crypto.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * Ultra Wide Band
  3. * AES-128 CCM Encryption
  4. *
  5. * Copyright (C) 2007 Intel Corporation
  6. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. *
  23. * We don't do any encryption here; we use the Linux Kernel's AES-128
  24. * crypto modules to construct keys and payload blocks in a way
  25. * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  26. * there.
  27. *
  28. * Thanks a zillion to John Keys for his help and clarifications over
  29. * the designed-by-a-committee text.
  30. *
  31. * So the idea is that there is this basic Pseudo-Random-Function
  32. * defined in WUSB1.0[6.5] which is the core of everything. It works
  33. * by tweaking some blocks, AES crypting them and then xoring
  34. * something else with them (this seems to be called CBC(AES) -- can
  35. * you tell I know jack about crypto?). So we just funnel it into the
  36. * Linux Crypto API.
  37. *
  38. * We leave a crypto test module so we can verify that vectors match,
  39. * every now and then.
  40. *
  41. * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  42. * am learning a lot...
  43. *
  44. * Conveniently, some data structures that need to be
  45. * funneled through AES are...16 bytes in size!
  46. */
  47. #include <linux/crypto.h>
  48. #include <linux/module.h>
  49. #include <linux/err.h>
  50. #include <linux/uwb.h>
  51. #include <linux/usb/wusb.h>
  52. #include <linux/scatterlist.h>
  53. static int debug_crypto_verify = 0;
  54. module_param(debug_crypto_verify, int, 0);
  55. MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  56. static void wusb_key_dump(const void *buf, size_t len)
  57. {
  58. print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
  59. buf, len, 0);
  60. }
  61. /*
  62. * Block of data, as understood by AES-CCM
  63. *
  64. * The code assumes this structure is nothing but a 16 byte array
  65. * (packed in a struct to avoid common mess ups that I usually do with
  66. * arrays and enforcing type checking).
  67. */
  68. struct aes_ccm_block {
  69. u8 data[16];
  70. } __attribute__((packed));
  71. /*
  72. * Counter-mode Blocks (WUSB1.0[6.4])
  73. *
  74. * According to CCM (or so it seems), for the purpose of calculating
  75. * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  76. * ... BN.
  77. *
  78. * B0 contains flags, the CCM nonce and l(m).
  79. *
  80. * B1 contains l(a), the MAC header, the encryption offset and padding.
  81. *
  82. * If EO is nonzero, additional blocks are built from payload bytes
  83. * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
  84. * padding is not xmitted.
  85. */
  86. /* WUSB1.0[T6.4] */
  87. struct aes_ccm_b0 {
  88. u8 flags; /* 0x59, per CCM spec */
  89. struct aes_ccm_nonce ccm_nonce;
  90. __be16 lm;
  91. } __attribute__((packed));
  92. /* WUSB1.0[T6.5] */
  93. struct aes_ccm_b1 {
  94. __be16 la;
  95. u8 mac_header[10];
  96. __le16 eo;
  97. u8 security_reserved; /* This is always zero */
  98. u8 padding; /* 0 */
  99. } __attribute__((packed));
  100. /*
  101. * Encryption Blocks (WUSB1.0[6.4.4])
  102. *
  103. * CCM uses Ax blocks to generate a keystream with which the MIC and
  104. * the message's payload are encoded. A0 always encrypts/decrypts the
  105. * MIC. Ax (x>0) are used for the sucesive payload blocks.
  106. *
  107. * The x is the counter, and is increased for each block.
  108. */
  109. struct aes_ccm_a {
  110. u8 flags; /* 0x01, per CCM spec */
  111. struct aes_ccm_nonce ccm_nonce;
  112. __be16 counter; /* Value of x */
  113. } __attribute__((packed));
  114. static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
  115. size_t size)
  116. {
  117. u8 *bo = _bo;
  118. const u8 *bi1 = _bi1, *bi2 = _bi2;
  119. size_t itr;
  120. for (itr = 0; itr < size; itr++)
  121. bo[itr] = bi1[itr] ^ bi2[itr];
  122. }
  123. /*
  124. * CC-MAC function WUSB1.0[6.5]
  125. *
  126. * Take a data string and produce the encrypted CBC Counter-mode MIC
  127. *
  128. * Note the names for most function arguments are made to (more or
  129. * less) match those used in the pseudo-function definition given in
  130. * WUSB1.0[6.5].
