main.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/ssb/ssb.h>
  14. #include <linux/ssb/ssb_regs.h>
  15. #include <linux/ssb/ssb_driver_gige.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/pci.h>
  18. #include <pcmcia/cs_types.h>
  19. #include <pcmcia/cs.h>
  20. #include <pcmcia/cistpl.h>
  21. #include <pcmcia/ds.h>
  22. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  23. MODULE_LICENSE("GPL");
  24. /* Temporary list of yet-to-be-attached buses */
  25. static LIST_HEAD(attach_queue);
  26. /* List if running buses */
  27. static LIST_HEAD(buses);
  28. /* Software ID counter */
  29. static unsigned int next_busnumber;
  30. /* buses_mutes locks the two buslists and the next_busnumber.
  31. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  32. static DEFINE_MUTEX(buses_mutex);
  33. /* There are differences in the codeflow, if the bus is
  34. * initialized from early boot, as various needed services
  35. * are not available early. This is a mechanism to delay
  36. * these initializations to after early boot has finished.
  37. * It's also used to avoid mutex locking, as that's not
  38. * available and needed early. */
  39. static bool ssb_is_early_boot = 1;
  40. static void ssb_buses_lock(void);
  41. static void ssb_buses_unlock(void);
  42. #ifdef CONFIG_SSB_PCIHOST
  43. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  44. {
  45. struct ssb_bus *bus;
  46. ssb_buses_lock();
  47. list_for_each_entry(bus, &buses, list) {
  48. if (bus->bustype == SSB_BUSTYPE_PCI &&
  49. bus->host_pci == pdev)
  50. goto found;
  51. }
  52. bus = NULL;
  53. found:
  54. ssb_buses_unlock();
  55. return bus;
  56. }
  57. #endif /* CONFIG_SSB_PCIHOST */
  58. #ifdef CONFIG_SSB_PCMCIAHOST
  59. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  60. {
  61. struct ssb_bus *bus;
  62. ssb_buses_lock();
  63. list_for_each_entry(bus, &buses, list) {
  64. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  65. bus->host_pcmcia == pdev)
  66. goto found;
  67. }
  68. bus = NULL;
  69. found:
  70. ssb_buses_unlock();
  71. return bus;
  72. }
  73. #endif /* CONFIG_SSB_PCMCIAHOST */
  74. int ssb_for_each_bus_call(unsigned long data,
  75. int (*func)(struct ssb_bus *bus, unsigned long data))
  76. {
  77. struct ssb_bus *bus;
  78. int res;
  79. ssb_buses_lock();
  80. list_for_each_entry(bus, &buses, list) {
  81. res = func(bus, data);
  82. if (res >= 0) {
  83. ssb_buses_unlock();
  84. return res;
  85. }
  86. }
  87. ssb_buses_unlock();
  88. return -ENODEV;
  89. }
  90. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  91. {
  92. if (dev)
  93. get_device(dev->dev);
  94. return dev;
  95. }
  96. static void ssb_device_put(struct ssb_device *dev)
  97. {
  98. if (dev)
  99. put_device(dev->dev);
  100. }
  101. static int ssb_device_resume(struct device *dev)
  102. {
  103. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  104. struct ssb_driver *ssb_drv;
  105. int err = 0;
  106. if (dev->driver) {
  107. ssb_drv = drv_to_ssb_drv(dev->driver);
  108. if (ssb_drv && ssb_drv->resume)
  109. err = ssb_drv->resume(ssb_dev);
  110. if (err)
  111. goto out;
  112. }
  113. out:
  114. return err;
  115. }
  116. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  117. {
  118. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  119. struct ssb_driver *ssb_drv;
  120. int err = 0;
  121. if (dev->driver) {
  122. ssb_drv = drv_to_ssb_drv(dev->driver);
  123. if (ssb_drv && ssb_drv->suspend)
  124. err = ssb_drv->suspend(ssb_dev, state);
  125. if (err)
  126. goto out;
  127. }
  128. out:
  129. return err;
  130. }
  131. int ssb_bus_resume(struct ssb_bus *bus)
  132. {
  133. int err;
  134. /* Reset HW state information in memory, so that HW is
  135. * completely reinitialized. */
  136. bus->mapped_device = NULL;
  137. #ifdef CONFIG_SSB_DRIVER_PCICORE
  138. bus->pcicore.setup_done = 0;
  139. #endif
  140. err = ssb_bus_powerup(bus, 0);
  141. if (err)
  142. return err;
  143. err = ssb_pcmcia_hardware_setup(bus);
  144. if (err) {
  145. ssb_bus_may_powerdown(bus);
  146. return err;
  147. }
  148. ssb_chipco_resume(&bus->chipco);
  149. ssb_bus_may_powerdown(bus);
  150. return 0;
  151. }
  152. EXPORT_SYMBOL(ssb_bus_resume);
  153. int ssb_bus_suspend(struct ssb_bus *bus)
  154. {
  155. ssb_chipco_suspend(&bus->chipco);
