driver_chipcommon_pmu.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /*
  2. * Sonics Silicon Backplane
  3. * Broadcom ChipCommon Power Management Unit driver
  4. *
  5. * Copyright 2009, Michael Buesch <mb@bu3sch.de>
  6. * Copyright 2007, Broadcom Corporation
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include <linux/ssb/ssb.h>
  11. #include <linux/ssb/ssb_regs.h>
  12. #include <linux/ssb/ssb_driver_chipcommon.h>
  13. #include <linux/delay.h>
  14. #include "ssb_private.h"
  15. static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
  16. {
  17. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  18. return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
  19. }
  20. static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
  21. u32 offset, u32 value)
  22. {
  23. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  24. chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
  25. }
  26. struct pmu0_plltab_entry {
  27. u16 freq; /* Crystal frequency in kHz.*/
  28. u8 xf; /* Crystal frequency value for PMU control */
  29. u8 wb_int;
  30. u32 wb_frac;
  31. };
  32. static const struct pmu0_plltab_entry pmu0_plltab[] = {
  33. { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
  34. { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
  35. { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
  36. { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
  37. { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
  38. { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
  39. { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
  40. { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
  41. { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
  42. { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
  43. { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
  44. { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
  45. { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
  46. { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
  47. };
  48. #define SSB_PMU0_DEFAULT_XTALFREQ 20000
  49. static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
  50. {
  51. const struct pmu0_plltab_entry *e;
  52. unsigned int i;
  53. for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
  54. e = &pmu0_plltab[i];
  55. if (e->freq == crystalfreq)
  56. return e;
  57. }
  58. return NULL;
  59. }
  60. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  61. static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
  62. u32 crystalfreq)
  63. {
  64. struct ssb_bus *bus = cc->dev->bus;
  65. const struct pmu0_plltab_entry *e = NULL;
  66. u32 pmuctl, tmp, pllctl;
  67. unsigned int i;
  68. if ((bus->chip_id == 0x5354) && !crystalfreq) {
  69. /* The 5354 crystal freq is 25MHz */
  70. crystalfreq = 25000;
  71. }
  72. if (crystalfreq)
  73. e = pmu0_plltab_find_entry(crystalfreq);
  74. if (!e)
  75. e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
  76. BUG_ON(!e);
  77. crystalfreq = e->freq;
  78. cc->pmu.crystalfreq = e->freq;
  79. /* Check if the PLL already is programmed to this frequency. */
  80. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  81. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  82. /* We're already there... */
  83. return;
  84. }
  85. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  86. (crystalfreq / 1000), (crystalfreq % 1000));
  87. /* First turn the PLL off. */
  88. switch (bus->chip_id) {
  89. case 0x4328:
  90. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  91. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  92. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  93. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  94. break;
  95. case 0x5354:
  96. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  97. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  98. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  99. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  100. break;
  101. default:
  102. SSB_WARN_ON(1);
  103. }
  104. for (i = 1500; i; i--) {
  105. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  106. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  107. break;
  108. udelay(10);
  109. }
  110. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  111. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  112. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  113. /* Set PDIV in PLL control 0. */
  114. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
  115. if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
  116. pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
  117. else
  118. pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
  119. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
  120. /* Set WILD in PLL control 1. */
  121. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
  122. pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
  123. pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
  124. pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
  125. pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
  126. if (e->wb_frac == 0)
  127. pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
  128. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
  129. /* Set WILD in PLL control 2. */
  130. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
  131. pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  132. pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  133. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
  134. /* Set the crystalfrequency and the divisor. */
  135. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  136. pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
  137. pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  138. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  139. pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
  140. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  141. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  142. }
  143. struct pmu1_plltab_entry {
  144. u16 freq; /* Crystal frequency in kHz.*/
  145. u8 xf; /* Crystal frequency value for PMU control */
  146. u8 ndiv_int;
  147. u32 ndiv_frac;
