
  219. return 0;
  220. }
  221. /*
  222. * check if the tree block can be shared by multiple trees
  223. */
  224. int btrfs_block_can_be_shared(struct btrfs_root *root,
  225. struct extent_buffer *buf)
  226. {
  227. /*
  228. * Tree blocks not in refernece counted trees and tree roots
  229. * are never shared. If a block was allocated after the last
  230. * snapshot and the block was not allocated by tree relocation,
  231. * we know the block is not shared.
  232. */
  233. if (root->ref_cows &&
  234. buf != root->node && buf != root->commit_root &&
  235. (btrfs_header_generation(buf) <=
  236. btrfs_root_last_snapshot(&root->root_item) ||
  237. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  238. return 1;
  239. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  240. if (root->ref_cows &&
  241. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  242. return 1;
  243. #endif
  244. return 0;
  245. }
  246. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  247. struct btrfs_root *root,
  248. struct extent_buffer *buf,
  249. struct extent_buffer *cow)
  250. {
  251. u64 refs;
  252. u64 owner;
  253. u64 flags;
  254. u64 new_flags = 0;
  255. int ret;
  256. /*
  257. * Backrefs update rules:
  258. *
  259. * Always use full backrefs for extent pointers in tree block
  260. * allocated by tree relocation.
  261. *
  262. * If a shared tree block is no longer referenced by its owner
  263. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  264. * use full backrefs for extent pointers in tree block.
  265. *
  266. * If a tree block is been relocating
  267. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  268. * use full backrefs for extent pointers in tree block.
  269. * The reason for this is some operations (such as drop tree)
  270. * are only allowed for blocks use full backrefs.
  271. */
  272. if (btrfs_block_can_be_shared(root, buf)) {
  273. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  274. buf->len, &refs, &flags);
  275. BUG_ON(ret);
  276. BUG_ON(refs == 0);
  277. } else {
  278. refs = 1;
  279. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  280. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  281. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  282. else
  283. flags = 0;
  284. }
  285. owner = btrfs_header_owner(buf);
  286. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  287. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  288. if (refs > 1) {
  289. if ((owner == root->root_key.objectid ||
  290. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  291. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  292. ret = btrfs_inc_ref(trans, root, buf, 1);
  293. BUG_ON(ret);
  294. if (root->root_key.objectid ==
  295. BTRFS_TREE_RELOC_OBJECTID) {
  296. ret = btrfs_dec_ref(trans, root, buf, 0);
  297. BUG_ON(ret);
  298. ret = btrfs_inc_ref(trans, root, cow, 1);
  299. BUG_ON(ret);
  300. }
  301. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  302. } else {
  303. if (root->root_key.objectid ==
  304. BTRFS_TREE_RELOC_OBJECTID)
  305. ret = btrfs_inc_ref(trans, root, cow, 1);
  306. else
  307. ret = btrfs_inc_ref(trans, root, cow, 0);
  308. BUG_ON(ret);
  309. }
  310. if (new_flags != 0) {
  311. ret = btrfs_set_disk_extent_flags(trans, root,
  312. buf->start,
  313. buf->len,
  314. new_flags, 0);
  315. BUG_ON(ret);
  316. }
  317. } else {
  318. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  319. if (root->root_key.objectid ==
  320. BTRFS_TREE_RELOC_OBJECTID)
  321. ret = btrfs_inc_ref(trans, root, cow, 1);
  322. else
  323. ret = btrfs_inc_ref(trans, root, cow, 0);
  324. BUG_ON(ret);
  325. ret = btrfs_dec_ref(trans, root, buf, 1);
  326. BUG_ON(ret);
  327. }
  328. clean_tree_block(trans, root, buf);
  329. }
  330. return 0;
  331. }
  332. /*
  333. * does the dirty work in cow of a single block. The parent block (if
  334. * supplied) is updated to point to the new cow copy. The new buffer is marked
  335. * dirty and returned locked. If you modify the block it needs to be marked
  336. * dirty again.
  337. *
  338. * search_start -- an allocation hint for the new block
  339. *
  340. * empty_size -- a hint that you plan on doing more cow. This is the size in
  341. * bytes the allocator should try to find free next to the block it returns.
  342. * This is just a hint and may be ignored by the allocator.
  343. */
  344. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  345. struct btrfs_root *root,
  346. struct extent_buffer *buf,
  347. struct extent_buffer *parent, int parent_slot,
  348. struct extent_buffer **cow_ret,
  349. u64 search_start, u64 empty_size)
  350. {
  351. struct btrfs_disk_key disk_key;
  352. struct extent_buffer *cow;
  353. int level;
  354. int unlock_orig = 0;
  355. u64 parent_start;
  356. if (*cow_ret == buf)
  357. unlock_orig = 1;
  358. btrfs_assert_tree_locked(buf);
  359. WARN_ON(root->ref_cows && trans->transid !=
  360. root->fs_info->running_transaction->transid);
  361. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  362. level = btrfs_header_level(buf);
  363. if (level == 0)
  364. btrfs_item_key(buf, &disk_key, 0);
  365. else
  366. btrfs_node_key(buf, &disk_key, 0);
  367. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  368. if (parent)
  369. parent_start = parent->start;
  370. else
  371. parent_start = 0;
  372. } else
  373. parent_start = 0;
  374. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  375. root->root_key.objectid, &disk_key,
  376. level, search_start, empty_size);
  377. if (IS_ERR(cow))
  378. return PTR_ERR(cow);
  379. /* cow is set to blocking by btrfs_init_new_buffer */
  380. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  381. btrfs_set_header_bytenr(cow, cow->start);
  382. btrfs_set_header_generation(cow, trans->transid);
  383. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  384. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  385. BTRFS_HEADER_FLAG_RELOC);
  386. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  387. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  388. else
  389. btrfs_set_header_owner(cow, root->root_key.objectid);
  390. write_extent_buffer(cow, root->fs_info->fsid,
  391. (unsigned long)btrfs_header_fsid(cow),
  392. BTRFS_FSID_SIZE);
  393. update_ref_for_cow(trans, root, buf, cow);
  394. if (buf == root->node) {
  395. WARN_ON(parent && parent != buf);
  396. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  397. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  398. parent_start = buf->start;
  399. else
  400. parent_start = 0;
  401. spin_lock(&root->node_lock);
  402. root->node = cow;
  403. extent_buffer_get(cow);
  404. spin_unlock(&root->node_lock);
  405. btrfs_free_extent(trans, root, buf->start, buf->len,
  406. parent_start, root->root_key.objectid,
  407. level, 0);
  408. free_extent_buffer(buf);
  409. add_root_to_dirty_list(root);
  410. } else {
  411. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  412. parent_start = parent->start;
  413. else
  414. parent_start = 0;
  415. WARN_ON(trans->transid != btrfs_header_generation(parent));
  416. btrfs_set_node_blockptr(parent, parent_slot,
  417. cow->start);
  418. btrfs_set_node_ptr_generation(parent, parent_slot,
  419. trans->transid);
  420. btrfs_mark_buffer_dirty(parent);
  421. btrfs_free_extent(trans, root, buf->start, buf->len,
  422. parent_start, root->root_key.objectid,
  423. level, 0);
  424. }
  425. if (unlock_orig)
  426. btrfs_tree_unlock(buf);
  427. free_extent_buffer(buf);
  428. btrfs_mark_buffer_dirty(cow);
  429. *cow_ret = cow;
  430. return 0;
  431. }
  432. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  433. struct btrfs_root *root,
  434. struct extent_buffer *buf)
  435. {
  436. if (btrfs_header_generation(buf) == trans->transid &&
  437. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  438. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  439. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  440. return 0;
  441. return 1;
  442. }
  443. /*
  444. * cows a single block, see __btrfs_cow_block for the real work.
  445. * This version of it has extra checks so that a block isn't cow'd more than
  446. * once per transaction, as long as it hasn't been written yet
  447. */
  448. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  449. struct btrfs_root *root, struct extent_buffer *buf,
  450. struct extent_buffer *parent, int parent_slot,
  451. struct extent_buffer **cow_ret)
  452. {
  453. u64 search_start;
  454. int ret;
  455. if (trans->transaction != root->fs_info->running_transaction) {
  456. printk(KERN_CRIT "trans %llu running %llu\n",
  457. (unsigned long long)trans->transid,
  458. (unsigned long long)
  459. root->fs_info->running_transaction->transid);
  460. WARN_ON(1);
  461. }
  462. if (trans->transid != root->fs_info->generation) {
  463. printk(KERN_CRIT "trans %llu running %llu\n",
  464. (unsigned long long)trans->transid,
  465. (unsigned long long)root->fs_info->generation);
  466. WARN_ON(1);
  467. }
  468. if (!should_cow_block(trans, root, buf)) {
  469. *cow_ret = buf;
  470. return 0;
  471. }
  472. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  473. if (parent)
  474. btrfs_set_lock_blocking(parent);
  475. btrfs_set_lock_blocking(buf);
  476. ret = __btrfs_cow_block(trans, root, buf, parent,
  477. parent_slot, cow_ret, search_start, 0);
  478. return ret;
  479. }
  480. /*
  481. * helper function for defrag to decide if two blocks pointed to by a
  482. * node are actually close by
  483. */
  484. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  485. {
  486. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  487. return 1;
  488. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  489. return 1;
  490. return 0;
  491. }
  492. /*
  493. * compare two keys in a memcmp fashion
  494. */
  495. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  496. {
  497. struct btrfs_key k1;
  498. btrfs_disk_key_to_cpu(&k1, disk);
  499. if (k1.objectid > k2->objectid)
  500. return 1;
  501. if (k1.objectid < k2->objectid)
  502. return -1;
  503. if (k1.type > k2->type)
  504. return 1;
  505. if (k1.type < k2->type)
  506. return -1;
  507. if (k1.offset > k2->offset)
  508. return 1;
  509. if (k1.offset < k2->offset)
  510. return -1;
  511. return 0;
  512. }
  513. /*
  514. * same as comp_keys only with two btrfs_key's
  515. */
  516. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  517. {
  518. if (k1->objectid > k2->objectid)
  519. return 1;
  520. if (k1->objectid < k2->objectid)
  521. return -1;
  522. if (k1->type > k2->type)
  523. return 1;
  524. if (k1->type < k2->type)
  525. return -1;
  526. if (k1->offset > k2->offset)
  527. return 1;
  528. if (k1->offset < k2->offset)
  529. return -1;
  530. return 0;
  531. }
  532. /*
  533. * this is used by the defrag code to go through all the
  534. * leaves pointed to by a node and reallocate them so that
  535. * disk order is close to key order
  536. */
  537. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  538. struct btrfs_root *root, struct extent_buffer *parent,
  539. int start_slot, int cache_only, u64 *last_ret,
  540. struct btrfs_key *progress)
  541. {
  542. struct extent_buffer *cur;
  543. u64 blocknr;
  544. u64 gen;
  545. u64 search_start = *last_ret;
  546. u64 last_block = 0;
  547. u64 other;
  548. u32 parent_nritems;
  549. int end_slot;
  550. int i;
  551. int err = 0;
  552. int parent_level;
  553. int uptodate;
  554. u32 blocksize;
  555. int progress_passed = 0;
  556. struct btrfs_disk_key disk_key;
  557. parent_level = btrfs_header_level(parent);
  558. if (cache_only && parent_level != 1)
  559. return 0;
  560. if (trans->transaction != root->fs_info->running_transaction)
  561. WARN_ON(1);
  562. if (trans->transid != root->fs_info->generation)
  563. WARN_ON(1);
  564. parent_nritems = btrfs_header_nritems(parent);
  565. blocksize = btrfs_level_size(root, parent_level - 1);
  566. end_slot = parent_nritems;
  567. if (parent_nritems == 1)
  568. return 0;
  569. btrfs_set_lock_blocking(parent);
  570. for (i = start_slot; i < end_slot; i++) {
  571. int close = 1;
  572. if (!parent->map_token) {
  573. map_extent_buffer(parent,
  574. btrfs_node_key_ptr_offset(i),
  575. sizeof(struct btrfs_key_ptr),
  576. &parent->map_token, &parent->kaddr,
  577. &parent->map_start, &parent->map_len,
  578. KM_USER1);
  579. }
  580. btrfs_node_key(parent, &disk_key, i);
  581. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  582. continue;
  583. progress_passed = 1;
  584. blocknr = btrfs_node_blockptr(parent, i);
  585. gen = btrfs_node_ptr_generation(parent, i);
  586. if (last_block == 0)
  587. last_block = blocknr;
  588. if (i > 0) {
  589. other = btrfs_node_blockptr(parent, i - 1);
  590. close = close_blocks(blocknr, other, blocksize);
  591. }
  592. if (!close && i < end_slot - 2) {
  593. other = btrfs_node_blockptr(parent, i + 1);
  594. close = close_blocks(blocknr, other, blocksize);
  595. }
  596. if (close) {
  597. last_block = blocknr;
  598. continue;
  599. }
  600. if (parent->map_token) {
  601. unmap_extent_buffer(parent, parent->map_token,
  602. KM_USER1);
  603. parent->map_token = NULL;
  604. }
  605. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  606. if (cur)
  607. uptodate = btrfs_buffer_uptodate(cur, gen);
  608. else
  609. uptodate = 0;
  610. if (!cur || !uptodate) {
  611. if (cache_only) {
  612. free_extent_buffer(cur);
  613. continue;
  614. }
  615. if (!cur) {
  616. cur = read_tree_block(root, blocknr,
  617. blocksize, gen);
  618. } else if (!uptodate) {
  619. btrfs_read_buffer(cur, gen);
  620. }
  621. }
  622. if (search_start == 0)
  623. search_start = last_block;
  624. btrfs_tree_lock(cur);
  625. btrfs_set_lock_blocking(cur);
  626. err = __btrfs_cow_block(trans, root, cur, parent, i,
  627. &cur, search_start,
  628. min(16 * blocksize,
  629. (end_slot - i) * blocksize));
  630. if (err) {
  631. btrfs_tree_unlock(cur);
  632. free_extent_buffer(cur);
  633. break;
  634. }
  635. search_start = cur->start;
  636. last_block = cur->start;
  637. *last_ret = search_start;
  638. btrfs_tree_unlock(cur);
  639. free_extent_buffer(cur);
  640. }
  641. if (parent->map_token) {
  642. unmap_extent_buffer(parent, parent->map_token,
  643. KM_USER1);
  644. parent->map_token = NULL;
  645. }
  646. return err;
  647. }
  648. /*
  649. * The leaf data grows from end-to-front in the node.
