urb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include "hcd.h"
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, incrementes the usage counter, and returns a pointer to it.
  49. *
  50. * If no memory is available, NULL is returned.
  51. *
  52. * If the driver want to use this urb for interrupt, control, or bulk
  53. * endpoints, pass '0' as the number of iso packets.
  54. *
  55. * The driver must call usb_free_urb() when it is finished with the urb.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb) {
  64. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  65. return NULL;
  66. }
  67. usb_init_urb(urb);
  68. return urb;
  69. }
  70. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  71. /**
  72. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  73. * @urb: pointer to the urb to free, may be NULL
  74. *
  75. * Must be called when a user of a urb is finished with it. When the last user
  76. * of the urb calls this function, the memory of the urb is freed.
  77. *
  78. * Note: The transfer buffer associated with the urb is not freed unless the
  79. * URB_FREE_BUFFER transfer flag is set.
  80. */
  81. void usb_free_urb(struct urb *urb)
  82. {
  83. if (urb)
  84. kref_put(&urb->kref, urb_destroy);
  85. }
  86. EXPORT_SYMBOL_GPL(usb_free_urb);
  87. /**
  88. * usb_get_urb - increments the reference count of the urb
  89. * @urb: pointer to the urb to modify, may be NULL
  90. *
  91. * This must be called whenever a urb is transferred from a device driver to a
  92. * host controller driver. This allows proper reference counting to happen
  93. * for urbs.
  94. *
  95. * A pointer to the urb with the incremented reference counter is returned.
  96. */
  97. struct urb *usb_get_urb(struct urb *urb)
  98. {
  99. if (urb)
  100. kref_get(&urb->kref);
  101. return urb;
  102. }
  103. EXPORT_SYMBOL_GPL(usb_get_urb);
  104. /**
  105. * usb_anchor_urb - anchors an URB while it is processed
  106. * @urb: pointer to the urb to anchor
  107. * @anchor: pointer to the anchor
  108. *
  109. * This can be called to have access to URBs which are to be executed
  110. * without bothering to track them
  111. */
  112. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&anchor->lock, flags);
  116. usb_get_urb(urb);
  117. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  118. urb->anchor = anchor;
  119. if (unlikely(anchor->poisoned)) {
  120. atomic_inc(&urb->reject);
  121. }
  122. spin_unlock_irqrestore(&anchor->lock, flags);
  123. }
  124. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  125. /**
  126. * usb_unanchor_urb - unanchors an URB
  127. * @urb: pointer to the urb to anchor
  128. *
  129. * Call this to stop the system keeping track of this URB
  130. */
  131. void usb_unanchor_urb(struct urb *urb)
  132. {
  133. unsigned long flags;
  134. struct usb_anchor *anchor;
  135. if (!urb)
  136. return;
  137. anchor = urb->anchor;
  138. if (!anchor)
  139. return;
  140. spin_lock_irqsave(&anchor->lock, flags);
  141. if (unlikely(anchor != urb->anchor)) {
  142. /* we've lost the race to another thread */
  143. spin_unlock_irqrestore(&anchor->lock, flags);
  144. return;
  145. }
  146. urb->anchor = NULL;
  147. list_del(&urb->anchor_list);
  148. spin_unlock_irqrestore(&anchor->lock, flags);
  149. usb_put_urb(urb);
  150. if (list_empty(&anchor->urb_list))
  151. wake_up(&anchor->wait);
  152. }
  153. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  154. /*-------------------------------------------------------------------*/
  155. /**
  156. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  157. * @urb: pointer to the urb describing the request
  158. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  159. * of valid options for this.
  160. *
  161. * This submits a transfer request, and transfers control of the URB
  162. * describing that request to the USB subsystem. Request completion will
  163. * be indicated later, asynchronously, by calling the completion handler.
  164. * The three types of completion are success, error, and unlink
  165. * (a software-induced fault, also called "request cancellation").
  166. *
  167. * URBs may be submitted in interrupt context.