  131. *
  132. * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
  133. *
  134. * @tfm_aes: AES cipher handle (initialized)
  135. *
  136. * @mic: buffer for placing the computed MIC (Message Integrity
  137. * Code). This is exactly 8 bytes, and we expect the buffer to
  138. * be at least eight bytes in length.
  139. *
  140. * @key: 128 bit symmetric key
  141. *
  142. * @n: CCM nonce
  143. *
  144. * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
  145. * we use exactly 14 bytes).
  146. *
  147. * @b: data stream to be processed; cannot be a global or const local
  148. * (will confuse the scatterlists)
  149. *
  150. * @blen: size of b...
  151. *
  152. * Still not very clear how this is done, but looks like this: we
  153. * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
  154. * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
  155. * take the payload and divide it in blocks (16 bytes), xor them with
  156. * the previous crypto result (16 bytes) and crypt it, repeat the next
  157. * block with the output of the previous one, rinse wash (I guess this
  158. * is what AES CBC mode means...but I truly have no idea). So we use
  159. * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
  160. * Vector) is 16 bytes and is set to zero, so
  161. *
  162. * See rfc3610. Linux crypto has a CBC implementation, but the
  163. * documentation is scarce, to say the least, and the example code is
  164. * so intricated that is difficult to understand how things work. Most
  165. * of this is guess work -- bite me.
  166. *
  167. * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
  168. * using the 14 bytes of @a to fill up
  169. * b1.{mac_header,e0,security_reserved,padding}.
  170. *
  171. * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
  172. * l(m) is orthogonal, they bear no relationship, so it is not
  173. * in conflict with the parameter's relation that
  174. * WUSB1.0[6.4.2]) defines.
  175. *
  176. * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
  177. * first errata released on 2005/07.
  178. *
  179. * NOTE: we need to clean IV to zero at each invocation to make sure
  180. * we start with a fresh empty Initial Vector, so that the CBC
  181. * works ok.
  182. *
  183. * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
  184. * what sg[4] is for. Maybe there is a smarter way to do this.
  185. */
  186. static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
  187. struct crypto_cipher *tfm_aes, void *mic,
  188. const struct aes_ccm_nonce *n,
  189. const struct aes_ccm_label *a, const void *b,
  190. size_t blen)
  191. {
  192. int result = 0;
  193. struct blkcipher_desc desc;
  194. struct aes_ccm_b0 b0;
  195. struct aes_ccm_b1 b1;
  196. struct aes_ccm_a ax;
  197. struct scatterlist sg[4], sg_dst;
  198. void *iv, *dst_buf;
  199. size_t ivsize, dst_size;
  200. const u8 bzero[16] = { 0 };
  201. size_t zero_padding;
  202. /*
  203. * These checks should be compile time optimized out
  204. * ensure @a fills b1's mac_header and following fields
  205. */
  206. WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
  207. WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
  208. WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
  209. WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
  210. result = -ENOMEM;
  211. zero_padding = sizeof(struct aes_ccm_block)
  212. - blen % sizeof(struct aes_ccm_block);
  213. zero_padding = blen % sizeof(struct aes_ccm_block);
  214. if (zero_padding)
  215. zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
  216. dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
  217. dst_buf = kzalloc(dst_size, GFP_KERNEL);
  218. if (dst_buf == NULL) {
  219. printk(KERN_ERR "E: can't alloc destination buffer\n");
  220. goto error_dst_buf;
  221. }
  222. iv = crypto_blkcipher_crt(tfm_cbc)->iv;
  223. ivsize = crypto_blkcipher_ivsize(tfm_cbc);
  224. memset(iv, 0, ivsize);
  225. /* Setup B0 */
  226. b0.flags = 0x59; /* Format B0 */
  227. b0.ccm_nonce = *n;
  228. b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
  229. /* Setup B1
  230. *
  231. * The WUSB spec is anything but clear! WUSB1.0[6.5]
  232. * says that to initialize B1 from A with 'l(a) = blen +
  233. * 14'--after clarification, it means to use A's contents
  234. * for MAC Header, EO, sec reserved and padding.