  650. * this returns the address of the start of the last item,
  651. * which is the stop of the leaf data stack
  652. */
  653. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  654. struct extent_buffer *leaf)
  655. {
  656. u32 nr = btrfs_header_nritems(leaf);
  657. if (nr == 0)
  658. return BTRFS_LEAF_DATA_SIZE(root);
  659. return btrfs_item_offset_nr(leaf, nr - 1);
  660. }
  661. /*
  662. * extra debugging checks to make sure all the items in a key are
  663. * well formed and in the proper order
  664. */
  665. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  666. int level)
  667. {
  668. struct extent_buffer *parent = NULL;
  669. struct extent_buffer *node = path->nodes[level];
  670. struct btrfs_disk_key parent_key;
  671. struct btrfs_disk_key node_key;
  672. int parent_slot;
  673. int slot;
  674. struct btrfs_key cpukey;
  675. u32 nritems = btrfs_header_nritems(node);
  676. if (path->nodes[level + 1])
  677. parent = path->nodes[level + 1];
  678. slot = path->slots[level];
  679. BUG_ON(nritems == 0);
  680. if (parent) {
  681. parent_slot = path->slots[level + 1];
  682. btrfs_node_key(parent, &parent_key, parent_slot);
  683. btrfs_node_key(node, &node_key, 0);
  684. BUG_ON(memcmp(&parent_key, &node_key,
  685. sizeof(struct btrfs_disk_key)));
  686. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  687. btrfs_header_bytenr(node));
  688. }
  689. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  690. if (slot != 0) {
  691. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  692. btrfs_node_key(node, &node_key, slot);
  693. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  694. }
  695. if (slot < nritems - 1) {
  696. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  697. btrfs_node_key(node, &node_key, slot);
  698. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  699. }
  700. return 0;
  701. }
  702. /*
  703. * extra checking to make sure all the items in a leaf are
  704. * well formed and in the proper order
  705. */
  706. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  707. int level)
  708. {
  709. struct extent_buffer *leaf = path->nodes[level];
  710. struct extent_buffer *parent = NULL;
  711. int parent_slot;
  712. struct btrfs_key cpukey;
  713. struct btrfs_disk_key parent_key;
  714. struct btrfs_disk_key leaf_key;
  715. int slot = path->slots[0];
  716. u32 nritems = btrfs_header_nritems(leaf);
  717. if (path->nodes[level + 1])
  718. parent = path->nodes[level + 1];
  719. if (nritems == 0)
  720. return 0;
  721. if (parent) {
  722. parent_slot = path->slots[level + 1];
  723. btrfs_node_key(parent, &parent_key, parent_slot);
  724. btrfs_item_key(leaf, &leaf_key, 0);
  725. BUG_ON(memcmp(&parent_key, &leaf_key,
  726. sizeof(struct btrfs_disk_key)));
  727. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  728. btrfs_header_bytenr(leaf));
  729. }
  730. if (slot != 0 && slot < nritems - 1) {
  731. btrfs_item_key(leaf, &leaf_key, slot);
  732. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  733. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  734. btrfs_print_leaf(root, leaf);
  735. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  736. BUG_ON(1);
  737. }
  738. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  739. btrfs_item_end_nr(leaf, slot)) {
  740. btrfs_print_leaf(root, leaf);
  741. printk(KERN_CRIT "slot %d offset bad\n", slot);
  742. BUG_ON(1);
  743. }
  744. }
  745. if (slot < nritems - 1) {
  746. btrfs_item_key(leaf, &leaf_key, slot);
  747. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  748. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  749. if (btrfs_item_offset_nr(leaf, slot) !=
  750. btrfs_item_end_nr(leaf, slot + 1)) {
  751. btrfs_print_leaf(root, leaf);
  752. printk(KERN_CRIT "slot %d offset bad\n", slot);
  753. BUG_ON(1);
  754. }
  755. }
  756. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  757. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  758. return 0;
  759. }
  760. static noinline int check_block(struct btrfs_root *root,
  761. struct btrfs_path *path, int level)
  762. {
  763. return 0;
  764. if (level == 0)
  765. return check_leaf(root, path, level);
  766. return check_node(root, path, level);
  767. }
  768. /*
  769. * search for key in the extent_buffer. The items start at offset p,
  770. * and they are item_size apart. There are 'max' items in p.
  771. *
  772. * the slot in the array is returned via slot, and it points to
  773. * the place where you would insert key if it is not found in
  774. * the array.
  775. *
  776. * slot may point to max if the key is bigger than all of the keys
  777. */
  778. static noinline int generic_bin_search(struct extent_buffer *eb,
  779. unsigned long p,
  780. int item_size, struct btrfs_key *key,
  781. int max, int *slot)
  782. {
  783. int low = 0;
  784. int high = max;
  785. int mid;
  786. int ret;
  787. struct btrfs_disk_key *tmp = NULL;
  788. struct btrfs_disk_key unaligned;
  789. unsigned long offset;
  790. char *map_token = NULL;
  791. char *kaddr = NULL;
  792. unsigned long map_start = 0;
  793. unsigned long map_len = 0;
  794. int err;
  795. while (low < high) {
  796. mid = (low + high) / 2;
  797. offset = p + mid * item_size;
  798. if (!map_token || offset < map_start ||
  799. (offset + sizeof(struct btrfs_disk_key)) >
  800. map_start + map_len) {
  801. if (map_token) {
  802. unmap_extent_buffer(eb, map_token, KM_USER0);
  803. map_token = NULL;
  804. }
  805. err = map_private_extent_buffer(eb, offset,
  806. sizeof(struct btrfs_disk_key),
  807. &map_token, &kaddr,
  808. &map_start, &map_len, KM_USER0);
  809. if (!err) {
  810. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  811. map_start);
  812. } else {
  813. read_extent_buffer(eb, &unaligned,
  814. offset, sizeof(unaligned));
  815. tmp = &unaligned;
  816. }
  817. } else {
  818. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  819. map_start);
  820. }
  821. ret = comp_keys(tmp, key);
  822. if (ret < 0)
  823. low = mid + 1;
  824. else if (ret > 0)
  825. high = mid;
  826. else {
  827. *slot = mid;
  828. if (map_token)
  829. unmap_extent_buffer(eb, map_token, KM_USER0);
  830. return 0;
  831. }
  832. }
  833. *slot = low;
  834. if (map_token)
  835. unmap_extent_buffer(eb, map_token, KM_USER0);
  836. return 1;
  837. }
  838. /*
  839. * simple bin_search frontend that does the right thing for
  840. * leaves vs nodes
  841. */
  842. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  843. int level, int *slot)
  844. {
  845. if (level == 0) {
  846. return generic_bin_search(eb,
  847. offsetof(struct btrfs_leaf, items),
  848. sizeof(struct btrfs_item),
  849. key, btrfs_header_nritems(eb),
  850. slot);
  851. } else {
  852. return generic_bin_search(eb,
  853. offsetof(struct btrfs_node, ptrs),
  854. sizeof(struct btrfs_key_ptr),
  855. key, btrfs_header_nritems(eb),
  856. slot);
  857. }
  858. return -1;
  859. }
  860. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  861. int level, int *slot)
  862. {
  863. return bin_search(eb, key, level, slot);
  864. }
  865. /* given a node and slot number, this reads the blocks it points to. The
  866. * extent buffer is returned with a reference taken (but unlocked).
  867. * NULL is returned on error.
  868. */
  869. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  870. struct extent_buffer *parent, int slot)
  871. {
  872. int level = btrfs_header_level(parent);
  873. if (slot < 0)
  874. return NULL;
  875. if (slot >= btrfs_header_nritems(parent))
  876. return NULL;
  877. BUG_ON(level == 0);
  878. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  879. btrfs_level_size(root, level - 1),
  880. btrfs_node_ptr_generation(parent, slot));
  881. }
  882. /*
  883. * node level balancing, used to make sure nodes are in proper order for
  884. * item deletion. We balance from the top down, so we have to make sure
  885. * that a deletion won't leave an node completely empty later on.
  886. */
  887. static noinline int balance_level(struct btrfs_trans_handle *trans,
  888. struct btrfs_root *root,
  889. struct btrfs_path *path, int level)
  890. {
  891. struct extent_buffer *right = NULL;
  892. struct extent_buffer *mid;
  893. struct extent_buffer *left = NULL;
  894. struct extent_buffer *parent = NULL;
  895. int ret = 0;
  896. int wret;
  897. int pslot;
  898. int orig_slot = path->slots[level];
  899. int err_on_enospc = 0;
  900. u64 orig_ptr;
  901. if (level == 0)
  902. return 0;
  903. mid = path->nodes[level];
  904. WARN_ON(!path->locks[level]);
  905. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  906. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  907. if (level < BTRFS_MAX_LEVEL - 1)
  908. parent = path->nodes[level + 1];
  909. pslot = path->slots[level + 1];
  910. /*
  911. * deal with the case where there is only one pointer in the root
  912. * by promoting the node below to a root
  913. */
  914. if (!parent) {
  915. struct extent_buffer *child;
  916. if (btrfs_header_nritems(mid) != 1)
  917. return 0;
  918. /* promote the child to a root */
  919. child = read_node_slot(root, mid, 0);
  920. BUG_ON(!child);
  921. btrfs_tree_lock(child);
  922. btrfs_set_lock_blocking(child);
  923. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  924. BUG_ON(ret);
  925. spin_lock(&root->node_lock);
  926. root->node = child;
  927. spin_unlock(&root->node_lock);
  928. add_root_to_dirty_list(root);
  929. btrfs_tree_unlock(child);
  930. path->locks[level] = 0;
  931. path->nodes[level] = NULL;
  932. clean_tree_block(trans, root, mid);
  933. btrfs_tree_unlock(mid);
  934. /* once for the path */
  935. free_extent_buffer(mid);
  936. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  937. 0, root->root_key.objectid, level, 1);
  938. /* once for the root ptr */
  939. free_extent_buffer(mid);
  940. return ret;
  941. }
  942. if (btrfs_header_nritems(mid) >
  943. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  944. return 0;
  945. if (btrfs_header_nritems(mid) > 2)
  946. return 0;
  947. if (btrfs_header_nritems(mid) < 2)
  948. err_on_enospc = 1;
  949. left = read_node_slot(root, parent, pslot - 1);
  950. if (left) {
  951. btrfs_tree_lock(left);
  952. btrfs_set_lock_blocking(left);
  953. wret = btrfs_cow_block(trans, root, left,
  954. parent, pslot - 1, &left);
  955. if (wret) {
  956. ret = wret;
  957. goto enospc;
  958. }
  959. }
  960. right = read_node_slot(root, parent, pslot + 1);
  961. if (right) {
  962. btrfs_tree_lock(right);
  963. btrfs_set_lock_blocking(right);
  964. wret = btrfs_cow_block(trans, root, right,
  965. parent, pslot + 1, &right);
  966. if (wret) {
  967. ret = wret;
  968. goto enospc;
  969. }
  970. }
  971. /* first, try to make some room in the middle buffer */
  972. if (left) {
  973. orig_slot += btrfs_header_nritems(left);
  974. wret = push_node_left(trans, root, left, mid, 1);
  975. if (wret < 0)
  976. ret = wret;
  977. if (btrfs_header_nritems(mid) < 2)
  978. err_on_enospc = 1;
  979. }
  980. /*
  981. * then try to empty the right most buffer into the middle
  982. */
  983. if (right) {
  984. wret = push_node_left(trans, root, mid, right, 1);
  985. if (wret < 0 && wret != -ENOSPC)
  986. ret = wret;
  987. if (btrfs_header_nritems(right) == 0) {
  988. u64 bytenr = right->start;
  989. u32 blocksize = right->len;
  990. clean_tree_block(trans, root, right);
  991. btrfs_tree_unlock(right);
  992. free_extent_buffer(right);
  993. right = NULL;
  994. wret = del_ptr(trans, root, path, level + 1, pslot +
  995. 1);
  996. if (wret)
  997. ret = wret;
  998. wret = btrfs_free_extent(trans, root, bytenr,
  999. blocksize, 0,
  1000. root->root_key.objectid,
  1001. level, 0);
  1002. if (wret)
  1003. ret = wret;
  1004. } else {
  1005. struct btrfs_disk_key right_key;
  1006. btrfs_node_key(right, &right_key, 0);
  1007. btrfs_set_node_key(parent, &right_key, pslot + 1);
  1008. btrfs_mark_buffer_dirty(parent);
  1009. }
  1010. }
  1011. if (btrfs_header_nritems(mid) == 1) {
  1012. /*
  1013. * we're not allowed to leave a node with one item in the
  1014. * tree during a delete. A deletion from lower in the tree
  1015. * could try to delete the only pointer in this node.
  1016. * So, pull some keys from the left.
  1017. * There has to be a left pointer at this point because
  1018. * otherwise we would have pulled some pointers from the
  1019. * right
  1020. */
  1021. BUG_ON(!left);
  1022. wret = balance_node_right(trans, root, mid, left);
  1023. if (wret < 0) {
  1024. ret = wret;
  1025. goto enospc;
  1026. }
  1027. if (wret == 1) {
  1028. wret = push_node_left(trans, root, left, mid, 1);
  1029. if (wret < 0)
  1030. ret = wret;
  1031. }
  1032. BUG_ON(wret == 1);
  1033. }
  1034. if (btrfs_header_nritems(mid) == 0) {
  1035. /* we've managed to empty the middle node, drop it */
  1036. u64 bytenr = mid->start;
  1037. u32 blocksize = mid->len;
  1038. clean_tree_block(trans, root, mid);
  1039. btrfs_tree_unlock(mid);
  1040. free_extent_buffer(mid);
  1041. mid = NULL;
  1042. wret = del_ptr(trans, root, path, level + 1, pslot);
  1043. if (wret)
  1044. ret = wret;
  1045. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  1046. 0, root->root_key.objectid,
  1047. level, 0);
  1048. if (wret)
  1049. ret = wret;
  1050. } else {
  1051. /* update the parent key to reflect our changes */
  1052. struct btrfs_disk_key mid_key;
  1053. btrfs_node_key(mid, &mid_key, 0);
  1054. btrfs_set_node_key(parent, &mid_key, pslot);
  1055. btrfs_mark_buffer_dirty(parent);
  1056. }
  1057. /* update the path */
  1058. if (left) {
  1059. if (btrfs_header_nritems(left) > orig_slot) {
  1060. extent_buffer_get(left);
  1061. /* left was locked after cow */
  1062. path->nodes[level] = left;
  1063. path->slots[level + 1] -= 1;
  1064. path->slots[level] = orig_slot;
  1065. if (mid) {
  1066. btrfs_tree_unlock(mid);
  1067. free_extent_buffer(mid);
  1068. }
  1069. } else {
  1070. orig_slot -= btrfs_header_nritems(left);
  1071. path->slots[level] = orig_slot;
  1072. }
  1073. }
  1074. /* double check we haven't messed things up */
  1075. check_block(root, path, level);
  1076. if (orig_ptr !=
  1077. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1078. BUG();
  1079. enospc:
  1080. if (right) {
  1081. btrfs_tree_unlock(right);
  1082. free_extent_buffer(right);
  1083. }
  1084. if (left) {
  1085. if (path->nodes[level] != left)
  1086. btrfs_tree_unlock(left);
  1087. free_extent_buffer(left);
  1088. }
  1089. return ret;
  1090. }
  1091. /* Node balancing for insertion. Here we only split or push nodes around
  1092. * when they are completely full. This is also done top down, so we
  1093. * have to be pessimistic.