  148. u8 p1div;
  149. u8 p2div;
  150. };
  151. static const struct pmu1_plltab_entry pmu1_plltab[] = {
  152. { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
  153. { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
  154. { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
  155. { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
  156. { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
  157. { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
  158. { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
  159. { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
  160. { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
  161. { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
  162. { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
  163. { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
  164. { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
  165. { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
  166. { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
  167. };
  168. #define SSB_PMU1_DEFAULT_XTALFREQ 15360
  169. static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
  170. {
  171. const struct pmu1_plltab_entry *e;
  172. unsigned int i;
  173. for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
  174. e = &pmu1_plltab[i];
  175. if (e->freq == crystalfreq)
  176. return e;
  177. }
  178. return NULL;
  179. }
  180. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  181. static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
  182. u32 crystalfreq)
  183. {
  184. struct ssb_bus *bus = cc->dev->bus;
  185. const struct pmu1_plltab_entry *e = NULL;
  186. u32 buffer_strength = 0;
  187. u32 tmp, pllctl, pmuctl;
  188. unsigned int i;
  189. if (bus->chip_id == 0x4312) {
  190. /* We do not touch the BCM4312 PLL and assume
  191. * the default crystal settings work out-of-the-box. */
  192. cc->pmu.crystalfreq = 20000;
  193. return;
  194. }
  195. if (crystalfreq)
  196. e = pmu1_plltab_find_entry(crystalfreq);
  197. if (!e)
  198. e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
  199. BUG_ON(!e);
  200. crystalfreq = e->freq;
  201. cc->pmu.crystalfreq = e->freq;
  202. /* Check if the PLL already is programmed to this frequency. */
  203. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  204. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  205. /* We're already there... */
  206. return;
  207. }
  208. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  209. (crystalfreq / 1000), (crystalfreq % 1000));
  210. /* First turn the PLL off. */
  211. switch (bus->chip_id) {
  212. case 0x4325:
  213. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  214. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  215. (1 << SSB_PMURES_4325_HT_AVAIL)));
  216. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  217. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  218. (1 << SSB_PMURES_4325_HT_AVAIL)));
  219. /* Adjust the BBPLL to 2 on all channels later. */
  220. buffer_strength = 0x222222;
  221. break;
  222. default:
  223. SSB_WARN_ON(1);
  224. }
  225. for (i = 1500; i; i--) {
  226. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  227. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  228. break;
  229. udelay(10);
  230. }
  231. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  232. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  233. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  234. /* Set p1div and p2div. */
  235. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
  236. pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
  237. pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
  238. pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
  239. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
  240. /* Set ndiv int and ndiv mode */
  241. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
  242. pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
  243. pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
  244. pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
  245. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
  246. /* Set ndiv frac */
  247. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
  248. pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
  249. pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
  250. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
  251. /* Change the drive strength, if required. */
  252. if (buffer_strength) {
  253. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
  254. pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
  255. pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
  256. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
  257. }
  258. /* Tune the crystalfreq and the divisor. */
  259. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  260. pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
  261. pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  262. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  263. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  264. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  265. }
  266. static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
  267. {
  268. struct ssb_bus *bus = cc->dev->bus;
  269. u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
  270. if (bus->bustype == SSB_BUSTYPE_SSB) {
  271. /* TODO: The user may override the crystal frequency. */
  272. }
  273. switch (bus->chip_id) {
  274. case 0x4312:
  275. case 0x4325:
  276. ssb_pmu1_pllinit_r0(cc, crystalfreq);
  277. break;
  278. case 0x4328:
  279. case 0x5354:
  280. ssb_pmu0_pllinit_r0(cc, crystalfreq);
  281. break;
  282. default:
  283. ssb_printk(KERN_ERR PFX
  284. "ERROR: PLL init unknown for device %04X\n",
  285. bus->chip_id);
  286. }
  287. }
  288. struct pmu_res_updown_tab_entry {
  289. u8 resource; /* The resource number */
  290. u16 updown; /* The updown value */
  291. };
  292. enum pmu_res_depend_tab_task {
  293. PMU_RES_DEP_SET = 1,
  294. PMU_RES_DEP_ADD,
  295. PMU_RES_DEP_REMOVE,
  296. };
  297. struct pmu_res_depend_tab_entry {
  298. u8 resource; /* The resource number */
