xpram.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /*
  2. * Xpram.c -- the S/390 expanded memory RAM-disk
  3. *
  4. * significant parts of this code are based on
  5. * the sbull device driver presented in
  6. * A. Rubini: Linux Device Drivers
  7. *
  8. * Author of XPRAM specific coding: Reinhard Buendgen
  9. * buendgen@de.ibm.com
  10. * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
  11. *
  12. * External interfaces:
  13. * Interfaces to linux kernel
  14. * xpram_setup: read kernel parameters
  15. * Device specific file operations
  16. * xpram_iotcl
  17. * xpram_open
  18. *
  19. * "ad-hoc" partitioning:
  20. * the expanded memory can be partitioned among several devices
  21. * (with different minors). The partitioning set up can be
  22. * set by kernel or module parameters (int devs & int sizes[])
  23. *
  24. * Potential future improvements:
  25. * generic hard disk support to replace ad-hoc partitioning
  26. */
  27. #define KMSG_COMPONENT "xpram"
  28. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  29. #include <linux/module.h>
  30. #include <linux/moduleparam.h>
  31. #include <linux/ctype.h> /* isdigit, isxdigit */
  32. #include <linux/errno.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/blkpg.h>
  37. #include <linux/hdreg.h> /* HDIO_GETGEO */
  38. #include <linux/sysdev.h>
  39. #include <linux/bio.h>
  40. #include <linux/suspend.h>
  41. #include <linux/platform_device.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/checksum.h>
  44. #define XPRAM_NAME "xpram"
  45. #define XPRAM_DEVS 1 /* one partition */
  46. #define XPRAM_MAX_DEVS 32 /* maximal number of devices (partitions) */
  47. typedef struct {
  48. unsigned int size; /* size of xpram segment in pages */
  49. unsigned int offset; /* start page of xpram segment */
  50. unsigned int csum; /* partition checksum for suspend */
  51. } xpram_device_t;
  52. static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
  53. static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
  54. static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
  55. static struct request_queue *xpram_queues[XPRAM_MAX_DEVS];
  56. static unsigned int xpram_pages;
  57. static int xpram_devs;
  58. /*
  59. * Parameter parsing functions.
  60. */
  61. static int __initdata devs = XPRAM_DEVS;
  62. static char __initdata *sizes[XPRAM_MAX_DEVS];
  63. module_param(devs, int, 0);
  64. module_param_array(sizes, charp, NULL, 0);
  65. MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
  66. "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
  67. MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
  68. "the defaults are 0s \n" \
  69. "All devices with size 0 equally partition the "
  70. "remaining space on the expanded strorage not "
  71. "claimed by explicit sizes\n");
  72. MODULE_LICENSE("GPL");
  73. /*
  74. * Copy expanded memory page (4kB) into main memory
  75. * Arguments
  76. * page_addr: address of target page
  77. * xpage_index: index of expandeded memory page
  78. * Return value
  79. * 0: if operation succeeds
  80. * -EIO: if pgin failed
  81. * -ENXIO: if xpram has vanished
  82. */
  83. static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
  84. {
  85. int cc = 2; /* return unused cc 2 if pgin traps */
  86. asm volatile(
  87. " .insn rre,0xb22e0000,%1,%2\n" /* pgin %1,%2 */
  88. "0: ipm %0\n"
  89. " srl %0,28\n"
  90. "1:\n"
  91. EX_TABLE(0b,1b)
  92. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  93. if (cc == 3)
  94. return -ENXIO;
  95. if (cc == 2)
  96. return -ENXIO;
  97. if (cc == 1)
  98. return -EIO;
  99. return 0;
  100. }
  101. /*
  102. * Copy a 4kB page of main memory to an expanded memory page
  103. * Arguments
  104. * page_addr: address of source page
  105. * xpage_index: index of expandeded memory page
  106. * Return value
  107. * 0: if operation succeeds
  108. * -EIO: if pgout failed
  109. * -ENXIO: if xpram has vanished
  110. */
  111. static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
  112. {
  113. int cc = 2; /* return unused cc 2 if pgin traps */
  114. asm volatile(
  115. " .insn rre,0xb22f0000,%1,%2\n" /* pgout %1,%2 */
  116. "0: ipm %0\n"
  117. " srl %0,28\n"
  118. "1:\n"
  119. EX_TABLE(0b,1b)
  120. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  121. if (cc == 3)
  122. return -ENXIO;
  123. if (cc == 2)
  124. return -ENXIO;
  125. if (cc == 1)
  126. return -EIO;
  127. return 0;
  128. }
  129. /*
  130. * Check if xpram is available.