  1094. */
  1095. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1096. struct btrfs_root *root,
  1097. struct btrfs_path *path, int level)
  1098. {
  1099. struct extent_buffer *right = NULL;
  1100. struct extent_buffer *mid;
  1101. struct extent_buffer *left = NULL;
  1102. struct extent_buffer *parent = NULL;
  1103. int ret = 0;
  1104. int wret;
  1105. int pslot;
  1106. int orig_slot = path->slots[level];
  1107. u64 orig_ptr;
  1108. if (level == 0)
  1109. return 1;
  1110. mid = path->nodes[level];
  1111. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1112. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1113. if (level < BTRFS_MAX_LEVEL - 1)
  1114. parent = path->nodes[level + 1];
  1115. pslot = path->slots[level + 1];
  1116. if (!parent)
  1117. return 1;
  1118. left = read_node_slot(root, parent, pslot - 1);
  1119. /* first, try to make some room in the middle buffer */
  1120. if (left) {
  1121. u32 left_nr;
  1122. btrfs_tree_lock(left);
  1123. btrfs_set_lock_blocking(left);
  1124. left_nr = btrfs_header_nritems(left);
  1125. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1126. wret = 1;
  1127. } else {
  1128. ret = btrfs_cow_block(trans, root, left, parent,
  1129. pslot - 1, &left);
  1130. if (ret)
  1131. wret = 1;
  1132. else {
  1133. wret = push_node_left(trans, root,
  1134. left, mid, 0);
  1135. }
  1136. }
  1137. if (wret < 0)
  1138. ret = wret;
  1139. if (wret == 0) {
  1140. struct btrfs_disk_key disk_key;
  1141. orig_slot += left_nr;
  1142. btrfs_node_key(mid, &disk_key, 0);
  1143. btrfs_set_node_key(parent, &disk_key, pslot);
  1144. btrfs_mark_buffer_dirty(parent);
  1145. if (btrfs_header_nritems(left) > orig_slot) {
  1146. path->nodes[level] = left;
  1147. path->slots[level + 1] -= 1;
  1148. path->slots[level] = orig_slot;
  1149. btrfs_tree_unlock(mid);
  1150. free_extent_buffer(mid);
  1151. } else {
  1152. orig_slot -=
  1153. btrfs_header_nritems(left);
  1154. path->slots[level] = orig_slot;
  1155. btrfs_tree_unlock(left);
  1156. free_extent_buffer(left);
  1157. }
  1158. return 0;
  1159. }
  1160. btrfs_tree_unlock(left);
  1161. free_extent_buffer(left);
  1162. }
  1163. right = read_node_slot(root, parent, pslot + 1);
  1164. /*
  1165. * then try to empty the right most buffer into the middle
  1166. */
  1167. if (right) {
  1168. u32 right_nr;
  1169. btrfs_tree_lock(right);
  1170. btrfs_set_lock_blocking(right);
  1171. right_nr = btrfs_header_nritems(right);
  1172. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1173. wret = 1;
  1174. } else {
  1175. ret = btrfs_cow_block(trans, root, right,
  1176. parent, pslot + 1,
  1177. &right);
  1178. if (ret)
  1179. wret = 1;
  1180. else {
  1181. wret = balance_node_right(trans, root,
  1182. right, mid);
  1183. }
  1184. }
  1185. if (wret < 0)
  1186. ret = wret;
  1187. if (wret == 0) {
  1188. struct btrfs_disk_key disk_key;
  1189. btrfs_node_key(right, &disk_key, 0);
  1190. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1191. btrfs_mark_buffer_dirty(parent);
  1192. if (btrfs_header_nritems(mid) <= orig_slot) {
  1193. path->nodes[level] = right;
  1194. path->slots[level + 1] += 1;
  1195. path->slots[level] = orig_slot -
  1196. btrfs_header_nritems(mid);
  1197. btrfs_tree_unlock(mid);
  1198. free_extent_buffer(mid);
  1199. } else {
  1200. btrfs_tree_unlock(right);
  1201. free_extent_buffer(right);
  1202. }
  1203. return 0;
  1204. }
  1205. btrfs_tree_unlock(right);
  1206. free_extent_buffer(right);
  1207. }
  1208. return 1;
  1209. }
  1210. /*
  1211. * readahead one full node of leaves, finding things that are close
  1212. * to the block in 'slot', and triggering ra on them.
  1213. */
  1214. static void reada_for_search(struct btrfs_root *root,
  1215. struct btrfs_path *path,
  1216. int level, int slot, u64 objectid)
  1217. {
  1218. struct extent_buffer *node;
  1219. struct btrfs_disk_key disk_key;
  1220. u32 nritems;
  1221. u64 search;
  1222. u64 target;
  1223. u64 nread = 0;
  1224. int direction = path->reada;
  1225. struct extent_buffer *eb;
  1226. u32 nr;
  1227. u32 blocksize;
  1228. u32 nscan = 0;
  1229. if (level != 1)
  1230. return;
  1231. if (!path->nodes[level])
  1232. return;
  1233. node = path->nodes[level];
  1234. search = btrfs_node_blockptr(node, slot);
  1235. blocksize = btrfs_level_size(root, level - 1);
  1236. eb = btrfs_find_tree_block(root, search, blocksize);
  1237. if (eb) {
  1238. free_extent_buffer(eb);
  1239. return;
  1240. }
  1241. target = search;
  1242. nritems = btrfs_header_nritems(node);
  1243. nr = slot;
  1244. while (1) {
  1245. if (direction < 0) {
  1246. if (nr == 0)
  1247. break;
  1248. nr--;
  1249. } else if (direction > 0) {
  1250. nr++;
  1251. if (nr >= nritems)
  1252. break;
  1253. }
  1254. if (path->reada < 0 && objectid) {
  1255. btrfs_node_key(node, &disk_key, nr);
  1256. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1257. break;
  1258. }
  1259. search = btrfs_node_blockptr(node, nr);
  1260. if ((search <= target && target - search <= 65536) ||
  1261. (search > target && search - target <= 65536)) {
  1262. readahead_tree_block(root, search, blocksize,
  1263. btrfs_node_ptr_generation(node, nr));
  1264. nread += blocksize;
  1265. }
  1266. nscan++;
  1267. if ((nread > 65536 || nscan > 32))
  1268. break;
  1269. }
  1270. }
  1271. /*
  1272. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1273. * cache
  1274. */
  1275. static noinline int reada_for_balance(struct btrfs_root *root,
  1276. struct btrfs_path *path, int level)
  1277. {
  1278. int slot;
  1279. int nritems;
  1280. struct extent_buffer *parent;
  1281. struct extent_buffer *eb;
  1282. u64 gen;
  1283. u64 block1 = 0;
  1284. u64 block2 = 0;
  1285. int ret = 0;
  1286. int blocksize;
  1287. parent = path->nodes[level + 1];
  1288. if (!parent)
  1289. return 0;
  1290. nritems = btrfs_header_nritems(parent);
  1291. slot = path->slots[level + 1];
  1292. blocksize = btrfs_level_size(root, level);
  1293. if (slot > 0) {
  1294. block1 = btrfs_node_blockptr(parent, slot - 1);
  1295. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1296. eb = btrfs_find_tree_block(root, block1, blocksize);
  1297. if (eb && btrfs_buffer_uptodate(eb, gen))
  1298. block1 = 0;
  1299. free_extent_buffer(eb);
  1300. }
  1301. if (slot + 1 < nritems) {
  1302. block2 = btrfs_node_blockptr(parent, slot + 1);
  1303. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1304. eb = btrfs_find_tree_block(root, block2, blocksize);
  1305. if (eb && btrfs_buffer_uptodate(eb, gen))
  1306. block2 = 0;
  1307. free_extent_buffer(eb);
  1308. }
  1309. if (block1 || block2) {
  1310. ret = -EAGAIN;
  1311. /* release the whole path */
  1312. btrfs_release_path(root, path);
  1313. /* read the blocks */
  1314. if (block1)
  1315. readahead_tree_block(root, block1, blocksize, 0);
  1316. if (block2)
  1317. readahead_tree_block(root, block2, blocksize, 0);
  1318. if (block1) {
  1319. eb = read_tree_block(root, block1, blocksize, 0);
  1320. free_extent_buffer(eb);
  1321. }
  1322. if (block2) {
  1323. eb = read_tree_block(root, block2, blocksize, 0);
  1324. free_extent_buffer(eb);
  1325. }
  1326. }
  1327. return ret;
  1328. }
  1329. /*
  1330. * when we walk down the tree, it is usually safe to unlock the higher layers
  1331. * in the tree. The exceptions are when our path goes through slot 0, because
  1332. * operations on the tree might require changing key pointers higher up in the
  1333. * tree.
  1334. *
  1335. * callers might also have set path->keep_locks, which tells this code to keep
  1336. * the lock if the path points to the last slot in the block. This is part of
  1337. * walking through the tree, and selecting the next slot in the higher block.
  1338. *
  1339. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1340. * if lowest_unlock is 1, level 0 won't be unlocked
  1341. */
  1342. static noinline void unlock_up(struct btrfs_path *path, int level,
  1343. int lowest_unlock)
  1344. {
  1345. int i;
  1346. int skip_level = level;
  1347. int no_skips = 0;
  1348. struct extent_buffer *t;
  1349. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1350. if (!path->nodes[i])
  1351. break;
  1352. if (!path->locks[i])
  1353. break;
  1354. if (!no_skips && path->slots[i] == 0) {
  1355. skip_level = i + 1;
  1356. continue;
  1357. }
  1358. if (!no_skips && path->keep_locks) {
  1359. u32 nritems;
  1360. t = path->nodes[i];
  1361. nritems = btrfs_header_nritems(t);
  1362. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1363. skip_level = i + 1;
  1364. continue;
  1365. }
  1366. }
  1367. if (skip_level < i && i >= lowest_unlock)
  1368. no_skips = 1;
  1369. t = path->nodes[i];
  1370. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1371. btrfs_tree_unlock(t);
  1372. path->locks[i] = 0;
  1373. }
  1374. }
  1375. }
  1376. /*
  1377. * This releases any locks held in the path starting at level and
  1378. * going all the way up to the root.
  1379. *
  1380. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1381. * corner cases, such as COW of the block at slot zero in the node. This
  1382. * ignores those rules, and it should only be called when there are no
  1383. * more updates to be done higher up in the tree.
  1384. */
  1385. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1386. {
  1387. int i;
  1388. if (path->keep_locks)
  1389. return;
  1390. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1391. if (!path->nodes[i])
  1392. continue;
  1393. if (!path->locks[i])
  1394. continue;
  1395. btrfs_tree_unlock(path->nodes[i]);
  1396. path->locks[i] = 0;
  1397. }
  1398. }
  1399. /*
  1400. * helper function for btrfs_search_slot. The goal is to find a block
  1401. * in cache without setting the path to blocking. If we find the block
  1402. * we return zero and the path is unchanged.
  1403. *
  1404. * If we can't find the block, we set the path blocking and do some
  1405. * reada. -EAGAIN is returned and the search must be repeated.
  1406. */
  1407. static int
  1408. read_block_for_search(struct btrfs_trans_handle *trans,
  1409. struct btrfs_root *root, struct btrfs_path *p,
  1410. struct extent_buffer **eb_ret, int level, int slot,
  1411. struct btrfs_key *key)
  1412. {
  1413. u64 blocknr;
  1414. u64 gen;
  1415. u32 blocksize;
  1416. struct extent_buffer *b = *eb_ret;
  1417. struct extent_buffer *tmp;
  1418. int ret;
  1419. blocknr = btrfs_node_blockptr(b, slot);
  1420. gen = btrfs_node_ptr_generation(b, slot);
  1421. blocksize = btrfs_level_size(root, level - 1);
  1422. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1423. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1424. /*
  1425. * we found an up to date block without sleeping, return
  1426. * right away
  1427. */
  1428. *eb_ret = tmp;
  1429. return 0;
  1430. }
  1431. /*
  1432. * reduce lock contention at high levels
  1433. * of the btree by dropping locks before
  1434. * we read. Don't release the lock on the current
  1435. * level because we need to walk this node to figure
  1436. * out which blocks to read.
  1437. */
  1438. btrfs_unlock_up_safe(p, level + 1);
  1439. btrfs_set_path_blocking(p);
  1440. if (tmp)
  1441. free_extent_buffer(tmp);
  1442. if (p->reada)
  1443. reada_for_search(root, p, level, slot, key->objectid);
  1444. btrfs_release_path(NULL, p);
  1445. ret = -EAGAIN;
  1446. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1447. if (tmp) {
  1448. /*
  1449. * If the read above didn't mark this buffer up to date,
  1450. * it will never end up being up to date. Set ret to EIO now
  1451. * and give up so that our caller doesn't loop forever
  1452. * on our EAGAINs.
  1453. */
  1454. if (!btrfs_buffer_uptodate(tmp, 0))
  1455. ret = -EIO;
  1456. free_extent_buffer(tmp);
  1457. }
  1458. return ret;
  1459. }
  1460. /*
  1461. * helper function for btrfs_search_slot. This does all of the checks
  1462. * for node-level blocks and does any balancing required based on
  1463. * the ins_len.
  1464. *
  1465. * If no extra work was required, zero is returned. If we had to
  1466. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1467. * start over
  1468. */
  1469. static int
  1470. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1471. struct btrfs_root *root, struct btrfs_path *p,
  1472. struct extent_buffer *b, int level, int ins_len)
  1473. {
  1474. int ret;
  1475. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1476. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1477. int sret;
  1478. sret = reada_for_balance(root, p, level);
  1479. if (sret)
  1480. goto again;
  1481. btrfs_set_path_blocking(p);
  1482. sret = split_node(trans, root, p, level);
  1483. btrfs_clear_path_blocking(p, NULL);
  1484. BUG_ON(sret > 0);
  1485. if (sret) {
  1486. ret = sret;
  1487. goto done;
  1488. }
  1489. b = p->nodes[level];
  1490. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1491. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1492. int sret;
  1493. sret = reada_for_balance(root, p, level);
  1494. if (sret)
  1495. goto again;
  1496. btrfs_set_path_blocking(p);
  1497. sret = balance_level(trans, root, p, level);
  1498. btrfs_clear_path_blocking(p, NULL);
  1499. if (sret) {
  1500. ret = sret;
  1501. goto done;
  1502. }
  1503. b = p->nodes[level];
  1504. if (!b) {
  1505. btrfs_release_path(NULL, p);
  1506. goto again;
  1507. }
  1508. BUG_ON(btrfs_header_nritems(b) == 1);
  1509. }
  1510. return 0;
  1511. again:
  1512. ret = -EAGAIN;
  1513. done:
  1514. return ret;
  1515. }
  1516. /*
  1517. * look for key in the tree. path is filled in with nodes along the way
  1518. * if key is found, we return zero and you can find the item in the leaf
  1519. * level of the path (level 0)
  1520. *
  1521. * If the key isn't found, the path points to the slot where it should
  1522. * be inserted, and 1 is returned. If there are other errors during the
  1523. * search a negative error number is returned.
  1524. *
  1525. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1526. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1527. * possible)
  1528. */
  1529. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1530. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1531. ins_len, int cow)
  1532. {
  1533. struct extent_buffer *b;
  1534. int slot;
  1535. int ret;
  1536. int level;
  1537. int lowest_unlock = 1;
  1538. u8 lowest_level = 0;
  1539. lowest_level = p->lowest_level;
  1540. WARN_ON(lowest_level && ins_len > 0);
  1541. WARN_ON(p->nodes[0] != NULL);
  1542. if (ins_len < 0)
  1543. lowest_unlock = 2;
  1544. again:
  1545. if (p->search_commit_root) {
  1546. b = root->commit_root;
  1547. extent_buffer_get(b);
  1548. if (!p->skip_locking)
  1549. btrfs_tree_lock(b);
  1550. } else {
  1551. if (p->skip_locking)
  1552. b = btrfs_root_node(root);
  1553. else
  1554. b = btrfs_lock_root_node(root);
  1555. }
  1556. while (b) {
  1557. level = btrfs_header_level(b);
  1558. /*
  1559. * setup the path here so we can release it under lock
  1560. * contention with the cow code
  1561. */
  1562. p->nodes[level] = b;
  1563. if (!p->skip_locking)
  1564. p->locks[level] = 1;
  1565. if (cow) {
  1566. int wret;
  1567. /*
  1568. * if we don't really need to cow this block
  1569. * then we don't want to set the path blocking,
  1570. * so we test it here
  1571. */
  1572. if (!should_cow_block(trans, root, b))
  1573. goto cow_done;
  1574. btrfs_set_path_blocking(p);
  1575. wret = btrfs_cow_block(trans, root, b,
  1576. p->nodes[level + 1],
  1577. p->slots[level + 1], &b);
  1578. if (wret) {
  1579. free_extent_buffer(b);
  1580. ret = wret;
  1581. goto done;
  1582. }
  1583. }
  1584. cow_done:
  1585. BUG_ON(!cow && ins_len);
  1586. if (level != btrfs_header_level(b))
  1587. WARN_ON(1);
  1588. level = btrfs_header_level(b);
  1589. p->nodes[level] = b;
  1590. if (!p->skip_locking)
  1591. p->locks[level] = 1;
  1592. btrfs_clear_path_blocking(p, NULL);
  1593. /*
  1594. * we have a lock on b and as long as we aren't changing
  1595. * the tree, there is no way to for the items in b to change.
