amd5536udc.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. /*
  22. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  23. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  24. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  25. *
  26. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  27. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  28. * by BIOS init).
  29. *
  30. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  31. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  32. * can be used with gadget ether.
  33. */
  34. /* debug control */
  35. /* #define UDC_VERBOSE */
  36. /* Driver strings */
  37. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  38. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  39. /* system */
  40. #include <linux/module.h>
  41. #include <linux/pci.h>
  42. #include <linux/kernel.h>
  43. #include <linux/delay.h>
  44. #include <linux/ioport.h>
  45. #include <linux/sched.h>
  46. #include <linux/slab.h>
  47. #include <linux/errno.h>
  48. #include <linux/init.h>
  49. #include <linux/timer.h>
  50. #include <linux/list.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/ioctl.h>
  53. #include <linux/fs.h>
  54. #include <linux/dmapool.h>
  55. #include <linux/moduleparam.h>
  56. #include <linux/device.h>
  57. #include <linux/io.h>
  58. #include <linux/irq.h>
  59. #include <asm/byteorder.h>
  60. #include <asm/system.h>
  61. #include <asm/unaligned.h>
  62. /* gadget stack */
  63. #include <linux/usb/ch9.h>
  64. #include <linux/usb/gadget.h>
  65. /* udc specific */
  66. #include "amd5536udc.h"
  67. static void udc_tasklet_disconnect(unsigned long);
  68. static void empty_req_queue(struct udc_ep *);
  69. static int udc_probe(struct udc *dev);
  70. static void udc_basic_init(struct udc *dev);
  71. static void udc_setup_endpoints(struct udc *dev);
  72. static void udc_soft_reset(struct udc *dev);
  73. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  74. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  75. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  76. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  77. unsigned long buf_len, gfp_t gfp_flags);
  78. static int udc_remote_wakeup(struct udc *dev);
  79. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  80. static void udc_pci_remove(struct pci_dev *pdev);
  81. /* description */
  82. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  83. static const char name[] = "amd5536udc";
  84. /* structure to hold endpoint function pointers */
  85. static const struct usb_ep_ops udc_ep_ops;
  86. /* received setup data */
  87. static union udc_setup_data setup_data;
  88. /* pointer to device object */
  89. static struct udc *udc;
  90. /* irq spin lock for soft reset */
  91. static DEFINE_SPINLOCK(udc_irq_spinlock);
  92. /* stall spin lock */
  93. static DEFINE_SPINLOCK(udc_stall_spinlock);
  94. /*
  95. * slave mode: pending bytes in rx fifo after nyet,
  96. * used if EPIN irq came but no req was available
  97. */
  98. static unsigned int udc_rxfifo_pending;
  99. /* count soft resets after suspend to avoid loop */
  100. static int soft_reset_occured;
  101. static int soft_reset_after_usbreset_occured;
  102. /* timer */
  103. static struct timer_list udc_timer;
  104. static int stop_timer;
  105. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  106. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  107. * all OUT endpoints. So we have to handle race conditions like
  108. * when OUT data reaches the fifo but no request was queued yet.
  109. * This cannot be solved by letting the RX DMA disabled until a
  110. * request gets queued because there may be other OUT packets
  111. * in the FIFO (important for not blocking control traffic).
  112. * The value of set_rde controls the correspondig timer.
  113. *
  114. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  115. * set_rde 0 == do not touch RDE, do no start the RDE timer
  116. * set_rde 1 == timer function will look whether FIFO has data
  117. * set_rde 2 == set by timer function to enable RX DMA on next call
  118. */
  119. static int set_rde = -1;
  120. static DECLARE_COMPLETION(on_exit);
  121. static struct timer_list udc_pollstall_timer;
  122. static int stop_pollstall_timer;
  123. static DECLARE_COMPLETION(on_pollstall_exit);
  124. /* tasklet for usb disconnect */
  125. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  126. (unsigned long) &udc);
  127. /* endpoint names used for print */
  128. static const char ep0_string[] = "ep0in";
  129. static const char *ep_string[] = {
  130. ep0_string,
  131. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  132. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  133. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  134. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  135. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  136. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  137. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  138. };
  139. /* DMA usage flag */
  140. static int use_dma = 1;
  141. /* packet per buffer dma */
  142. static int use_dma_ppb = 1;
  143. /* with per descr. update */
  144. static int use_dma_ppb_du;
  145. /* buffer fill mode */
  146. static int use_dma_bufferfill_mode;
  147. /* full speed only mode */
  148. static int use_fullspeed;
  149. /* tx buffer size for high speed */
  150. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  151. /* module parameters */
  152. module_param(use_dma, bool, S_IRUGO);
  153. MODULE_PARM_DESC(use_dma, "true for DMA");
  154. module_param(use_dma_ppb, bool, S_IRUGO);
  155. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  156. module_param(use_dma_ppb_du, bool, S_IRUGO);
  157. MODULE_PARM_DESC(use_dma_ppb_du,
  158. "true for DMA in packet per buffer mode with descriptor update");
  159. module_param(use_fullspeed, bool, S_IRUGO);
  160. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  161. /*---------------------------------------------------------------------------*/
  162. /* Prints UDC device registers and endpoint irq registers */
  163. static void print_regs(struct udc *dev)
  164. {
  165. DBG(dev, "------- Device registers -------\n");
  166. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  167. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  168. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  169. DBG(dev, "\n");
  170. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  171. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  172. DBG(dev, "\n");
  173. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  174. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  175. DBG(dev, "\n");
  176. DBG(dev, "USE DMA = %d\n", use_dma);
  177. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  178. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  179. "WITHOUT desc. update)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  181. } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
  182. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  183. "WITH desc. update)\n");
  184. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  185. }
  186. if (use_dma && use_dma_bufferfill_mode) {
  187. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  188. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  189. }
  190. if (!use_dma) {
  191. dev_info(&dev->pdev->dev, "FIFO mode\n");
  192. }
  193. DBG(dev, "-------------------------------------------------------\n");
  194. }
  195. /* Masks unused interrupts */
  196. static int udc_mask_unused_interrupts(struct udc *dev)
  197. {
  198. u32 tmp;
  199. /* mask all dev interrupts */
  200. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  201. AMD_BIT(UDC_DEVINT_ENUM) |
  202. AMD_BIT(UDC_DEVINT_US) |
  203. AMD_BIT(UDC_DEVINT_UR) |
  204. AMD_BIT(UDC_DEVINT_ES) |
  205. AMD_BIT(UDC_DEVINT_SI) |
  206. AMD_BIT(UDC_DEVINT_SOF)|
  207. AMD_BIT(UDC_DEVINT_SC);
  208. writel(tmp, &dev->regs->irqmsk);
  209. /* mask all ep interrupts */
  210. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  211. return 0;
  212. }
  213. /* Enables endpoint 0 interrupts */
  214. static int udc_enable_ep0_interrupts(struct udc *dev)
  215. {
  216. u32 tmp;
  217. DBG(dev, "udc_enable_ep0_interrupts()\n");
  218. /* read irq mask */
  219. tmp = readl(&dev->regs->ep_irqmsk);
  220. /* enable ep0 irq's */
  221. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  222. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  223. writel(tmp, &dev->regs->ep_irqmsk);
  224. return 0;
  225. }
  226. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  227. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  228. {
  229. u32 tmp;
  230. DBG(dev, "enable device interrupts for setup data\n");
  231. /* read irq mask */
  232. tmp = readl(&dev->regs->irqmsk);
  233. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  234. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  235. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  236. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  237. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  238. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  239. writel(tmp, &dev->regs->irqmsk);
  240. return 0;
  241. }
  242. /* Calculates fifo start of endpoint based on preceeding endpoints */
  243. static int udc_set_txfifo_addr(struct udc_ep *ep)
  244. {
  245. struct udc *dev;
  246. u32 tmp;
  247. int i;
  248. if (!ep || !(ep->in))
  249. return -EINVAL;
  250. dev = ep->dev;
  251. ep->txfifo = dev->txfifo;
  252. /* traverse ep's */
  253. for (i = 0; i < ep->num; i++) {
  254. if (dev->ep[i].regs) {
  255. /* read fifo size */
  256. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  257. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  258. ep->txfifo += tmp;
  259. }
  260. }
  261. return 0;
  262. }
  263. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  264. static u32 cnak_pending;
  265. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  266. {
  267. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  268. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  269. cnak_pending |= 1 << (num);
  270. ep->naking = 1;
  271. } else
  272. cnak_pending = cnak_pending & (~(1 << (num)));
  273. }
  274. /* Enables endpoint, is called by gadget driver */
  275. static int
  276. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  277. {
  278. struct udc_ep *ep;
  279. struct udc *dev;
  280. u32 tmp;
  281. unsigned long iflags;
  282. u8 udc_csr_epix;
  283. unsigned maxpacket;
  284. if (!usbep
  285. || usbep->name == ep0_string
  286. || !desc
  287. || desc->bDescriptorType != USB_DT_ENDPOINT)
  288. return -EINVAL;
  289. ep = container_of(usbep, struct udc_ep, ep);
  290. dev = ep->dev;
  291. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  292. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  293. return -ESHUTDOWN;
  294. spin_lock_irqsave(&dev->lock, iflags);
  295. ep->desc = desc;
  296. ep->halted = 0;
  297. /* set traffic type */
  298. tmp = readl(&dev->ep[ep->num].regs->ctl);
  299. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  300. writel(tmp, &dev->ep[ep->num].regs->ctl);
  301. /* set max packet size */
  302. maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  303. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  304. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  305. ep->ep.maxpacket = maxpacket;
  306. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  307. /* IN ep */
  308. if (ep->in) {
  309. /* ep ix in UDC CSR register space */
  310. udc_csr_epix = ep->num;
  311. /* set buffer size (tx fifo entries) */
  312. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  313. /* double buffering: fifo size = 2 x max packet size */
  314. tmp = AMD_ADDBITS(
  315. tmp,
  316. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  317. / UDC_DWORD_BYTES,
  318. UDC_EPIN_BUFF_SIZE);
  319. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  320. /* calc. tx fifo base addr */
  321. udc_set_txfifo_addr(ep);
  322. /* flush fifo */
  323. tmp = readl(&ep->regs->ctl);
  324. tmp |= AMD_BIT(UDC_EPCTL_F);
  325. writel(tmp, &ep->regs->ctl);
  326. /* OUT ep */
  327. } else {
  328. /* ep ix in UDC CSR register space */
  329. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  330. /* set max packet size UDC CSR */
  331. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  332. tmp = AMD_ADDBITS(tmp, maxpacket,
  333. UDC_CSR_NE_MAX_PKT);
  334. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  335. if (use_dma && !ep->in) {