  168. *
  169. * The caller must have correctly initialized the URB before submitting
  170. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  171. * available to ensure that most fields are correctly initialized, for
  172. * the particular kind of transfer, although they will not initialize
  173. * any transfer flags.
  174. *
  175. * Successful submissions return 0; otherwise this routine returns a
  176. * negative error number. If the submission is successful, the complete()
  177. * callback from the URB will be called exactly once, when the USB core and
  178. * Host Controller Driver (HCD) are finished with the URB. When the completion
  179. * function is called, control of the URB is returned to the device
  180. * driver which issued the request. The completion handler may then
  181. * immediately free or reuse that URB.
  182. *
  183. * With few exceptions, USB device drivers should never access URB fields
  184. * provided by usbcore or the HCD until its complete() is called.
  185. * The exceptions relate to periodic transfer scheduling. For both
  186. * interrupt and isochronous urbs, as part of successful URB submission
  187. * urb->interval is modified to reflect the actual transfer period used
  188. * (normally some power of two units). And for isochronous urbs,
  189. * urb->start_frame is modified to reflect when the URB's transfers were
  190. * scheduled to start. Not all isochronous transfer scheduling policies
  191. * will work, but most host controller drivers should easily handle ISO
  192. * queues going from now until 10-200 msec into the future.
  193. *
  194. * For control endpoints, the synchronous usb_control_msg() call is
  195. * often used (in non-interrupt context) instead of this call.
  196. * That is often used through convenience wrappers, for the requests
  197. * that are standardized in the USB 2.0 specification. For bulk
  198. * endpoints, a synchronous usb_bulk_msg() call is available.
  199. *
  200. * Request Queuing:
  201. *
  202. * URBs may be submitted to endpoints before previous ones complete, to
  203. * minimize the impact of interrupt latencies and system overhead on data
  204. * throughput. With that queuing policy, an endpoint's queue would never
  205. * be empty. This is required for continuous isochronous data streams,
  206. * and may also be required for some kinds of interrupt transfers. Such
  207. * queuing also maximizes bandwidth utilization by letting USB controllers
  208. * start work on later requests before driver software has finished the
  209. * completion processing for earlier (successful) requests.
  210. *
  211. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  212. * than one. This was previously a HCD-specific behavior, except for ISO
  213. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  214. * after faults (transfer errors or cancellation).
  215. *
  216. * Reserved Bandwidth Transfers:
  217. *
  218. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  219. * using the interval specified in the urb. Submitting the first urb to
  220. * the endpoint reserves the bandwidth necessary to make those transfers.
  221. * If the USB subsystem can't allocate sufficient bandwidth to perform
  222. * the periodic request, submitting such a periodic request should fail.
  223. *
  224. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  225. * when the alt setting is selected. If there is not enough bus bandwidth, the
  226. * configuration/alt setting request will fail. Therefore, submissions to
  227. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  228. * constraints.
  229. *
  230. * Device drivers must explicitly request that repetition, by ensuring that
  231. * some URB is always on the endpoint's queue (except possibly for short
  232. * periods during completion callacks). When there is no longer an urb
  233. * queued, the endpoint's bandwidth reservation is canceled. This means
  234. * drivers can use their completion handlers to ensure they keep bandwidth
  235. * they need, by reinitializing and resubmitting the just-completed urb
  236. * until the driver longer needs that periodic bandwidth.
  237. *
  238. * Memory Flags:
  239. *
  240. * The general rules for how to decide which mem_flags to use
  241. * are the same as for kmalloc. There are four
  242. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  243. * GFP_ATOMIC.
  244. *
  245. * GFP_NOFS is not ever used, as it has not been implemented yet.
  246. *
  247. * GFP_ATOMIC is used when
  248. * (a) you are inside a completion handler, an interrupt, bottom half,
  249. * tasklet or timer, or
  250. * (b) you are holding a spinlock or rwlock (does not apply to
  251. * semaphores), or
  252. * (c) current->state != TASK_RUNNING, this is the case only after
  253. * you've changed it.