  1596. * It is safe to drop the lock on our parent before we
  1597. * go through the expensive btree search on b.
  1598. *
  1599. * If cow is true, then we might be changing slot zero,
  1600. * which may require changing the parent. So, we can't
  1601. * drop the lock until after we know which slot we're
  1602. * operating on.
  1603. */
  1604. if (!cow)
  1605. btrfs_unlock_up_safe(p, level + 1);
  1606. ret = check_block(root, p, level);
  1607. if (ret) {
  1608. ret = -1;
  1609. goto done;
  1610. }
  1611. ret = bin_search(b, key, level, &slot);
  1612. if (level != 0) {
  1613. if (ret && slot > 0)
  1614. slot -= 1;
  1615. p->slots[level] = slot;
  1616. ret = setup_nodes_for_search(trans, root, p, b, level,
  1617. ins_len);
  1618. if (ret == -EAGAIN)
  1619. goto again;
  1620. else if (ret)
  1621. goto done;
  1622. b = p->nodes[level];
  1623. slot = p->slots[level];
  1624. unlock_up(p, level, lowest_unlock);
  1625. /* this is only true while dropping a snapshot */
  1626. if (level == lowest_level) {
  1627. ret = 0;
  1628. goto done;
  1629. }
  1630. ret = read_block_for_search(trans, root, p,
  1631. &b, level, slot, key);
  1632. if (ret == -EAGAIN)
  1633. goto again;
  1634. if (ret == -EIO)
  1635. goto done;
  1636. if (!p->skip_locking) {
  1637. int lret;
  1638. btrfs_clear_path_blocking(p, NULL);
  1639. lret = btrfs_try_spin_lock(b);
  1640. if (!lret) {
  1641. btrfs_set_path_blocking(p);
  1642. btrfs_tree_lock(b);
  1643. btrfs_clear_path_blocking(p, b);
  1644. }
  1645. }
  1646. } else {
  1647. p->slots[level] = slot;
  1648. if (ins_len > 0 &&
  1649. btrfs_leaf_free_space(root, b) < ins_len) {
  1650. int sret;
  1651. btrfs_set_path_blocking(p);
  1652. sret = split_leaf(trans, root, key,
  1653. p, ins_len, ret == 0);
  1654. btrfs_clear_path_blocking(p, NULL);
  1655. BUG_ON(sret > 0);
  1656. if (sret) {
  1657. ret = sret;
  1658. goto done;
  1659. }
  1660. }
  1661. if (!p->search_for_split)
  1662. unlock_up(p, level, lowest_unlock);
  1663. goto done;
  1664. }
  1665. }
  1666. ret = 1;
  1667. done:
  1668. /*
  1669. * we don't really know what they plan on doing with the path
  1670. * from here on, so for now just mark it as blocking
  1671. */
  1672. if (!p->leave_spinning)
  1673. btrfs_set_path_blocking(p);
  1674. if (ret < 0)
  1675. btrfs_release_path(root, p);
  1676. return ret;
  1677. }
  1678. /*
  1679. * adjust the pointers going up the tree, starting at level
  1680. * making sure the right key of each node is points to 'key'.
  1681. * This is used after shifting pointers to the left, so it stops
  1682. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1683. * higher levels
  1684. *
  1685. * If this fails to write a tree block, it returns -1, but continues
  1686. * fixing up the blocks in ram so the tree is consistent.
  1687. */
  1688. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1689. struct btrfs_root *root, struct btrfs_path *path,
  1690. struct btrfs_disk_key *key, int level)
  1691. {
  1692. int i;
  1693. int ret = 0;
  1694. struct extent_buffer *t;
  1695. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1696. int tslot = path->slots[i];
  1697. if (!path->nodes[i])
  1698. break;
  1699. t = path->nodes[i];
  1700. btrfs_set_node_key(t, key, tslot);
  1701. btrfs_mark_buffer_dirty(path->nodes[i]);
  1702. if (tslot != 0)
  1703. break;
  1704. }
  1705. return ret;
  1706. }
  1707. /*
  1708. * update item key.
  1709. *
  1710. * This function isn't completely safe. It's the caller's responsibility
  1711. * that the new key won't break the order
  1712. */
  1713. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1714. struct btrfs_root *root, struct btrfs_path *path,
  1715. struct btrfs_key *new_key)
  1716. {
  1717. struct btrfs_disk_key disk_key;
  1718. struct extent_buffer *eb;
  1719. int slot;
  1720. eb = path->nodes[0];
  1721. slot = path->slots[0];
  1722. if (slot > 0) {
  1723. btrfs_item_key(eb, &disk_key, slot - 1);
  1724. if (comp_keys(&disk_key, new_key) >= 0)
  1725. return -1;
  1726. }
  1727. if (slot < btrfs_header_nritems(eb) - 1) {
  1728. btrfs_item_key(eb, &disk_key, slot + 1);
  1729. if (comp_keys(&disk_key, new_key) <= 0)
  1730. return -1;
  1731. }
  1732. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1733. btrfs_set_item_key(eb, &disk_key, slot);
  1734. btrfs_mark_buffer_dirty(eb);
  1735. if (slot == 0)
  1736. fixup_low_keys(trans, root, path, &disk_key, 1);
  1737. return 0;
  1738. }
  1739. /*
  1740. * try to push data from one node into the next node left in the
  1741. * tree.
  1742. *
  1743. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1744. * error, and > 0 if there was no room in the left hand block.
  1745. */
  1746. static int push_node_left(struct btrfs_trans_handle *trans,
  1747. struct btrfs_root *root, struct extent_buffer *dst,
  1748. struct extent_buffer *src, int empty)
  1749. {
  1750. int push_items = 0;
  1751. int src_nritems;
  1752. int dst_nritems;
  1753. int ret = 0;
  1754. src_nritems = btrfs_header_nritems(src);
  1755. dst_nritems = btrfs_header_nritems(dst);
  1756. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1757. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1758. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1759. if (!empty && src_nritems <= 8)
  1760. return 1;
  1761. if (push_items <= 0)
  1762. return 1;
  1763. if (empty) {
  1764. push_items = min(src_nritems, push_items);
  1765. if (push_items < src_nritems) {
  1766. /* leave at least 8 pointers in the node if
  1767. * we aren't going to empty it
  1768. */
  1769. if (src_nritems - push_items < 8) {
  1770. if (push_items <= 8)
  1771. return 1;
  1772. push_items -= 8;
  1773. }
  1774. }
  1775. } else
  1776. push_items = min(src_nritems - 8, push_items);
  1777. copy_extent_buffer(dst, src,
  1778. btrfs_node_key_ptr_offset(dst_nritems),
  1779. btrfs_node_key_ptr_offset(0),
  1780. push_items * sizeof(struct btrfs_key_ptr));
  1781. if (push_items < src_nritems) {
  1782. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1783. btrfs_node_key_ptr_offset(push_items),
  1784. (src_nritems - push_items) *
  1785. sizeof(struct btrfs_key_ptr));
  1786. }
  1787. btrfs_set_header_nritems(src, src_nritems - push_items);
  1788. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1789. btrfs_mark_buffer_dirty(src);
  1790. btrfs_mark_buffer_dirty(dst);
  1791. return ret;
  1792. }
  1793. /*
  1794. * try to push data from one node into the next node right in the
  1795. * tree.
  1796. *
  1797. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1798. * error, and > 0 if there was no room in the right hand block.
  1799. *
  1800. * this will only push up to 1/2 the contents of the left node over
  1801. */
  1802. static int balance_node_right(struct btrfs_trans_handle *trans,
  1803. struct btrfs_root *root,
  1804. struct extent_buffer *dst,
  1805. struct extent_buffer *src)
  1806. {
  1807. int push_items = 0;
  1808. int max_push;
  1809. int src_nritems;
  1810. int dst_nritems;
  1811. int ret = 0;
  1812. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1813. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1814. src_nritems = btrfs_header_nritems(src);
  1815. dst_nritems = btrfs_header_nritems(dst);
  1816. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1817. if (push_items <= 0)
  1818. return 1;
  1819. if (src_nritems < 4)
  1820. return 1;
  1821. max_push = src_nritems / 2 + 1;
  1822. /* don't try to empty the node */
  1823. if (max_push >= src_nritems)
  1824. return 1;
  1825. if (max_push < push_items)
  1826. push_items = max_push;
  1827. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1828. btrfs_node_key_ptr_offset(0),
  1829. (dst_nritems) *
  1830. sizeof(struct btrfs_key_ptr));
  1831. copy_extent_buffer(dst, src,
  1832. btrfs_node_key_ptr_offset(0),
  1833. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1834. push_items * sizeof(struct btrfs_key_ptr));
  1835. btrfs_set_header_nritems(src, src_nritems - push_items);
  1836. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1837. btrfs_mark_buffer_dirty(src);
  1838. btrfs_mark_buffer_dirty(dst);
  1839. return ret;
  1840. }
  1841. /*
  1842. * helper function to insert a new root level in the tree.
  1843. * A new node is allocated, and a single item is inserted to
  1844. * point to the existing root
  1845. *
  1846. * returns zero on success or < 0 on failure.
  1847. */
  1848. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1849. struct btrfs_root *root,
  1850. struct btrfs_path *path, int level)
  1851. {
  1852. u64 lower_gen;
  1853. struct extent_buffer *lower;
  1854. struct extent_buffer *c;
  1855. struct extent_buffer *old;
  1856. struct btrfs_disk_key lower_key;
  1857. BUG_ON(path->nodes[level]);
  1858. BUG_ON(path->nodes[level-1] != root->node);
  1859. lower = path->nodes[level-1];
  1860. if (level == 1)
  1861. btrfs_item_key(lower, &lower_key, 0);
  1862. else
  1863. btrfs_node_key(lower, &lower_key, 0);
  1864. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1865. root->root_key.objectid, &lower_key,
  1866. level, root->node->start, 0);
  1867. if (IS_ERR(c))
  1868. return PTR_ERR(c);
  1869. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1870. btrfs_set_header_nritems(c, 1);
  1871. btrfs_set_header_level(c, level);
  1872. btrfs_set_header_bytenr(c, c->start);
  1873. btrfs_set_header_generation(c, trans->transid);
  1874. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1875. btrfs_set_header_owner(c, root->root_key.objectid);
  1876. write_extent_buffer(c, root->fs_info->fsid,
  1877. (unsigned long)btrfs_header_fsid(c),
  1878. BTRFS_FSID_SIZE);
  1879. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1880. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1881. BTRFS_UUID_SIZE);
  1882. btrfs_set_node_key(c, &lower_key, 0);
  1883. btrfs_set_node_blockptr(c, 0, lower->start);
  1884. lower_gen = btrfs_header_generation(lower);
  1885. WARN_ON(lower_gen != trans->transid);
  1886. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1887. btrfs_mark_buffer_dirty(c);
  1888. spin_lock(&root->node_lock);
  1889. old = root->node;
  1890. root->node = c;
  1891. spin_unlock(&root->node_lock);
  1892. /* the super has an extra ref to root->node */
  1893. free_extent_buffer(old);
  1894. add_root_to_dirty_list(root);
  1895. extent_buffer_get(c);
  1896. path->nodes[level] = c;
  1897. path->locks[level] = 1;
  1898. path->slots[level] = 0;
  1899. return 0;
  1900. }
  1901. /*
  1902. * worker function to insert a single pointer in a node.
  1903. * the node should have enough room for the pointer already
  1904. *
  1905. * slot and level indicate where you want the key to go, and
  1906. * blocknr is the block the key points to.
  1907. *
  1908. * returns zero on success and < 0 on any error
  1909. */
  1910. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1911. *root, struct btrfs_path *path, struct btrfs_disk_key
  1912. *key, u64 bytenr, int slot, int level)
  1913. {
  1914. struct extent_buffer *lower;
  1915. int nritems;
  1916. BUG_ON(!path->nodes[level]);
  1917. lower = path->nodes[level];
  1918. nritems = btrfs_header_nritems(lower);
  1919. BUG_ON(slot > nritems);
  1920. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1921. BUG();
  1922. if (slot != nritems) {
  1923. memmove_extent_buffer(lower,
  1924. btrfs_node_key_ptr_offset(slot + 1),
  1925. btrfs_node_key_ptr_offset(slot),
  1926. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1927. }
  1928. btrfs_set_node_key(lower, key, slot);
  1929. btrfs_set_node_blockptr(lower, slot, bytenr);
  1930. WARN_ON(trans->transid == 0);
  1931. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1932. btrfs_set_header_nritems(lower, nritems + 1);
  1933. btrfs_mark_buffer_dirty(lower);
  1934. return 0;
  1935. }
  1936. /*
  1937. * split the node at the specified level in path in two.
  1938. * The path is corrected to point to the appropriate node after the split
  1939. *
  1940. * Before splitting this tries to make some room in the node by pushing
  1941. * left and right, if either one works, it returns right away.