  336. /* alloc and init BNA dummy request */
  337. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  338. ep->bna_occurred = 0;
  339. }
  340. if (ep->num != UDC_EP0OUT_IX)
  341. dev->data_ep_enabled = 1;
  342. }
  343. /* set ep values */
  344. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  345. /* max packet */
  346. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  347. /* ep number */
  348. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  349. /* ep direction */
  350. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  351. /* ep type */
  352. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  353. /* ep config */
  354. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  355. /* ep interface */
  356. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  357. /* ep alt */
  358. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  359. /* write reg */
  360. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  361. /* enable ep irq */
  362. tmp = readl(&dev->regs->ep_irqmsk);
  363. tmp &= AMD_UNMASK_BIT(ep->num);
  364. writel(tmp, &dev->regs->ep_irqmsk);
  365. /*
  366. * clear NAK by writing CNAK
  367. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  368. */
  369. if (!use_dma || ep->in) {
  370. tmp = readl(&ep->regs->ctl);
  371. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  372. writel(tmp, &ep->regs->ctl);
  373. ep->naking = 0;
  374. UDC_QUEUE_CNAK(ep, ep->num);
  375. }
  376. tmp = desc->bEndpointAddress;
  377. DBG(dev, "%s enabled\n", usbep->name);
  378. spin_unlock_irqrestore(&dev->lock, iflags);
  379. return 0;
  380. }
  381. /* Resets endpoint */
  382. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  383. {
  384. u32 tmp;
  385. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  386. ep->desc = NULL;
  387. ep->ep.ops = &udc_ep_ops;
  388. INIT_LIST_HEAD(&ep->queue);
  389. ep->ep.maxpacket = (u16) ~0;
  390. /* set NAK */
  391. tmp = readl(&ep->regs->ctl);
  392. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  393. writel(tmp, &ep->regs->ctl);
  394. ep->naking = 1;
  395. /* disable interrupt */
  396. tmp = readl(&regs->ep_irqmsk);
  397. tmp |= AMD_BIT(ep->num);
  398. writel(tmp, &regs->ep_irqmsk);
  399. if (ep->in) {
  400. /* unset P and IN bit of potential former DMA */
  401. tmp = readl(&ep->regs->ctl);
  402. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  403. writel(tmp, &ep->regs->ctl);
  404. tmp = readl(&ep->regs->sts);
  405. tmp |= AMD_BIT(UDC_EPSTS_IN);
  406. writel(tmp, &ep->regs->sts);
  407. /* flush the fifo */
  408. tmp = readl(&ep->regs->ctl);
  409. tmp |= AMD_BIT(UDC_EPCTL_F);
  410. writel(tmp, &ep->regs->ctl);
  411. }
  412. /* reset desc pointer */
  413. writel(0, &ep->regs->desptr);
  414. }
  415. /* Disables endpoint, is called by gadget driver */
  416. static int udc_ep_disable(struct usb_ep *usbep)
  417. {
  418. struct udc_ep *ep = NULL;
  419. unsigned long iflags;
  420. if (!usbep)
  421. return -EINVAL;
  422. ep = container_of(usbep, struct udc_ep, ep);
  423. if (usbep->name == ep0_string || !ep->desc)
  424. return -EINVAL;
  425. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  426. spin_lock_irqsave(&ep->dev->lock, iflags);
  427. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  428. empty_req_queue(ep);
  429. ep_init(ep->dev->regs, ep);
  430. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  431. return 0;
  432. }
  433. /* Allocates request packet, called by gadget driver */
  434. static struct usb_request *
  435. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  436. {
  437. struct udc_request *req;
  438. struct udc_data_dma *dma_desc;
  439. struct udc_ep *ep;
  440. if (!usbep)
  441. return NULL;
  442. ep = container_of(usbep, struct udc_ep, ep);
  443. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  444. req = kzalloc(sizeof(struct udc_request), gfp);
  445. if (!req)
  446. return NULL;
  447. req->req.dma = DMA_DONT_USE;
  448. INIT_LIST_HEAD(&req->queue);
  449. if (ep->dma) {
  450. /* ep0 in requests are allocated from data pool here */
  451. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  452. &req->td_phys);
  453. if (!dma_desc) {
  454. kfree(req);
  455. return NULL;
  456. }
  457. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  458. "td_phys = %lx\n",
  459. req, dma_desc,
  460. (unsigned long)req->td_phys);
  461. /* prevent from using desc. - set HOST BUSY */
  462. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  463. UDC_DMA_STP_STS_BS_HOST_BUSY,
  464. UDC_DMA_STP_STS_BS);
  465. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  466. req->td_data = dma_desc;
  467. req->td_data_last = NULL;
  468. req->chain_len = 1;
  469. }
  470. return &req->req;
  471. }
  472. /* Frees request packet, called by gadget driver */
  473. static void
  474. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  475. {
  476. struct udc_ep *ep;
  477. struct udc_request *req;
  478. if (!usbep || !usbreq)
  479. return;
  480. ep = container_of(usbep, struct udc_ep, ep);
  481. req = container_of(usbreq, struct udc_request, req);
  482. VDBG(ep->dev, "free_req req=%p\n", req);
  483. BUG_ON(!list_empty(&req->queue));
  484. if (req->td_data) {
  485. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  486. /* free dma chain if created */
  487. if (req->chain_len > 1) {
  488. udc_free_dma_chain(ep->dev, req);
  489. }
  490. pci_pool_free(ep->dev->data_requests, req->td_data,
  491. req->td_phys);
  492. }
  493. kfree(req);
  494. }
  495. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  496. static void udc_init_bna_dummy(struct udc_request *req)
  497. {
  498. if (req) {
  499. /* set last bit */
  500. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  501. /* set next pointer to itself */
  502. req->td_data->next = req->td_phys;
  503. /* set HOST BUSY */
  504. req->td_data->status
  505. = AMD_ADDBITS(req->td_data->status,
  506. UDC_DMA_STP_STS_BS_DMA_DONE,
  507. UDC_DMA_STP_STS_BS);
  508. #ifdef UDC_VERBOSE
  509. pr_debug("bna desc = %p, sts = %08x\n",
  510. req->td_data, req->td_data->status);
  511. #endif
  512. }
  513. }
  514. /* Allocate BNA dummy descriptor */
  515. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  516. {
  517. struct udc_request *req = NULL;
  518. struct usb_request *_req = NULL;
  519. /* alloc the dummy request */
  520. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  521. if (_req) {
  522. req = container_of(_req, struct udc_request, req);
  523. ep->bna_dummy_req = req;
  524. udc_init_bna_dummy(req);
  525. }
  526. return req;
  527. }
  528. /* Write data to TX fifo for IN packets */
  529. static void
  530. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  531. {
  532. u8 *req_buf;
  533. u32 *buf;
  534. int i, j;
  535. unsigned bytes = 0;
  536. unsigned remaining = 0;
  537. if (!req || !ep)
  538. return;
  539. req_buf = req->buf + req->actual;
  540. prefetch(req_buf);
  541. remaining = req->length - req->actual;
  542. buf = (u32 *) req_buf;
  543. bytes = ep->ep.maxpacket;
  544. if (bytes > remaining)
  545. bytes = remaining;
  546. /* dwords first */
  547. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  548. writel(*(buf + i), ep->txfifo);
  549. }
  550. /* remaining bytes must be written by byte access */
  551. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  552. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  553. ep->txfifo);
  554. }
  555. /* dummy write confirm */
  556. writel(0, &ep->regs->confirm);
  557. }
  558. /* Read dwords from RX fifo for OUT transfers */
  559. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  560. {
  561. int i;
  562. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  563. for (i = 0; i < dwords; i++) {
  564. *(buf + i) = readl(dev->rxfifo);
  565. }
  566. return 0;
  567. }
  568. /* Read bytes from RX fifo for OUT transfers */
  569. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  570. {
  571. int i, j;
  572. u32 tmp;
  573. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  574. /* dwords first */
  575. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  576. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  577. }
  578. /* remaining bytes must be read by byte access */
  579. if (bytes % UDC_DWORD_BYTES) {
  580. tmp = readl(dev->rxfifo);
  581. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  582. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  583. tmp = tmp >> UDC_BITS_PER_BYTE;
  584. }
  585. }
  586. return 0;
  587. }
  588. /* Read data from RX fifo for OUT transfers */
  589. static int
  590. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  591. {
  592. u8 *buf;
  593. unsigned buf_space;
  594. unsigned bytes = 0;
  595. unsigned finished = 0;
  596. /* received number bytes */
  597. bytes = readl(&ep->regs->sts);
  598. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  599. buf_space = req->req.length - req->req.actual;
  600. buf = req->req.buf + req->req.actual;
  601. if (bytes > buf_space) {
  602. if ((buf_space % ep->ep.maxpacket) != 0) {
  603. DBG(ep->dev,
  604. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  605. ep->ep.name, bytes, buf_space);
  606. req->req.status = -EOVERFLOW;
  607. }
  608. bytes = buf_space;
  609. }
  610. req->req.actual += bytes;
  611. /* last packet ? */
  612. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  613. || ((req->req.actual == req->req.length) && !req->req.zero))
  614. finished = 1;
  615. /* read rx fifo bytes */
  616. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  617. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  618. return finished;
  619. }
  620. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  621. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  622. {
  623. int retval = 0;
  624. u32 tmp;
  625. VDBG(ep->dev, "prep_dma\n");
  626. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  627. ep->num, req->td_data);
  628. /* set buffer pointer */
  629. req->td_data->bufptr = req->req.dma;
  630. /* set last bit */
  631. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  632. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  633. if (use_dma_ppb) {
  634. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  635. if (retval != 0) {
  636. if (retval == -ENOMEM)
  637. DBG(ep->dev, "Out of DMA memory\n");
  638. return retval;
  639. }
  640. if (ep->in) {
  641. if (req->req.length == ep->ep.maxpacket) {
  642. /* write tx bytes */
  643. req->td_data->status =
  644. AMD_ADDBITS(req->td_data->status,
  645. ep->ep.maxpacket,
  646. UDC_DMA_IN_STS_TXBYTES);
  647. }
  648. }
  649. }
  650. if (ep->in) {
  651. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  652. "maxpacket=%d ep%d\n",
  653. use_dma_ppb, req->req.length,
  654. ep->ep.maxpacket, ep->num);
  655. /*
  656. * if bytes < max packet then tx bytes must
  657. * be written in packet per buffer mode
  658. */
  659. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  660. || ep->num == UDC_EP0OUT_IX
  661. || ep->num == UDC_EP0IN_IX) {
  662. /* write tx bytes */
  663. req->td_data->status =
  664. AMD_ADDBITS(req->td_data->status,
  665. req->req.length,
  666. UDC_DMA_IN_STS_TXBYTES);
  667. /* reset frame num */
  668. req->td_data->status =
  669. AMD_ADDBITS(req->td_data->status,
  670. 0,
  671. UDC_DMA_IN_STS_FRAMENUM);
  672. }
  673. /* set HOST BUSY */
  674. req->td_data->status =
  675. AMD_ADDBITS(req->td_data->status,
  676. UDC_DMA_STP_STS_BS_HOST_BUSY,
  677. UDC_DMA_STP_STS_BS);
  678. } else {
  679. VDBG(ep->dev, "OUT set host ready\n");
  680. /* set HOST READY */
  681. req->td_data->status =
  682. AMD_ADDBITS(req->td_data->status,
  683. UDC_DMA_STP_STS_BS_HOST_READY,
  684. UDC_DMA_STP_STS_BS);
  685. /* clear NAK by writing CNAK */
  686. if (ep->naking) {
  687. tmp = readl(&ep->regs->ctl);
  688. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  689. writel(tmp, &ep->regs->ctl);
  690. ep->naking = 0;
  691. UDC_QUEUE_CNAK(ep, ep->num);
  692. }
  693. }
  694. return retval;
  695. }
  696. /* Completes request packet ... caller MUST hold lock */
  697. static void
  698. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  699. __releases(ep->dev->lock)
  700. __acquires(ep->dev->lock)
  701. {
  702. struct udc *dev;
  703. unsigned halted;
  704. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  705. dev = ep->dev;
  706. /* unmap DMA */
  707. if (req->dma_mapping) {
  708. if (ep->in)
  709. pci_unmap_single(dev->pdev,
  710. req->req.dma,
  711. req->req.length,
  712. PCI_DMA_TODEVICE);
  713. else
  714. pci_unmap_single(dev->pdev,
  715. req->req.dma,