  156. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  157. return 0;
  158. }
  159. EXPORT_SYMBOL(ssb_bus_suspend);
  160. #ifdef CONFIG_SSB_SPROM
  161. int ssb_devices_freeze(struct ssb_bus *bus)
  162. {
  163. struct ssb_device *dev;
  164. struct ssb_driver *drv;
  165. int err = 0;
  166. int i;
  167. pm_message_t state = PMSG_FREEZE;
  168. /* First check that we are capable to freeze all devices. */
  169. for (i = 0; i < bus->nr_devices; i++) {
  170. dev = &(bus->devices[i]);
  171. if (!dev->dev ||
  172. !dev->dev->driver ||
  173. !device_is_registered(dev->dev))
  174. continue;
  175. drv = drv_to_ssb_drv(dev->dev->driver);
  176. if (!drv)
  177. continue;
  178. if (!drv->suspend) {
  179. /* Nope, can't suspend this one. */
  180. return -EOPNOTSUPP;
  181. }
  182. }
  183. /* Now suspend all devices */
  184. for (i = 0; i < bus->nr_devices; i++) {
  185. dev = &(bus->devices[i]);
  186. if (!dev->dev ||
  187. !dev->dev->driver ||
  188. !device_is_registered(dev->dev))
  189. continue;
  190. drv = drv_to_ssb_drv(dev->dev->driver);
  191. if (!drv)
  192. continue;
  193. err = drv->suspend(dev, state);
  194. if (err) {
  195. ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
  196. dev_name(dev->dev));
  197. goto err_unwind;
  198. }
  199. }
  200. return 0;
  201. err_unwind:
  202. for (i--; i >= 0; i--) {
  203. dev = &(bus->devices[i]);
  204. if (!dev->dev ||
  205. !dev->dev->driver ||
  206. !device_is_registered(dev->dev))
  207. continue;
  208. drv = drv_to_ssb_drv(dev->dev->driver);
  209. if (!drv)
  210. continue;
  211. if (drv->resume)
  212. drv->resume(dev);
  213. }
  214. return err;
  215. }
  216. int ssb_devices_thaw(struct ssb_bus *bus)
  217. {
  218. struct ssb_device *dev;
  219. struct ssb_driver *drv;
  220. int err;
  221. int i;
  222. for (i = 0; i < bus->nr_devices; i++) {
  223. dev = &(bus->devices[i]);
  224. if (!dev->dev ||
  225. !dev->dev->driver ||
  226. !device_is_registered(dev->dev))
  227. continue;
  228. drv = drv_to_ssb_drv(dev->dev->driver);
  229. if (!drv)
  230. continue;
  231. if (SSB_WARN_ON(!drv->resume))
  232. continue;
  233. err = drv->resume(dev);
  234. if (err) {
  235. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  236. dev_name(dev->dev));
  237. }
  238. }
  239. return 0;
  240. }
  241. #endif /* CONFIG_SSB_SPROM */
  242. static void ssb_device_shutdown(struct device *dev)
  243. {
  244. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  245. struct ssb_driver *ssb_drv;
  246. if (!dev->driver)
  247. return;
  248. ssb_drv = drv_to_ssb_drv(dev->driver);
  249. if (ssb_drv && ssb_drv->shutdown)
  250. ssb_drv->shutdown(ssb_dev);
  251. }
  252. static int ssb_device_remove(struct device *dev)
  253. {
  254. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  255. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  256. if (ssb_drv && ssb_drv->remove)
  257. ssb_drv->remove(ssb_dev);
  258. ssb_device_put(ssb_dev);
  259. return 0;
  260. }
  261. static int ssb_device_probe(struct device *dev)
  262. {
  263. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  264. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  265. int err = 0;
  266. ssb_device_get(ssb_dev);
  267. if (ssb_drv && ssb_drv->probe)
  268. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  269. if (err)
  270. ssb_device_put(ssb_dev);
  271. return err;
  272. }
  273. static int ssb_match_devid(const struct ssb_device_id *tabid,
  274. const struct ssb_device_id *devid)
  275. {
  276. if ((tabid->vendor != devid->vendor) &&
  277. tabid->vendor != SSB_ANY_VENDOR)
  278. return 0;
  279. if ((tabid->coreid != devid->coreid) &&
  280. tabid->coreid != SSB_ANY_ID)
  281. return 0;
  282. if ((tabid->revision != devid->revision) &&
  283. tabid->revision != SSB_ANY_REV)
  284. return 0;
  285. return 1;
  286. }
  287. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  288. {
  289. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  290. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  291. const struct ssb_device_id *id;
  292. for (id = ssb_drv->id_table;
  293. id->vendor || id->coreid || id->revision;
  294. id++) {
  295. if (ssb_match_devid(id, &ssb_dev->id))
  296. return 1; /* found */
  297. }
  298. return 0;
  299. }
  300. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  301. {