  1942. *
  1943. * returns 0 on success and < 0 on failure
  1944. */
  1945. static noinline int split_node(struct btrfs_trans_handle *trans,
  1946. struct btrfs_root *root,
  1947. struct btrfs_path *path, int level)
  1948. {
  1949. struct extent_buffer *c;
  1950. struct extent_buffer *split;
  1951. struct btrfs_disk_key disk_key;
  1952. int mid;
  1953. int ret;
  1954. int wret;
  1955. u32 c_nritems;
  1956. c = path->nodes[level];
  1957. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1958. if (c == root->node) {
  1959. /* trying to split the root, lets make a new one */
  1960. ret = insert_new_root(trans, root, path, level + 1);
  1961. if (ret)
  1962. return ret;
  1963. } else {
  1964. ret = push_nodes_for_insert(trans, root, path, level);
  1965. c = path->nodes[level];
  1966. if (!ret && btrfs_header_nritems(c) <
  1967. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1968. return 0;
  1969. if (ret < 0)
  1970. return ret;
  1971. }
  1972. c_nritems = btrfs_header_nritems(c);
  1973. mid = (c_nritems + 1) / 2;
  1974. btrfs_node_key(c, &disk_key, mid);
  1975. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1976. root->root_key.objectid,
  1977. &disk_key, level, c->start, 0);
  1978. if (IS_ERR(split))
  1979. return PTR_ERR(split);
  1980. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1981. btrfs_set_header_level(split, btrfs_header_level(c));
  1982. btrfs_set_header_bytenr(split, split->start);
  1983. btrfs_set_header_generation(split, trans->transid);
  1984. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1985. btrfs_set_header_owner(split, root->root_key.objectid);
  1986. write_extent_buffer(split, root->fs_info->fsid,
  1987. (unsigned long)btrfs_header_fsid(split),
  1988. BTRFS_FSID_SIZE);
  1989. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1990. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1991. BTRFS_UUID_SIZE);
  1992. copy_extent_buffer(split, c,
  1993. btrfs_node_key_ptr_offset(0),
  1994. btrfs_node_key_ptr_offset(mid),
  1995. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1996. btrfs_set_header_nritems(split, c_nritems - mid);
  1997. btrfs_set_header_nritems(c, mid);
  1998. ret = 0;
  1999. btrfs_mark_buffer_dirty(c);
  2000. btrfs_mark_buffer_dirty(split);
  2001. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2002. path->slots[level + 1] + 1,
  2003. level + 1);
  2004. if (wret)
  2005. ret = wret;
  2006. if (path->slots[level] >= mid) {
  2007. path->slots[level] -= mid;
  2008. btrfs_tree_unlock(c);
  2009. free_extent_buffer(c);
  2010. path->nodes[level] = split;
  2011. path->slots[level + 1] += 1;
  2012. } else {
  2013. btrfs_tree_unlock(split);
  2014. free_extent_buffer(split);
  2015. }
  2016. return ret;
  2017. }
  2018. /*
  2019. * how many bytes are required to store the items in a leaf. start
  2020. * and nr indicate which items in the leaf to check. This totals up the
  2021. * space used both by the item structs and the item data
  2022. */
  2023. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2024. {
  2025. int data_len;
  2026. int nritems = btrfs_header_nritems(l);
  2027. int end = min(nritems, start + nr) - 1;
  2028. if (!nr)
  2029. return 0;
  2030. data_len = btrfs_item_end_nr(l, start);
  2031. data_len = data_len - btrfs_item_offset_nr(l, end);
  2032. data_len += sizeof(struct btrfs_item) * nr;
  2033. WARN_ON(data_len < 0);
  2034. return data_len;
  2035. }
  2036. /*
  2037. * The space between the end of the leaf items and
  2038. * the start of the leaf data. IOW, how much room
  2039. * the leaf has left for both items and data
  2040. */
  2041. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2042. struct extent_buffer *leaf)
  2043. {
  2044. int nritems = btrfs_header_nritems(leaf);
  2045. int ret;
  2046. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2047. if (ret < 0) {
  2048. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2049. "used %d nritems %d\n",
  2050. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2051. leaf_space_used(leaf, 0, nritems), nritems);
  2052. }
  2053. return ret;
  2054. }
  2055. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2056. struct btrfs_root *root,
  2057. struct btrfs_path *path,
  2058. int data_size, int empty,
  2059. struct extent_buffer *right,
  2060. int free_space, u32 left_nritems)
  2061. {
  2062. struct extent_buffer *left = path->nodes[0];
  2063. struct extent_buffer *upper = path->nodes[1];
  2064. struct btrfs_disk_key disk_key;
  2065. int slot;
  2066. u32 i;
  2067. int push_space = 0;
  2068. int push_items = 0;
  2069. struct btrfs_item *item;
  2070. u32 nr;
  2071. u32 right_nritems;
  2072. u32 data_end;
  2073. u32 this_item_size;
  2074. if (empty)
  2075. nr = 0;
  2076. else
  2077. nr = 1;
  2078. if (path->slots[0] >= left_nritems)
  2079. push_space += data_size;
  2080. slot = path->slots[1];
  2081. i = left_nritems - 1;
  2082. while (i >= nr) {
  2083. item = btrfs_item_nr(left, i);
  2084. if (!empty && push_items > 0) {
  2085. if (path->slots[0] > i)
  2086. break;
  2087. if (path->slots[0] == i) {
  2088. int space = btrfs_leaf_free_space(root, left);
  2089. if (space + push_space * 2 > free_space)
  2090. break;
  2091. }
  2092. }
  2093. if (path->slots[0] == i)
  2094. push_space += data_size;
  2095. if (!left->map_token) {
  2096. map_extent_buffer(left, (unsigned long)item,
  2097. sizeof(struct btrfs_item),
  2098. &left->map_token, &left->kaddr,
  2099. &left->map_start, &left->map_len,
  2100. KM_USER1);
  2101. }
  2102. this_item_size = btrfs_item_size(left, item);
  2103. if (this_item_size + sizeof(*item) + push_space > free_space)
  2104. break;
  2105. push_items++;
  2106. push_space += this_item_size + sizeof(*item);
  2107. if (i == 0)
  2108. break;
  2109. i--;
  2110. }
  2111. if (left->map_token) {
  2112. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2113. left->map_token = NULL;
  2114. }
  2115. if (push_items == 0)
  2116. goto out_unlock;
  2117. if (!empty && push_items == left_nritems)
  2118. WARN_ON(1);
  2119. /* push left to right */
  2120. right_nritems = btrfs_header_nritems(right);
  2121. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2122. push_space -= leaf_data_end(root, left);
  2123. /* make room in the right data area */
  2124. data_end = leaf_data_end(root, right);
  2125. memmove_extent_buffer(right,
  2126. btrfs_leaf_data(right) + data_end - push_space,
  2127. btrfs_leaf_data(right) + data_end,
  2128. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2129. /* copy from the left data area */
  2130. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2131. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2132. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2133. push_space);
  2134. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2135. btrfs_item_nr_offset(0),
  2136. right_nritems * sizeof(struct btrfs_item));
  2137. /* copy the items from left to right */
  2138. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2139. btrfs_item_nr_offset(left_nritems - push_items),
  2140. push_items * sizeof(struct btrfs_item));
  2141. /* update the item pointers */
  2142. right_nritems += push_items;
  2143. btrfs_set_header_nritems(right, right_nritems);
  2144. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2145. for (i = 0; i < right_nritems; i++) {
  2146. item = btrfs_item_nr(right, i);
  2147. if (!right->map_token) {
  2148. map_extent_buffer(right, (unsigned long)item,
  2149. sizeof(struct btrfs_item),
  2150. &right->map_token, &right->kaddr,
  2151. &right->map_start, &right->map_len,
  2152. KM_USER1);
  2153. }
  2154. push_space -= btrfs_item_size(right, item);
  2155. btrfs_set_item_offset(right, item, push_space);
  2156. }
  2157. if (right->map_token) {
  2158. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2159. right->map_token = NULL;
  2160. }
  2161. left_nritems -= push_items;
  2162. btrfs_set_header_nritems(left, left_nritems);
  2163. if (left_nritems)
  2164. btrfs_mark_buffer_dirty(left);
  2165. btrfs_mark_buffer_dirty(right);
  2166. btrfs_item_key(right, &disk_key, 0);
  2167. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2168. btrfs_mark_buffer_dirty(upper);
  2169. /* then fixup the leaf pointer in the path */
  2170. if (path->slots[0] >= left_nritems) {
  2171. path->slots[0] -= left_nritems;
  2172. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2173. clean_tree_block(trans, root, path->nodes[0]);
  2174. btrfs_tree_unlock(path->nodes[0]);
  2175. free_extent_buffer(path->nodes[0]);
  2176. path->nodes[0] = right;
  2177. path->slots[1] += 1;
  2178. } else {
  2179. btrfs_tree_unlock(right);
  2180. free_extent_buffer(right);
  2181. }
  2182. return 0;
  2183. out_unlock:
  2184. btrfs_tree_unlock(right);
  2185. free_extent_buffer(right);
  2186. return 1;
  2187. }
  2188. /*
  2189. * push some data in the path leaf to the right, trying to free up at
  2190. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2191. *
  2192. * returns 1 if the push failed because the other node didn't have enough
  2193. * room, 0 if everything worked out and < 0 if there were major errors.
  2194. */
  2195. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2196. *root, struct btrfs_path *path, int data_size,
  2197. int empty)
  2198. {
  2199. struct extent_buffer *left = path->nodes[0];
  2200. struct extent_buffer *right;
  2201. struct extent_buffer *upper;
  2202. int slot;
  2203. int free_space;
  2204. u32 left_nritems;
  2205. int ret;
  2206. if (!path->nodes[1])
  2207. return 1;
  2208. slot = path->slots[1];
  2209. upper = path->nodes[1];
  2210. if (slot >= btrfs_header_nritems(upper) - 1)
  2211. return 1;
  2212. btrfs_assert_tree_locked(path->nodes[1]);
  2213. right = read_node_slot(root, upper, slot + 1);
  2214. btrfs_tree_lock(right);
  2215. btrfs_set_lock_blocking(right);
  2216. free_space = btrfs_leaf_free_space(root, right);
  2217. if (free_space < data_size)
  2218. goto out_unlock;
  2219. /* cow and double check */
  2220. ret = btrfs_cow_block(trans, root, right, upper,
  2221. slot + 1, &right);
  2222. if (ret)
  2223. goto out_unlock;
  2224. free_space = btrfs_leaf_free_space(root, right);
  2225. if (free_space < data_size)
  2226. goto out_unlock;
  2227. left_nritems = btrfs_header_nritems(left);
  2228. if (left_nritems == 0)
  2229. goto out_unlock;
  2230. return __push_leaf_right(trans, root, path, data_size, empty,
  2231. right, free_space, left_nritems);
  2232. out_unlock:
  2233. btrfs_tree_unlock(right);
  2234. free_extent_buffer(right);
  2235. return 1;
  2236. }
  2237. /*
  2238. * push some data in the path leaf to the left, trying to free up at
  2239. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2240. */
  2241. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2242. struct btrfs_root *root,
  2243. struct btrfs_path *path, int data_size,
  2244. int empty, struct extent_buffer *left,
  2245. int free_space, int right_nritems)
  2246. {
  2247. struct btrfs_disk_key disk_key;
  2248. struct extent_buffer *right = path->nodes[0];
  2249. int slot;
  2250. int i;
  2251. int push_space = 0;
  2252. int push_items = 0;
  2253. struct btrfs_item *item;
  2254. u32 old_left_nritems;
  2255. u32 nr;
  2256. int ret = 0;
  2257. int wret;
  2258. u32 this_item_size;
  2259. u32 old_left_item_size;
  2260. slot = path->slots[1];
  2261. if (empty)
  2262. nr = right_nritems;
  2263. else
  2264. nr = right_nritems - 1;
  2265. for (i = 0; i < nr; i++) {
  2266. item = btrfs_item_nr(right, i);
  2267. if (!right->map_token) {
  2268. map_extent_buffer(right, (unsigned long)item,
  2269. sizeof(struct btrfs_item),
  2270. &right->map_token, &right->kaddr,
  2271. &right->map_start, &right->map_len,
  2272. KM_USER1);
  2273. }
  2274. if (!empty && push_items > 0) {
  2275. if (path->slots[0] < i)
  2276. break;
  2277. if (path->slots[0] == i) {
  2278. int space = btrfs_leaf_free_space(root, right);
  2279. if (space + push_space * 2 > free_space)
  2280. break;
  2281. }
  2282. }
  2283. if (path->slots[0] == i)
  2284. push_space += data_size;
  2285. this_item_size = btrfs_item_size(right, item);
  2286. if (this_item_size + sizeof(*item) + push_space > free_space)
  2287. break;
  2288. push_items++;
  2289. push_space += this_item_size + sizeof(*item);
  2290. }
  2291. if (right->map_token) {
  2292. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2293. right->map_token = NULL;
  2294. }
  2295. if (push_items == 0) {
  2296. ret = 1;
  2297. goto out;
  2298. }
  2299. if (!empty && push_items == btrfs_header_nritems(right))
  2300. WARN_ON(1);
  2301. /* push data from right to left */
  2302. copy_extent_buffer(left, right,
  2303. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2304. btrfs_item_nr_offset(0),
  2305. push_items * sizeof(struct btrfs_item));
  2306. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2307. btrfs_item_offset_nr(right, push_items - 1);
  2308. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2309. leaf_data_end(root, left) - push_space,
  2310. btrfs_leaf_data(right) +
  2311. btrfs_item_offset_nr(right, push_items - 1),
  2312. push_space);
  2313. old_left_nritems = btrfs_header_nritems(left);
  2314. BUG_ON(old_left_nritems <= 0);
  2315. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2316. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2317. u32 ioff;
  2318. item = btrfs_item_nr(left, i);
  2319. if (!left->map_token) {
  2320. map_extent_buffer(left, (unsigned long)item,
  2321. sizeof(struct btrfs_item),
  2322. &left->map_token, &left->kaddr,
  2323. &left->map_start, &left->map_len,
  2324. KM_USER1);
  2325. }
  2326. ioff = btrfs_item_offset(left, item);
  2327. btrfs_set_item_offset(left, item,
  2328. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2329. }
  2330. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2331. if (left->map_token) {
  2332. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2333. left->map_token = NULL;
  2334. }
  2335. /* fixup right node */
  2336. if (push_items > right_nritems) {
  2337. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2338. right_nritems);
  2339. WARN_ON(1);
  2340. }
  2341. if (push_items < right_nritems) {
  2342. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2343. leaf_data_end(root, right);
  2344. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2345. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2346. btrfs_leaf_data(right) +
  2347. leaf_data_end(root, right), push_space);
  2348. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2349. btrfs_item_nr_offset(push_items),
  2350. (btrfs_header_nritems(right) - push_items) *
  2351. sizeof(struct btrfs_item));
  2352. }
  2353. right_nritems -= push_items;
  2354. btrfs_set_header_nritems(right, right_nritems);
  2355. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2356. for (i = 0; i < right_nritems; i++) {
  2357. item = btrfs_item_nr(right, i);
  2358. if (!right->map_token) {
  2359. map_extent_buffer(right, (unsigned long)item,
  2360. sizeof(struct btrfs_item),
  2361. &right->map_token, &right->kaddr,
  2362. &right->map_start, &right->map_len,
  2363. KM_USER1);
  2364. }
  2365. push_space = push_space - btrfs_item_size(right, item);
  2366. btrfs_set_item_offset(right, item, push_space);
  2367. }
  2368. if (right->map_token) {
  2369. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2370. right->map_token = NULL;
  2371. }
  2372. btrfs_mark_buffer_dirty(left);
  2373. if (right_nritems)
  2374. btrfs_mark_buffer_dirty(right);
  2375. btrfs_item_key(right, &disk_key, 0);
  2376. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2377. if (wret)
  2378. ret = wret;
  2379. /* then fixup the leaf pointer in the path */
  2380. if (path->slots[0] < push_items) {
  2381. path->slots[0] += old_left_nritems;
  2382. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2383. clean_tree_block(trans, root, path->nodes[0]);
  2384. btrfs_tree_unlock(path->nodes[0]);
  2385. free_extent_buffer(path->nodes[0]);
  2386. path->nodes[0] = left;
  2387. path->slots[1] -= 1;
  2388. } else {
  2389. btrfs_tree_unlock(left);
  2390. free_extent_buffer(left);
  2391. path->slots[0] -= push_items;
  2392. }
  2393. BUG_ON(path->slots[0] < 0);
  2394. return ret;
  2395. out:
  2396. btrfs_tree_unlock(left);
  2397. free_extent_buffer(left);
  2398. return ret;
  2399. }
  2400. /*
  2401. * push some data in the path leaf to the left, trying to free up at
  2402. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2403. */
  2404. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2405. *root, struct btrfs_path *path, int data_size,
  2406. int empty)
  2407. {
  2408. struct extent_buffer *right = path->nodes[0];
  2409. struct extent_buffer *left;
  2410. int slot;
  2411. int free_space;
  2412. u32 right_nritems;
  2413. int ret = 0;
  2414. slot = path->slots[1];
  2415. if (slot == 0)
  2416. return 1;
  2417. if (!path->nodes[1])
  2418. return 1;
  2419. right_nritems = btrfs_header_nritems(right);
  2420. if (right_nritems == 0)
  2421. return 1;
  2422. btrfs_assert_tree_locked(path->nodes[1]);
  2423. left = read_node_slot(root, path->nodes[1], slot - 1);
  2424. btrfs_tree_lock(left);
  2425. btrfs_set_lock_blocking(left);
  2426. free_space = btrfs_leaf_free_space(root, left);
  2427. if (free_space < data_size) {
  2428. ret = 1;
  2429. goto out;
  2430. }
  2431. /* cow and double check */
  2432. ret = btrfs_cow_block(trans, root, left,
  2433. path->nodes[1], slot - 1, &left);
  2434. if (ret) {
  2435. /* we hit -ENOSPC, but it isn't fatal here */
  2436. ret = 1;
  2437. goto out;
  2438. }
  2439. free_space = btrfs_leaf_free_space(root, left);
  2440. if (free_space < data_size) {
  2441. ret = 1;
  2442. goto out;
  2443. }
  2444. return __push_leaf_left(trans, root, path, data_size,
  2445. empty, left, free_space, right_nritems);
  2446. out:
  2447. btrfs_tree_unlock(left);
  2448. free_extent_buffer(left);
  2449. return ret;
  2450. }
  2451. /*
  2452. * split the path's leaf in two, making sure there is at least data_size
  2453. * available for the resulting leaf level of the path.
