rtc-sa1100.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /*
  2. * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
  3. *
  4. * Copyright (c) 2000 Nils Faerber
  5. *
  6. * Based on rtc.c by Paul Gortmaker
  7. *
  8. * Original Driver by Nils Faerber <nils@kernelconcepts.de>
  9. *
  10. * Modifications from:
  11. * CIH <cih@coventive.com>
  12. * Nicolas Pitre <nico@cam.org>
  13. * Andrew Christian <andrew.christian@hp.com>
  14. *
  15. * Converted to the RTC subsystem and Driver Model
  16. * by Richard Purdie <rpurdie@rpsys.net>
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/platform_device.h>
  24. #include <linux/module.h>
  25. #include <linux/rtc.h>
  26. #include <linux/init.h>
  27. #include <linux/fs.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/string.h>
  30. #include <linux/pm.h>
  31. #include <linux/bitops.h>
  32. #include <mach/hardware.h>
  33. #include <asm/irq.h>
  34. #ifdef CONFIG_ARCH_PXA
  35. #include <mach/regs-rtc.h>
  36. #include <mach/regs-ost.h>
  37. #endif
  38. #define RTC_DEF_DIVIDER 32768 - 1
  39. #define RTC_DEF_TRIM 0
  40. static unsigned long rtc_freq = 1024;
  41. static unsigned long timer_freq;
  42. static struct rtc_time rtc_alarm;
  43. static DEFINE_SPINLOCK(sa1100_rtc_lock);
  44. static inline int rtc_periodic_alarm(struct rtc_time *tm)
  45. {
  46. return (tm->tm_year == -1) ||
  47. ((unsigned)tm->tm_mon >= 12) ||
  48. ((unsigned)(tm->tm_mday - 1) >= 31) ||
  49. ((unsigned)tm->tm_hour > 23) ||
  50. ((unsigned)tm->tm_min > 59) ||
  51. ((unsigned)tm->tm_sec > 59);
  52. }
  53. /*
  54. * Calculate the next alarm time given the requested alarm time mask
  55. * and the current time.
  56. */
  57. static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
  58. {
  59. unsigned long next_time;
  60. unsigned long now_time;
  61. next->tm_year = now->tm_year;
  62. next->tm_mon = now->tm_mon;
  63. next->tm_mday = now->tm_mday;
  64. next->tm_hour = alrm->tm_hour;
  65. next->tm_min = alrm->tm_min;
  66. next->tm_sec = alrm->tm_sec;
  67. rtc_tm_to_time(now, &now_time);
  68. rtc_tm_to_time(next, &next_time);
  69. if (next_time < now_time) {
  70. /* Advance one day */
  71. next_time += 60 * 60 * 24;
  72. rtc_time_to_tm(next_time, next);
  73. }
  74. }
  75. static int rtc_update_alarm(struct rtc_time *alrm)
  76. {
  77. struct rtc_time alarm_tm, now_tm;
  78. unsigned long now, time;
  79. int ret;
  80. do {
  81. now = RCNR;
  82. rtc_time_to_tm(now, &now_tm);
  83. rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
  84. ret = rtc_tm_to_time(&alarm_tm, &time);
  85. if (ret != 0)
  86. break;
  87. RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
  88. RTAR = time;
  89. } while (now != RCNR);
  90. return ret;
  91. }
  92. static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
  93. {
  94. struct platform_device *pdev = to_platform_device(dev_id);
  95. struct rtc_device *rtc = platform_get_drvdata(pdev);
  96. unsigned int rtsr;
  97. unsigned long events = 0;
  98. spin_lock(&sa1100_rtc_lock);
  99. rtsr = RTSR;
  100. /* clear interrupt sources */
  101. RTSR = 0;
  102. RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
  103. /* clear alarm interrupt if it has occurred */
  104. if (rtsr & RTSR_AL)
  105. rtsr &= ~RTSR_ALE;
  106. RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
  107. /* update irq data & counter */
  108. if (rtsr & RTSR_AL)
  109. events |= RTC_AF | RTC_IRQF;
  110. if (rtsr & RTSR_HZ)
  111. events |= RTC_UF | RTC_IRQF;
  112. rtc_update_irq(rtc, 1, events);
  113. if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
  114. rtc_update_alarm(&rtc_alarm);
  115. spin_unlock(&sa1100_rtc_lock);
  116. return IRQ_HANDLED;
  117. }
  118. static int rtc_timer1_count;
  119. static irqreturn_t timer1_interrupt(int irq, void *dev_id)
  120. {
  121. struct platform_device *pdev = to_platform_device(dev_id);
  122. struct rtc_device *rtc = platform_get_drvdata(pdev);
  123. /*
  124. * If we match for the first time, rtc_timer1_count will be 1.