  716. req->req.length,
  717. PCI_DMA_FROMDEVICE);
  718. req->dma_mapping = 0;
  719. req->req.dma = DMA_DONT_USE;
  720. }
  721. halted = ep->halted;
  722. ep->halted = 1;
  723. /* set new status if pending */
  724. if (req->req.status == -EINPROGRESS)
  725. req->req.status = sts;
  726. /* remove from ep queue */
  727. list_del_init(&req->queue);
  728. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  729. &req->req, req->req.length, ep->ep.name, sts);
  730. spin_unlock(&dev->lock);
  731. req->req.complete(&ep->ep, &req->req);
  732. spin_lock(&dev->lock);
  733. ep->halted = halted;
  734. }
  735. /* frees pci pool descriptors of a DMA chain */
  736. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  737. {
  738. int ret_val = 0;
  739. struct udc_data_dma *td;
  740. struct udc_data_dma *td_last = NULL;
  741. unsigned int i;
  742. DBG(dev, "free chain req = %p\n", req);
  743. /* do not free first desc., will be done by free for request */
  744. td_last = req->td_data;
  745. td = phys_to_virt(td_last->next);
  746. for (i = 1; i < req->chain_len; i++) {
  747. pci_pool_free(dev->data_requests, td,
  748. (dma_addr_t) td_last->next);
  749. td_last = td;
  750. td = phys_to_virt(td_last->next);
  751. }
  752. return ret_val;
  753. }
  754. /* Iterates to the end of a DMA chain and returns last descriptor */
  755. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  756. {
  757. struct udc_data_dma *td;
  758. td = req->td_data;
  759. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  760. td = phys_to_virt(td->next);
  761. }
  762. return td;
  763. }
  764. /* Iterates to the end of a DMA chain and counts bytes received */
  765. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  766. {
  767. struct udc_data_dma *td;
  768. u32 count;
  769. td = req->td_data;
  770. /* received number bytes */
  771. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  772. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  773. td = phys_to_virt(td->next);
  774. /* received number bytes */
  775. if (td) {
  776. count += AMD_GETBITS(td->status,
  777. UDC_DMA_OUT_STS_RXBYTES);
  778. }
  779. }
  780. return count;
  781. }
  782. /* Creates or re-inits a DMA chain */
  783. static int udc_create_dma_chain(
  784. struct udc_ep *ep,
  785. struct udc_request *req,
  786. unsigned long buf_len, gfp_t gfp_flags
  787. )
  788. {
  789. unsigned long bytes = req->req.length;
  790. unsigned int i;
  791. dma_addr_t dma_addr;
  792. struct udc_data_dma *td = NULL;
  793. struct udc_data_dma *last = NULL;
  794. unsigned long txbytes;
  795. unsigned create_new_chain = 0;
  796. unsigned len;
  797. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  798. bytes, buf_len);
  799. dma_addr = DMA_DONT_USE;
  800. /* unset L bit in first desc for OUT */
  801. if (!ep->in) {
  802. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  803. }
  804. /* alloc only new desc's if not already available */
  805. len = req->req.length / ep->ep.maxpacket;
  806. if (req->req.length % ep->ep.maxpacket) {
  807. len++;
  808. }
  809. if (len > req->chain_len) {
  810. /* shorter chain already allocated before */
  811. if (req->chain_len > 1) {
  812. udc_free_dma_chain(ep->dev, req);
  813. }
  814. req->chain_len = len;
  815. create_new_chain = 1;
  816. }
  817. td = req->td_data;
  818. /* gen. required number of descriptors and buffers */
  819. for (i = buf_len; i < bytes; i += buf_len) {
  820. /* create or determine next desc. */
  821. if (create_new_chain) {
  822. td = pci_pool_alloc(ep->dev->data_requests,
  823. gfp_flags, &dma_addr);
  824. if (!td)
  825. return -ENOMEM;
  826. td->status = 0;
  827. } else if (i == buf_len) {
  828. /* first td */
  829. td = (struct udc_data_dma *) phys_to_virt(
  830. req->td_data->next);
  831. td->status = 0;
  832. } else {
  833. td = (struct udc_data_dma *) phys_to_virt(last->next);
  834. td->status = 0;
  835. }
  836. if (td)
  837. td->bufptr = req->req.dma + i; /* assign buffer */
  838. else
  839. break;
  840. /* short packet ? */
  841. if ((bytes - i) >= buf_len) {
  842. txbytes = buf_len;
  843. } else {
  844. /* short packet */
  845. txbytes = bytes - i;
  846. }
  847. /* link td and assign tx bytes */
  848. if (i == buf_len) {
  849. if (create_new_chain) {
  850. req->td_data->next = dma_addr;
  851. } else {
  852. /* req->td_data->next = virt_to_phys(td); */
  853. }
  854. /* write tx bytes */
  855. if (ep->in) {
  856. /* first desc */
  857. req->td_data->status =
  858. AMD_ADDBITS(req->td_data->status,
  859. ep->ep.maxpacket,
  860. UDC_DMA_IN_STS_TXBYTES);
  861. /* second desc */
  862. td->status = AMD_ADDBITS(td->status,
  863. txbytes,
  864. UDC_DMA_IN_STS_TXBYTES);
  865. }
  866. } else {
  867. if (create_new_chain) {
  868. last->next = dma_addr;
  869. } else {
  870. /* last->next = virt_to_phys(td); */
  871. }
  872. if (ep->in) {
  873. /* write tx bytes */
  874. td->status = AMD_ADDBITS(td->status,
  875. txbytes,
  876. UDC_DMA_IN_STS_TXBYTES);
  877. }
  878. }
  879. last = td;
  880. }
  881. /* set last bit */
  882. if (td) {
  883. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  884. /* last desc. points to itself */
  885. req->td_data_last = td;
  886. }
  887. return 0;
  888. }
  889. /* Enabling RX DMA */
  890. static void udc_set_rde(struct udc *dev)
  891. {
  892. u32 tmp;
  893. VDBG(dev, "udc_set_rde()\n");
  894. /* stop RDE timer */
  895. if (timer_pending(&udc_timer)) {
  896. set_rde = 0;
  897. mod_timer(&udc_timer, jiffies - 1);
  898. }
  899. /* set RDE */
  900. tmp = readl(&dev->regs->ctl);
  901. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  902. writel(tmp, &dev->regs->ctl);
  903. }
  904. /* Queues a request packet, called by gadget driver */
  905. static int
  906. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  907. {
  908. int retval = 0;
  909. u8 open_rxfifo = 0;
  910. unsigned long iflags;
  911. struct udc_ep *ep;
  912. struct udc_request *req;
  913. struct udc *dev;
  914. u32 tmp;
  915. /* check the inputs */
  916. req = container_of(usbreq, struct udc_request, req);
  917. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  918. || !list_empty(&req->queue))
  919. return -EINVAL;
  920. ep = container_of(usbep, struct udc_ep, ep);
  921. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  922. return -EINVAL;
  923. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  924. dev = ep->dev;
  925. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  926. return -ESHUTDOWN;
  927. /* map dma (usually done before) */
  928. if (ep->dma && usbreq->length != 0
  929. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  930. VDBG(dev, "DMA map req %p\n", req);
  931. if (ep->in)
  932. usbreq->dma = pci_map_single(dev->pdev,
  933. usbreq->buf,
  934. usbreq->length,
  935. PCI_DMA_TODEVICE);
  936. else
  937. usbreq->dma = pci_map_single(dev->pdev,
  938. usbreq->buf,
  939. usbreq->length,
  940. PCI_DMA_FROMDEVICE);
  941. req->dma_mapping = 1;
  942. }
  943. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  944. usbep->name, usbreq, usbreq->length,
  945. req->td_data, usbreq->buf);
  946. spin_lock_irqsave(&dev->lock, iflags);
  947. usbreq->actual = 0;
  948. usbreq->status = -EINPROGRESS;
  949. req->dma_done = 0;
  950. /* on empty queue just do first transfer */
  951. if (list_empty(&ep->queue)) {
  952. /* zlp */
  953. if (usbreq->length == 0) {
  954. /* IN zlp's are handled by hardware */
  955. complete_req(ep, req, 0);
  956. VDBG(dev, "%s: zlp\n", ep->ep.name);
  957. /*
  958. * if set_config or set_intf is waiting for ack by zlp
  959. * then set CSR_DONE
  960. */
  961. if (dev->set_cfg_not_acked) {
  962. tmp = readl(&dev->regs->ctl);
  963. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  964. writel(tmp, &dev->regs->ctl);
  965. dev->set_cfg_not_acked = 0;
  966. }
  967. /* setup command is ACK'ed now by zlp */
  968. if (dev->waiting_zlp_ack_ep0in) {
  969. /* clear NAK by writing CNAK in EP0_IN */
  970. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  971. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  972. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  973. dev->ep[UDC_EP0IN_IX].naking = 0;
  974. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  975. UDC_EP0IN_IX);
  976. dev->waiting_zlp_ack_ep0in = 0;
  977. }
  978. goto finished;
  979. }
  980. if (ep->dma) {
  981. retval = prep_dma(ep, req, gfp);
  982. if (retval != 0)
  983. goto finished;
  984. /* write desc pointer to enable DMA */
  985. if (ep->in) {
  986. /* set HOST READY */
  987. req->td_data->status =
  988. AMD_ADDBITS(req->td_data->status,
  989. UDC_DMA_IN_STS_BS_HOST_READY,
  990. UDC_DMA_IN_STS_BS);
  991. }
  992. /* disabled rx dma while descriptor update */
  993. if (!ep->in) {
  994. /* stop RDE timer */
  995. if (timer_pending(&udc_timer)) {
  996. set_rde = 0;
  997. mod_timer(&udc_timer, jiffies - 1);
  998. }
  999. /* clear RDE */
  1000. tmp = readl(&dev->regs->ctl);
  1001. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1002. writel(tmp, &dev->regs->ctl);
  1003. open_rxfifo = 1;
  1004. /*
  1005. * if BNA occurred then let BNA dummy desc.
  1006. * point to current desc.
  1007. */
  1008. if (ep->bna_occurred) {
  1009. VDBG(dev, "copy to BNA dummy desc.\n");
  1010. memcpy(ep->bna_dummy_req->td_data,
  1011. req->td_data,
  1012. sizeof(struct udc_data_dma));
  1013. }
  1014. }
  1015. /* write desc pointer */
  1016. writel(req->td_phys, &ep->regs->desptr);
  1017. /* clear NAK by writing CNAK */
  1018. if (ep->naking) {
  1019. tmp = readl(&ep->regs->ctl);
  1020. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1021. writel(tmp, &ep->regs->ctl);
  1022. ep->naking = 0;
  1023. UDC_QUEUE_CNAK(ep, ep->num);
  1024. }
  1025. if (ep->in) {
  1026. /* enable ep irq */
  1027. tmp = readl(&dev->regs->ep_irqmsk);
  1028. tmp &= AMD_UNMASK_BIT(ep->num);
  1029. writel(tmp, &dev->regs->ep_irqmsk);
  1030. }
  1031. }
  1032. } else if (ep->dma) {
  1033. /*
  1034. * prep_dma not used for OUT ep's, this is not possible
  1035. * for PPB modes, because of chain creation reasons
  1036. */
  1037. if (ep->in) {
  1038. retval = prep_dma(ep, req, gfp);
  1039. if (retval != 0)
  1040. goto finished;
  1041. }
  1042. }
  1043. VDBG(dev, "list_add\n");
  1044. /* add request to ep queue */
  1045. if (req) {
  1046. list_add_tail(&req->queue, &ep->queue);
  1047. /* open rxfifo if out data queued */
  1048. if (open_rxfifo) {
  1049. /* enable DMA */
  1050. req->dma_going = 1;
  1051. udc_set_rde(dev);
  1052. if (ep->num != UDC_EP0OUT_IX)
  1053. dev->data_ep_queued = 1;
  1054. }
  1055. /* stop OUT naking */
  1056. if (!ep->in) {
  1057. if (!use_dma && udc_rxfifo_pending) {
  1058. DBG(dev, "udc_queue(): pending bytes in "
  1059. "rxfifo after nyet\n");
  1060. /*
  1061. * read pending bytes afer nyet:
  1062. * referring to isr
  1063. */
  1064. if (udc_rxfifo_read(ep, req)) {
  1065. /* finish */
  1066. complete_req(ep, req, 0);
  1067. }
  1068. udc_rxfifo_pending = 0;
  1069. }
  1070. }
  1071. }
  1072. finished:
  1073. spin_unlock_irqrestore(&dev->lock, iflags);
  1074. return retval;
  1075. }
  1076. /* Empty request queue of an endpoint; caller holds spinlock */
  1077. static void empty_req_queue(struct udc_ep *ep)
  1078. {
  1079. struct udc_request *req;
  1080. ep->halted = 1;
  1081. while (!list_empty(&ep->queue)) {
  1082. req = list_entry(ep->queue.next,
  1083. struct udc_request,
  1084. queue);
  1085. complete_req(ep, req, -ESHUTDOWN);
  1086. }
  1087. }
  1088. /* Dequeues a request packet, called by gadget driver */
  1089. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1090. {
  1091. struct udc_ep *ep;
  1092. struct udc_request *req;
  1093. unsigned halted;
  1094. unsigned long iflags;
  1095. ep = container_of(usbep, struct udc_ep, ep);
  1096. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1097. && ep->num != UDC_EP0OUT_IX)))
  1098. return -EINVAL;
  1099. req = container_of(usbreq, struct udc_request, req);
  1100. spin_lock_irqsave(&ep->dev->lock, iflags);
  1101. halted = ep->halted;
  1102. ep->halted = 1;
  1103. /* request in processing or next one */
  1104. if (ep->queue.next == &req->queue) {
  1105. if (ep->dma && req->dma_going) {
  1106. if (ep->in)
  1107. ep->cancel_transfer = 1;
  1108. else {
  1109. u32 tmp;
  1110. u32 dma_sts;
  1111. /* stop potential receive DMA */
  1112. tmp = readl(&udc->regs->ctl);
  1113. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1114. &udc->regs->ctl);
  1115. /*
  1116. * Cancel transfer later in ISR
  1117. * if descriptor was touched.