  254. *
  255. * GFP_NOIO is used in the block io path and error handling of storage
  256. * devices.
  257. *
  258. * All other situations use GFP_KERNEL.
  259. *
  260. * Some more specific rules for mem_flags can be inferred, such as
  261. * (1) start_xmit, timeout, and receive methods of network drivers must
  262. * use GFP_ATOMIC (they are called with a spinlock held);
  263. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  264. * called with a spinlock held);
  265. * (3) If you use a kernel thread with a network driver you must use
  266. * GFP_NOIO, unless (b) or (c) apply;
  267. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  268. * apply or your are in a storage driver's block io path;
  269. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  270. * (6) changing firmware on a running storage or net device uses
  271. * GFP_NOIO, unless b) or c) apply
  272. *
  273. */
  274. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  275. {
  276. int xfertype, max;
  277. struct usb_device *dev;
  278. struct usb_host_endpoint *ep;
  279. int is_out;
  280. if (!urb || urb->hcpriv || !urb->complete)
  281. return -EINVAL;
  282. dev = urb->dev;
  283. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  284. return -ENODEV;
  285. /* For now, get the endpoint from the pipe. Eventually drivers
  286. * will be required to set urb->ep directly and we will eliminate
  287. * urb->pipe.
  288. */
  289. ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
  290. [usb_pipeendpoint(urb->pipe)];
  291. if (!ep)
  292. return -ENOENT;
  293. urb->ep = ep;
  294. urb->status = -EINPROGRESS;
  295. urb->actual_length = 0;
  296. /* Lots of sanity checks, so HCDs can rely on clean data
  297. * and don't need to duplicate tests
  298. */
  299. xfertype = usb_endpoint_type(&ep->desc);
  300. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  301. struct usb_ctrlrequest *setup =
  302. (struct usb_ctrlrequest *) urb->setup_packet;
  303. if (!setup)
  304. return -ENOEXEC;
  305. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  306. !setup->wLength;
  307. } else {
  308. is_out = usb_endpoint_dir_out(&ep->desc);
  309. }
  310. /* Cache the direction for later use */
  311. urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
  312. (is_out ? URB_DIR_OUT : URB_DIR_IN);
  313. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  314. dev->state < USB_STATE_CONFIGURED)
  315. return -ENODEV;
  316. max = le16_to_cpu(ep->desc.wMaxPacketSize);
  317. if (max <= 0) {
  318. dev_dbg(&dev->dev,
  319. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  320. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  321. __func__, max);
  322. return -EMSGSIZE;
  323. }
  324. /* periodic transfers limit size per frame/uframe,
  325. * but drivers only control those sizes for ISO.
  326. * while we're checking, initialize return status.
  327. */
  328. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  329. int n, len;
  330. /* FIXME SuperSpeed isoc endpoints have up to 16 bursts */
  331. /* "high bandwidth" mode, 1-3 packets/uframe? */
  332. if (dev->speed == USB_SPEED_HIGH) {
  333. int mult = 1 + ((max >> 11) & 0x03);
  334. max &= 0x07ff;
  335. max *= mult;
  336. }
  337. if (urb->number_of_packets <= 0)
  338. return -EINVAL;
  339. for (n = 0; n < urb->number_of_packets; n++) {
  340. len = urb->iso_frame_desc[n].length;
  341. if (len < 0 || len > max)
  342. return -EMSGSIZE;
  343. urb->iso_frame_desc[n].status = -EXDEV;
  344. urb->iso_frame_desc[n].actual_length = 0;
  345. }
  346. }
  347. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  348. if (urb->transfer_buffer_length > INT_MAX)
  349. return -EMSGSIZE;
  350. #ifdef DEBUG
  351. /* stuff that drivers shouldn't do, but which shouldn't
  352. * cause problems in HCDs if they get it wrong.