  302. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  303. if (!dev)
  304. return -ENODEV;
  305. return add_uevent_var(env,
  306. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  307. ssb_dev->id.vendor, ssb_dev->id.coreid,
  308. ssb_dev->id.revision);
  309. }
  310. static struct bus_type ssb_bustype = {
  311. .name = "ssb",
  312. .match = ssb_bus_match,
  313. .probe = ssb_device_probe,
  314. .remove = ssb_device_remove,
  315. .shutdown = ssb_device_shutdown,
  316. .suspend = ssb_device_suspend,
  317. .resume = ssb_device_resume,
  318. .uevent = ssb_device_uevent,
  319. };
  320. static void ssb_buses_lock(void)
  321. {
  322. /* See the comment at the ssb_is_early_boot definition */
  323. if (!ssb_is_early_boot)
  324. mutex_lock(&buses_mutex);
  325. }
  326. static void ssb_buses_unlock(void)
  327. {
  328. /* See the comment at the ssb_is_early_boot definition */
  329. if (!ssb_is_early_boot)
  330. mutex_unlock(&buses_mutex);
  331. }
  332. static void ssb_devices_unregister(struct ssb_bus *bus)
  333. {
  334. struct ssb_device *sdev;
  335. int i;
  336. for (i = bus->nr_devices - 1; i >= 0; i--) {
  337. sdev = &(bus->devices[i]);
  338. if (sdev->dev)
  339. device_unregister(sdev->dev);
  340. }
  341. }
  342. void ssb_bus_unregister(struct ssb_bus *bus)
  343. {
  344. ssb_buses_lock();
  345. ssb_devices_unregister(bus);
  346. list_del(&bus->list);
  347. ssb_buses_unlock();
  348. ssb_pcmcia_exit(bus);
  349. ssb_pci_exit(bus);
  350. ssb_iounmap(bus);
  351. }
  352. EXPORT_SYMBOL(ssb_bus_unregister);
  353. static void ssb_release_dev(struct device *dev)
  354. {
  355. struct __ssb_dev_wrapper *devwrap;
  356. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  357. kfree(devwrap);
  358. }
  359. static int ssb_devices_register(struct ssb_bus *bus)
  360. {
  361. struct ssb_device *sdev;
  362. struct device *dev;
  363. struct __ssb_dev_wrapper *devwrap;
  364. int i, err = 0;
  365. int dev_idx = 0;
  366. for (i = 0; i < bus->nr_devices; i++) {
  367. sdev = &(bus->devices[i]);
  368. /* We don't register SSB-system devices to the kernel,
  369. * as the drivers for them are built into SSB. */
  370. switch (sdev->id.coreid) {
  371. case SSB_DEV_CHIPCOMMON:
  372. case SSB_DEV_PCI:
  373. case SSB_DEV_PCIE:
  374. case SSB_DEV_PCMCIA:
  375. case SSB_DEV_MIPS:
  376. case SSB_DEV_MIPS_3302:
  377. case SSB_DEV_EXTIF:
  378. continue;
  379. }
  380. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  381. if (!devwrap) {
  382. ssb_printk(KERN_ERR PFX
  383. "Could not allocate device\n");
  384. err = -ENOMEM;
  385. goto error;
  386. }
  387. dev = &devwrap->dev;
  388. devwrap->sdev = sdev;
  389. dev->release = ssb_release_dev;
  390. dev->bus = &ssb_bustype;
  391. dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
  392. switch (bus->bustype) {
  393. case SSB_BUSTYPE_PCI:
  394. #ifdef CONFIG_SSB_PCIHOST
  395. sdev->irq = bus->host_pci->irq;
  396. dev->parent = &bus->host_pci->dev;
  397. #endif
  398. break;
  399. case SSB_BUSTYPE_PCMCIA:
  400. #ifdef CONFIG_SSB_PCMCIAHOST
  401. sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
  402. dev->parent = &bus->host_pcmcia->dev;
  403. #endif
  404. break;
  405. case SSB_BUSTYPE_SSB:
  406. dev->dma_mask = &dev->coherent_dma_mask;
  407. break;
  408. }
  409. sdev->dev = dev;
  410. err = device_register(dev);
  411. if (err) {
  412. ssb_printk(KERN_ERR PFX
  413. "Could not register %s\n",
  414. dev_name(dev));
  415. /* Set dev to NULL to not unregister
  416. * dev on error unwinding. */
  417. sdev->dev = NULL;
  418. kfree(devwrap);
  419. goto error;
  420. }
  421. dev_idx++;
  422. }
  423. return 0;
  424. error:
  425. /* Unwind the already registered devices. */
  426. ssb_devices_unregister(bus);
  427. return err;
  428. }
  429. /* Needs ssb_buses_lock() */
  430. static int ssb_attach_queued_buses(void)
  431. {
  432. struct ssb_bus *bus, *n;
  433. int err = 0;
  434. int drop_them_all = 0;
  435. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  436. if (drop_them_all) {
  437. list_del(&bus->list);
  438. continue;
  439. }
  440. /* Can't init the PCIcore in ssb_bus_register(), as that
  441. * is too early in boot for embedded systems
  442. * (no udelay() available). So do it here in attach stage.