  299. u8 task; /* SET | ADD | REMOVE */
  300. u32 depend; /* The depend mask */
  301. };
  302. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
  303. { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
  304. { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
  305. { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
  306. { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
  307. { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
  308. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
  309. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
  310. { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
  311. { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
  312. { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
  313. { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
  314. { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
  315. { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
  316. { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
  317. { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
  318. { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
  319. { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
  320. { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
  321. { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
  322. { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
  323. };
  324. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
  325. {
  326. /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
  327. .resource = SSB_PMURES_4328_ILP_REQUEST,
  328. .task = PMU_RES_DEP_SET,
  329. .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  330. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
  331. },
  332. };
  333. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
  334. { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
  335. };
  336. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
  337. {
  338. /* Adjust HT-Available dependencies. */
  339. .resource = SSB_PMURES_4325_HT_AVAIL,
  340. .task = PMU_RES_DEP_ADD,
  341. .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
  342. (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
  343. (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
  344. (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
  345. },
  346. };
  347. static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
  348. {
  349. struct ssb_bus *bus = cc->dev->bus;
  350. u32 min_msk = 0, max_msk = 0;
  351. unsigned int i;
  352. const struct pmu_res_updown_tab_entry *updown_tab = NULL;
  353. unsigned int updown_tab_size;
  354. const struct pmu_res_depend_tab_entry *depend_tab = NULL;
  355. unsigned int depend_tab_size;
  356. switch (bus->chip_id) {
  357. case 0x4312:
  358. /* We keep the default settings:
  359. * min_msk = 0xCBB
  360. * max_msk = 0x7FFFF
  361. */
  362. break;
  363. case 0x4325:
  364. /* Power OTP down later. */
  365. min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
  366. (1 << SSB_PMURES_4325_LNLDO2_PU);
  367. if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
  368. SSB_CHIPCO_CHST_4325_PMUTOP_2B)
  369. min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
  370. /* The PLL may turn on, if it decides so. */
  371. max_msk = 0xFFFFF;
  372. updown_tab = pmu_res_updown_tab_4325a0;
  373. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
  374. depend_tab = pmu_res_depend_tab_4325a0;
  375. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
  376. break;
  377. case 0x4328:
  378. min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  379. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
  380. (1 << SSB_PMURES_4328_XTAL_EN);
  381. /* The PLL may turn on, if it decides so. */
  382. max_msk = 0xFFFFF;
  383. updown_tab = pmu_res_updown_tab_4328a0;
  384. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
  385. depend_tab = pmu_res_depend_tab_4328a0;
  386. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
  387. break;
  388. case 0x5354:
  389. /* The PLL may turn on, if it decides so. */
  390. max_msk = 0xFFFFF;
  391. break;
  392. default:
  393. ssb_printk(KERN_ERR PFX
  394. "ERROR: PMU resource config unknown for device %04X\n",
  395. bus->chip_id);
  396. }
  397. if (updown_tab) {
  398. for (i = 0; i < updown_tab_size; i++) {
  399. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  400. updown_tab[i].resource);
  401. chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
  402. updown_tab[i].updown);
  403. }
  404. }
  405. if (depend_tab) {
  406. for (i = 0; i < depend_tab_size; i++) {
  407. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  408. depend_tab[i].resource);
  409. switch (depend_tab[i].task) {
  410. case PMU_RES_DEP_SET:
  411. chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  412. depend_tab[i].depend);
  413. break;
  414. case PMU_RES_DEP_ADD:
  415. chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  416. depend_tab[i].depend);
  417. break;
  418. case PMU_RES_DEP_REMOVE:
  419. chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  420. ~(depend_tab[i].depend));
  421. break;
  422. default:
  423. SSB_WARN_ON(1);
  424. }
  425. }
  426. }
  427. /* Set the resource masks. */
  428. if (min_msk)
  429. chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
  430. if (max_msk)
  431. chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
  432. }
  433. void ssb_pmu_init(struct ssb_chipcommon *cc)
  434. {
  435. struct ssb_bus *bus = cc->dev->bus;
  436. u32 pmucap;
  437. if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
  438. return;
  439. pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
  440. cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
  441. ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
  442. cc->pmu.rev, pmucap);
  443. if (cc->pmu.rev >= 1) {
  444. if ((bus->chip_id == 0x4325) && (bus->chip_rev < 2)) {
  445. chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
  446. ~SSB_CHIPCO_PMU_CTL_NOILPONW);
  447. } else {
  448. chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
  449. SSB_CHIPCO_PMU_CTL_NOILPONW);
  450. }
  451. }
  452. ssb_pmu_pll_init(cc);
  453. ssb_pmu_resources_init(cc);
  454. }