  353. */
  354. {
  355. unsigned int orig_flags = urb->transfer_flags;
  356. unsigned int allowed;
  357. /* enforce simple/standard policy */
  358. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  359. URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER);
  360. switch (xfertype) {
  361. case USB_ENDPOINT_XFER_BULK:
  362. if (is_out)
  363. allowed |= URB_ZERO_PACKET;
  364. /* FALLTHROUGH */
  365. case USB_ENDPOINT_XFER_CONTROL:
  366. allowed |= URB_NO_FSBR; /* only affects UHCI */
  367. /* FALLTHROUGH */
  368. default: /* all non-iso endpoints */
  369. if (!is_out)
  370. allowed |= URB_SHORT_NOT_OK;
  371. break;
  372. case USB_ENDPOINT_XFER_ISOC:
  373. allowed |= URB_ISO_ASAP;
  374. break;
  375. }
  376. urb->transfer_flags &= allowed;
  377. /* fail if submitter gave bogus flags */
  378. if (urb->transfer_flags != orig_flags) {
  379. dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  380. orig_flags, urb->transfer_flags);
  381. return -EINVAL;
  382. }
  383. }
  384. #endif
  385. /*
  386. * Force periodic transfer intervals to be legal values that are
  387. * a power of two (so HCDs don't need to).
  388. *
  389. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  390. * supports different values... this uses EHCI/UHCI defaults (and
  391. * EHCI can use smaller non-default values).
  392. */
  393. switch (xfertype) {
  394. case USB_ENDPOINT_XFER_ISOC:
  395. case USB_ENDPOINT_XFER_INT:
  396. /* too small? */
  397. if (urb->interval <= 0)
  398. return -EINVAL;
  399. /* too big? */
  400. switch (dev->speed) {
  401. case USB_SPEED_SUPER: /* units are 125us */
  402. /* Handle up to 2^(16-1) microframes */
  403. if (urb->interval > (1 << 15))
  404. return -EINVAL;
  405. max = 1 << 15;
  406. case USB_SPEED_HIGH: /* units are microframes */
  407. /* NOTE usb handles 2^15 */
  408. if (urb->interval > (1024 * 8))
  409. urb->interval = 1024 * 8;
  410. max = 1024 * 8;
  411. break;
  412. case USB_SPEED_FULL: /* units are frames/msec */
  413. case USB_SPEED_LOW:
  414. if (xfertype == USB_ENDPOINT_XFER_INT) {
  415. if (urb->interval > 255)
  416. return -EINVAL;
  417. /* NOTE ohci only handles up to 32 */
  418. max = 128;
  419. } else {
  420. if (urb->interval > 1024)
  421. urb->interval = 1024;
  422. /* NOTE usb and ohci handle up to 2^15 */
  423. max = 1024;
  424. }
  425. break;
  426. default:
  427. return -EINVAL;
  428. }
  429. /* Round down to a power of 2, no more than max */
  430. urb->interval = min(max, 1 << ilog2(urb->interval));
  431. }
  432. return usb_hcd_submit_urb(urb, mem_flags);
  433. }
  434. EXPORT_SYMBOL_GPL(usb_submit_urb);
  435. /*-------------------------------------------------------------------*/
  436. /**
  437. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  438. * @urb: pointer to urb describing a previously submitted request,
  439. * may be NULL
  440. *
  441. * This routine cancels an in-progress request. URBs complete only once
  442. * per submission, and may be canceled only once per submission.
  443. * Successful cancellation means termination of @urb will be expedited
  444. * and the completion handler will be called with a status code
  445. * indicating that the request has been canceled (rather than any other
  446. * code).
  447. *
  448. * Drivers should not call this routine or related routines, such as
  449. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  450. * method has returned. The disconnect function should synchronize with
  451. * a driver's I/O routines to insure that all URB-related activity has
  452. * completed before it returns.