  443. */
  444. err = ssb_bus_powerup(bus, 0);
  445. if (err)
  446. goto error;
  447. ssb_pcicore_init(&bus->pcicore);
  448. ssb_bus_may_powerdown(bus);
  449. err = ssb_devices_register(bus);
  450. error:
  451. if (err) {
  452. drop_them_all = 1;
  453. list_del(&bus->list);
  454. continue;
  455. }
  456. list_move_tail(&bus->list, &buses);
  457. }
  458. return err;
  459. }
  460. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  461. {
  462. struct ssb_bus *bus = dev->bus;
  463. offset += dev->core_index * SSB_CORE_SIZE;
  464. return readb(bus->mmio + offset);
  465. }
  466. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  467. {
  468. struct ssb_bus *bus = dev->bus;
  469. offset += dev->core_index * SSB_CORE_SIZE;
  470. return readw(bus->mmio + offset);
  471. }
  472. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  473. {
  474. struct ssb_bus *bus = dev->bus;
  475. offset += dev->core_index * SSB_CORE_SIZE;
  476. return readl(bus->mmio + offset);
  477. }
  478. #ifdef CONFIG_SSB_BLOCKIO
  479. static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
  480. size_t count, u16 offset, u8 reg_width)
  481. {
  482. struct ssb_bus *bus = dev->bus;
  483. void __iomem *addr;
  484. offset += dev->core_index * SSB_CORE_SIZE;
  485. addr = bus->mmio + offset;
  486. switch (reg_width) {
  487. case sizeof(u8): {
  488. u8 *buf = buffer;
  489. while (count) {
  490. *buf = __raw_readb(addr);
  491. buf++;
  492. count--;
  493. }
  494. break;
  495. }
  496. case sizeof(u16): {
  497. __le16 *buf = buffer;
  498. SSB_WARN_ON(count & 1);
  499. while (count) {
  500. *buf = (__force __le16)__raw_readw(addr);
  501. buf++;
  502. count -= 2;
  503. }
  504. break;
  505. }
  506. case sizeof(u32): {
  507. __le32 *buf = buffer;
  508. SSB_WARN_ON(count & 3);
  509. while (count) {
  510. *buf = (__force __le32)__raw_readl(addr);
  511. buf++;
  512. count -= 4;
  513. }
  514. break;
  515. }
  516. default:
  517. SSB_WARN_ON(1);
  518. }
  519. }
  520. #endif /* CONFIG_SSB_BLOCKIO */
  521. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  522. {
  523. struct ssb_bus *bus = dev->bus;
  524. offset += dev->core_index * SSB_CORE_SIZE;
  525. writeb(value, bus->mmio + offset);
  526. }
  527. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  528. {
  529. struct ssb_bus *bus = dev->bus;
  530. offset += dev->core_index * SSB_CORE_SIZE;
  531. writew(value, bus->mmio + offset);
  532. }
  533. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  534. {
  535. struct ssb_bus *bus = dev->bus;
  536. offset += dev->core_index * SSB_CORE_SIZE;
  537. writel(value, bus->mmio + offset);
  538. }
  539. #ifdef CONFIG_SSB_BLOCKIO
  540. static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
  541. size_t count, u16 offset, u8 reg_width)
  542. {
  543. struct ssb_bus *bus = dev->bus;
  544. void __iomem *addr;
  545. offset += dev->core_index * SSB_CORE_SIZE;
  546. addr = bus->mmio + offset;
  547. switch (reg_width) {
  548. case sizeof(u8): {
  549. const u8 *buf = buffer;
  550. while (count) {
  551. __raw_writeb(*buf, addr);
  552. buf++;
  553. count--;
  554. }
  555. break;
  556. }
  557. case sizeof(u16): {
  558. const __le16 *buf = buffer;
  559. SSB_WARN_ON(count & 1);
  560. while (count) {
  561. __raw_writew((__force u16)(*buf), addr);
  562. buf++;
  563. count -= 2;
  564. }
  565. break;
  566. }
  567. case sizeof(u32): {
  568. const __le32 *buf = buffer;
  569. SSB_WARN_ON(count & 3);
  570. while (count) {
  571. __raw_writel((__force u32)(*buf), addr);
  572. buf++;
  573. count -= 4;
  574. }
  575. break;
  576. }
  577. default:
  578. SSB_WARN_ON(1);
  579. }
  580. }
  581. #endif /* CONFIG_SSB_BLOCKIO */
  582. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  583. static const struct ssb_bus_ops ssb_ssb_ops = {
  584. .read8 = ssb_ssb_read8,
  585. .read16 = ssb_ssb_read16,
  586. .read32 = ssb_ssb_read32,
  587. .write8 = ssb_ssb_write8,
  588. .write16 = ssb_ssb_write16,
  589. .write32 = ssb_ssb_write32,
  590. #ifdef CONFIG_SSB_BLOCKIO
  591. .block_read = ssb_ssb_block_read,
  592. .block_write = ssb_ssb_block_write,
  593. #endif
  594. };
  595. static int ssb_fetch_invariants(struct ssb_bus *bus,
  596. ssb_invariants_func_t get_invariants)
  597. {
  598. struct ssb_init_invariants iv;
  599. int err;
  600. memset(&iv, 0, sizeof(iv));
  601. err = get_invariants(bus, &iv);
  602. if (err)
  603. goto out;
  604. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  605. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  606. bus->has_cardbus_slot = iv.has_cardbus_slot;
  607. out:
  608. return err;
  609. }
  610. static int ssb_bus_register(struct ssb_bus *bus,
  611. ssb_invariants_func_t get_invariants,
  612. unsigned long baseaddr)
  613. {
  614. int err;
  615. spin_lock_init(&bus->bar_lock);
  616. INIT_LIST_HEAD(&bus->list);
  617. #ifdef CONFIG_SSB_EMBEDDED
  618. spin_lock_init(&bus->gpio_lock);
  619. #endif
  620. /* Powerup the bus */
  621. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  622. if (err)
  623. goto out;
  624. ssb_buses_lock();
  625. bus->busnumber = next_busnumber;
  626. /* Scan for devices (cores) */
  627. err = ssb_bus_scan(bus, baseaddr);
  628. if (err)
  629. goto err_disable_xtal;
  630. /* Init PCI-host device (if any) */
  631. err = ssb_pci_init(bus);
  632. if (err)
  633. goto err_unmap;
  634. /* Init PCMCIA-host device (if any) */
  635. err = ssb_pcmcia_init(bus);
  636. if (err)
  637. goto err_pci_exit;
  638. /* Initialize basic system devices (if available) */
  639. err = ssb_bus_powerup(bus, 0);
  640. if (err)
  641. goto err_pcmcia_exit;
  642. ssb_chipcommon_init(&bus->chipco);
  643. ssb_mipscore_init(&bus->mipscore);
  644. err = ssb_fetch_invariants(bus, get_invariants);
  645. if (err) {
  646. ssb_bus_may_powerdown(bus);
  647. goto err_pcmcia_exit;
  648. }
  649. ssb_bus_may_powerdown(bus);
  650. /* Queue it for attach.