  131. */
  132. static int xpram_present(void)
  133. {
  134. unsigned long mem_page;
  135. int rc;
  136. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  137. if (!mem_page)
  138. return -ENOMEM;
  139. rc = xpram_page_in(mem_page, 0);
  140. free_page(mem_page);
  141. return rc ? -ENXIO : 0;
  142. }
  143. /*
  144. * Return index of the last available xpram page.
  145. */
  146. static unsigned long xpram_highest_page_index(void)
  147. {
  148. unsigned int page_index, add_bit;
  149. unsigned long mem_page;
  150. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  151. if (!mem_page)
  152. return 0;
  153. page_index = 0;
  154. add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
  155. while (add_bit > 0) {
  156. if (xpram_page_in(mem_page, page_index | add_bit) == 0)
  157. page_index |= add_bit;
  158. add_bit >>= 1;
  159. }
  160. free_page (mem_page);
  161. return page_index;
  162. }
  163. /*
  164. * Block device make request function.
  165. */
  166. static int xpram_make_request(struct request_queue *q, struct bio *bio)
  167. {
  168. xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
  169. struct bio_vec *bvec;
  170. unsigned int index;
  171. unsigned long page_addr;
  172. unsigned long bytes;
  173. int i;
  174. if ((bio->bi_sector & 7) != 0 || (bio->bi_size & 4095) != 0)
  175. /* Request is not page-aligned. */
  176. goto fail;
  177. if ((bio->bi_size >> 12) > xdev->size)
  178. /* Request size is no page-aligned. */
  179. goto fail;
  180. if ((bio->bi_sector >> 3) > 0xffffffffU - xdev->offset)
  181. goto fail;
  182. index = (bio->bi_sector >> 3) + xdev->offset;
  183. bio_for_each_segment(bvec, bio, i) {
  184. page_addr = (unsigned long)
  185. kmap(bvec->bv_page) + bvec->bv_offset;
  186. bytes = bvec->bv_len;
  187. if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
  188. /* More paranoia. */
  189. goto fail;
  190. while (bytes > 0) {
  191. if (bio_data_dir(bio) == READ) {
  192. if (xpram_page_in(page_addr, index) != 0)
  193. goto fail;
  194. } else {
  195. if (xpram_page_out(page_addr, index) != 0)
  196. goto fail;
  197. }
  198. page_addr += 4096;
  199. bytes -= 4096;
  200. index++;
  201. }
  202. }
  203. set_bit(BIO_UPTODATE, &bio->bi_flags);
  204. bio_endio(bio, 0);
  205. return 0;
  206. fail:
  207. bio_io_error(bio);
  208. return 0;
  209. }
  210. static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  211. {
  212. unsigned long size;
  213. /*
  214. * get geometry: we have to fake one... trim the size to a
  215. * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
  216. * whatever cylinders. Tell also that data starts at sector. 4.
  217. */
  218. size = (xpram_pages * 8) & ~0x3f;
  219. geo->cylinders = size >> 6;
  220. geo->heads = 4;
  221. geo->sectors = 16;
  222. geo->start = 4;
  223. return 0;
  224. }
  225. static struct block_device_operations xpram_devops =
  226. {
  227. .owner = THIS_MODULE,
  228. .getgeo = xpram_getgeo,
  229. };
  230. /*
  231. * Setup xpram_sizes array.
  232. */
  233. static int __init xpram_setup_sizes(unsigned long pages)
  234. {
  235. unsigned long mem_needed;
  236. unsigned long mem_auto;
  237. unsigned long long size;
  238. int mem_auto_no;
  239. int i;
  240. /* Check number of devices. */
  241. if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
  242. pr_err("%d is not a valid number of XPRAM devices\n",devs);
  243. return -EINVAL;
  244. }
  245. xpram_devs = devs;
  246. /*
  247. * Copy sizes array to xpram_sizes and align partition
  248. * sizes to page boundary.