  1118. */
  1119. dma_sts = AMD_GETBITS(req->td_data->status,
  1120. UDC_DMA_OUT_STS_BS);
  1121. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1122. ep->cancel_transfer = 1;
  1123. else {
  1124. udc_init_bna_dummy(ep->req);
  1125. writel(ep->bna_dummy_req->td_phys,
  1126. &ep->regs->desptr);
  1127. }
  1128. writel(tmp, &udc->regs->ctl);
  1129. }
  1130. }
  1131. }
  1132. complete_req(ep, req, -ECONNRESET);
  1133. ep->halted = halted;
  1134. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1135. return 0;
  1136. }
  1137. /* Halt or clear halt of endpoint */
  1138. static int
  1139. udc_set_halt(struct usb_ep *usbep, int halt)
  1140. {
  1141. struct udc_ep *ep;
  1142. u32 tmp;
  1143. unsigned long iflags;
  1144. int retval = 0;
  1145. if (!usbep)
  1146. return -EINVAL;
  1147. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1148. ep = container_of(usbep, struct udc_ep, ep);
  1149. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1150. return -EINVAL;
  1151. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1152. return -ESHUTDOWN;
  1153. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1154. /* halt or clear halt */
  1155. if (halt) {
  1156. if (ep->num == 0)
  1157. ep->dev->stall_ep0in = 1;
  1158. else {
  1159. /*
  1160. * set STALL
  1161. * rxfifo empty not taken into acount
  1162. */
  1163. tmp = readl(&ep->regs->ctl);
  1164. tmp |= AMD_BIT(UDC_EPCTL_S);
  1165. writel(tmp, &ep->regs->ctl);
  1166. ep->halted = 1;
  1167. /* setup poll timer */
  1168. if (!timer_pending(&udc_pollstall_timer)) {
  1169. udc_pollstall_timer.expires = jiffies +
  1170. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1171. / (1000 * 1000);
  1172. if (!stop_pollstall_timer) {
  1173. DBG(ep->dev, "start polltimer\n");
  1174. add_timer(&udc_pollstall_timer);
  1175. }
  1176. }
  1177. }
  1178. } else {
  1179. /* ep is halted by set_halt() before */
  1180. if (ep->halted) {
  1181. tmp = readl(&ep->regs->ctl);
  1182. /* clear stall bit */
  1183. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1184. /* clear NAK by writing CNAK */
  1185. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1186. writel(tmp, &ep->regs->ctl);
  1187. ep->halted = 0;
  1188. UDC_QUEUE_CNAK(ep, ep->num);
  1189. }
  1190. }
  1191. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1192. return retval;
  1193. }
  1194. /* gadget interface */
  1195. static const struct usb_ep_ops udc_ep_ops = {
  1196. .enable = udc_ep_enable,
  1197. .disable = udc_ep_disable,
  1198. .alloc_request = udc_alloc_request,
  1199. .free_request = udc_free_request,
  1200. .queue = udc_queue,
  1201. .dequeue = udc_dequeue,
  1202. .set_halt = udc_set_halt,
  1203. /* fifo ops not implemented */
  1204. };
  1205. /*-------------------------------------------------------------------------*/
  1206. /* Get frame counter (not implemented) */
  1207. static int udc_get_frame(struct usb_gadget *gadget)
  1208. {
  1209. return -EOPNOTSUPP;
  1210. }
  1211. /* Remote wakeup gadget interface */
  1212. static int udc_wakeup(struct usb_gadget *gadget)
  1213. {
  1214. struct udc *dev;
  1215. if (!gadget)
  1216. return -EINVAL;
  1217. dev = container_of(gadget, struct udc, gadget);
  1218. udc_remote_wakeup(dev);
  1219. return 0;
  1220. }
  1221. /* gadget operations */
  1222. static const struct usb_gadget_ops udc_ops = {
  1223. .wakeup = udc_wakeup,
  1224. .get_frame = udc_get_frame,
  1225. };
  1226. /* Setups endpoint parameters, adds endpoints to linked list */
  1227. static void make_ep_lists(struct udc *dev)
  1228. {
  1229. /* make gadget ep lists */
  1230. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1231. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1232. &dev->gadget.ep_list);
  1233. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1234. &dev->gadget.ep_list);
  1235. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1236. &dev->gadget.ep_list);
  1237. /* fifo config */
  1238. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1239. if (dev->gadget.speed == USB_SPEED_FULL)
  1240. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1241. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1242. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1243. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1244. }
  1245. /* init registers at driver load time */
  1246. static int startup_registers(struct udc *dev)
  1247. {
  1248. u32 tmp;
  1249. /* init controller by soft reset */
  1250. udc_soft_reset(dev);
  1251. /* mask not needed interrupts */
  1252. udc_mask_unused_interrupts(dev);
  1253. /* put into initial config */
  1254. udc_basic_init(dev);
  1255. /* link up all endpoints */
  1256. udc_setup_endpoints(dev);
  1257. /* program speed */
  1258. tmp = readl(&dev->regs->cfg);
  1259. if (use_fullspeed) {
  1260. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1261. } else {
  1262. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1263. }
  1264. writel(tmp, &dev->regs->cfg);
  1265. return 0;
  1266. }
  1267. /* Inits UDC context */
  1268. static void udc_basic_init(struct udc *dev)
  1269. {
  1270. u32 tmp;
  1271. DBG(dev, "udc_basic_init()\n");
  1272. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1273. /* stop RDE timer */
  1274. if (timer_pending(&udc_timer)) {
  1275. set_rde = 0;
  1276. mod_timer(&udc_timer, jiffies - 1);
  1277. }
  1278. /* stop poll stall timer */
  1279. if (timer_pending(&udc_pollstall_timer)) {
  1280. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1281. }
  1282. /* disable DMA */
  1283. tmp = readl(&dev->regs->ctl);
  1284. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1285. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1286. writel(tmp, &dev->regs->ctl);
  1287. /* enable dynamic CSR programming */
  1288. tmp = readl(&dev->regs->cfg);
  1289. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1290. /* set self powered */
  1291. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1292. /* set remote wakeupable */
  1293. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1294. writel(tmp, &dev->regs->cfg);
  1295. make_ep_lists(dev);
  1296. dev->data_ep_enabled = 0;
  1297. dev->data_ep_queued = 0;
  1298. }
  1299. /* Sets initial endpoint parameters */
  1300. static void udc_setup_endpoints(struct udc *dev)
  1301. {
  1302. struct udc_ep *ep;
  1303. u32 tmp;
  1304. u32 reg;
  1305. DBG(dev, "udc_setup_endpoints()\n");
  1306. /* read enum speed */
  1307. tmp = readl(&dev->regs->sts);
  1308. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1309. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1310. dev->gadget.speed = USB_SPEED_HIGH;
  1311. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1312. dev->gadget.speed = USB_SPEED_FULL;
  1313. }
  1314. /* set basic ep parameters */
  1315. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1316. ep = &dev->ep[tmp];
  1317. ep->dev = dev;
  1318. ep->ep.name = ep_string[tmp];
  1319. ep->num = tmp;
  1320. /* txfifo size is calculated at enable time */
  1321. ep->txfifo = dev->txfifo;
  1322. /* fifo size */
  1323. if (tmp < UDC_EPIN_NUM) {
  1324. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1325. ep->in = 1;
  1326. } else {
  1327. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1328. ep->in = 0;
  1329. }
  1330. ep->regs = &dev->ep_regs[tmp];
  1331. /*
  1332. * ep will be reset only if ep was not enabled before to avoid
  1333. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1334. * not enabled by gadget driver
  1335. */
  1336. if (!ep->desc) {
  1337. ep_init(dev->regs, ep);
  1338. }
  1339. if (use_dma) {
  1340. /*
  1341. * ep->dma is not really used, just to indicate that
  1342. * DMA is active: remove this
  1343. * dma regs = dev control regs
  1344. */
  1345. ep->dma = &dev->regs->ctl;
  1346. /* nak OUT endpoints until enable - not for ep0 */
  1347. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1348. && tmp > UDC_EPIN_NUM) {
  1349. /* set NAK */
  1350. reg = readl(&dev->ep[tmp].regs->ctl);
  1351. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1352. writel(reg, &dev->ep[tmp].regs->ctl);
  1353. dev->ep[tmp].naking = 1;
  1354. }
  1355. }
  1356. }
  1357. /* EP0 max packet */
  1358. if (dev->gadget.speed == USB_SPEED_FULL) {
  1359. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1360. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1361. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1362. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1363. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1364. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1365. }
  1366. /*
  1367. * with suspend bug workaround, ep0 params for gadget driver
  1368. * are set at gadget driver bind() call
  1369. */
  1370. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1371. dev->ep[UDC_EP0IN_IX].halted = 0;
  1372. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1373. /* init cfg/alt/int */
  1374. dev->cur_config = 0;
  1375. dev->cur_intf = 0;
  1376. dev->cur_alt = 0;
  1377. }
  1378. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1379. static void usb_connect(struct udc *dev)
  1380. {
  1381. dev_info(&dev->pdev->dev, "USB Connect\n");
  1382. dev->connected = 1;
  1383. /* put into initial config */
  1384. udc_basic_init(dev);
  1385. /* enable device setup interrupts */
  1386. udc_enable_dev_setup_interrupts(dev);
  1387. }
  1388. /*
  1389. * Calls gadget with disconnect event and resets the UDC and makes
  1390. * initial bringup to be ready for ep0 events
  1391. */
  1392. static void usb_disconnect(struct udc *dev)
  1393. {
  1394. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1395. dev->connected = 0;
  1396. /* mask interrupts */
  1397. udc_mask_unused_interrupts(dev);
  1398. /* REVISIT there doesn't seem to be a point to having this
  1399. * talk to a tasklet ... do it directly, we already hold
  1400. * the spinlock needed to process the disconnect.
  1401. */
  1402. tasklet_schedule(&disconnect_tasklet);
  1403. }
  1404. /* Tasklet for disconnect to be outside of interrupt context */
  1405. static void udc_tasklet_disconnect(unsigned long par)
  1406. {
  1407. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1408. u32 tmp;
  1409. DBG(dev, "Tasklet disconnect\n");
  1410. spin_lock_irq(&dev->lock);
  1411. if (dev->driver) {
  1412. spin_unlock(&dev->lock);
  1413. dev->driver->disconnect(&dev->gadget);
  1414. spin_lock(&dev->lock);
  1415. /* empty queues */
  1416. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1417. empty_req_queue(&dev->ep[tmp]);
  1418. }
  1419. }
  1420. /* disable ep0 */
  1421. ep_init(dev->regs,
  1422. &dev->ep[UDC_EP0IN_IX]);
  1423. if (!soft_reset_occured) {
  1424. /* init controller by soft reset */
  1425. udc_soft_reset(dev);
  1426. soft_reset_occured++;
  1427. }
  1428. /* re-enable dev interrupts */
  1429. udc_enable_dev_setup_interrupts(dev);
  1430. /* back to full speed ? */
  1431. if (use_fullspeed) {
  1432. tmp = readl(&dev->regs->cfg);
  1433. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1434. writel(tmp, &dev->regs->cfg);
  1435. }
  1436. spin_unlock_irq(&dev->lock);
  1437. }
  1438. /* Reset the UDC core */
  1439. static void udc_soft_reset(struct udc *dev)
  1440. {
  1441. unsigned long flags;
  1442. DBG(dev, "Soft reset\n");
  1443. /*
  1444. * reset possible waiting interrupts, because int.
  1445. * status is lost after soft reset,
  1446. * ep int. status reset
  1447. */
  1448. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1449. /* device int. status reset */
  1450. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1451. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1452. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1453. readl(&dev->regs->cfg);
  1454. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1455. }
  1456. /* RDE timer callback to set RDE bit */
  1457. static void udc_timer_function(unsigned long v)
  1458. {
  1459. u32 tmp;
  1460. spin_lock_irq(&udc_irq_spinlock);
  1461. if (set_rde > 0) {
  1462. /*
  1463. * open the fifo if fifo was filled on last timer call
  1464. * conditionally
  1465. */
  1466. if (set_rde > 1) {
  1467. /* set RDE to receive setup data */
  1468. tmp = readl(&udc->regs->ctl);
  1469. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1470. writel(tmp, &udc->regs->ctl);
  1471. set_rde = -1;
  1472. } else if (readl(&udc->regs->sts)
  1473. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1474. /*
  1475. * if fifo empty setup polling, do not just
  1476. * open the fifo
  1477. */
  1478. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1479. if (!stop_timer) {
  1480. add_timer(&udc_timer);
  1481. }
  1482. } else {
  1483. /*
  1484. * fifo contains data now, setup timer for opening
  1485. * the fifo when timer expires to be able to receive
  1486. * setup packets, when data packets gets queued by
  1487. * gadget layer then timer will forced to expire with
  1488. * set_rde=0 (RDE is set in udc_queue())
  1489. */
  1490. set_rde++;
  1491. /* debug: lhadmot_timer_start = 221070 */
  1492. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1493. if (!stop_timer) {
  1494. add_timer(&udc_timer);
  1495. }
  1496. }
  1497. } else
  1498. set_rde = -1; /* RDE was set by udc_queue() */
  1499. spin_unlock_irq(&udc_irq_spinlock);
  1500. if (stop_timer)
  1501. complete(&on_exit);
  1502. }
  1503. /* Handle halt state, used in stall poll timer */
  1504. static void udc_handle_halt_state(struct udc_ep *ep)
  1505. {
  1506. u32 tmp;
  1507. /* set stall as long not halted */
  1508. if (ep->halted == 1) {
  1509. tmp = readl(&ep->regs->ctl);
  1510. /* STALL cleared ? */
  1511. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1512. /*
  1513. * FIXME: MSC spec requires that stall remains
  1514. * even on receivng of CLEAR_FEATURE HALT. So
  1515. * we would set STALL again here to be compliant.