  453. *
  454. * This request is always asynchronous. Success is indicated by
  455. * returning -EINPROGRESS, at which time the URB will probably not yet
  456. * have been given back to the device driver. When it is eventually
  457. * called, the completion function will see @urb->status == -ECONNRESET.
  458. * Failure is indicated by usb_unlink_urb() returning any other value.
  459. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  460. * never submitted, or it was unlinked before, or the hardware is already
  461. * finished with it), even if the completion handler has not yet run.
  462. *
  463. * Unlinking and Endpoint Queues:
  464. *
  465. * [The behaviors and guarantees described below do not apply to virtual
  466. * root hubs but only to endpoint queues for physical USB devices.]
  467. *
  468. * Host Controller Drivers (HCDs) place all the URBs for a particular
  469. * endpoint in a queue. Normally the queue advances as the controller
  470. * hardware processes each request. But when an URB terminates with an
  471. * error its queue generally stops (see below), at least until that URB's
  472. * completion routine returns. It is guaranteed that a stopped queue
  473. * will not restart until all its unlinked URBs have been fully retired,
  474. * with their completion routines run, even if that's not until some time
  475. * after the original completion handler returns. The same behavior and
  476. * guarantee apply when an URB terminates because it was unlinked.
  477. *
  478. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  479. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  480. * and -EREMOTEIO. Control endpoint queues behave the same way except
  481. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  482. * for isochronous endpoints are treated differently, because they must
  483. * advance at fixed rates. Such queues do not stop when an URB
  484. * encounters an error or is unlinked. An unlinked isochronous URB may
  485. * leave a gap in the stream of packets; it is undefined whether such
  486. * gaps can be filled in.
  487. *
  488. * Note that early termination of an URB because a short packet was
  489. * received will generate a -EREMOTEIO error if and only if the
  490. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  491. * drivers can build deep queues for large or complex bulk transfers
  492. * and clean them up reliably after any sort of aborted transfer by
  493. * unlinking all pending URBs at the first fault.
  494. *
  495. * When a control URB terminates with an error other than -EREMOTEIO, it
  496. * is quite likely that the status stage of the transfer will not take
  497. * place.
  498. */
  499. int usb_unlink_urb(struct urb *urb)
  500. {
  501. if (!urb)
  502. return -EINVAL;
  503. if (!urb->dev)
  504. return -ENODEV;
  505. if (!urb->ep)
  506. return -EIDRM;
  507. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  508. }
  509. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  510. /**
  511. * usb_kill_urb - cancel a transfer request and wait for it to finish
  512. * @urb: pointer to URB describing a previously submitted request,
  513. * may be NULL
  514. *
  515. * This routine cancels an in-progress request. It is guaranteed that
  516. * upon return all completion handlers will have finished and the URB
  517. * will be totally idle and available for reuse. These features make
  518. * this an ideal way to stop I/O in a disconnect() callback or close()
  519. * function. If the request has not already finished or been unlinked
  520. * the completion handler will see urb->status == -ENOENT.
  521. *
  522. * While the routine is running, attempts to resubmit the URB will fail
  523. * with error -EPERM. Thus even if the URB's completion handler always
  524. * tries to resubmit, it will not succeed and the URB will become idle.
  525. *
  526. * This routine may not be used in an interrupt context (such as a bottom
  527. * half or a completion handler), or when holding a spinlock, or in other
  528. * situations where the caller can't schedule().
  529. *
  530. * This routine should not be called by a driver after its disconnect
  531. * method has returned.
  532. */
  533. void usb_kill_urb(struct urb *urb)
  534. {
  535. might_sleep();
  536. if (!(urb && urb->dev && urb->ep))
  537. return;
  538. atomic_inc(&urb->reject);
  539. usb_hcd_unlink_urb(urb, -ENOENT);
  540. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  541. atomic_dec(&urb->reject);
  542. }
  543. EXPORT_SYMBOL_GPL(usb_kill_urb);
  544. /**
  545. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  546. * @urb: pointer to URB describing a previously submitted request,
  547. * may be NULL
  548. *
  549. * This routine cancels an in-progress request. It is guaranteed that
  550. * upon return all completion handlers will have finished and the URB
  551. * will be totally idle and cannot be reused. These features make
  552. * this an ideal way to stop I/O in a disconnect() callback.