  651. * See the comment at the ssb_is_early_boot definition. */
  652. list_add_tail(&bus->list, &attach_queue);
  653. if (!ssb_is_early_boot) {
  654. /* This is not early boot, so we must attach the bus now */
  655. err = ssb_attach_queued_buses();
  656. if (err)
  657. goto err_dequeue;
  658. }
  659. next_busnumber++;
  660. ssb_buses_unlock();
  661. out:
  662. return err;
  663. err_dequeue:
  664. list_del(&bus->list);
  665. err_pcmcia_exit:
  666. ssb_pcmcia_exit(bus);
  667. err_pci_exit:
  668. ssb_pci_exit(bus);
  669. err_unmap:
  670. ssb_iounmap(bus);
  671. err_disable_xtal:
  672. ssb_buses_unlock();
  673. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  674. return err;
  675. }
  676. #ifdef CONFIG_SSB_PCIHOST
  677. int ssb_bus_pcibus_register(struct ssb_bus *bus,
  678. struct pci_dev *host_pci)
  679. {
  680. int err;
  681. bus->bustype = SSB_BUSTYPE_PCI;
  682. bus->host_pci = host_pci;
  683. bus->ops = &ssb_pci_ops;
  684. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  685. if (!err) {
  686. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  687. "PCI device %s\n", dev_name(&host_pci->dev));
  688. }
  689. return err;
  690. }
  691. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  692. #endif /* CONFIG_SSB_PCIHOST */
  693. #ifdef CONFIG_SSB_PCMCIAHOST
  694. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  695. struct pcmcia_device *pcmcia_dev,
  696. unsigned long baseaddr)
  697. {
  698. int err;
  699. bus->bustype = SSB_BUSTYPE_PCMCIA;
  700. bus->host_pcmcia = pcmcia_dev;
  701. bus->ops = &ssb_pcmcia_ops;
  702. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  703. if (!err) {
  704. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  705. "PCMCIA device %s\n", pcmcia_dev->devname);
  706. }
  707. return err;
  708. }
  709. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  710. #endif /* CONFIG_SSB_PCMCIAHOST */
  711. int ssb_bus_ssbbus_register(struct ssb_bus *bus,
  712. unsigned long baseaddr,
  713. ssb_invariants_func_t get_invariants)
  714. {
  715. int err;
  716. bus->bustype = SSB_BUSTYPE_SSB;
  717. bus->ops = &ssb_ssb_ops;
  718. err = ssb_bus_register(bus, get_invariants, baseaddr);
  719. if (!err) {
  720. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  721. "address 0x%08lX\n", baseaddr);
  722. }
  723. return err;
  724. }
  725. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  726. {
  727. drv->drv.name = drv->name;
  728. drv->drv.bus = &ssb_bustype;
  729. drv->drv.owner = owner;
  730. return driver_register(&drv->drv);
  731. }
  732. EXPORT_SYMBOL(__ssb_driver_register);
  733. void ssb_driver_unregister(struct ssb_driver *drv)
  734. {
  735. driver_unregister(&drv->drv);
  736. }
  737. EXPORT_SYMBOL(ssb_driver_unregister);
  738. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  739. {
  740. struct ssb_bus *bus = dev->bus;
  741. struct ssb_device *ent;
  742. int i;
  743. for (i = 0; i < bus->nr_devices; i++) {
  744. ent = &(bus->devices[i]);
  745. if (ent->id.vendor != dev->id.vendor)
  746. continue;
  747. if (ent->id.coreid != dev->id.coreid)
  748. continue;
  749. ent->devtypedata = data;
  750. }
  751. }
  752. EXPORT_SYMBOL(ssb_set_devtypedata);
  753. static u32 clkfactor_f6_resolve(u32 v)
  754. {
  755. /* map the magic values */
  756. switch (v) {
  757. case SSB_CHIPCO_CLK_F6_2:
  758. return 2;
  759. case SSB_CHIPCO_CLK_F6_3:
  760. return 3;
  761. case SSB_CHIPCO_CLK_F6_4:
  762. return 4;
  763. case SSB_CHIPCO_CLK_F6_5:
  764. return 5;
  765. case SSB_CHIPCO_CLK_F6_6:
  766. return 6;
  767. case SSB_CHIPCO_CLK_F6_7:
  768. return 7;
  769. }
  770. return 0;
  771. }
  772. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  773. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  774. {
  775. u32 n1, n2, clock, m1, m2, m3, mc;
  776. n1 = (n & SSB_CHIPCO_CLK_N1);
  777. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  778. switch (plltype) {
  779. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  780. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  781. return SSB_CHIPCO_CLK_T6_M0;
  782. return SSB_CHIPCO_CLK_T6_M1;
  783. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  784. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  785. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  786. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  787. n1 = clkfactor_f6_resolve(n1);
  788. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  789. break;