  125. * Otherwise, we wrapped around (very unlikely but
  126. * still possible) so compute the amount of missed periods.
  127. * The match reg is updated only when the data is actually retrieved
  128. * to avoid unnecessary interrupts.
  129. */
  130. OSSR = OSSR_M1; /* clear match on timer1 */
  131. rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
  132. if (rtc_timer1_count == 1)
  133. rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2)));
  134. return IRQ_HANDLED;
  135. }
  136. static int sa1100_rtc_read_callback(struct device *dev, int data)
  137. {
  138. if (data & RTC_PF) {
  139. /* interpolate missed periods and set match for the next */
  140. unsigned long period = timer_freq / rtc_freq;
  141. unsigned long oscr = OSCR;
  142. unsigned long osmr1 = OSMR1;
  143. unsigned long missed = (oscr - osmr1)/period;
  144. data += missed << 8;
  145. OSSR = OSSR_M1; /* clear match on timer 1 */
  146. OSMR1 = osmr1 + (missed + 1)*period;
  147. /* Ensure we didn't miss another match in the mean time.
  148. * Here we compare (match - OSCR) 8 instead of 0 --
  149. * see comment in pxa_timer_interrupt() for explanation.
  150. */
  151. while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
  152. data += 0x100;
  153. OSSR = OSSR_M1; /* clear match on timer 1 */
  154. OSMR1 = osmr1 + period;
  155. }
  156. }
  157. return data;
  158. }
  159. static int sa1100_rtc_open(struct device *dev)
  160. {
  161. int ret;
  162. ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
  163. "rtc 1Hz", dev);
  164. if (ret) {
  165. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
  166. goto fail_ui;
  167. }
  168. ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
  169. "rtc Alrm", dev);
  170. if (ret) {
  171. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
  172. goto fail_ai;
  173. }
  174. ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
  175. "rtc timer", dev);
  176. if (ret) {
  177. dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
  178. goto fail_pi;
  179. }
  180. return 0;
  181. fail_pi:
  182. free_irq(IRQ_RTCAlrm, dev);
  183. fail_ai:
  184. free_irq(IRQ_RTC1Hz, dev);
  185. fail_ui:
  186. return ret;
  187. }
  188. static void sa1100_rtc_release(struct device *dev)
  189. {
  190. spin_lock_irq(&sa1100_rtc_lock);
  191. RTSR = 0;
  192. OIER &= ~OIER_E1;
  193. OSSR = OSSR_M1;
  194. spin_unlock_irq(&sa1100_rtc_lock);
  195. free_irq(IRQ_OST1, dev);
  196. free_irq(IRQ_RTCAlrm, dev);
  197. free_irq(IRQ_RTC1Hz, dev);
  198. }
  199. static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
  200. unsigned long arg)
  201. {
  202. switch(cmd) {
  203. case RTC_AIE_OFF:
  204. spin_lock_irq(&sa1100_rtc_lock);
  205. RTSR &= ~RTSR_ALE;
  206. spin_unlock_irq(&sa1100_rtc_lock);
  207. return 0;
  208. case RTC_AIE_ON:
  209. spin_lock_irq(&sa1100_rtc_lock);
  210. RTSR |= RTSR_ALE;
  211. spin_unlock_irq(&sa1100_rtc_lock);
  212. return 0;
  213. case RTC_UIE_OFF:
  214. spin_lock_irq(&sa1100_rtc_lock);
  215. RTSR &= ~RTSR_HZE;
  216. spin_unlock_irq(&sa1100_rtc_lock);
  217. return 0;
  218. case RTC_UIE_ON:
  219. spin_lock_irq(&sa1100_rtc_lock);
  220. RTSR |= RTSR_HZE;
  221. spin_unlock_irq(&sa1100_rtc_lock);
  222. return 0;
  223. case RTC_PIE_OFF:
  224. spin_lock_irq(&sa1100_rtc_lock);
  225. OIER &= ~OIER_E1;
  226. spin_unlock_irq(&sa1100_rtc_lock);
  227. return 0;
  228. case RTC_PIE_ON:
  229. spin_lock_irq(&sa1100_rtc_lock);
  230. OSMR1 = timer_freq / rtc_freq + OSCR;
  231. OIER |= OIER_E1;
  232. rtc_timer1_count = 1;
  233. spin_unlock_irq(&sa1100_rtc_lock);
  234. return 0;
  235. case RTC_IRQP_READ:
  236. return put_user(rtc_freq, (unsigned long *)arg);
  237. case RTC_IRQP_SET:
  238. if (arg < 1 || arg > timer_freq)
  239. return -EINVAL;
  240. rtc_freq = arg;
  241. return 0;
  242. }
  243. return -ENOIOCTLCMD;
  244. }
  245. static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
  246. {
  247. rtc_time_to_tm(RCNR, tm);
  248. return 0;
  249. }
  250. static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
  251. {
  252. unsigned long time;