  2454. *
  2455. * returns 0 if all went well and < 0 on failure.
  2456. */
  2457. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2458. struct btrfs_root *root,
  2459. struct btrfs_path *path,
  2460. struct extent_buffer *l,
  2461. struct extent_buffer *right,
  2462. int slot, int mid, int nritems)
  2463. {
  2464. int data_copy_size;
  2465. int rt_data_off;
  2466. int i;
  2467. int ret = 0;
  2468. int wret;
  2469. struct btrfs_disk_key disk_key;
  2470. nritems = nritems - mid;
  2471. btrfs_set_header_nritems(right, nritems);
  2472. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2473. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2474. btrfs_item_nr_offset(mid),
  2475. nritems * sizeof(struct btrfs_item));
  2476. copy_extent_buffer(right, l,
  2477. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2478. data_copy_size, btrfs_leaf_data(l) +
  2479. leaf_data_end(root, l), data_copy_size);
  2480. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2481. btrfs_item_end_nr(l, mid);
  2482. for (i = 0; i < nritems; i++) {
  2483. struct btrfs_item *item = btrfs_item_nr(right, i);
  2484. u32 ioff;
  2485. if (!right->map_token) {
  2486. map_extent_buffer(right, (unsigned long)item,
  2487. sizeof(struct btrfs_item),
  2488. &right->map_token, &right->kaddr,
  2489. &right->map_start, &right->map_len,
  2490. KM_USER1);
  2491. }
  2492. ioff = btrfs_item_offset(right, item);
  2493. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2494. }
  2495. if (right->map_token) {
  2496. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2497. right->map_token = NULL;
  2498. }
  2499. btrfs_set_header_nritems(l, mid);
  2500. ret = 0;
  2501. btrfs_item_key(right, &disk_key, 0);
  2502. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2503. path->slots[1] + 1, 1);
  2504. if (wret)
  2505. ret = wret;
  2506. btrfs_mark_buffer_dirty(right);
  2507. btrfs_mark_buffer_dirty(l);
  2508. BUG_ON(path->slots[0] != slot);
  2509. if (mid <= slot) {
  2510. btrfs_tree_unlock(path->nodes[0]);
  2511. free_extent_buffer(path->nodes[0]);
  2512. path->nodes[0] = right;
  2513. path->slots[0] -= mid;
  2514. path->slots[1] += 1;
  2515. } else {
  2516. btrfs_tree_unlock(right);
  2517. free_extent_buffer(right);
  2518. }
  2519. BUG_ON(path->slots[0] < 0);
  2520. return ret;
  2521. }
  2522. /*
  2523. * split the path's leaf in two, making sure there is at least data_size
  2524. * available for the resulting leaf level of the path.
  2525. *
  2526. * returns 0 if all went well and < 0 on failure.
  2527. */
  2528. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2529. struct btrfs_root *root,
  2530. struct btrfs_key *ins_key,
  2531. struct btrfs_path *path, int data_size,
  2532. int extend)
  2533. {
  2534. struct btrfs_disk_key disk_key;
  2535. struct extent_buffer *l;
  2536. u32 nritems;
  2537. int mid;
  2538. int slot;
  2539. struct extent_buffer *right;
  2540. int ret = 0;
  2541. int wret;
  2542. int split;
  2543. int num_doubles = 0;
  2544. /* first try to make some room by pushing left and right */
  2545. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2546. wret = push_leaf_right(trans, root, path, data_size, 0);
  2547. if (wret < 0)
  2548. return wret;
  2549. if (wret) {
  2550. wret = push_leaf_left(trans, root, path, data_size, 0);
  2551. if (wret < 0)
  2552. return wret;
  2553. }
  2554. l = path->nodes[0];
  2555. /* did the pushes work? */
  2556. if (btrfs_leaf_free_space(root, l) >= data_size)
  2557. return 0;
  2558. }
  2559. if (!path->nodes[1]) {
  2560. ret = insert_new_root(trans, root, path, 1);
  2561. if (ret)
  2562. return ret;
  2563. }
  2564. again:
  2565. split = 1;
  2566. l = path->nodes[0];
  2567. slot = path->slots[0];
  2568. nritems = btrfs_header_nritems(l);
  2569. mid = (nritems + 1) / 2;
  2570. if (mid <= slot) {
  2571. if (nritems == 1 ||
  2572. leaf_space_used(l, mid, nritems - mid) + data_size >
  2573. BTRFS_LEAF_DATA_SIZE(root)) {
  2574. if (slot >= nritems) {
  2575. split = 0;
  2576. } else {
  2577. mid = slot;
  2578. if (mid != nritems &&
  2579. leaf_space_used(l, mid, nritems - mid) +
  2580. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2581. split = 2;
  2582. }
  2583. }
  2584. }
  2585. } else {
  2586. if (leaf_space_used(l, 0, mid) + data_size >
  2587. BTRFS_LEAF_DATA_SIZE(root)) {
  2588. if (!extend && data_size && slot == 0) {
  2589. split = 0;
  2590. } else if ((extend || !data_size) && slot == 0) {
  2591. mid = 1;
  2592. } else {
  2593. mid = slot;
  2594. if (mid != nritems &&
  2595. leaf_space_used(l, mid, nritems - mid) +
  2596. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2597. split = 2 ;
  2598. }
  2599. }
  2600. }
  2601. }
  2602. if (split == 0)
  2603. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2604. else
  2605. btrfs_item_key(l, &disk_key, mid);
  2606. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2607. root->root_key.objectid,
  2608. &disk_key, 0, l->start, 0);
  2609. if (IS_ERR(right)) {
  2610. BUG_ON(1);
  2611. return PTR_ERR(right);
  2612. }
  2613. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2614. btrfs_set_header_bytenr(right, right->start);
  2615. btrfs_set_header_generation(right, trans->transid);
  2616. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2617. btrfs_set_header_owner(right, root->root_key.objectid);
  2618. btrfs_set_header_level(right, 0);
  2619. write_extent_buffer(right, root->fs_info->fsid,
  2620. (unsigned long)btrfs_header_fsid(right),
  2621. BTRFS_FSID_SIZE);
  2622. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2623. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2624. BTRFS_UUID_SIZE);
  2625. if (split == 0) {
  2626. if (mid <= slot) {
  2627. btrfs_set_header_nritems(right, 0);
  2628. wret = insert_ptr(trans, root, path,
  2629. &disk_key, right->start,
  2630. path->slots[1] + 1, 1);
  2631. if (wret)
  2632. ret = wret;
  2633. btrfs_tree_unlock(path->nodes[0]);
  2634. free_extent_buffer(path->nodes[0]);
  2635. path->nodes[0] = right;
  2636. path->slots[0] = 0;
  2637. path->slots[1] += 1;
  2638. } else {
  2639. btrfs_set_header_nritems(right, 0);
  2640. wret = insert_ptr(trans, root, path,
  2641. &disk_key,
  2642. right->start,
  2643. path->slots[1], 1);
  2644. if (wret)
  2645. ret = wret;
  2646. btrfs_tree_unlock(path->nodes[0]);
  2647. free_extent_buffer(path->nodes[0]);
  2648. path->nodes[0] = right;
  2649. path->slots[0] = 0;
  2650. if (path->slots[1] == 0) {
  2651. wret = fixup_low_keys(trans, root,
  2652. path, &disk_key, 1);
  2653. if (wret)
  2654. ret = wret;
  2655. }
  2656. }
  2657. btrfs_mark_buffer_dirty(right);
  2658. return ret;
  2659. }
  2660. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2661. BUG_ON(ret);
  2662. if (split == 2) {
  2663. BUG_ON(num_doubles != 0);
  2664. num_doubles++;
  2665. goto again;
  2666. }
  2667. return ret;
  2668. }
  2669. /*
  2670. * This function splits a single item into two items,
  2671. * giving 'new_key' to the new item and splitting the
  2672. * old one at split_offset (from the start of the item).
  2673. *
  2674. * The path may be released by this operation. After
  2675. * the split, the path is pointing to the old item. The
  2676. * new item is going to be in the same node as the old one.
  2677. *
  2678. * Note, the item being split must be smaller enough to live alone on
  2679. * a tree block with room for one extra struct btrfs_item
  2680. *
  2681. * This allows us to split the item in place, keeping a lock on the
  2682. * leaf the entire time.
  2683. */
  2684. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2685. struct btrfs_root *root,
  2686. struct btrfs_path *path,
  2687. struct btrfs_key *new_key,
  2688. unsigned long split_offset)
  2689. {
  2690. u32 item_size;
  2691. struct extent_buffer *leaf;
  2692. struct btrfs_key orig_key;
  2693. struct btrfs_item *item;
  2694. struct btrfs_item *new_item;
  2695. int ret = 0;
  2696. int slot;
  2697. u32 nritems;
  2698. u32 orig_offset;
  2699. struct btrfs_disk_key disk_key;
  2700. char *buf;
  2701. leaf = path->nodes[0];
  2702. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2703. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2704. goto split;
  2705. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2706. btrfs_release_path(root, path);
  2707. path->search_for_split = 1;
  2708. path->keep_locks = 1;
  2709. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2710. path->search_for_split = 0;
  2711. /* if our item isn't there or got smaller, return now */
  2712. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2713. path->slots[0])) {
  2714. path->keep_locks = 0;
  2715. return -EAGAIN;
  2716. }
  2717. btrfs_set_path_blocking(path);
  2718. ret = split_leaf(trans, root, &orig_key, path,
  2719. sizeof(struct btrfs_item), 1);
  2720. path->keep_locks = 0;
  2721. BUG_ON(ret);
  2722. btrfs_unlock_up_safe(path, 1);
  2723. leaf = path->nodes[0];
  2724. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2725. split:
  2726. /*
  2727. * make sure any changes to the path from split_leaf leave it
  2728. * in a blocking state
  2729. */
  2730. btrfs_set_path_blocking(path);
  2731. item = btrfs_item_nr(leaf, path->slots[0]);
  2732. orig_offset = btrfs_item_offset(leaf, item);
  2733. item_size = btrfs_item_size(leaf, item);
  2734. buf = kmalloc(item_size, GFP_NOFS);
  2735. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2736. path->slots[0]), item_size);
  2737. slot = path->slots[0] + 1;
  2738. leaf = path->nodes[0];
  2739. nritems = btrfs_header_nritems(leaf);
  2740. if (slot != nritems) {
  2741. /* shift the items */
  2742. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2743. btrfs_item_nr_offset(slot),
  2744. (nritems - slot) * sizeof(struct btrfs_item));
  2745. }
  2746. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2747. btrfs_set_item_key(leaf, &disk_key, slot);
  2748. new_item = btrfs_item_nr(leaf, slot);
  2749. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2750. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2751. btrfs_set_item_offset(leaf, item,
  2752. orig_offset + item_size - split_offset);
  2753. btrfs_set_item_size(leaf, item, split_offset);
  2754. btrfs_set_header_nritems(leaf, nritems + 1);
  2755. /* write the data for the start of the original item */
  2756. write_extent_buffer(leaf, buf,
  2757. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2758. split_offset);
  2759. /* write the data for the new item */
  2760. write_extent_buffer(leaf, buf + split_offset,
  2761. btrfs_item_ptr_offset(leaf, slot),
  2762. item_size - split_offset);
  2763. btrfs_mark_buffer_dirty(leaf);
  2764. ret = 0;
  2765. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2766. btrfs_print_leaf(root, leaf);
  2767. BUG();
  2768. }
  2769. kfree(buf);
  2770. return ret;
  2771. }
  2772. /*
  2773. * make the item pointed to by the path smaller. new_size indicates
  2774. * how small to make it, and from_end tells us if we just chop bytes
  2775. * off the end of the item or if we shift the item to chop bytes off
  2776. * the front.
  2777. */
  2778. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2779. struct btrfs_root *root,
  2780. struct btrfs_path *path,
  2781. u32 new_size, int from_end)
  2782. {
  2783. int ret = 0;
  2784. int slot;
  2785. int slot_orig;
  2786. struct extent_buffer *leaf;
  2787. struct btrfs_item *item;
  2788. u32 nritems;
  2789. unsigned int data_end;
  2790. unsigned int old_data_start;
  2791. unsigned int old_size;
  2792. unsigned int size_diff;
  2793. int i;
  2794. slot_orig = path->slots[0];
  2795. leaf = path->nodes[0];
  2796. slot = path->slots[0];
  2797. old_size = btrfs_item_size_nr(leaf, slot);
  2798. if (old_size == new_size)
  2799. return 0;
  2800. nritems = btrfs_header_nritems(leaf);
  2801. data_end = leaf_data_end(root, leaf);
  2802. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2803. size_diff = old_size - new_size;
  2804. BUG_ON(slot < 0);
  2805. BUG_ON(slot >= nritems);
  2806. /*
  2807. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2808. */
  2809. /* first correct the data pointers */
  2810. for (i = slot; i < nritems; i++) {
  2811. u32 ioff;
  2812. item = btrfs_item_nr(leaf, i);
  2813. if (!leaf->map_token) {
  2814. map_extent_buffer(leaf, (unsigned long)item,
  2815. sizeof(struct btrfs_item),
  2816. &leaf->map_token, &leaf->kaddr,
  2817. &leaf->map_start, &leaf->map_len,
  2818. KM_USER1);
  2819. }
  2820. ioff = btrfs_item_offset(leaf, item);
  2821. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2822. }
  2823. if (leaf->map_token) {
  2824. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2825. leaf->map_token = NULL;
  2826. }
  2827. /* shift the data */
  2828. if (from_end) {
  2829. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2830. data_end + size_diff, btrfs_leaf_data(leaf) +
  2831. data_end, old_data_start + new_size - data_end);
  2832. } else {
  2833. struct btrfs_disk_key disk_key;
  2834. u64 offset;
  2835. btrfs_item_key(leaf, &disk_key, slot);
  2836. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2837. unsigned long ptr;
  2838. struct btrfs_file_extent_item *fi;
  2839. fi = btrfs_item_ptr(leaf, slot,
  2840. struct btrfs_file_extent_item);
  2841. fi = (struct btrfs_file_extent_item *)(
  2842. (unsigned long)fi - size_diff);
  2843. if (btrfs_file_extent_type(leaf, fi) ==
  2844. BTRFS_FILE_EXTENT_INLINE) {
  2845. ptr = btrfs_item_ptr_offset(leaf, slot);
  2846. memmove_extent_buffer(leaf, ptr,
  2847. (unsigned long)fi,
  2848. offsetof(struct btrfs_file_extent_item,
  2849. disk_bytenr));
  2850. }
  2851. }
  2852. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2853. data_end + size_diff, btrfs_leaf_data(leaf) +
  2854. data_end, old_data_start - data_end);
  2855. offset = btrfs_disk_key_offset(&disk_key);
  2856. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2857. btrfs_set_item_key(leaf, &disk_key, slot);
  2858. if (slot == 0)
  2859. fixup_low_keys(trans, root, path, &disk_key, 1);
  2860. }
  2861. item = btrfs_item_nr(leaf, slot);
  2862. btrfs_set_item_size(leaf, item, new_size);
  2863. btrfs_mark_buffer_dirty(leaf);
  2864. ret = 0;
  2865. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2866. btrfs_print_leaf(root, leaf);
  2867. BUG();
  2868. }
  2869. return ret;
  2870. }
  2871. /*
  2872. * make the item pointed to by the path bigger, data_size is the new size.