  790. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  791. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  792. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  793. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  794. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  795. break;
  796. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  797. return 100000000;
  798. default:
  799. SSB_WARN_ON(1);
  800. }
  801. switch (plltype) {
  802. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  803. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  804. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  805. break;
  806. default:
  807. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  808. }
  809. if (!clock)
  810. return 0;
  811. m1 = (m & SSB_CHIPCO_CLK_M1);
  812. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  813. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  814. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  815. switch (plltype) {
  816. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  817. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  818. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  819. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  820. m1 = clkfactor_f6_resolve(m1);
  821. if ((plltype == SSB_PLLTYPE_1) ||
  822. (plltype == SSB_PLLTYPE_3))
  823. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  824. else
  825. m2 = clkfactor_f6_resolve(m2);
  826. m3 = clkfactor_f6_resolve(m3);
  827. switch (mc) {
  828. case SSB_CHIPCO_CLK_MC_BYPASS:
  829. return clock;
  830. case SSB_CHIPCO_CLK_MC_M1:
  831. return (clock / m1);
  832. case SSB_CHIPCO_CLK_MC_M1M2:
  833. return (clock / (m1 * m2));
  834. case SSB_CHIPCO_CLK_MC_M1M2M3:
  835. return (clock / (m1 * m2 * m3));
  836. case SSB_CHIPCO_CLK_MC_M1M3:
  837. return (clock / (m1 * m3));
  838. }
  839. return 0;
  840. case SSB_PLLTYPE_2:
  841. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  842. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  843. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  844. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  845. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  846. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  847. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  848. clock /= m1;
  849. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  850. clock /= m2;
  851. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  852. clock /= m3;
  853. return clock;
  854. default:
  855. SSB_WARN_ON(1);
  856. }
  857. return 0;
  858. }
  859. /* Get the current speed the backplane is running at */
  860. u32 ssb_clockspeed(struct ssb_bus *bus)
  861. {
  862. u32 rate;
  863. u32 plltype;
  864. u32 clkctl_n, clkctl_m;
  865. if (ssb_extif_available(&bus->extif))
  866. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  867. &clkctl_n, &clkctl_m);
  868. else if (bus->chipco.dev)
  869. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  870. &clkctl_n, &clkctl_m);
  871. else
  872. return 0;
  873. if (bus->chip_id == 0x5365) {
  874. rate = 100000000;
  875. } else {
  876. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  877. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  878. rate /= 2;
  879. }
  880. return rate;
  881. }
  882. EXPORT_SYMBOL(ssb_clockspeed);
  883. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  884. {
  885. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  886. /* The REJECT bit changed position in TMSLOW between
  887. * Backplane revisions. */
  888. switch (rev) {
  889. case SSB_IDLOW_SSBREV_22:
  890. return SSB_TMSLOW_REJECT_22;
  891. case SSB_IDLOW_SSBREV_23:
  892. return SSB_TMSLOW_REJECT_23;
  893. case SSB_IDLOW_SSBREV_24: /* TODO - find the proper REJECT bits */
  894. case SSB_IDLOW_SSBREV_25: /* same here */
  895. case SSB_IDLOW_SSBREV_26: /* same here */
  896. case SSB_IDLOW_SSBREV_27: /* same here */
  897. return SSB_TMSLOW_REJECT_23; /* this is a guess */
  898. default:
  899. printk(KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  900. WARN_ON(1);
  901. }
  902. return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
  903. }
  904. int ssb_device_is_enabled(struct ssb_device *dev)
  905. {
  906. u32 val;
  907. u32 reject;
  908. reject = ssb_tmslow_reject_bitmask(dev);
  909. val = ssb_read32(dev, SSB_TMSLOW);
  910. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  911. return (val == SSB_TMSLOW_CLOCK);
  912. }
  913. EXPORT_SYMBOL(ssb_device_is_enabled);
  914. static void ssb_flush_tmslow(struct ssb_device *dev)
  915. {
  916. /* Make _really_ sure the device has finished the TMSLOW
  917. * register write transaction, as we risk running into
  918. * a machine check exception otherwise.