  235. */
  236. b1.la = cpu_to_be16(blen + 14);
  237. memcpy(&b1.mac_header, a, sizeof(*a));
  238. sg_init_table(sg, ARRAY_SIZE(sg));
  239. sg_set_buf(&sg[0], &b0, sizeof(b0));
  240. sg_set_buf(&sg[1], &b1, sizeof(b1));
  241. sg_set_buf(&sg[2], b, blen);
  242. /* 0 if well behaved :) */
  243. sg_set_buf(&sg[3], bzero, zero_padding);
  244. sg_init_one(&sg_dst, dst_buf, dst_size);
  245. desc.tfm = tfm_cbc;
  246. desc.flags = 0;
  247. result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
  248. if (result < 0) {
  249. printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
  250. result);
  251. goto error_cbc_crypt;
  252. }
  253. /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
  254. * The procedure is to AES crypt the A0 block and XOR the MIC
  255. * Tag agains it; we only do the first 8 bytes and place it
  256. * directly in the destination buffer.
  257. *
  258. * POS Crypto API: size is assumed to be AES's block size.
  259. * Thanks for documenting it -- tip taken from airo.c
  260. */
  261. ax.flags = 0x01; /* as per WUSB 1.0 spec */
  262. ax.ccm_nonce = *n;
  263. ax.counter = 0;
  264. crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
  265. bytewise_xor(mic, &ax, iv, 8);
  266. result = 8;
  267. error_cbc_crypt:
  268. kfree(dst_buf);
  269. error_dst_buf:
  270. return result;
  271. }
  272. /*
  273. * WUSB Pseudo Random Function (WUSB1.0[6.5])
  274. *
  275. * @b: buffer to the source data; cannot be a global or const local
  276. * (will confuse the scatterlists)
  277. */
  278. ssize_t wusb_prf(void *out, size_t out_size,
  279. const u8 key[16], const struct aes_ccm_nonce *_n,
  280. const struct aes_ccm_label *a,
  281. const void *b, size_t blen, size_t len)
  282. {
  283. ssize_t result, bytes = 0, bitr;
  284. struct aes_ccm_nonce n = *_n;
  285. struct crypto_blkcipher *tfm_cbc;
  286. struct crypto_cipher *tfm_aes;
  287. u64 sfn = 0;
  288. __le64 sfn_le;
  289. tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
  290. if (IS_ERR(tfm_cbc)) {
  291. result = PTR_ERR(tfm_cbc);
  292. printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
  293. goto error_alloc_cbc;
  294. }
  295. result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
  296. if (result < 0) {
  297. printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
  298. goto error_setkey_cbc;
  299. }
  300. tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
  301. if (IS_ERR(tfm_aes)) {
  302. result = PTR_ERR(tfm_aes);
  303. printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
  304. goto error_alloc_aes;
  305. }
  306. result = crypto_cipher_setkey(tfm_aes, key, 16);
  307. if (result < 0) {
  308. printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
  309. goto error_setkey_aes;
  310. }
  311. for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
  312. sfn_le = cpu_to_le64(sfn++);
  313. memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
  314. result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
  315. &n, a, b, blen);
  316. if (result < 0)
  317. goto error_ccm_mac;
  318. bytes += result;
  319. }
  320. result = bytes;
  321. error_ccm_mac:
  322. error_setkey_aes:
  323. crypto_free_cipher(tfm_aes);
  324. error_alloc_aes:
  325. error_setkey_cbc:
  326. crypto_free_blkcipher(tfm_cbc);
  327. error_alloc_cbc:
  328. return result;
  329. }
  330. /* WUSB1.0[A.2] test vectors */
  331. static const u8 stv_hsmic_key[16] = {
  332. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  333. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  334. };
  335. static const struct aes_ccm_nonce stv_hsmic_n = {
  336. .sfn = { 0 },
  337. .tkid = { 0x76, 0x98, 0x01, },
  338. .dest_addr = { .data = { 0xbe, 0x00 } },
  339. .src_addr = { .data = { 0x76, 0x98 } },
  340. };
  341. /*
  342. * Out-of-band MIC Generation verification code
  343. *
  344. */
  345. static int wusb_oob_mic_verify(void)
  346. {
  347. int result;
  348. u8 mic[8];
  349. /* WUSB1.0[A.2] test vectors
  350. *
  351. * Need to keep it in the local stack as GCC 4.1.3something
  352. * messes up and generates noise.