  553. * If the request has not already finished or been unlinked
  554. * the completion handler will see urb->status == -ENOENT.
  555. *
  556. * After and while the routine runs, attempts to resubmit the URB will fail
  557. * with error -EPERM. Thus even if the URB's completion handler always
  558. * tries to resubmit, it will not succeed and the URB will become idle.
  559. *
  560. * This routine may not be used in an interrupt context (such as a bottom
  561. * half or a completion handler), or when holding a spinlock, or in other
  562. * situations where the caller can't schedule().
  563. *
  564. * This routine should not be called by a driver after its disconnect
  565. * method has returned.
  566. */
  567. void usb_poison_urb(struct urb *urb)
  568. {
  569. might_sleep();
  570. if (!(urb && urb->dev && urb->ep))
  571. return;
  572. atomic_inc(&urb->reject);
  573. usb_hcd_unlink_urb(urb, -ENOENT);
  574. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  575. }
  576. EXPORT_SYMBOL_GPL(usb_poison_urb);
  577. void usb_unpoison_urb(struct urb *urb)
  578. {
  579. if (!urb)
  580. return;
  581. atomic_dec(&urb->reject);
  582. }
  583. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  584. /**
  585. * usb_kill_anchored_urbs - cancel transfer requests en masse
  586. * @anchor: anchor the requests are bound to
  587. *
  588. * this allows all outstanding URBs to be killed starting
  589. * from the back of the queue
  590. *
  591. * This routine should not be called by a driver after its disconnect
  592. * method has returned.
  593. */
  594. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  595. {
  596. struct urb *victim;
  597. spin_lock_irq(&anchor->lock);
  598. while (!list_empty(&anchor->urb_list)) {
  599. victim = list_entry(anchor->urb_list.prev, struct urb,
  600. anchor_list);
  601. /* we must make sure the URB isn't freed before we kill it*/
  602. usb_get_urb(victim);
  603. spin_unlock_irq(&anchor->lock);
  604. /* this will unanchor the URB */
  605. usb_kill_urb(victim);
  606. usb_put_urb(victim);
  607. spin_lock_irq(&anchor->lock);
  608. }
  609. spin_unlock_irq(&anchor->lock);
  610. }
  611. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  612. /**
  613. * usb_poison_anchored_urbs - cease all traffic from an anchor
  614. * @anchor: anchor the requests are bound to
  615. *
  616. * this allows all outstanding URBs to be poisoned starting
  617. * from the back of the queue. Newly added URBs will also be
  618. * poisoned
  619. *
  620. * This routine should not be called by a driver after its disconnect
  621. * method has returned.
  622. */
  623. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  624. {
  625. struct urb *victim;
  626. spin_lock_irq(&anchor->lock);
  627. anchor->poisoned = 1;
  628. while (!list_empty(&anchor->urb_list)) {
  629. victim = list_entry(anchor->urb_list.prev, struct urb,
  630. anchor_list);
  631. /* we must make sure the URB isn't freed before we kill it*/
  632. usb_get_urb(victim);
  633. spin_unlock_irq(&anchor->lock);
  634. /* this will unanchor the URB */
  635. usb_poison_urb(victim);
  636. usb_put_urb(victim);
  637. spin_lock_irq(&anchor->lock);
  638. }
  639. spin_unlock_irq(&anchor->lock);
  640. }
  641. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  642. /**
  643. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  644. * @anchor: anchor the requests are bound to
  645. *
  646. * Reverses the effect of usb_poison_anchored_urbs
  647. * the anchor can be used normally after it returns
  648. */
  649. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  650. {
  651. unsigned long flags;
  652. struct urb *lazarus;
  653. spin_lock_irqsave(&anchor->lock, flags);
  654. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  655. usb_unpoison_urb(lazarus);
  656. }
  657. anchor->poisoned = 0;
  658. spin_unlock_irqrestore(&anchor->lock, flags);
  659. }
  660. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  661. /**
  662. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  663. * @anchor: anchor the requests are bound to
  664. *
  665. * this allows all outstanding URBs to be unlinked starting
  666. * from the back of the queue. This function is asynchronous.