  2873. */
  2874. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2875. struct btrfs_root *root, struct btrfs_path *path,
  2876. u32 data_size)
  2877. {
  2878. int ret = 0;
  2879. int slot;
  2880. int slot_orig;
  2881. struct extent_buffer *leaf;
  2882. struct btrfs_item *item;
  2883. u32 nritems;
  2884. unsigned int data_end;
  2885. unsigned int old_data;
  2886. unsigned int old_size;
  2887. int i;
  2888. slot_orig = path->slots[0];
  2889. leaf = path->nodes[0];
  2890. nritems = btrfs_header_nritems(leaf);
  2891. data_end = leaf_data_end(root, leaf);
  2892. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2893. btrfs_print_leaf(root, leaf);
  2894. BUG();
  2895. }
  2896. slot = path->slots[0];
  2897. old_data = btrfs_item_end_nr(leaf, slot);
  2898. BUG_ON(slot < 0);
  2899. if (slot >= nritems) {
  2900. btrfs_print_leaf(root, leaf);
  2901. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2902. slot, nritems);
  2903. BUG_ON(1);
  2904. }
  2905. /*
  2906. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2907. */
  2908. /* first correct the data pointers */
  2909. for (i = slot; i < nritems; i++) {
  2910. u32 ioff;
  2911. item = btrfs_item_nr(leaf, i);
  2912. if (!leaf->map_token) {
  2913. map_extent_buffer(leaf, (unsigned long)item,
  2914. sizeof(struct btrfs_item),
  2915. &leaf->map_token, &leaf->kaddr,
  2916. &leaf->map_start, &leaf->map_len,
  2917. KM_USER1);
  2918. }
  2919. ioff = btrfs_item_offset(leaf, item);
  2920. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2921. }
  2922. if (leaf->map_token) {
  2923. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2924. leaf->map_token = NULL;
  2925. }
  2926. /* shift the data */
  2927. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2928. data_end - data_size, btrfs_leaf_data(leaf) +
  2929. data_end, old_data - data_end);
  2930. data_end = old_data;
  2931. old_size = btrfs_item_size_nr(leaf, slot);
  2932. item = btrfs_item_nr(leaf, slot);
  2933. btrfs_set_item_size(leaf, item, old_size + data_size);
  2934. btrfs_mark_buffer_dirty(leaf);
  2935. ret = 0;
  2936. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2937. btrfs_print_leaf(root, leaf);
  2938. BUG();
  2939. }
  2940. return ret;
  2941. }
  2942. /*
  2943. * Given a key and some data, insert items into the tree.
  2944. * This does all the path init required, making room in the tree if needed.
  2945. * Returns the number of keys that were inserted.
  2946. */
  2947. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2948. struct btrfs_root *root,
  2949. struct btrfs_path *path,
  2950. struct btrfs_key *cpu_key, u32 *data_size,
  2951. int nr)
  2952. {
  2953. struct extent_buffer *leaf;
  2954. struct btrfs_item *item;
  2955. int ret = 0;
  2956. int slot;
  2957. int i;
  2958. u32 nritems;
  2959. u32 total_data = 0;
  2960. u32 total_size = 0;
  2961. unsigned int data_end;
  2962. struct btrfs_disk_key disk_key;
  2963. struct btrfs_key found_key;
  2964. for (i = 0; i < nr; i++) {
  2965. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2966. BTRFS_LEAF_DATA_SIZE(root)) {
  2967. break;
  2968. nr = i;
  2969. }
  2970. total_data += data_size[i];
  2971. total_size += data_size[i] + sizeof(struct btrfs_item);
  2972. }
  2973. BUG_ON(nr == 0);
  2974. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2975. if (ret == 0)
  2976. return -EEXIST;
  2977. if (ret < 0)
  2978. goto out;
  2979. leaf = path->nodes[0];
  2980. nritems = btrfs_header_nritems(leaf);
  2981. data_end = leaf_data_end(root, leaf);
  2982. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2983. for (i = nr; i >= 0; i--) {
  2984. total_data -= data_size[i];
  2985. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2986. if (total_size < btrfs_leaf_free_space(root, leaf))
  2987. break;
  2988. }
  2989. nr = i;
  2990. }
  2991. slot = path->slots[0];
  2992. BUG_ON(slot < 0);
  2993. if (slot != nritems) {
  2994. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2995. item = btrfs_item_nr(leaf, slot);
  2996. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2997. /* figure out how many keys we can insert in here */
  2998. total_data = data_size[0];
  2999. for (i = 1; i < nr; i++) {
  3000. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3001. break;
  3002. total_data += data_size[i];
  3003. }
  3004. nr = i;
  3005. if (old_data < data_end) {
  3006. btrfs_print_leaf(root, leaf);
  3007. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3008. slot, old_data, data_end);
  3009. BUG_ON(1);
  3010. }
  3011. /*
  3012. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3013. */
  3014. /* first correct the data pointers */
  3015. WARN_ON(leaf->map_token);
  3016. for (i = slot; i < nritems; i++) {
  3017. u32 ioff;
  3018. item = btrfs_item_nr(leaf, i);
  3019. if (!leaf->map_token) {
  3020. map_extent_buffer(leaf, (unsigned long)item,
  3021. sizeof(struct btrfs_item),
  3022. &leaf->map_token, &leaf->kaddr,
  3023. &leaf->map_start, &leaf->map_len,
  3024. KM_USER1);
  3025. }
  3026. ioff = btrfs_item_offset(leaf, item);
  3027. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3028. }
  3029. if (leaf->map_token) {
  3030. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3031. leaf->map_token = NULL;
  3032. }
  3033. /* shift the items */
  3034. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3035. btrfs_item_nr_offset(slot),
  3036. (nritems - slot) * sizeof(struct btrfs_item));
  3037. /* shift the data */
  3038. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3039. data_end - total_data, btrfs_leaf_data(leaf) +
  3040. data_end, old_data - data_end);
  3041. data_end = old_data;
  3042. } else {
  3043. /*
  3044. * this sucks but it has to be done, if we are inserting at
  3045. * the end of the leaf only insert 1 of the items, since we
  3046. * have no way of knowing whats on the next leaf and we'd have
  3047. * to drop our current locks to figure it out
  3048. */
  3049. nr = 1;
  3050. }
  3051. /* setup the item for the new data */
  3052. for (i = 0; i < nr; i++) {
  3053. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3054. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3055. item = btrfs_item_nr(leaf, slot + i);
  3056. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3057. data_end -= data_size[i];
  3058. btrfs_set_item_size(leaf, item, data_size[i]);
  3059. }
  3060. btrfs_set_header_nritems(leaf, nritems + nr);
  3061. btrfs_mark_buffer_dirty(leaf);
  3062. ret = 0;
  3063. if (slot == 0) {
  3064. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3065. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3066. }
  3067. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3068. btrfs_print_leaf(root, leaf);
  3069. BUG();
  3070. }
  3071. out:
  3072. if (!ret)
  3073. ret = nr;
  3074. return ret;
  3075. }
  3076. /*
  3077. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3078. * to save stack depth by doing the bulk of the work in a function
  3079. * that doesn't call btrfs_search_slot
  3080. */
  3081. static noinline_for_stack int
  3082. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3083. struct btrfs_root *root, struct btrfs_path *path,
  3084. struct btrfs_key *cpu_key, u32 *data_size,
  3085. u32 total_data, u32 total_size, int nr)
  3086. {
  3087. struct btrfs_item *item;
  3088. int i;
  3089. u32 nritems;
  3090. unsigned int data_end;
  3091. struct btrfs_disk_key disk_key;
  3092. int ret;
  3093. struct extent_buffer *leaf;
  3094. int slot;
  3095. leaf = path->nodes[0];
  3096. slot = path->slots[0];
  3097. nritems = btrfs_header_nritems(leaf);
  3098. data_end = leaf_data_end(root, leaf);
  3099. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3100. btrfs_print_leaf(root, leaf);
  3101. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3102. total_size, btrfs_leaf_free_space(root, leaf));
  3103. BUG();
  3104. }
  3105. if (slot != nritems) {
  3106. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3107. if (old_data < data_end) {
  3108. btrfs_print_leaf(root, leaf);
  3109. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3110. slot, old_data, data_end);
  3111. BUG_ON(1);
  3112. }
  3113. /*
  3114. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3115. */
  3116. /* first correct the data pointers */
  3117. WARN_ON(leaf->map_token);
  3118. for (i = slot; i < nritems; i++) {
  3119. u32 ioff;
  3120. item = btrfs_item_nr(leaf, i);
  3121. if (!leaf->map_token) {
  3122. map_extent_buffer(leaf, (unsigned long)item,
  3123. sizeof(struct btrfs_item),
  3124. &leaf->map_token, &leaf->kaddr,
  3125. &leaf->map_start, &leaf->map_len,
  3126. KM_USER1);
  3127. }
  3128. ioff = btrfs_item_offset(leaf, item);
  3129. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3130. }
  3131. if (leaf->map_token) {
  3132. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3133. leaf->map_token = NULL;
  3134. }
  3135. /* shift the items */
  3136. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3137. btrfs_item_nr_offset(slot),
  3138. (nritems - slot) * sizeof(struct btrfs_item));
  3139. /* shift the data */
  3140. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3141. data_end - total_data, btrfs_leaf_data(leaf) +
  3142. data_end, old_data - data_end);
  3143. data_end = old_data;
  3144. }
  3145. /* setup the item for the new data */
  3146. for (i = 0; i < nr; i++) {
  3147. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3148. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3149. item = btrfs_item_nr(leaf, slot + i);
  3150. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3151. data_end -= data_size[i];
  3152. btrfs_set_item_size(leaf, item, data_size[i]);
  3153. }
  3154. btrfs_set_header_nritems(leaf, nritems + nr);
  3155. ret = 0;
  3156. if (slot == 0) {
  3157. struct btrfs_disk_key disk_key;
  3158. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3159. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3160. }
  3161. btrfs_unlock_up_safe(path, 1);
  3162. btrfs_mark_buffer_dirty(leaf);
  3163. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3164. btrfs_print_leaf(root, leaf);
  3165. BUG();
  3166. }
  3167. return ret;
  3168. }
  3169. /*
  3170. * Given a key and some data, insert items into the tree.
  3171. * This does all the path init required, making room in the tree if needed.
  3172. */
  3173. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3174. struct btrfs_root *root,
  3175. struct btrfs_path *path,
  3176. struct btrfs_key *cpu_key, u32 *data_size,
  3177. int nr)
  3178. {
  3179. struct extent_buffer *leaf;
  3180. int ret = 0;
  3181. int slot;
  3182. int i;
  3183. u32 total_size = 0;
  3184. u32 total_data = 0;
  3185. for (i = 0; i < nr; i++)
  3186. total_data += data_size[i];
  3187. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3188. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3189. if (ret == 0)
  3190. return -EEXIST;
  3191. if (ret < 0)
  3192. goto out;
  3193. leaf = path->nodes[0];
  3194. slot = path->slots[0];
  3195. BUG_ON(slot < 0);
  3196. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3197. total_data, total_size, nr);
  3198. out:
  3199. return ret;
  3200. }
  3201. /*
  3202. * Given a key and some data, insert an item into the tree.
  3203. * This does all the path init required, making room in the tree if needed.
  3204. */
  3205. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3206. *root, struct btrfs_key *cpu_key, void *data, u32
  3207. data_size)
  3208. {
  3209. int ret = 0;
  3210. struct btrfs_path *path;
  3211. struct extent_buffer *leaf;
  3212. unsigned long ptr;
  3213. path = btrfs_alloc_path();
  3214. BUG_ON(!path);
  3215. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3216. if (!ret) {
  3217. leaf = path->nodes[0];
  3218. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3219. write_extent_buffer(leaf, data, ptr, data_size);
  3220. btrfs_mark_buffer_dirty(leaf);
  3221. }
  3222. btrfs_free_path(path);
  3223. return ret;
  3224. }
  3225. /*
  3226. * delete the pointer from a given node.
  3227. *
  3228. * the tree should have been previously balanced so the deletion does not
  3229. * empty a node.
  3230. */
  3231. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3232. struct btrfs_path *path, int level, int slot)
  3233. {
  3234. struct extent_buffer *parent = path->nodes[level];
  3235. u32 nritems;
  3236. int ret = 0;
  3237. int wret;
  3238. nritems = btrfs_header_nritems(parent);
  3239. if (slot != nritems - 1) {
  3240. memmove_extent_buffer(parent,
  3241. btrfs_node_key_ptr_offset(slot),
  3242. btrfs_node_key_ptr_offset(slot + 1),
  3243. sizeof(struct btrfs_key_ptr) *
  3244. (nritems - slot - 1));
  3245. }
  3246. nritems--;
  3247. btrfs_set_header_nritems(parent, nritems);
  3248. if (nritems == 0 && parent == root->node) {
  3249. BUG_ON(btrfs_header_level(root->node) != 1);
  3250. /* just turn the root into a leaf and break */
  3251. btrfs_set_header_level(root->node, 0);
  3252. } else if (slot == 0) {
  3253. struct btrfs_disk_key disk_key;
  3254. btrfs_node_key(parent, &disk_key, 0);
  3255. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3256. if (wret)
  3257. ret = wret;
  3258. }
  3259. btrfs_mark_buffer_dirty(parent);
  3260. return ret;
  3261. }
  3262. /*
  3263. * a helper function to delete the leaf pointed to by path->slots[1] and
  3264. * path->nodes[1].
  3265. *
  3266. * This deletes the pointer in path->nodes[1] and frees the leaf
  3267. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3268. *
  3269. * The path must have already been setup for deleting the leaf, including
  3270. * all the proper balancing. path->nodes[1] must be locked.
  3271. */
  3272. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3273. struct btrfs_root *root,
  3274. struct btrfs_path *path,
  3275. struct extent_buffer *leaf)
  3276. {
  3277. int ret;
  3278. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3279. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3280. if (ret)
  3281. return ret;
  3282. /*
  3283. * btrfs_free_extent is expensive, we want to make sure we
  3284. * aren't holding any locks when we call it
  3285. */
  3286. btrfs_unlock_up_safe(path, 0);
  3287. ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
  3288. 0, root->root_key.objectid, 0, 0);
  3289. return ret;
  3290. }
  3291. /*
  3292. * delete the item at the leaf level in path. If that empties
  3293. * the leaf, remove it from the tree
  3294. */
  3295. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3296. struct btrfs_path *path, int slot, int nr)
  3297. {
  3298. struct extent_buffer *leaf;
  3299. struct btrfs_item *item;
  3300. int last_off;
  3301. int dsize = 0;
  3302. int ret = 0;
  3303. int wret;
  3304. int i;
  3305. u32 nritems;
  3306. leaf = path->nodes[0];
  3307. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3308. for (i = 0; i < nr; i++)
  3309. dsize += btrfs_item_size_nr(leaf, slot + i);
  3310. nritems = btrfs_header_nritems(leaf);
  3311. if (slot + nr != nritems) {
  3312. int data_end = leaf_data_end(root, leaf);
  3313. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3314. data_end + dsize,
  3315. btrfs_leaf_data(leaf) + data_end,
  3316. last_off - data_end);
  3317. for (i = slot + nr; i < nritems; i++) {
  3318. u32 ioff;
  3319. item = btrfs_item_nr(leaf, i);
  3320. if (!leaf->map_token) {
  3321. map_extent_buffer(leaf, (unsigned long)item,
  3322. sizeof(struct btrfs_item),
  3323. &leaf->map_token, &leaf->kaddr,
  3324. &leaf->map_start, &leaf->map_len,
  3325. KM_USER1);
  3326. }
  3327. ioff = btrfs_item_offset(leaf, item);
  3328. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3329. }
  3330. if (leaf->map_token) {
  3331. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3332. leaf->map_token = NULL;
  3333. }
  3334. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3335. btrfs_item_nr_offset(slot + nr),
  3336. sizeof(struct btrfs_item) *
  3337. (nritems - slot - nr));
  3338. }
  3339. btrfs_set_header_nritems(leaf, nritems - nr);
  3340. nritems -= nr;
  3341. /* delete the leaf if we've emptied it */
  3342. if (nritems == 0) {
  3343. if (leaf == root->node) {
  3344. btrfs_set_header_level(leaf, 0);
  3345. } else {
  3346. ret = btrfs_del_leaf(trans, root, path, leaf);
  3347. BUG_ON(ret);
  3348. }
  3349. } else {
  3350. int used = leaf_space_used(leaf, 0, nritems);
  3351. if (slot == 0) {
  3352. struct btrfs_disk_key disk_key;
  3353. btrfs_item_key(leaf, &disk_key, 0);
  3354. wret = fixup_low_keys(trans, root, path,
  3355. &disk_key, 1);
  3356. if (wret)
  3357. ret = wret;
  3358. }
  3359. /* delete the leaf if it is mostly empty */
  3360. if (used < BTRFS_LEAF_DATA_SIZE(root) / 2) {
  3361. /* push_leaf_left fixes the path.