  253. int ret;
  254. ret = rtc_tm_to_time(tm, &time);
  255. if (ret == 0)
  256. RCNR = time;
  257. return ret;
  258. }
  259. static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  260. {
  261. u32 rtsr;
  262. memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
  263. rtsr = RTSR;
  264. alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
  265. alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
  266. return 0;
  267. }
  268. static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  269. {
  270. int ret;
  271. spin_lock_irq(&sa1100_rtc_lock);
  272. ret = rtc_update_alarm(&alrm->time);
  273. if (ret == 0) {
  274. if (alrm->enabled)
  275. RTSR |= RTSR_ALE;
  276. else
  277. RTSR &= ~RTSR_ALE;
  278. }
  279. spin_unlock_irq(&sa1100_rtc_lock);
  280. return ret;
  281. }
  282. static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
  283. {
  284. seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
  285. seq_printf(seq, "update_IRQ\t: %s\n",
  286. (RTSR & RTSR_HZE) ? "yes" : "no");
  287. seq_printf(seq, "periodic_IRQ\t: %s\n",
  288. (OIER & OIER_E1) ? "yes" : "no");
  289. seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
  290. return 0;
  291. }
  292. static const struct rtc_class_ops sa1100_rtc_ops = {
  293. .open = sa1100_rtc_open,
  294. .read_callback = sa1100_rtc_read_callback,
  295. .release = sa1100_rtc_release,
  296. .ioctl = sa1100_rtc_ioctl,
  297. .read_time = sa1100_rtc_read_time,
  298. .set_time = sa1100_rtc_set_time,
  299. .read_alarm = sa1100_rtc_read_alarm,
  300. .set_alarm = sa1100_rtc_set_alarm,
  301. .proc = sa1100_rtc_proc,
  302. };
  303. static int sa1100_rtc_probe(struct platform_device *pdev)
  304. {
  305. struct rtc_device *rtc;
  306. timer_freq = get_clock_tick_rate();
  307. /*
  308. * According to the manual we should be able to let RTTR be zero
  309. * and then a default diviser for a 32.768KHz clock is used.
  310. * Apparently this doesn't work, at least for my SA1110 rev 5.
  311. * If the clock divider is uninitialized then reset it to the
  312. * default value to get the 1Hz clock.
  313. */
  314. if (RTTR == 0) {
  315. RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
  316. dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
  317. /* The current RTC value probably doesn't make sense either */
  318. RCNR = 0;
  319. }
  320. device_init_wakeup(&pdev->dev, 1);
  321. rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
  322. THIS_MODULE);
  323. if (IS_ERR(rtc))
  324. return PTR_ERR(rtc);
  325. platform_set_drvdata(pdev, rtc);
  326. return 0;
  327. }
  328. static int sa1100_rtc_remove(struct platform_device *pdev)
  329. {
  330. struct rtc_device *rtc = platform_get_drvdata(pdev);
  331. if (rtc)
  332. rtc_device_unregister(rtc);
  333. return 0;
  334. }
  335. #ifdef CONFIG_PM
  336. static int sa1100_rtc_suspend(struct platform_device *pdev, pm_message_t state)
  337. {
  338. if (device_may_wakeup(&pdev->dev))
  339. enable_irq_wake(IRQ_RTCAlrm);
  340. return 0;
  341. }
  342. static int sa1100_rtc_resume(struct platform_device *pdev)
  343. {
  344. if (device_may_wakeup(&pdev->dev))
  345. disable_irq_wake(IRQ_RTCAlrm);
  346. return 0;
  347. }
  348. #else
  349. #define sa1100_rtc_suspend NULL
  350. #define sa1100_rtc_resume NULL
  351. #endif
  352. static struct platform_driver sa1100_rtc_driver = {
  353. .probe = sa1100_rtc_probe,
  354. .remove = sa1100_rtc_remove,
  355. .suspend = sa1100_rtc_suspend,
  356. .resume = sa1100_rtc_resume,
  357. .driver = {
  358. .name = "sa1100-rtc",
  359. },
  360. };
  361. static int __init sa1100_rtc_init(void)
  362. {
  363. return platform_driver_register(&sa1100_rtc_driver);
  364. }
  365. static void __exit sa1100_rtc_exit(void)
  366. {
  367. platform_driver_unregister(&sa1100_rtc_driver);
  368. }
  369. module_init(sa1100_rtc_init);
  370. module_exit(sa1100_rtc_exit);
  371. MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
  372. MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
  373. MODULE_LICENSE("GPL");
  374. MODULE_ALIAS("platform:sa1100-rtc");