  919. * Do this by reading the register back to commit the
  920. * PCI write and delay an additional usec for the device
  921. * to react to the change. */
  922. ssb_read32(dev, SSB_TMSLOW);
  923. udelay(1);
  924. }
  925. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  926. {
  927. u32 val;
  928. ssb_device_disable(dev, core_specific_flags);
  929. ssb_write32(dev, SSB_TMSLOW,
  930. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  931. SSB_TMSLOW_FGC | core_specific_flags);
  932. ssb_flush_tmslow(dev);
  933. /* Clear SERR if set. This is a hw bug workaround. */
  934. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  935. ssb_write32(dev, SSB_TMSHIGH, 0);
  936. val = ssb_read32(dev, SSB_IMSTATE);
  937. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  938. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  939. ssb_write32(dev, SSB_IMSTATE, val);
  940. }
  941. ssb_write32(dev, SSB_TMSLOW,
  942. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  943. core_specific_flags);
  944. ssb_flush_tmslow(dev);
  945. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  946. core_specific_flags);
  947. ssb_flush_tmslow(dev);
  948. }
  949. EXPORT_SYMBOL(ssb_device_enable);
  950. /* Wait for a bit in a register to get set or unset.
  951. * timeout is in units of ten-microseconds */
  952. static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
  953. int timeout, int set)
  954. {
  955. int i;
  956. u32 val;
  957. for (i = 0; i < timeout; i++) {
  958. val = ssb_read32(dev, reg);
  959. if (set) {
  960. if (val & bitmask)
  961. return 0;
  962. } else {
  963. if (!(val & bitmask))
  964. return 0;
  965. }
  966. udelay(10);
  967. }
  968. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  969. "register %04X to %s.\n",
  970. bitmask, reg, (set ? "set" : "clear"));
  971. return -ETIMEDOUT;
  972. }
  973. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  974. {
  975. u32 reject;
  976. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  977. return;
  978. reject = ssb_tmslow_reject_bitmask(dev);
  979. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  980. ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
  981. ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  982. ssb_write32(dev, SSB_TMSLOW,
  983. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  984. reject | SSB_TMSLOW_RESET |
  985. core_specific_flags);
  986. ssb_flush_tmslow(dev);
  987. ssb_write32(dev, SSB_TMSLOW,
  988. reject | SSB_TMSLOW_RESET |
  989. core_specific_flags);
  990. ssb_flush_tmslow(dev);
  991. }
  992. EXPORT_SYMBOL(ssb_device_disable);
  993. u32 ssb_dma_translation(struct ssb_device *dev)
  994. {
  995. switch (dev->bus->bustype) {
  996. case SSB_BUSTYPE_SSB:
  997. return 0;
  998. case SSB_BUSTYPE_PCI:
  999. return SSB_PCI_DMA;
  1000. default:
  1001. __ssb_dma_not_implemented(dev);
  1002. }
  1003. return 0;
  1004. }
  1005. EXPORT_SYMBOL(ssb_dma_translation);
  1006. int ssb_dma_set_mask(struct ssb_device *dev, u64 mask)
  1007. {
  1008. #ifdef CONFIG_SSB_PCIHOST
  1009. int err;
  1010. #endif
  1011. switch (dev->bus->bustype) {
  1012. case SSB_BUSTYPE_PCI:
  1013. #ifdef CONFIG_SSB_PCIHOST
  1014. err = pci_set_dma_mask(dev->bus->host_pci, mask);
  1015. if (err)
  1016. return err;
  1017. err = pci_set_consistent_dma_mask(dev->bus->host_pci, mask);
  1018. return err;
  1019. #endif
  1020. case SSB_BUSTYPE_SSB:
  1021. return dma_set_mask(dev->dev, mask);
  1022. default:
  1023. __ssb_dma_not_implemented(dev);
  1024. }
  1025. return -ENOSYS;
  1026. }
  1027. EXPORT_SYMBOL(ssb_dma_set_mask);
  1028. void * ssb_dma_alloc_consistent(struct ssb_device *dev, size_t size,
  1029. dma_addr_t *dma_handle, gfp_t gfp_flags)
  1030. {
  1031. switch (dev->bus->bustype) {
  1032. case SSB_BUSTYPE_PCI:
  1033. #ifdef CONFIG_SSB_PCIHOST
  1034. if (gfp_flags & GFP_DMA) {
  1035. /* Workaround: The PCI API does not support passing
  1036. * a GFP flag. */
  1037. return dma_alloc_coherent(&dev->bus->host_pci->dev,
  1038. size, dma_handle, gfp_flags);
  1039. }
  1040. return pci_alloc_consistent(dev->bus->host_pci, size, dma_handle);
  1041. #endif
  1042. case SSB_BUSTYPE_SSB:
  1043. return dma_alloc_coherent(dev->dev, size, dma_handle, gfp_flags);
  1044. default:
  1045. __ssb_dma_not_implemented(dev);
  1046. }
  1047. return NULL;
  1048. }
  1049. EXPORT_SYMBOL(ssb_dma_alloc_consistent);
  1050. void ssb_dma_free_consistent(struct ssb_device *dev, size_t size,
  1051. void *vaddr, dma_addr_t dma_handle,
  1052. gfp_t gfp_flags)
  1053. {
  1054. switch (dev->bus->bustype) {
  1055. case SSB_BUSTYPE_PCI:
  1056. #ifdef CONFIG_SSB_PCIHOST
  1057. if (gfp_flags & GFP_DMA) {