  1516. * But with current mass storage drivers this does
  1517. * not work (would produce endless host retries).
  1518. * So we clear halt on CLEAR_FEATURE.
  1519. *
  1520. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1521. tmp |= AMD_BIT(UDC_EPCTL_S);
  1522. writel(tmp, &ep->regs->ctl);*/
  1523. /* clear NAK by writing CNAK */
  1524. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1525. writel(tmp, &ep->regs->ctl);
  1526. ep->halted = 0;
  1527. UDC_QUEUE_CNAK(ep, ep->num);
  1528. }
  1529. }
  1530. }
  1531. /* Stall timer callback to poll S bit and set it again after */
  1532. static void udc_pollstall_timer_function(unsigned long v)
  1533. {
  1534. struct udc_ep *ep;
  1535. int halted = 0;
  1536. spin_lock_irq(&udc_stall_spinlock);
  1537. /*
  1538. * only one IN and OUT endpoints are handled
  1539. * IN poll stall
  1540. */
  1541. ep = &udc->ep[UDC_EPIN_IX];
  1542. udc_handle_halt_state(ep);
  1543. if (ep->halted)
  1544. halted = 1;
  1545. /* OUT poll stall */
  1546. ep = &udc->ep[UDC_EPOUT_IX];
  1547. udc_handle_halt_state(ep);
  1548. if (ep->halted)
  1549. halted = 1;
  1550. /* setup timer again when still halted */
  1551. if (!stop_pollstall_timer && halted) {
  1552. udc_pollstall_timer.expires = jiffies +
  1553. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1554. / (1000 * 1000);
  1555. add_timer(&udc_pollstall_timer);
  1556. }
  1557. spin_unlock_irq(&udc_stall_spinlock);
  1558. if (stop_pollstall_timer)
  1559. complete(&on_pollstall_exit);
  1560. }
  1561. /* Inits endpoint 0 so that SETUP packets are processed */
  1562. static void activate_control_endpoints(struct udc *dev)
  1563. {
  1564. u32 tmp;
  1565. DBG(dev, "activate_control_endpoints\n");
  1566. /* flush fifo */
  1567. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1568. tmp |= AMD_BIT(UDC_EPCTL_F);
  1569. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1570. /* set ep0 directions */
  1571. dev->ep[UDC_EP0IN_IX].in = 1;
  1572. dev->ep[UDC_EP0OUT_IX].in = 0;
  1573. /* set buffer size (tx fifo entries) of EP0_IN */
  1574. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1575. if (dev->gadget.speed == USB_SPEED_FULL)
  1576. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1577. UDC_EPIN_BUFF_SIZE);
  1578. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1579. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1580. UDC_EPIN_BUFF_SIZE);
  1581. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1582. /* set max packet size of EP0_IN */
  1583. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1584. if (dev->gadget.speed == USB_SPEED_FULL)
  1585. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1586. UDC_EP_MAX_PKT_SIZE);
  1587. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1588. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1589. UDC_EP_MAX_PKT_SIZE);
  1590. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1591. /* set max packet size of EP0_OUT */
  1592. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1593. if (dev->gadget.speed == USB_SPEED_FULL)
  1594. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1595. UDC_EP_MAX_PKT_SIZE);
  1596. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1597. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1598. UDC_EP_MAX_PKT_SIZE);
  1599. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1600. /* set max packet size of EP0 in UDC CSR */
  1601. tmp = readl(&dev->csr->ne[0]);
  1602. if (dev->gadget.speed == USB_SPEED_FULL)
  1603. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1604. UDC_CSR_NE_MAX_PKT);
  1605. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1606. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1607. UDC_CSR_NE_MAX_PKT);
  1608. writel(tmp, &dev->csr->ne[0]);
  1609. if (use_dma) {
  1610. dev->ep[UDC_EP0OUT_IX].td->status |=
  1611. AMD_BIT(UDC_DMA_OUT_STS_L);
  1612. /* write dma desc address */
  1613. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1614. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1615. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1616. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1617. /* stop RDE timer */
  1618. if (timer_pending(&udc_timer)) {
  1619. set_rde = 0;
  1620. mod_timer(&udc_timer, jiffies - 1);
  1621. }
  1622. /* stop pollstall timer */
  1623. if (timer_pending(&udc_pollstall_timer)) {
  1624. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1625. }
  1626. /* enable DMA */
  1627. tmp = readl(&dev->regs->ctl);
  1628. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1629. | AMD_BIT(UDC_DEVCTL_RDE)
  1630. | AMD_BIT(UDC_DEVCTL_TDE);
  1631. if (use_dma_bufferfill_mode) {
  1632. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1633. } else if (use_dma_ppb_du) {
  1634. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1635. }
  1636. writel(tmp, &dev->regs->ctl);
  1637. }
  1638. /* clear NAK by writing CNAK for EP0IN */
  1639. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1640. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1641. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1642. dev->ep[UDC_EP0IN_IX].naking = 0;
  1643. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1644. /* clear NAK by writing CNAK for EP0OUT */
  1645. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1646. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1647. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1648. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1649. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1650. }
  1651. /* Make endpoint 0 ready for control traffic */
  1652. static int setup_ep0(struct udc *dev)
  1653. {
  1654. activate_control_endpoints(dev);
  1655. /* enable ep0 interrupts */
  1656. udc_enable_ep0_interrupts(dev);
  1657. /* enable device setup interrupts */
  1658. udc_enable_dev_setup_interrupts(dev);
  1659. return 0;
  1660. }
  1661. /* Called by gadget driver to register itself */
  1662. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1663. {
  1664. struct udc *dev = udc;
  1665. int retval;
  1666. u32 tmp;
  1667. if (!driver || !driver->bind || !driver->setup
  1668. || driver->speed != USB_SPEED_HIGH)
  1669. return -EINVAL;
  1670. if (!dev)
  1671. return -ENODEV;
  1672. if (dev->driver)
  1673. return -EBUSY;
  1674. driver->driver.bus = NULL;
  1675. dev->driver = driver;
  1676. dev->gadget.dev.driver = &driver->driver;
  1677. retval = driver->bind(&dev->gadget);
  1678. /* Some gadget drivers use both ep0 directions.
  1679. * NOTE: to gadget driver, ep0 is just one endpoint...
  1680. */
  1681. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1682. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1683. if (retval) {
  1684. DBG(dev, "binding to %s returning %d\n",
  1685. driver->driver.name, retval);
  1686. dev->driver = NULL;
  1687. dev->gadget.dev.driver = NULL;
  1688. return retval;
  1689. }
  1690. /* get ready for ep0 traffic */
  1691. setup_ep0(dev);
  1692. /* clear SD */
  1693. tmp = readl(&dev->regs->ctl);
  1694. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1695. writel(tmp, &dev->regs->ctl);
  1696. usb_connect(dev);
  1697. return 0;
  1698. }
  1699. EXPORT_SYMBOL(usb_gadget_register_driver);
  1700. /* shutdown requests and disconnect from gadget */
  1701. static void
  1702. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1703. __releases(dev->lock)
  1704. __acquires(dev->lock)
  1705. {
  1706. int tmp;
  1707. /* empty queues and init hardware */
  1708. udc_basic_init(dev);
  1709. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1710. empty_req_queue(&dev->ep[tmp]);
  1711. }
  1712. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1713. spin_unlock(&dev->lock);
  1714. driver->disconnect(&dev->gadget);
  1715. spin_lock(&dev->lock);
  1716. }
  1717. /* init */
  1718. udc_setup_endpoints(dev);
  1719. }
  1720. /* Called by gadget driver to unregister itself */
  1721. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  1722. {
  1723. struct udc *dev = udc;
  1724. unsigned long flags;
  1725. u32 tmp;
  1726. if (!dev)
  1727. return -ENODEV;
  1728. if (!driver || driver != dev->driver || !driver->unbind)
  1729. return -EINVAL;
  1730. spin_lock_irqsave(&dev->lock, flags);
  1731. udc_mask_unused_interrupts(dev);
  1732. shutdown(dev, driver);
  1733. spin_unlock_irqrestore(&dev->lock, flags);
  1734. driver->unbind(&dev->gadget);
  1735. dev->gadget.dev.driver = NULL;
  1736. dev->driver = NULL;
  1737. /* set SD */
  1738. tmp = readl(&dev->regs->ctl);
  1739. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1740. writel(tmp, &dev->regs->ctl);
  1741. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1742. return 0;
  1743. }
  1744. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  1745. /* Clear pending NAK bits */
  1746. static void udc_process_cnak_queue(struct udc *dev)
  1747. {
  1748. u32 tmp;
  1749. u32 reg;
  1750. /* check epin's */
  1751. DBG(dev, "CNAK pending queue processing\n");
  1752. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1753. if (cnak_pending & (1 << tmp)) {
  1754. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1755. /* clear NAK by writing CNAK */
  1756. reg = readl(&dev->ep[tmp].regs->ctl);
  1757. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1758. writel(reg, &dev->ep[tmp].regs->ctl);
  1759. dev->ep[tmp].naking = 0;
  1760. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1761. }
  1762. }
  1763. /* ... and ep0out */
  1764. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1765. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1766. /* clear NAK by writing CNAK */
  1767. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1768. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1769. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1770. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1771. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1772. dev->ep[UDC_EP0OUT_IX].num);
  1773. }
  1774. }
  1775. /* Enabling RX DMA after setup packet */
  1776. static void udc_ep0_set_rde(struct udc *dev)
  1777. {
  1778. if (use_dma) {
  1779. /*
  1780. * only enable RXDMA when no data endpoint enabled
  1781. * or data is queued
  1782. */
  1783. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1784. udc_set_rde(dev);
  1785. } else {
  1786. /*
  1787. * setup timer for enabling RDE (to not enable
  1788. * RXFIFO DMA for data endpoints to early)
  1789. */
  1790. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1791. udc_timer.expires =
  1792. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1793. set_rde = 1;
  1794. if (!stop_timer) {
  1795. add_timer(&udc_timer);
  1796. }
  1797. }
  1798. }
  1799. }
  1800. }
  1801. /* Interrupt handler for data OUT traffic */
  1802. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1803. {
  1804. irqreturn_t ret_val = IRQ_NONE;
  1805. u32 tmp;
  1806. struct udc_ep *ep;
  1807. struct udc_request *req;
  1808. unsigned int count;
  1809. struct udc_data_dma *td = NULL;
  1810. unsigned dma_done;
  1811. VDBG(dev, "ep%d irq\n", ep_ix);
  1812. ep = &dev->ep[ep_ix];
  1813. tmp = readl(&ep->regs->sts);
  1814. if (use_dma) {
  1815. /* BNA event ? */
  1816. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1817. DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
  1818. ep->num, readl(&ep->regs->desptr));
  1819. /* clear BNA */
  1820. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1821. if (!ep->cancel_transfer)
  1822. ep->bna_occurred = 1;
  1823. else
  1824. ep->cancel_transfer = 0;
  1825. ret_val = IRQ_HANDLED;
  1826. goto finished;
  1827. }
  1828. }
  1829. /* HE event ? */
  1830. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1831. dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
  1832. /* clear HE */
  1833. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1834. ret_val = IRQ_HANDLED;
  1835. goto finished;
  1836. }
  1837. if (!list_empty(&ep->queue)) {
  1838. /* next request */
  1839. req = list_entry(ep->queue.next,
  1840. struct udc_request, queue);
  1841. } else {
  1842. req = NULL;
  1843. udc_rxfifo_pending = 1;
  1844. }
  1845. VDBG(dev, "req = %p\n", req);
  1846. /* fifo mode */
  1847. if (!use_dma) {
  1848. /* read fifo */
  1849. if (req && udc_rxfifo_read(ep, req)) {
  1850. ret_val = IRQ_HANDLED;
  1851. /* finish */
  1852. complete_req(ep, req, 0);
  1853. /* next request */
  1854. if (!list_empty(&ep->queue) && !ep->halted) {
  1855. req = list_entry(ep->queue.next,
  1856. struct udc_request, queue);
  1857. } else
  1858. req = NULL;
  1859. }
  1860. /* DMA */
  1861. } else if (!ep->cancel_transfer && req != NULL) {
  1862. ret_val = IRQ_HANDLED;
  1863. /* check for DMA done */
  1864. if (!use_dma_ppb) {
  1865. dma_done = AMD_GETBITS(req->td_data->status,
  1866. UDC_DMA_OUT_STS_BS);
  1867. /* packet per buffer mode - rx bytes */
  1868. } else {
  1869. /*
  1870. * if BNA occurred then recover desc. from
  1871. * BNA dummy desc.