  667. * The unlinking is just tiggered. It may happen after this
  668. * function has returned.
  669. *
  670. * This routine should not be called by a driver after its disconnect
  671. * method has returned.
  672. */
  673. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  674. {
  675. struct urb *victim;
  676. unsigned long flags;
  677. spin_lock_irqsave(&anchor->lock, flags);
  678. while (!list_empty(&anchor->urb_list)) {
  679. victim = list_entry(anchor->urb_list.prev, struct urb,
  680. anchor_list);
  681. usb_get_urb(victim);
  682. spin_unlock_irqrestore(&anchor->lock, flags);
  683. /* this will unanchor the URB */
  684. usb_unlink_urb(victim);
  685. usb_put_urb(victim);
  686. spin_lock_irqsave(&anchor->lock, flags);
  687. }
  688. spin_unlock_irqrestore(&anchor->lock, flags);
  689. }
  690. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  691. /**
  692. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  693. * @anchor: the anchor you want to become unused
  694. * @timeout: how long you are willing to wait in milliseconds
  695. *
  696. * Call this is you want to be sure all an anchor's
  697. * URBs have finished
  698. */
  699. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  700. unsigned int timeout)
  701. {
  702. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  703. msecs_to_jiffies(timeout));
  704. }
  705. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  706. /**
  707. * usb_get_from_anchor - get an anchor's oldest urb
  708. * @anchor: the anchor whose urb you want
  709. *
  710. * this will take the oldest urb from an anchor,
  711. * unanchor and return it
  712. */
  713. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  714. {
  715. struct urb *victim;
  716. unsigned long flags;
  717. spin_lock_irqsave(&anchor->lock, flags);
  718. if (!list_empty(&anchor->urb_list)) {
  719. victim = list_entry(anchor->urb_list.next, struct urb,
  720. anchor_list);
  721. usb_get_urb(victim);
  722. spin_unlock_irqrestore(&anchor->lock, flags);
  723. usb_unanchor_urb(victim);
  724. } else {
  725. spin_unlock_irqrestore(&anchor->lock, flags);
  726. victim = NULL;
  727. }
  728. return victim;
  729. }
  730. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  731. /**
  732. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  733. * @anchor: the anchor whose urbs you want to unanchor
  734. *
  735. * use this to get rid of all an anchor's urbs
  736. */
  737. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  738. {
  739. struct urb *victim;
  740. unsigned long flags;
  741. spin_lock_irqsave(&anchor->lock, flags);
  742. while (!list_empty(&anchor->urb_list)) {
  743. victim = list_entry(anchor->urb_list.prev, struct urb,
  744. anchor_list);
  745. usb_get_urb(victim);
  746. spin_unlock_irqrestore(&anchor->lock, flags);
  747. /* this may free the URB */
  748. usb_unanchor_urb(victim);
  749. usb_put_urb(victim);
  750. spin_lock_irqsave(&anchor->lock, flags);
  751. }
  752. spin_unlock_irqrestore(&anchor->lock, flags);
  753. }
  754. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  755. /**
  756. * usb_anchor_empty - is an anchor empty
  757. * @anchor: the anchor you want to query
  758. *
  759. * returns 1 if the anchor has no urbs associated with it
  760. */
  761. int usb_anchor_empty(struct usb_anchor *anchor)
  762. {
  763. return list_empty(&anchor->urb_list);
  764. }
  765. EXPORT_SYMBOL_GPL(usb_anchor_empty);