  3362. * make sure the path still points to our leaf
  3363. * for possible call to del_ptr below
  3364. */
  3365. slot = path->slots[1];
  3366. extent_buffer_get(leaf);
  3367. btrfs_set_path_blocking(path);
  3368. wret = push_leaf_left(trans, root, path, 1, 1);
  3369. if (wret < 0 && wret != -ENOSPC)
  3370. ret = wret;
  3371. if (path->nodes[0] == leaf &&
  3372. btrfs_header_nritems(leaf)) {
  3373. wret = push_leaf_right(trans, root, path, 1, 1);
  3374. if (wret < 0 && wret != -ENOSPC)
  3375. ret = wret;
  3376. }
  3377. if (btrfs_header_nritems(leaf) == 0) {
  3378. path->slots[1] = slot;
  3379. ret = btrfs_del_leaf(trans, root, path, leaf);
  3380. BUG_ON(ret);
  3381. free_extent_buffer(leaf);
  3382. } else {
  3383. /* if we're still in the path, make sure
  3384. * we're dirty. Otherwise, one of the
  3385. * push_leaf functions must have already
  3386. * dirtied this buffer
  3387. */
  3388. if (path->nodes[0] == leaf)
  3389. btrfs_mark_buffer_dirty(leaf);
  3390. free_extent_buffer(leaf);
  3391. }
  3392. } else {
  3393. btrfs_mark_buffer_dirty(leaf);
  3394. }
  3395. }
  3396. return ret;
  3397. }
  3398. /*
  3399. * search the tree again to find a leaf with lesser keys
  3400. * returns 0 if it found something or 1 if there are no lesser leaves.
  3401. * returns < 0 on io errors.
  3402. *
  3403. * This may release the path, and so you may lose any locks held at the
  3404. * time you call it.
  3405. */
  3406. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3407. {
  3408. struct btrfs_key key;
  3409. struct btrfs_disk_key found_key;
  3410. int ret;
  3411. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3412. if (key.offset > 0)
  3413. key.offset--;
  3414. else if (key.type > 0)
  3415. key.type--;
  3416. else if (key.objectid > 0)
  3417. key.objectid--;
  3418. else
  3419. return 1;
  3420. btrfs_release_path(root, path);
  3421. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3422. if (ret < 0)
  3423. return ret;
  3424. btrfs_item_key(path->nodes[0], &found_key, 0);
  3425. ret = comp_keys(&found_key, &key);
  3426. if (ret < 0)
  3427. return 0;
  3428. return 1;
  3429. }
  3430. /*
  3431. * A helper function to walk down the tree starting at min_key, and looking
  3432. * for nodes or leaves that are either in cache or have a minimum
  3433. * transaction id. This is used by the btree defrag code, and tree logging
  3434. *
  3435. * This does not cow, but it does stuff the starting key it finds back
  3436. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3437. * key and get a writable path.
  3438. *
  3439. * This does lock as it descends, and path->keep_locks should be set
  3440. * to 1 by the caller.
  3441. *
  3442. * This honors path->lowest_level to prevent descent past a given level
  3443. * of the tree.
  3444. *
  3445. * min_trans indicates the oldest transaction that you are interested
  3446. * in walking through. Any nodes or leaves older than min_trans are
  3447. * skipped over (without reading them).
  3448. *
  3449. * returns zero if something useful was found, < 0 on error and 1 if there
  3450. * was nothing in the tree that matched the search criteria.
  3451. */
  3452. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3453. struct btrfs_key *max_key,
  3454. struct btrfs_path *path, int cache_only,
  3455. u64 min_trans)
  3456. {
  3457. struct extent_buffer *cur;
  3458. struct btrfs_key found_key;
  3459. int slot;
  3460. int sret;
  3461. u32 nritems;
  3462. int level;
  3463. int ret = 1;
  3464. WARN_ON(!path->keep_locks);
  3465. again:
  3466. cur = btrfs_lock_root_node(root);
  3467. level = btrfs_header_level(cur);
  3468. WARN_ON(path->nodes[level]);
  3469. path->nodes[level] = cur;
  3470. path->locks[level] = 1;
  3471. if (btrfs_header_generation(cur) < min_trans) {
  3472. ret = 1;
  3473. goto out;
  3474. }
  3475. while (1) {
  3476. nritems = btrfs_header_nritems(cur);
  3477. level = btrfs_header_level(cur);
  3478. sret = bin_search(cur, min_key, level, &slot);
  3479. /* at the lowest level, we're done, setup the path and exit */
  3480. if (level == path->lowest_level) {
  3481. if (slot >= nritems)
  3482. goto find_next_key;
  3483. ret = 0;
  3484. path->slots[level] = slot;
  3485. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3486. goto out;
  3487. }
  3488. if (sret && slot > 0)
  3489. slot--;
  3490. /*
  3491. * check this node pointer against the cache_only and
  3492. * min_trans parameters. If it isn't in cache or is too
  3493. * old, skip to the next one.
  3494. */
  3495. while (slot < nritems) {
  3496. u64 blockptr;
  3497. u64 gen;
  3498. struct extent_buffer *tmp;
  3499. struct btrfs_disk_key disk_key;
  3500. blockptr = btrfs_node_blockptr(cur, slot);
  3501. gen = btrfs_node_ptr_generation(cur, slot);
  3502. if (gen < min_trans) {
  3503. slot++;
  3504. continue;
  3505. }
  3506. if (!cache_only)
  3507. break;
  3508. if (max_key) {
  3509. btrfs_node_key(cur, &disk_key, slot);
  3510. if (comp_keys(&disk_key, max_key) >= 0) {
  3511. ret = 1;
  3512. goto out;
  3513. }
  3514. }
  3515. tmp = btrfs_find_tree_block(root, blockptr,
  3516. btrfs_level_size(root, level - 1));
  3517. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3518. free_extent_buffer(tmp);
  3519. break;
  3520. }
  3521. if (tmp)
  3522. free_extent_buffer(tmp);
  3523. slot++;
  3524. }
  3525. find_next_key:
  3526. /*
  3527. * we didn't find a candidate key in this node, walk forward
  3528. * and find another one
  3529. */
  3530. if (slot >= nritems) {
  3531. path->slots[level] = slot;
  3532. btrfs_set_path_blocking(path);
  3533. sret = btrfs_find_next_key(root, path, min_key, level,
  3534. cache_only, min_trans);
  3535. if (sret == 0) {
  3536. btrfs_release_path(root, path);
  3537. goto again;
  3538. } else {
  3539. goto out;
  3540. }
  3541. }
  3542. /* save our key for returning back */
  3543. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3544. path->slots[level] = slot;
  3545. if (level == path->lowest_level) {
  3546. ret = 0;
  3547. unlock_up(path, level, 1);
  3548. goto out;
  3549. }
  3550. btrfs_set_path_blocking(path);
  3551. cur = read_node_slot(root, cur, slot);
  3552. btrfs_tree_lock(cur);
  3553. path->locks[level - 1] = 1;
  3554. path->nodes[level - 1] = cur;
  3555. unlock_up(path, level, 1);
  3556. btrfs_clear_path_blocking(path, NULL);
  3557. }
  3558. out:
  3559. if (ret == 0)
  3560. memcpy(min_key, &found_key, sizeof(found_key));
  3561. btrfs_set_path_blocking(path);
  3562. return ret;
  3563. }
  3564. /*
  3565. * this is similar to btrfs_next_leaf, but does not try to preserve
  3566. * and fixup the path. It looks for and returns the next key in the
  3567. * tree based on the current path and the cache_only and min_trans
  3568. * parameters.
  3569. *
  3570. * 0 is returned if another key is found, < 0 if there are any errors
  3571. * and 1 is returned if there are no higher keys in the tree
  3572. *
  3573. * path->keep_locks should be set to 1 on the search made before
  3574. * calling this function.
  3575. */
  3576. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3577. struct btrfs_key *key, int lowest_level,
  3578. int cache_only, u64 min_trans)
  3579. {
  3580. int level = lowest_level;
  3581. int slot;
  3582. struct extent_buffer *c;
  3583. WARN_ON(!path->keep_locks);
  3584. while (level < BTRFS_MAX_LEVEL) {
  3585. if (!path->nodes[level])
  3586. return 1;
  3587. slot = path->slots[level] + 1;
  3588. c = path->nodes[level];
  3589. next:
  3590. if (slot >= btrfs_header_nritems(c)) {
  3591. level++;
  3592. if (level == BTRFS_MAX_LEVEL)
  3593. return 1;
  3594. continue;
  3595. }
  3596. if (level == 0)
  3597. btrfs_item_key_to_cpu(c, key, slot);
  3598. else {
  3599. u64 blockptr = btrfs_node_blockptr(c, slot);
  3600. u64 gen = btrfs_node_ptr_generation(c, slot);
  3601. if (cache_only) {
  3602. struct extent_buffer *cur;
  3603. cur = btrfs_find_tree_block(root, blockptr,
  3604. btrfs_level_size(root, level - 1));
  3605. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3606. slot++;
  3607. if (cur)
  3608. free_extent_buffer(cur);
  3609. goto next;
  3610. }
  3611. free_extent_buffer(cur);
  3612. }
  3613. if (gen < min_trans) {
  3614. slot++;
  3615. goto next;
  3616. }
  3617. btrfs_node_key_to_cpu(c, key, slot);
  3618. }
  3619. return 0;
  3620. }
  3621. return 1;
  3622. }
  3623. /*
  3624. * search the tree again to find a leaf with greater keys
  3625. * returns 0 if it found something or 1 if there are no greater leaves.
  3626. * returns < 0 on io errors.
  3627. */
  3628. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3629. {
  3630. int slot;
  3631. int level;
  3632. struct extent_buffer *c;
  3633. struct extent_buffer *next;
  3634. struct btrfs_key key;
  3635. u32 nritems;
  3636. int ret;
  3637. int old_spinning = path->leave_spinning;
  3638. int force_blocking = 0;
  3639. nritems = btrfs_header_nritems(path->nodes[0]);
  3640. if (nritems == 0)
  3641. return 1;
  3642. /*
  3643. * we take the blocks in an order that upsets lockdep. Using
  3644. * blocking mode is the only way around it.
  3645. */
  3646. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3647. force_blocking = 1;
  3648. #endif
  3649. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3650. again:
  3651. level = 1;
  3652. next = NULL;
  3653. btrfs_release_path(root, path);
  3654. path->keep_locks = 1;
  3655. if (!force_blocking)
  3656. path->leave_spinning = 1;
  3657. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3658. path->keep_locks = 0;
  3659. if (ret < 0)
  3660. return ret;
  3661. nritems = btrfs_header_nritems(path->nodes[0]);
  3662. /*
  3663. * by releasing the path above we dropped all our locks. A balance
  3664. * could have added more items next to the key that used to be
  3665. * at the very end of the block. So, check again here and
  3666. * advance the path if there are now more items available.
  3667. */
  3668. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3669. path->slots[0]++;
  3670. ret = 0;
  3671. goto done;
  3672. }
  3673. while (level < BTRFS_MAX_LEVEL) {
  3674. if (!path->nodes[level]) {
  3675. ret = 1;
  3676. goto done;
  3677. }
  3678. slot = path->slots[level] + 1;
  3679. c = path->nodes[level];
  3680. if (slot >= btrfs_header_nritems(c)) {
  3681. level++;
  3682. if (level == BTRFS_MAX_LEVEL) {
  3683. ret = 1;
  3684. goto done;
  3685. }
  3686. continue;
  3687. }
  3688. if (next) {
  3689. btrfs_tree_unlock(next);
  3690. free_extent_buffer(next);
  3691. }
  3692. next = c;
  3693. ret = read_block_for_search(NULL, root, path, &next, level,
  3694. slot, &key);
  3695. if (ret == -EAGAIN)
  3696. goto again;
  3697. if (ret < 0) {
  3698. btrfs_release_path(root, path);
  3699. goto done;
  3700. }
  3701. if (!path->skip_locking) {
  3702. ret = btrfs_try_spin_lock(next);
  3703. if (!ret) {
  3704. btrfs_set_path_blocking(path);
  3705. btrfs_tree_lock(next);
  3706. if (!force_blocking)
  3707. btrfs_clear_path_blocking(path, next);
  3708. }
  3709. if (force_blocking)
  3710. btrfs_set_lock_blocking(next);
  3711. }
  3712. break;
  3713. }
  3714. path->slots[level] = slot;
  3715. while (1) {
  3716. level--;
  3717. c = path->nodes[level];
  3718. if (path->locks[level])
  3719. btrfs_tree_unlock(c);
  3720. free_extent_buffer(c);
  3721. path->nodes[level] = next;
  3722. path->slots[level] = 0;
  3723. if (!path->skip_locking)
  3724. path->locks[level] = 1;
  3725. if (!level)
  3726. break;
  3727. ret = read_block_for_search(NULL, root, path, &next, level,
  3728. 0, &key);
  3729. if (ret == -EAGAIN)
  3730. goto again;
  3731. if (ret < 0) {
  3732. btrfs_release_path(root, path);
  3733. goto done;
  3734. }
  3735. if (!path->skip_locking) {
  3736. btrfs_assert_tree_locked(path->nodes[level]);
  3737. ret = btrfs_try_spin_lock(next);
  3738. if (!ret) {
  3739. btrfs_set_path_blocking(path);
  3740. btrfs_tree_lock(next);
  3741. if (!force_blocking)
  3742. btrfs_clear_path_blocking(path, next);
  3743. }
  3744. if (force_blocking)
  3745. btrfs_set_lock_blocking(next);
  3746. }
  3747. }
  3748. ret = 0;
  3749. done:
  3750. unlock_up(path, 0, 1);
  3751. path->leave_spinning = old_spinning;
  3752. if (!old_spinning)
  3753. btrfs_set_path_blocking(path);
  3754. return ret;
  3755. }
  3756. /*
  3757. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3758. * searching until it gets past min_objectid or finds an item of 'type'
  3759. *
  3760. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3761. */
  3762. int btrfs_previous_item(struct btrfs_root *root,
  3763. struct btrfs_path *path, u64 min_objectid,
  3764. int type)
  3765. {
  3766. struct btrfs_key found_key;
  3767. struct extent_buffer *leaf;
  3768. u32 nritems;
  3769. int ret;
  3770. while (1) {
  3771. if (path->slots[0] == 0) {
  3772. btrfs_set_path_blocking(path);
  3773. ret = btrfs_prev_leaf(root, path);
  3774. if (ret != 0)
  3775. return ret;
  3776. } else {
  3777. path->slots[0]--;
  3778. }
  3779. leaf = path->nodes[0];
  3780. nritems = btrfs_header_nritems(leaf);
  3781. if (nritems == 0)
  3782. return 1;
  3783. if (path->slots[0] == nritems)
  3784. path->slots[0]--;
  3785. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3786. if (found_key.type == type)
  3787. return 0;
  3788. if (found_key.objectid < min_objectid)
  3789. break;
  3790. if (found_key.objectid == min_objectid &&
  3791. found_key.type < type)
  3792. break;
  3793. }
  3794. return 1;
  3795. }