  1872. */
  1873. if (ep->bna_occurred) {
  1874. VDBG(dev, "Recover desc. from BNA dummy\n");
  1875. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1876. sizeof(struct udc_data_dma));
  1877. ep->bna_occurred = 0;
  1878. udc_init_bna_dummy(ep->req);
  1879. }
  1880. td = udc_get_last_dma_desc(req);
  1881. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1882. }
  1883. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1884. /* buffer fill mode - rx bytes */
  1885. if (!use_dma_ppb) {
  1886. /* received number bytes */
  1887. count = AMD_GETBITS(req->td_data->status,
  1888. UDC_DMA_OUT_STS_RXBYTES);
  1889. VDBG(dev, "rx bytes=%u\n", count);
  1890. /* packet per buffer mode - rx bytes */
  1891. } else {
  1892. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1893. VDBG(dev, "last desc = %p\n", td);
  1894. /* received number bytes */
  1895. if (use_dma_ppb_du) {
  1896. /* every desc. counts bytes */
  1897. count = udc_get_ppbdu_rxbytes(req);
  1898. } else {
  1899. /* last desc. counts bytes */
  1900. count = AMD_GETBITS(td->status,
  1901. UDC_DMA_OUT_STS_RXBYTES);
  1902. if (!count && req->req.length
  1903. == UDC_DMA_MAXPACKET) {
  1904. /*
  1905. * on 64k packets the RXBYTES
  1906. * field is zero
  1907. */
  1908. count = UDC_DMA_MAXPACKET;
  1909. }
  1910. }
  1911. VDBG(dev, "last desc rx bytes=%u\n", count);
  1912. }
  1913. tmp = req->req.length - req->req.actual;
  1914. if (count > tmp) {
  1915. if ((tmp % ep->ep.maxpacket) != 0) {
  1916. DBG(dev, "%s: rx %db, space=%db\n",
  1917. ep->ep.name, count, tmp);
  1918. req->req.status = -EOVERFLOW;
  1919. }
  1920. count = tmp;
  1921. }
  1922. req->req.actual += count;
  1923. req->dma_going = 0;
  1924. /* complete request */
  1925. complete_req(ep, req, 0);
  1926. /* next request */
  1927. if (!list_empty(&ep->queue) && !ep->halted) {
  1928. req = list_entry(ep->queue.next,
  1929. struct udc_request,
  1930. queue);
  1931. /*
  1932. * DMA may be already started by udc_queue()
  1933. * called by gadget drivers completion
  1934. * routine. This happens when queue
  1935. * holds one request only.
  1936. */
  1937. if (req->dma_going == 0) {
  1938. /* next dma */
  1939. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1940. goto finished;
  1941. /* write desc pointer */
  1942. writel(req->td_phys,
  1943. &ep->regs->desptr);
  1944. req->dma_going = 1;
  1945. /* enable DMA */
  1946. udc_set_rde(dev);
  1947. }
  1948. } else {
  1949. /*
  1950. * implant BNA dummy descriptor to allow
  1951. * RXFIFO opening by RDE
  1952. */
  1953. if (ep->bna_dummy_req) {
  1954. /* write desc pointer */
  1955. writel(ep->bna_dummy_req->td_phys,
  1956. &ep->regs->desptr);
  1957. ep->bna_occurred = 0;
  1958. }
  1959. /*
  1960. * schedule timer for setting RDE if queue
  1961. * remains empty to allow ep0 packets pass
  1962. * through
  1963. */
  1964. if (set_rde != 0
  1965. && !timer_pending(&udc_timer)) {
  1966. udc_timer.expires =
  1967. jiffies
  1968. + HZ*UDC_RDE_TIMER_SECONDS;
  1969. set_rde = 1;
  1970. if (!stop_timer) {
  1971. add_timer(&udc_timer);
  1972. }
  1973. }
  1974. if (ep->num != UDC_EP0OUT_IX)
  1975. dev->data_ep_queued = 0;
  1976. }
  1977. } else {
  1978. /*
  1979. * RX DMA must be reenabled for each desc in PPBDU mode
  1980. * and must be enabled for PPBNDU mode in case of BNA
  1981. */
  1982. udc_set_rde(dev);
  1983. }
  1984. } else if (ep->cancel_transfer) {
  1985. ret_val = IRQ_HANDLED;
  1986. ep->cancel_transfer = 0;
  1987. }
  1988. /* check pending CNAKS */
  1989. if (cnak_pending) {
  1990. /* CNAk processing when rxfifo empty only */
  1991. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1992. udc_process_cnak_queue(dev);
  1993. }
  1994. }
  1995. /* clear OUT bits in ep status */
  1996. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1997. finished:
  1998. return ret_val;
  1999. }
  2000. /* Interrupt handler for data IN traffic */
  2001. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2002. {
  2003. irqreturn_t ret_val = IRQ_NONE;
  2004. u32 tmp;
  2005. u32 epsts;
  2006. struct udc_ep *ep;
  2007. struct udc_request *req;
  2008. struct udc_data_dma *td;
  2009. unsigned dma_done;
  2010. unsigned len;
  2011. ep = &dev->ep[ep_ix];
  2012. epsts = readl(&ep->regs->sts);
  2013. if (use_dma) {
  2014. /* BNA ? */
  2015. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2016. dev_err(&dev->pdev->dev,
  2017. "BNA ep%din occured - DESPTR = %08lx \n",
  2018. ep->num,
  2019. (unsigned long) readl(&ep->regs->desptr));
  2020. /* clear BNA */
  2021. writel(epsts, &ep->regs->sts);
  2022. ret_val = IRQ_HANDLED;
  2023. goto finished;
  2024. }
  2025. }
  2026. /* HE event ? */
  2027. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2028. dev_err(&dev->pdev->dev,
  2029. "HE ep%dn occured - DESPTR = %08lx \n",
  2030. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2031. /* clear HE */
  2032. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2033. ret_val = IRQ_HANDLED;
  2034. goto finished;
  2035. }
  2036. /* DMA completion */
  2037. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2038. VDBG(dev, "TDC set- completion\n");
  2039. ret_val = IRQ_HANDLED;
  2040. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2041. req = list_entry(ep->queue.next,
  2042. struct udc_request, queue);
  2043. if (req) {
  2044. /*
  2045. * length bytes transfered
  2046. * check dma done of last desc. in PPBDU mode
  2047. */
  2048. if (use_dma_ppb_du) {
  2049. td = udc_get_last_dma_desc(req);
  2050. if (td) {
  2051. dma_done =
  2052. AMD_GETBITS(td->status,
  2053. UDC_DMA_IN_STS_BS);
  2054. /* don't care DMA done */
  2055. req->req.actual =
  2056. req->req.length;
  2057. }
  2058. } else {
  2059. /* assume all bytes transferred */
  2060. req->req.actual = req->req.length;
  2061. }
  2062. if (req->req.actual == req->req.length) {
  2063. /* complete req */
  2064. complete_req(ep, req, 0);
  2065. req->dma_going = 0;
  2066. /* further request available ? */
  2067. if (list_empty(&ep->queue)) {
  2068. /* disable interrupt */
  2069. tmp = readl(
  2070. &dev->regs->ep_irqmsk);
  2071. tmp |= AMD_BIT(ep->num);
  2072. writel(tmp,
  2073. &dev->regs->ep_irqmsk);
  2074. }
  2075. }
  2076. }
  2077. }
  2078. ep->cancel_transfer = 0;
  2079. }
  2080. /*
  2081. * status reg has IN bit set and TDC not set (if TDC was handled,
  2082. * IN must not be handled (UDC defect) ?
  2083. */
  2084. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2085. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2086. ret_val = IRQ_HANDLED;
  2087. if (!list_empty(&ep->queue)) {
  2088. /* next request */
  2089. req = list_entry(ep->queue.next,
  2090. struct udc_request, queue);
  2091. /* FIFO mode */
  2092. if (!use_dma) {
  2093. /* write fifo */
  2094. udc_txfifo_write(ep, &req->req);
  2095. len = req->req.length - req->req.actual;
  2096. if (len > ep->ep.maxpacket)
  2097. len = ep->ep.maxpacket;
  2098. req->req.actual += len;
  2099. if (req->req.actual == req->req.length
  2100. || (len != ep->ep.maxpacket)) {
  2101. /* complete req */
  2102. complete_req(ep, req, 0);
  2103. }
  2104. /* DMA */
  2105. } else if (req && !req->dma_going) {
  2106. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2107. req, req->td_data);
  2108. if (req->td_data) {
  2109. req->dma_going = 1;
  2110. /*
  2111. * unset L bit of first desc.
  2112. * for chain
  2113. */
  2114. if (use_dma_ppb && req->req.length >
  2115. ep->ep.maxpacket) {
  2116. req->td_data->status &=
  2117. AMD_CLEAR_BIT(
  2118. UDC_DMA_IN_STS_L);
  2119. }
  2120. /* write desc pointer */
  2121. writel(req->td_phys, &ep->regs->desptr);
  2122. /* set HOST READY */
  2123. req->td_data->status =
  2124. AMD_ADDBITS(
  2125. req->td_data->status,
  2126. UDC_DMA_IN_STS_BS_HOST_READY,
  2127. UDC_DMA_IN_STS_BS);
  2128. /* set poll demand bit */
  2129. tmp = readl(&ep->regs->ctl);
  2130. tmp |= AMD_BIT(UDC_EPCTL_P);
  2131. writel(tmp, &ep->regs->ctl);
  2132. }
  2133. }
  2134. }
  2135. }
  2136. /* clear status bits */
  2137. writel(epsts, &ep->regs->sts);
  2138. finished:
  2139. return ret_val;
  2140. }
  2141. /* Interrupt handler for Control OUT traffic */
  2142. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2143. __releases(dev->lock)
  2144. __acquires(dev->lock)
  2145. {
  2146. irqreturn_t ret_val = IRQ_NONE;
  2147. u32 tmp;
  2148. int setup_supported;
  2149. u32 count;
  2150. int set = 0;
  2151. struct udc_ep *ep;
  2152. struct udc_ep *ep_tmp;
  2153. ep = &dev->ep[UDC_EP0OUT_IX];
  2154. /* clear irq */
  2155. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2156. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2157. /* check BNA and clear if set */
  2158. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2159. VDBG(dev, "ep0: BNA set\n");
  2160. writel(AMD_BIT(UDC_EPSTS_BNA),
  2161. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2162. ep->bna_occurred = 1;
  2163. ret_val = IRQ_HANDLED;
  2164. goto finished;
  2165. }
  2166. /* type of data: SETUP or DATA 0 bytes */
  2167. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2168. VDBG(dev, "data_typ = %x\n", tmp);
  2169. /* setup data */
  2170. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2171. ret_val = IRQ_HANDLED;
  2172. ep->dev->stall_ep0in = 0;
  2173. dev->waiting_zlp_ack_ep0in = 0;
  2174. /* set NAK for EP0_IN */
  2175. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2176. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2177. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2178. dev->ep[UDC_EP0IN_IX].naking = 1;
  2179. /* get setup data */
  2180. if (use_dma) {
  2181. /* clear OUT bits in ep status */
  2182. writel(UDC_EPSTS_OUT_CLEAR,
  2183. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2184. setup_data.data[0] =
  2185. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2186. setup_data.data[1] =
  2187. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2188. /* set HOST READY */
  2189. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2190. UDC_DMA_STP_STS_BS_HOST_READY;
  2191. } else {
  2192. /* read fifo */
  2193. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2194. }
  2195. /* determine direction of control data */
  2196. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2197. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2198. /* enable RDE */
  2199. udc_ep0_set_rde(dev);
  2200. set = 0;
  2201. } else {
  2202. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2203. /*
  2204. * implant BNA dummy descriptor to allow RXFIFO opening
  2205. * by RDE
  2206. */
  2207. if (ep->bna_dummy_req) {
  2208. /* write desc pointer */
  2209. writel(ep->bna_dummy_req->td_phys,
  2210. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2211. ep->bna_occurred = 0;
  2212. }
  2213. set = 1;
  2214. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2215. /*
  2216. * setup timer for enabling RDE (to not enable
  2217. * RXFIFO DMA for data to early)
  2218. */
  2219. set_rde = 1;
  2220. if (!timer_pending(&udc_timer)) {
  2221. udc_timer.expires = jiffies +
  2222. HZ/UDC_RDE_TIMER_DIV;
  2223. if (!stop_timer) {
  2224. add_timer(&udc_timer);
  2225. }
  2226. }
  2227. }
  2228. /*
  2229. * mass storage reset must be processed here because
  2230. * next packet may be a CLEAR_FEATURE HALT which would not
  2231. * clear the stall bit when no STALL handshake was received
  2232. * before (autostall can cause this)
  2233. */
  2234. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2235. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2236. DBG(dev, "MSC Reset\n");
  2237. /*
  2238. * clear stall bits
  2239. * only one IN and OUT endpoints are handled
  2240. */
  2241. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2242. udc_set_halt(&ep_tmp->ep, 0);
  2243. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2244. udc_set_halt(&ep_tmp->ep, 0);
  2245. }
  2246. /* call gadget with setup data received */
  2247. spin_unlock(&dev->lock);
  2248. setup_supported = dev->driver->setup(&dev->gadget,
  2249. &setup_data.request);
  2250. spin_lock(&dev->lock);
  2251. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2252. /* ep0 in returns data (not zlp) on IN phase */
  2253. if (setup_supported >= 0 && setup_supported <