  249. */
  250. mem_needed = 0;
  251. mem_auto_no = 0;
  252. for (i = 0; i < xpram_devs; i++) {
  253. if (sizes[i]) {
  254. size = simple_strtoull(sizes[i], &sizes[i], 0);
  255. switch (sizes[i][0]) {
  256. case 'g':
  257. case 'G':
  258. size <<= 20;
  259. break;
  260. case 'm':
  261. case 'M':
  262. size <<= 10;
  263. }
  264. xpram_sizes[i] = (size + 3) & -4UL;
  265. }
  266. if (xpram_sizes[i])
  267. mem_needed += xpram_sizes[i];
  268. else
  269. mem_auto_no++;
  270. }
  271. pr_info(" number of devices (partitions): %d \n", xpram_devs);
  272. for (i = 0; i < xpram_devs; i++) {
  273. if (xpram_sizes[i])
  274. pr_info(" size of partition %d: %u kB\n",
  275. i, xpram_sizes[i]);
  276. else
  277. pr_info(" size of partition %d to be set "
  278. "automatically\n",i);
  279. }
  280. pr_info(" memory needed (for sized partitions): %lu kB\n",
  281. mem_needed);
  282. pr_info(" partitions to be sized automatically: %d\n",
  283. mem_auto_no);
  284. if (mem_needed > pages * 4) {
  285. pr_err("Not enough expanded memory available\n");
  286. return -EINVAL;
  287. }
  288. /*
  289. * partitioning:
  290. * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
  291. * else: ; all partitions with zero xpram_sizes[i]
  292. * partition equally the remaining space
  293. */
  294. if (mem_auto_no) {
  295. mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
  296. pr_info(" automatically determined "
  297. "partition size: %lu kB\n", mem_auto);
  298. for (i = 0; i < xpram_devs; i++)
  299. if (xpram_sizes[i] == 0)
  300. xpram_sizes[i] = mem_auto;
  301. }
  302. return 0;
  303. }
  304. static int __init xpram_setup_blkdev(void)
  305. {
  306. unsigned long offset;
  307. int i, rc = -ENOMEM;
  308. for (i = 0; i < xpram_devs; i++) {
  309. xpram_disks[i] = alloc_disk(1);
  310. if (!xpram_disks[i])
  311. goto out;
  312. xpram_queues[i] = blk_alloc_queue(GFP_KERNEL);
  313. if (!xpram_queues[i]) {
  314. put_disk(xpram_disks[i]);
  315. goto out;
  316. }
  317. blk_queue_make_request(xpram_queues[i], xpram_make_request);
  318. blk_queue_logical_block_size(xpram_queues[i], 4096);
  319. }
  320. /*
  321. * Register xpram major.
  322. */
  323. rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  324. if (rc < 0)
  325. goto out;
  326. /*
  327. * Setup device structures.
  328. */
  329. offset = 0;
  330. for (i = 0; i < xpram_devs; i++) {
  331. struct gendisk *disk = xpram_disks[i];
  332. xpram_devices[i].size = xpram_sizes[i] / 4;
  333. xpram_devices[i].offset = offset;
  334. offset += xpram_devices[i].size;
  335. disk->major = XPRAM_MAJOR;
  336. disk->first_minor = i;
  337. disk->fops = &xpram_devops;
  338. disk->private_data = &xpram_devices[i];
  339. disk->queue = xpram_queues[i];
  340. sprintf(disk->disk_name, "slram%d", i);
  341. set_capacity(disk, xpram_sizes[i] << 1);
  342. add_disk(disk);
  343. }
  344. return 0;
  345. out:
  346. while (i--) {
  347. blk_cleanup_queue(xpram_queues[i]);
  348. put_disk(xpram_disks[i]);
  349. }
  350. return rc;
  351. }
  352. /*
  353. * Save checksums for all partitions.
  354. */
  355. static int xpram_save_checksums(void)
  356. {
  357. unsigned long mem_page;
  358. int rc, i;
  359. rc = 0;
  360. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  361. if (!mem_page)
  362. return -ENOMEM;
  363. for (i = 0; i < xpram_devs; i++) {
  364. rc = xpram_page_in(mem_page, xpram_devices[i].offset);
  365. if (rc)
  366. goto fail;
  367. xpram_devices[i].csum = csum_partial((const void *) mem_page,
  368. PAGE_SIZE, 0);
  369. }
  370. fail:
  371. free_page(mem_page);
  372. return rc ? -ENXIO : 0;
  373. }
  374. /*
  375. * Verify checksums for all partitions.