  1058. /* Workaround: The PCI API does not support passing
  1059. * a GFP flag. */
  1060. dma_free_coherent(&dev->bus->host_pci->dev,
  1061. size, vaddr, dma_handle);
  1062. return;
  1063. }
  1064. pci_free_consistent(dev->bus->host_pci, size,
  1065. vaddr, dma_handle);
  1066. return;
  1067. #endif
  1068. case SSB_BUSTYPE_SSB:
  1069. dma_free_coherent(dev->dev, size, vaddr, dma_handle);
  1070. return;
  1071. default:
  1072. __ssb_dma_not_implemented(dev);
  1073. }
  1074. }
  1075. EXPORT_SYMBOL(ssb_dma_free_consistent);
  1076. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  1077. {
  1078. struct ssb_chipcommon *cc;
  1079. int err = 0;
  1080. /* On buses where more than one core may be working
  1081. * at a time, we must not powerdown stuff if there are
  1082. * still cores that may want to run. */
  1083. if (bus->bustype == SSB_BUSTYPE_SSB)
  1084. goto out;
  1085. cc = &bus->chipco;
  1086. if (!cc->dev)
  1087. goto out;
  1088. if (cc->dev->id.revision < 5)
  1089. goto out;
  1090. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  1091. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  1092. if (err)
  1093. goto error;
  1094. out:
  1095. #ifdef CONFIG_SSB_DEBUG
  1096. bus->powered_up = 0;
  1097. #endif
  1098. return err;
  1099. error:
  1100. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  1101. goto out;
  1102. }
  1103. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  1104. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  1105. {
  1106. struct ssb_chipcommon *cc;
  1107. int err;
  1108. enum ssb_clkmode mode;
  1109. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  1110. if (err)
  1111. goto error;
  1112. cc = &bus->chipco;
  1113. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  1114. ssb_chipco_set_clockmode(cc, mode);
  1115. #ifdef CONFIG_SSB_DEBUG
  1116. bus->powered_up = 1;
  1117. #endif
  1118. return 0;
  1119. error:
  1120. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  1121. return err;
  1122. }
  1123. EXPORT_SYMBOL(ssb_bus_powerup);
  1124. u32 ssb_admatch_base(u32 adm)
  1125. {
  1126. u32 base = 0;
  1127. switch (adm & SSB_ADM_TYPE) {
  1128. case SSB_ADM_TYPE0:
  1129. base = (adm & SSB_ADM_BASE0);
  1130. break;
  1131. case SSB_ADM_TYPE1:
  1132. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1133. base = (adm & SSB_ADM_BASE1);
  1134. break;
  1135. case SSB_ADM_TYPE2:
  1136. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1137. base = (adm & SSB_ADM_BASE2);
  1138. break;
  1139. default:
  1140. SSB_WARN_ON(1);
  1141. }
  1142. return base;
  1143. }
  1144. EXPORT_SYMBOL(ssb_admatch_base);
  1145. u32 ssb_admatch_size(u32 adm)
  1146. {
  1147. u32 size = 0;
  1148. switch (adm & SSB_ADM_TYPE) {
  1149. case SSB_ADM_TYPE0:
  1150. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1151. break;
  1152. case SSB_ADM_TYPE1:
  1153. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1154. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1155. break;
  1156. case SSB_ADM_TYPE2:
  1157. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1158. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1159. break;
  1160. default:
  1161. SSB_WARN_ON(1);
  1162. }
  1163. size = (1 << (size + 1));
  1164. return size;
  1165. }
  1166. EXPORT_SYMBOL(ssb_admatch_size);
  1167. static int __init ssb_modinit(void)
  1168. {
  1169. int err;
  1170. /* See the comment at the ssb_is_early_boot definition */
  1171. ssb_is_early_boot = 0;
  1172. err = bus_register(&ssb_bustype);
  1173. if (err)
  1174. return err;
  1175. /* Maybe we already registered some buses at early boot.
  1176. * Check for this and attach them
  1177. */
  1178. ssb_buses_lock();
  1179. err = ssb_attach_queued_buses();
  1180. ssb_buses_unlock();
  1181. if (err)
  1182. bus_unregister(&ssb_bustype);
  1183. err = b43_pci_ssb_bridge_init();
  1184. if (err) {
  1185. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1186. "initialization failed\n");
  1187. /* don't fail SSB init because of this */
  1188. err = 0;
  1189. }
  1190. err = ssb_gige_init();
  1191. if (err) {
  1192. ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
  1193. "driver initialization failed\n");
  1194. /* don't fail SSB init because of this */
  1195. err = 0;
  1196. }
  1197. return err;
  1198. }
  1199. /* ssb must be initialized after PCI but before the ssb drivers.
  1200. * That means we must use some initcall between subsys_initcall
  1201. * and device_initcall. */
  1202. fs_initcall(ssb_modinit);
  1203. static void __exit ssb_modexit(void)
  1204. {
  1205. ssb_gige_exit();
  1206. b43_pci_ssb_bridge_exit();
  1207. bus_unregister(&ssb_bustype);
  1208. }
  1209. module_exit(ssb_modexit)