  2254. UDC_EP0IN_MAXPACKET) {
  2255. /* clear NAK by writing CNAK in EP0_IN */
  2256. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2257. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2258. dev->ep[UDC_EP0IN_IX].naking = 0;
  2259. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2260. /* if unsupported request then stall */
  2261. } else if (setup_supported < 0) {
  2262. tmp |= AMD_BIT(UDC_EPCTL_S);
  2263. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2264. } else
  2265. dev->waiting_zlp_ack_ep0in = 1;
  2266. /* clear NAK by writing CNAK in EP0_OUT */
  2267. if (!set) {
  2268. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2269. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2270. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2271. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2272. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2273. }
  2274. if (!use_dma) {
  2275. /* clear OUT bits in ep status */
  2276. writel(UDC_EPSTS_OUT_CLEAR,
  2277. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2278. }
  2279. /* data packet 0 bytes */
  2280. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2281. /* clear OUT bits in ep status */
  2282. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2283. /* get setup data: only 0 packet */
  2284. if (use_dma) {
  2285. /* no req if 0 packet, just reactivate */
  2286. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2287. VDBG(dev, "ZLP\n");
  2288. /* set HOST READY */
  2289. dev->ep[UDC_EP0OUT_IX].td->status =
  2290. AMD_ADDBITS(
  2291. dev->ep[UDC_EP0OUT_IX].td->status,
  2292. UDC_DMA_OUT_STS_BS_HOST_READY,
  2293. UDC_DMA_OUT_STS_BS);
  2294. /* enable RDE */
  2295. udc_ep0_set_rde(dev);
  2296. ret_val = IRQ_HANDLED;
  2297. } else {
  2298. /* control write */
  2299. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2300. /* re-program desc. pointer for possible ZLPs */
  2301. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2302. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2303. /* enable RDE */
  2304. udc_ep0_set_rde(dev);
  2305. }
  2306. } else {
  2307. /* received number bytes */
  2308. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2309. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2310. /* out data for fifo mode not working */
  2311. count = 0;
  2312. /* 0 packet or real data ? */
  2313. if (count != 0) {
  2314. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2315. } else {
  2316. /* dummy read confirm */
  2317. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2318. ret_val = IRQ_HANDLED;
  2319. }
  2320. }
  2321. }
  2322. /* check pending CNAKS */
  2323. if (cnak_pending) {
  2324. /* CNAk processing when rxfifo empty only */
  2325. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2326. udc_process_cnak_queue(dev);
  2327. }
  2328. }
  2329. finished:
  2330. return ret_val;
  2331. }
  2332. /* Interrupt handler for Control IN traffic */
  2333. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2334. {
  2335. irqreturn_t ret_val = IRQ_NONE;
  2336. u32 tmp;
  2337. struct udc_ep *ep;
  2338. struct udc_request *req;
  2339. unsigned len;
  2340. ep = &dev->ep[UDC_EP0IN_IX];
  2341. /* clear irq */
  2342. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2343. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2344. /* DMA completion */
  2345. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2346. VDBG(dev, "isr: TDC clear \n");
  2347. ret_val = IRQ_HANDLED;
  2348. /* clear TDC bit */
  2349. writel(AMD_BIT(UDC_EPSTS_TDC),
  2350. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2351. /* status reg has IN bit set ? */
  2352. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2353. ret_val = IRQ_HANDLED;
  2354. if (ep->dma) {
  2355. /* clear IN bit */
  2356. writel(AMD_BIT(UDC_EPSTS_IN),
  2357. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2358. }
  2359. if (dev->stall_ep0in) {
  2360. DBG(dev, "stall ep0in\n");
  2361. /* halt ep0in */
  2362. tmp = readl(&ep->regs->ctl);
  2363. tmp |= AMD_BIT(UDC_EPCTL_S);
  2364. writel(tmp, &ep->regs->ctl);
  2365. } else {
  2366. if (!list_empty(&ep->queue)) {
  2367. /* next request */
  2368. req = list_entry(ep->queue.next,
  2369. struct udc_request, queue);
  2370. if (ep->dma) {
  2371. /* write desc pointer */
  2372. writel(req->td_phys, &ep->regs->desptr);
  2373. /* set HOST READY */
  2374. req->td_data->status =
  2375. AMD_ADDBITS(
  2376. req->td_data->status,
  2377. UDC_DMA_STP_STS_BS_HOST_READY,
  2378. UDC_DMA_STP_STS_BS);
  2379. /* set poll demand bit */
  2380. tmp =
  2381. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2382. tmp |= AMD_BIT(UDC_EPCTL_P);
  2383. writel(tmp,
  2384. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2385. /* all bytes will be transferred */
  2386. req->req.actual = req->req.length;
  2387. /* complete req */
  2388. complete_req(ep, req, 0);
  2389. } else {
  2390. /* write fifo */
  2391. udc_txfifo_write(ep, &req->req);
  2392. /* lengh bytes transfered */
  2393. len = req->req.length - req->req.actual;
  2394. if (len > ep->ep.maxpacket)
  2395. len = ep->ep.maxpacket;
  2396. req->req.actual += len;
  2397. if (req->req.actual == req->req.length
  2398. || (len != ep->ep.maxpacket)) {
  2399. /* complete req */
  2400. complete_req(ep, req, 0);
  2401. }
  2402. }
  2403. }
  2404. }
  2405. ep->halted = 0;
  2406. dev->stall_ep0in = 0;
  2407. if (!ep->dma) {
  2408. /* clear IN bit */
  2409. writel(AMD_BIT(UDC_EPSTS_IN),
  2410. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2411. }
  2412. }
  2413. return ret_val;
  2414. }
  2415. /* Interrupt handler for global device events */
  2416. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2417. __releases(dev->lock)
  2418. __acquires(dev->lock)
  2419. {
  2420. irqreturn_t ret_val = IRQ_NONE;
  2421. u32 tmp;
  2422. u32 cfg;
  2423. struct udc_ep *ep;
  2424. u16 i;
  2425. u8 udc_csr_epix;
  2426. /* SET_CONFIG irq ? */
  2427. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2428. ret_val = IRQ_HANDLED;
  2429. /* read config value */
  2430. tmp = readl(&dev->regs->sts);
  2431. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2432. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2433. dev->cur_config = cfg;
  2434. dev->set_cfg_not_acked = 1;
  2435. /* make usb request for gadget driver */
  2436. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2437. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2438. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2439. /* programm the NE registers */
  2440. for (i = 0; i < UDC_EP_NUM; i++) {
  2441. ep = &dev->ep[i];
  2442. if (ep->in) {
  2443. /* ep ix in UDC CSR register space */
  2444. udc_csr_epix = ep->num;
  2445. /* OUT ep */
  2446. } else {
  2447. /* ep ix in UDC CSR register space */
  2448. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2449. }
  2450. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2451. /* ep cfg */
  2452. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2453. UDC_CSR_NE_CFG);
  2454. /* write reg */
  2455. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2456. /* clear stall bits */
  2457. ep->halted = 0;
  2458. tmp = readl(&ep->regs->ctl);
  2459. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2460. writel(tmp, &ep->regs->ctl);
  2461. }
  2462. /* call gadget zero with setup data received */
  2463. spin_unlock(&dev->lock);
  2464. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2465. spin_lock(&dev->lock);
  2466. } /* SET_INTERFACE ? */
  2467. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2468. ret_val = IRQ_HANDLED;
  2469. dev->set_cfg_not_acked = 1;
  2470. /* read interface and alt setting values */
  2471. tmp = readl(&dev->regs->sts);
  2472. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2473. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2474. /* make usb request for gadget driver */
  2475. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2476. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2477. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2478. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2479. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2480. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2481. dev->cur_alt, dev->cur_intf);
  2482. /* programm the NE registers */
  2483. for (i = 0; i < UDC_EP_NUM; i++) {
  2484. ep = &dev->ep[i];
  2485. if (ep->in) {
  2486. /* ep ix in UDC CSR register space */
  2487. udc_csr_epix = ep->num;
  2488. /* OUT ep */
  2489. } else {
  2490. /* ep ix in UDC CSR register space */
  2491. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2492. }
  2493. /* UDC CSR reg */
  2494. /* set ep values */
  2495. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2496. /* ep interface */
  2497. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2498. UDC_CSR_NE_INTF);
  2499. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2500. /* ep alt */
  2501. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2502. UDC_CSR_NE_ALT);
  2503. /* write reg */
  2504. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2505. /* clear stall bits */
  2506. ep->halted = 0;
  2507. tmp = readl(&ep->regs->ctl);
  2508. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2509. writel(tmp, &ep->regs->ctl);
  2510. }
  2511. /* call gadget zero with setup data received */
  2512. spin_unlock(&dev->lock);
  2513. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2514. spin_lock(&dev->lock);
  2515. } /* USB reset */
  2516. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2517. DBG(dev, "USB Reset interrupt\n");
  2518. ret_val = IRQ_HANDLED;
  2519. /* allow soft reset when suspend occurs */
  2520. soft_reset_occured = 0;
  2521. dev->waiting_zlp_ack_ep0in = 0;
  2522. dev->set_cfg_not_acked = 0;
  2523. /* mask not needed interrupts */
  2524. udc_mask_unused_interrupts(dev);
  2525. /* call gadget to resume and reset configs etc. */
  2526. spin_unlock(&dev->lock);
  2527. if (dev->sys_suspended && dev->driver->resume) {
  2528. dev->driver->resume(&dev->gadget);
  2529. dev->sys_suspended = 0;
  2530. }
  2531. dev->driver->disconnect(&dev->gadget);
  2532. spin_lock(&dev->lock);
  2533. /* disable ep0 to empty req queue */
  2534. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2535. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2536. /* soft reset when rxfifo not empty */
  2537. tmp = readl(&dev->regs->sts);
  2538. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2539. && !soft_reset_after_usbreset_occured) {
  2540. udc_soft_reset(dev);
  2541. soft_reset_after_usbreset_occured++;
  2542. }
  2543. /*
  2544. * DMA reset to kill potential old DMA hw hang,
  2545. * POLL bit is already reset by ep_init() through
  2546. * disconnect()
  2547. */
  2548. DBG(dev, "DMA machine reset\n");
  2549. tmp = readl(&dev->regs->cfg);
  2550. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2551. writel(tmp, &dev->regs->cfg);
  2552. /* put into initial config */
  2553. udc_basic_init(dev);
  2554. /* enable device setup interrupts */
  2555. udc_enable_dev_setup_interrupts(dev);
  2556. /* enable suspend interrupt */
  2557. tmp = readl(&dev->regs->irqmsk);
  2558. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2559. writel(tmp, &dev->regs->irqmsk);
  2560. } /* USB suspend */
  2561. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2562. DBG(dev, "USB Suspend interrupt\n");
  2563. ret_val = IRQ_HANDLED;
  2564. if (dev->driver->suspend) {
  2565. spin_unlock(&dev->lock);
  2566. dev->sys_suspended = 1;
  2567. dev->driver->suspend(&dev->gadget);
  2568. spin_lock(&dev->lock);
  2569. }
  2570. } /* new speed ? */
  2571. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2572. DBG(dev, "ENUM interrupt\n");
  2573. ret_val = IRQ_HANDLED;
  2574. soft_reset_after_usbreset_occured = 0;
  2575. /* disable ep0 to empty req queue */
  2576. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2577. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2578. /* link up all endpoints */
  2579. udc_setup_endpoints(dev);
  2580. if (dev->gadget.speed == USB_SPEED_HIGH) {
  2581. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2582. "high");
  2583. } else if (dev->gadget.speed == USB_SPEED_FULL) {