  353. */
  354. struct usb_handshake stv_hsmic_hs = {
  355. .bMessageNumber = 2,
  356. .bStatus = 00,
  357. .tTKID = { 0x76, 0x98, 0x01 },
  358. .bReserved = 00,
  359. .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
  360. 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
  361. 0x3c, 0x3d, 0x3e, 0x3f },
  362. .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
  363. 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
  364. 0x2c, 0x2d, 0x2e, 0x2f },
  365. .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
  366. 0x14, 0x7b } ,
  367. };
  368. size_t hs_size;
  369. result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
  370. if (result < 0)
  371. printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
  372. else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
  373. printk(KERN_ERR "E: OOB MIC test: "
  374. "mismatch between MIC result and WUSB1.0[A2]\n");
  375. hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
  376. printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
  377. wusb_key_dump(&stv_hsmic_hs, hs_size);
  378. printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
  379. sizeof(stv_hsmic_n));
  380. wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
  381. printk(KERN_ERR "E: MIC out:\n");
  382. wusb_key_dump(mic, sizeof(mic));
  383. printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
  384. wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
  385. result = -EINVAL;
  386. } else
  387. result = 0;
  388. return result;
  389. }
  390. /*
  391. * Test vectors for Key derivation
  392. *
  393. * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
  394. * (errata corrected in 2005/07).
  395. */
  396. static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
  397. 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
  398. 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
  399. };
  400. static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
  401. .sfn = { 0 },
  402. .tkid = { 0x76, 0x98, 0x01, },
  403. .dest_addr = { .data = { 0xbe, 0x00 } },
  404. .src_addr = { .data = { 0x76, 0x98 } },
  405. };
  406. static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
  407. .kck = {
  408. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  409. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  410. },
  411. .ptk = {
  412. 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
  413. 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
  414. }
  415. };
  416. /*
  417. * Performa a test to make sure we match the vectors defined in
  418. * WUSB1.0[A.1](Errata2006/12)
  419. */
  420. static int wusb_key_derive_verify(void)
  421. {
  422. int result = 0;
  423. struct wusb_keydvt_out keydvt_out;
  424. /* These come from WUSB1.0[A.1] + 2006/12 errata
  425. * NOTE: can't make this const or global -- somehow it seems
  426. * the scatterlists for crypto get confused and we get
  427. * bad data. There is no doc on this... */
  428. struct wusb_keydvt_in stv_keydvt_in_a1 = {
  429. .hnonce = {
  430. 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
  431. 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
  432. },
  433. .dnonce = {
  434. 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
  435. 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
  436. }
  437. };
  438. result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
  439. &stv_keydvt_in_a1);
  440. if (result < 0)
  441. printk(KERN_ERR "E: WUSB key derivation test: "
  442. "derivation failed: %d\n", result);
  443. if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
  444. printk(KERN_ERR "E: WUSB key derivation test: "
  445. "mismatch between key derivation result "
  446. "and WUSB1.0[A1] Errata 2006/12\n");
  447. printk(KERN_ERR "E: keydvt in: key\n");
  448. wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
  449. printk(KERN_ERR "E: keydvt in: nonce\n");
  450. wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
  451. printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
  452. wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
  453. printk(KERN_ERR "E: keydvt out: KCK\n");
  454. wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
  455. printk(KERN_ERR "E: keydvt out: PTK\n");
  456. wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
  457. result = -EINVAL;
  458. } else
  459. result = 0;
  460. return result;
  461. }
  462. /*
  463. * Initialize crypto system
  464. *
  465. * FIXME: we do nothing now, other than verifying. Later on we'll
  466. * cache the encryption stuff, so that's why we have a separate init.
  467. */
  468. int wusb_crypto_init(void)
  469. {
  470. int result;
  471. if (debug_crypto_verify) {
  472. result = wusb_key_derive_verify();
  473. if (result < 0)
  474. return result;
  475. return wusb_oob_mic_verify();
  476. }
  477. return 0;
  478. }
  479. void wusb_crypto_exit(void)
  480. {
  481. /* FIXME: free cached crypto transforms */
  482. }