  376. */
  377. static int xpram_validate_checksums(void)
  378. {
  379. unsigned long mem_page;
  380. unsigned int csum;
  381. int rc, i;
  382. rc = 0;
  383. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  384. if (!mem_page)
  385. return -ENOMEM;
  386. for (i = 0; i < xpram_devs; i++) {
  387. rc = xpram_page_in(mem_page, xpram_devices[i].offset);
  388. if (rc)
  389. goto fail;
  390. csum = csum_partial((const void *) mem_page, PAGE_SIZE, 0);
  391. if (xpram_devices[i].csum != csum) {
  392. rc = -EINVAL;
  393. goto fail;
  394. }
  395. }
  396. fail:
  397. free_page(mem_page);
  398. return rc ? -ENXIO : 0;
  399. }
  400. /*
  401. * Resume failed: Print error message and call panic.
  402. */
  403. static void xpram_resume_error(const char *message)
  404. {
  405. pr_err("Resuming the system failed: %s\n", message);
  406. panic("xpram resume error\n");
  407. }
  408. /*
  409. * Check if xpram setup changed between suspend and resume.
  410. */
  411. static int xpram_restore(struct device *dev)
  412. {
  413. if (!xpram_pages)
  414. return 0;
  415. if (xpram_present() != 0)
  416. xpram_resume_error("xpram disappeared");
  417. if (xpram_pages != xpram_highest_page_index() + 1)
  418. xpram_resume_error("Size of xpram changed");
  419. if (xpram_validate_checksums())
  420. xpram_resume_error("Data of xpram changed");
  421. return 0;
  422. }
  423. /*
  424. * Save necessary state in suspend.
  425. */
  426. static int xpram_freeze(struct device *dev)
  427. {
  428. return xpram_save_checksums();
  429. }
  430. static struct dev_pm_ops xpram_pm_ops = {
  431. .freeze = xpram_freeze,
  432. .restore = xpram_restore,
  433. };
  434. static struct platform_driver xpram_pdrv = {
  435. .driver = {
  436. .name = XPRAM_NAME,
  437. .owner = THIS_MODULE,
  438. .pm = &xpram_pm_ops,
  439. },
  440. };
  441. static struct platform_device *xpram_pdev;
  442. /*
  443. * Finally, the init/exit functions.
  444. */
  445. static void __exit xpram_exit(void)
  446. {
  447. int i;
  448. for (i = 0; i < xpram_devs; i++) {
  449. del_gendisk(xpram_disks[i]);
  450. blk_cleanup_queue(xpram_queues[i]);
  451. put_disk(xpram_disks[i]);
  452. }
  453. unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  454. platform_device_unregister(xpram_pdev);
  455. platform_driver_unregister(&xpram_pdrv);
  456. }
  457. static int __init xpram_init(void)
  458. {
  459. int rc;
  460. /* Find out size of expanded memory. */
  461. if (xpram_present() != 0) {
  462. pr_err("No expanded memory available\n");
  463. return -ENODEV;
  464. }
  465. xpram_pages = xpram_highest_page_index() + 1;
  466. pr_info(" %u pages expanded memory found (%lu KB).\n",
  467. xpram_pages, (unsigned long) xpram_pages*4);
  468. rc = xpram_setup_sizes(xpram_pages);
  469. if (rc)
  470. return rc;
  471. rc = platform_driver_register(&xpram_pdrv);
  472. if (rc)
  473. return rc;
  474. xpram_pdev = platform_device_register_simple(XPRAM_NAME, -1, NULL, 0);
  475. if (IS_ERR(xpram_pdev)) {
  476. rc = PTR_ERR(xpram_pdev);
  477. goto fail_platform_driver_unregister;
  478. }
  479. rc = xpram_setup_blkdev();
  480. if (rc)
  481. goto fail_platform_device_unregister;
  482. return 0;
  483. fail_platform_device_unregister:
  484. platform_device_unregister(xpram_pdev);
  485. fail_platform_driver_unregister:
  486. platform_driver_unregister(&xpram_pdrv);
  487. return rc;
  488. }
  489. module_init(xpram_init);
  490. module_exit(xpram_exit);