  2584. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2585. "full");
  2586. }
  2587. /* init ep 0 */
  2588. activate_control_endpoints(dev);
  2589. /* enable ep0 interrupts */
  2590. udc_enable_ep0_interrupts(dev);
  2591. }
  2592. /* session valid change interrupt */
  2593. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2594. DBG(dev, "USB SVC interrupt\n");
  2595. ret_val = IRQ_HANDLED;
  2596. /* check that session is not valid to detect disconnect */
  2597. tmp = readl(&dev->regs->sts);
  2598. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2599. /* disable suspend interrupt */
  2600. tmp = readl(&dev->regs->irqmsk);
  2601. tmp |= AMD_BIT(UDC_DEVINT_US);
  2602. writel(tmp, &dev->regs->irqmsk);
  2603. DBG(dev, "USB Disconnect (session valid low)\n");
  2604. /* cleanup on disconnect */
  2605. usb_disconnect(udc);
  2606. }
  2607. }
  2608. return ret_val;
  2609. }
  2610. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2611. static irqreturn_t udc_irq(int irq, void *pdev)
  2612. {
  2613. struct udc *dev = pdev;
  2614. u32 reg;
  2615. u16 i;
  2616. u32 ep_irq;
  2617. irqreturn_t ret_val = IRQ_NONE;
  2618. spin_lock(&dev->lock);
  2619. /* check for ep irq */
  2620. reg = readl(&dev->regs->ep_irqsts);
  2621. if (reg) {
  2622. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2623. ret_val |= udc_control_out_isr(dev);
  2624. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2625. ret_val |= udc_control_in_isr(dev);
  2626. /*
  2627. * data endpoint
  2628. * iterate ep's
  2629. */
  2630. for (i = 1; i < UDC_EP_NUM; i++) {
  2631. ep_irq = 1 << i;
  2632. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2633. continue;
  2634. /* clear irq status */
  2635. writel(ep_irq, &dev->regs->ep_irqsts);
  2636. /* irq for out ep ? */
  2637. if (i > UDC_EPIN_NUM)
  2638. ret_val |= udc_data_out_isr(dev, i);
  2639. else
  2640. ret_val |= udc_data_in_isr(dev, i);
  2641. }
  2642. }
  2643. /* check for dev irq */
  2644. reg = readl(&dev->regs->irqsts);
  2645. if (reg) {
  2646. /* clear irq */
  2647. writel(reg, &dev->regs->irqsts);
  2648. ret_val |= udc_dev_isr(dev, reg);
  2649. }
  2650. spin_unlock(&dev->lock);
  2651. return ret_val;
  2652. }
  2653. /* Tears down device */
  2654. static void gadget_release(struct device *pdev)
  2655. {
  2656. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2657. kfree(dev);
  2658. }
  2659. /* Cleanup on device remove */
  2660. static void udc_remove(struct udc *dev)
  2661. {
  2662. /* remove timer */
  2663. stop_timer++;
  2664. if (timer_pending(&udc_timer))
  2665. wait_for_completion(&on_exit);
  2666. if (udc_timer.data)
  2667. del_timer_sync(&udc_timer);
  2668. /* remove pollstall timer */
  2669. stop_pollstall_timer++;
  2670. if (timer_pending(&udc_pollstall_timer))
  2671. wait_for_completion(&on_pollstall_exit);
  2672. if (udc_pollstall_timer.data)
  2673. del_timer_sync(&udc_pollstall_timer);
  2674. udc = NULL;
  2675. }
  2676. /* Reset all pci context */
  2677. static void udc_pci_remove(struct pci_dev *pdev)
  2678. {
  2679. struct udc *dev;
  2680. dev = pci_get_drvdata(pdev);
  2681. /* gadget driver must not be registered */
  2682. BUG_ON(dev->driver != NULL);
  2683. /* dma pool cleanup */
  2684. if (dev->data_requests)
  2685. pci_pool_destroy(dev->data_requests);
  2686. if (dev->stp_requests) {
  2687. /* cleanup DMA desc's for ep0in */
  2688. pci_pool_free(dev->stp_requests,
  2689. dev->ep[UDC_EP0OUT_IX].td_stp,
  2690. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2691. pci_pool_free(dev->stp_requests,
  2692. dev->ep[UDC_EP0OUT_IX].td,
  2693. dev->ep[UDC_EP0OUT_IX].td_phys);
  2694. pci_pool_destroy(dev->stp_requests);
  2695. }
  2696. /* reset controller */
  2697. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2698. if (dev->irq_registered)
  2699. free_irq(pdev->irq, dev);
  2700. if (dev->regs)
  2701. iounmap(dev->regs);
  2702. if (dev->mem_region)
  2703. release_mem_region(pci_resource_start(pdev, 0),
  2704. pci_resource_len(pdev, 0));
  2705. if (dev->active)
  2706. pci_disable_device(pdev);
  2707. device_unregister(&dev->gadget.dev);
  2708. pci_set_drvdata(pdev, NULL);
  2709. udc_remove(dev);
  2710. }
  2711. /* create dma pools on init */
  2712. static int init_dma_pools(struct udc *dev)
  2713. {
  2714. struct udc_stp_dma *td_stp;
  2715. struct udc_data_dma *td_data;
  2716. int retval;
  2717. /* consistent DMA mode setting ? */
  2718. if (use_dma_ppb) {
  2719. use_dma_bufferfill_mode = 0;
  2720. } else {
  2721. use_dma_ppb_du = 0;
  2722. use_dma_bufferfill_mode = 1;
  2723. }
  2724. /* DMA setup */
  2725. dev->data_requests = dma_pool_create("data_requests", NULL,
  2726. sizeof(struct udc_data_dma), 0, 0);
  2727. if (!dev->data_requests) {
  2728. DBG(dev, "can't get request data pool\n");
  2729. retval = -ENOMEM;
  2730. goto finished;
  2731. }
  2732. /* EP0 in dma regs = dev control regs */
  2733. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2734. /* dma desc for setup data */
  2735. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2736. sizeof(struct udc_stp_dma), 0, 0);
  2737. if (!dev->stp_requests) {
  2738. DBG(dev, "can't get stp request pool\n");
  2739. retval = -ENOMEM;
  2740. goto finished;
  2741. }
  2742. /* setup */
  2743. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2744. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2745. if (td_stp == NULL) {
  2746. retval = -ENOMEM;
  2747. goto finished;
  2748. }
  2749. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2750. /* data: 0 packets !? */
  2751. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2752. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2753. if (td_data == NULL) {
  2754. retval = -ENOMEM;
  2755. goto finished;
  2756. }
  2757. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2758. return 0;
  2759. finished:
  2760. return retval;
  2761. }
  2762. /* Called by pci bus driver to init pci context */
  2763. static int udc_pci_probe(
  2764. struct pci_dev *pdev,
  2765. const struct pci_device_id *id
  2766. )
  2767. {
  2768. struct udc *dev;
  2769. unsigned long resource;
  2770. unsigned long len;
  2771. int retval = 0;
  2772. /* one udc only */
  2773. if (udc) {
  2774. dev_dbg(&pdev->dev, "already probed\n");
  2775. return -EBUSY;
  2776. }
  2777. /* init */
  2778. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2779. if (!dev) {
  2780. retval = -ENOMEM;
  2781. goto finished;
  2782. }
  2783. /* pci setup */
  2784. if (pci_enable_device(pdev) < 0) {
  2785. kfree(dev);
  2786. dev = NULL;
  2787. retval = -ENODEV;
  2788. goto finished;
  2789. }
  2790. dev->active = 1;
  2791. /* PCI resource allocation */
  2792. resource = pci_resource_start(pdev, 0);
  2793. len = pci_resource_len(pdev, 0);
  2794. if (!request_mem_region(resource, len, name)) {
  2795. dev_dbg(&pdev->dev, "pci device used already\n");
  2796. kfree(dev);
  2797. dev = NULL;
  2798. retval = -EBUSY;
  2799. goto finished;
  2800. }
  2801. dev->mem_region = 1;
  2802. dev->virt_addr = ioremap_nocache(resource, len);
  2803. if (dev->virt_addr == NULL) {
  2804. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2805. kfree(dev);
  2806. dev = NULL;
  2807. retval = -EFAULT;
  2808. goto finished;
  2809. }
  2810. if (!pdev->irq) {
  2811. dev_err(&dev->pdev->dev, "irq not set\n");
  2812. kfree(dev);
  2813. dev = NULL;
  2814. retval = -ENODEV;
  2815. goto finished;
  2816. }
  2817. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2818. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2819. kfree(dev);
  2820. dev = NULL;
  2821. retval = -EBUSY;
  2822. goto finished;
  2823. }
  2824. dev->irq_registered = 1;
  2825. pci_set_drvdata(pdev, dev);
  2826. /* chip revision for Hs AMD5536 */
  2827. dev->chiprev = pdev->revision;
  2828. pci_set_master(pdev);
  2829. pci_try_set_mwi(pdev);
  2830. /* init dma pools */
  2831. if (use_dma) {
  2832. retval = init_dma_pools(dev);
  2833. if (retval != 0)
  2834. goto finished;
  2835. }
  2836. dev->phys_addr = resource;
  2837. dev->irq = pdev->irq;
  2838. dev->pdev = pdev;
  2839. dev->gadget.dev.parent = &pdev->dev;
  2840. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2841. /* general probing */
  2842. if (udc_probe(dev) == 0)
  2843. return 0;
  2844. finished:
  2845. if (dev)
  2846. udc_pci_remove(pdev);
  2847. return retval;
  2848. }
  2849. /* general probe */
  2850. static int udc_probe(struct udc *dev)
  2851. {
  2852. char tmp[128];
  2853. u32 reg;
  2854. int retval;
  2855. /* mark timer as not initialized */
  2856. udc_timer.data = 0;
  2857. udc_pollstall_timer.data = 0;
  2858. /* device struct setup */
  2859. spin_lock_init(&dev->lock);
  2860. dev->gadget.ops = &udc_ops;
  2861. dev_set_name(&dev->gadget.dev, "gadget");
  2862. dev->gadget.dev.release = gadget_release;
  2863. dev->gadget.name = name;
  2864. dev->gadget.name = name;
  2865. dev->gadget.is_dualspeed = 1;
  2866. /* udc csr registers base */
  2867. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2868. /* dev registers base */
  2869. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2870. /* ep registers base */
  2871. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2872. /* fifo's base */
  2873. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2874. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2875. /* init registers, interrupts, ... */
  2876. startup_registers(dev);
  2877. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2878. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2879. dev_info(&dev->pdev->dev,
  2880. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2881. tmp, dev->phys_addr, dev->chiprev,
  2882. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2883. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2884. if (dev->chiprev == UDC_HSA0_REV) {
  2885. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2886. retval = -ENODEV;
  2887. goto finished;
  2888. }
  2889. dev_info(&dev->pdev->dev,
  2890. "driver version: %s(for Geode5536 B1)\n", tmp);
  2891. udc = dev;
  2892. retval = device_register(&dev->gadget.dev);
  2893. if (retval)
  2894. goto finished;
  2895. /* timer init */
  2896. init_timer(&udc_timer);
  2897. udc_timer.function = udc_timer_function;
  2898. udc_timer.data = 1;
  2899. /* timer pollstall init */
  2900. init_timer(&udc_pollstall_timer);
  2901. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2902. udc_pollstall_timer.data = 1;
  2903. /* set SD */
  2904. reg = readl(&dev->regs->ctl);
  2905. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2906. writel(reg, &dev->regs->ctl);
  2907. /* print dev register info */
  2908. print_regs(dev);
  2909. return 0;
  2910. finished:
  2911. return retval;
  2912. }
  2913. /* Initiates a remote wakeup */
  2914. static int udc_remote_wakeup(struct udc *dev)
  2915. {
  2916. unsigned long flags;
  2917. u32 tmp;
  2918. DBG(dev, "UDC initiates remote wakeup\n");
  2919. spin_lock_irqsave(&dev->lock, flags);
  2920. tmp = readl(&dev->regs->ctl);
  2921. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2922. writel(tmp, &dev->regs->ctl);
  2923. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2924. writel(tmp, &dev->regs->ctl);
  2925. spin_unlock_irqrestore(&dev->lock, flags);
  2926. return 0;
  2927. }
  2928. /* PCI device parameters */
  2929. static const struct pci_device_id pci_id[] = {
  2930. {
  2931. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2932. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2933. .class_mask = 0xffffffff,
  2934. },
  2935. {},
  2936. };
  2937. MODULE_DEVICE_TABLE(pci, pci_id);
  2938. /* PCI functions */
  2939. static struct pci_driver udc_pci_driver = {
  2940. .name = (char *) name,
  2941. .id_table = pci_id,
  2942. .probe = udc_pci_probe,
  2943. .remove = udc_pci_remove,
  2944. };
  2945. /* Inits driver */
  2946. static int __init init(void)
  2947. {
  2948. return pci_register_driver(&udc_pci_driver);
  2949. }
  2950. module_init(init);
  2951. /* Cleans driver */
  2952. static void __exit cleanup(void)
  2953. {
  2954. pci_unregister_driver(&udc_pci_driver);
  2955. }
  2956. module_exit(cleanup);
  2957. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2958. MODULE_AUTHOR("Thomas Dahlmann");
  2959. MODULE_LICENSE("GPL");