phy.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. void
  18. ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
  19. int regWrites)
  20. {
  21. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  22. }
  23. bool
  24. ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  25. {
  26. u32 channelSel = 0;
  27. u32 bModeSynth = 0;
  28. u32 aModeRefSel = 0;
  29. u32 reg32 = 0;
  30. u16 freq;
  31. struct chan_centers centers;
  32. ath9k_hw_get_channel_centers(ah, chan, &centers);
  33. freq = centers.synth_center;
  34. if (freq < 4800) {
  35. u32 txctl;
  36. if (((freq - 2192) % 5) == 0) {
  37. channelSel = ((freq - 672) * 2 - 3040) / 10;
  38. bModeSynth = 0;
  39. } else if (((freq - 2224) % 5) == 0) {
  40. channelSel = ((freq - 704) * 2 - 3040) / 10;
  41. bModeSynth = 1;
  42. } else {
  43. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  44. "Invalid channel %u MHz\n", freq);
  45. return false;
  46. }
  47. channelSel = (channelSel << 2) & 0xff;
  48. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  49. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  50. if (freq == 2484) {
  51. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  52. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  53. } else {
  54. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  55. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  56. }
  57. } else if ((freq % 20) == 0 && freq >= 5120) {
  58. channelSel =
  59. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  60. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  61. } else if ((freq % 10) == 0) {
  62. channelSel =
  63. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  64. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  65. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  66. else
  67. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  68. } else if ((freq % 5) == 0) {
  69. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  70. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  71. } else {
  72. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  73. "Invalid channel %u MHz\n", freq);
  74. return false;
  75. }
  76. reg32 =
  77. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  78. (1 << 5) | 0x1;
  79. REG_WRITE(ah, AR_PHY(0x37), reg32);
  80. ah->curchan = chan;
  81. ah->curchan_rad_index = -1;
  82. return true;
  83. }
  84. void ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
  85. struct ath9k_channel *chan)
  86. {
  87. u16 bMode, fracMode, aModeRefSel = 0;
  88. u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
  89. struct chan_centers centers;
  90. u32 refDivA = 24;
  91. ath9k_hw_get_channel_centers(ah, chan, &centers);
  92. freq = centers.synth_center;
  93. reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
  94. reg32 &= 0xc0000000;
  95. if (freq < 4800) {
  96. u32 txctl;
  97. bMode = 1;
  98. fracMode = 1;
  99. aModeRefSel = 0;
  100. channelSel = (freq * 0x10000) / 15;
  101. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  102. if (freq == 2484) {
  103. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  104. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  105. } else {
  106. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  107. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  108. }
  109. } else {
  110. bMode = 0;
  111. fracMode = 0;
  112. switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
  113. case 0:
  114. if ((freq % 20) == 0) {
  115. aModeRefSel = 3;
  116. } else if ((freq % 10) == 0) {
  117. aModeRefSel = 2;
  118. }
  119. if (aModeRefSel)
  120. break;
  121. case 1:
  122. default:
  123. aModeRefSel = 0;
  124. fracMode = 1;
  125. refDivA = 1;
  126. channelSel = (freq * 0x8000) / 15;
  127. REG_RMW_FIELD(ah, AR_AN_SYNTH9,
  128. AR_AN_SYNTH9_REFDIVA, refDivA);
  129. }
  130. if (!fracMode) {
  131. ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
  132. channelSel = ndiv & 0x1ff;
  133. channelFrac = (ndiv & 0xfffffe00) * 2;
  134. channelSel = (channelSel << 17) | channelFrac;
  135. }
  136. }
  137. reg32 = reg32 |
  138. (bMode << 29) |
  139. (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
  140. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  141. ah->curchan = chan;
  142. ah->curchan_rad_index = -1;
  143. }
  144. static void
  145. ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  146. u32 numBits, u32 firstBit,
  147. u32 column)
  148. {
  149. u32 tmp32, mask, arrayEntry, lastBit;
  150. int32_t bitPosition, bitsLeft;
  151. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  152. arrayEntry = (firstBit - 1) / 8;
  153. bitPosition = (firstBit - 1) % 8;
  154. bitsLeft = numBits;
  155. while (bitsLeft > 0) {
  156. lastBit = (bitPosition + bitsLeft > 8) ?
  157. 8 : bitPosition + bitsLeft;
  158. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  159. (column * 8);
  160. rfBuf[arrayEntry] &= ~mask;
  161. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  162. (column * 8)) & mask;
  163. bitsLeft -= 8 - bitPosition;
  164. tmp32 = tmp32 >> (8 - bitPosition);
  165. bitPosition = 0;
  166. arrayEntry++;
  167. }
  168. }
  169. bool
  170. ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  171. u16 modesIndex)
  172. {
  173. u32 eepMinorRev;
  174. u32 ob5GHz = 0, db5GHz = 0;
  175. u32 ob2GHz = 0, db2GHz = 0;
  176. int regWrites = 0;
  177. if (AR_SREV_9280_10_OR_LATER(ah))
  178. return true;
  179. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  180. RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
  181. RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
  182. RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
  183. RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
  184. modesIndex);
  185. {
  186. int i;
  187. for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
  188. ah->analogBank6Data[i] =
  189. INI_RA(&ah->iniBank6TPC, i, modesIndex);
  190. }
  191. }
  192. if (eepMinorRev >= 2) {
  193. if (IS_CHAN_2GHZ(chan)) {
  194. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  195. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  196. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  197. ob2GHz, 3, 197, 0);
  198. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  199. db2GHz, 3, 194, 0);
  200. } else {
  201. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  202. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  203. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  204. ob5GHz, 3, 203, 0);
  205. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  206. db5GHz, 3, 200, 0);
  207. }
  208. }
  209. RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
  210. REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
  211. regWrites);
  212. REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
  213. regWrites);
  214. REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
  215. regWrites);
  216. REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
  217. regWrites);
  218. REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
  219. regWrites);
  220. REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
  221. regWrites);
  222. return true;
  223. }
  224. void
  225. ath9k_hw_rfdetach(struct ath_hw *ah)
  226. {
  227. if (ah->analogBank0Data != NULL) {
  228. kfree(ah->analogBank0Data);
  229. ah->analogBank0Data = NULL;
  230. }
  231. if (ah->analogBank1Data != NULL) {
  232. kfree(ah->analogBank1Data);
  233. ah->analogBank1Data = NULL;
  234. }
  235. if (ah->analogBank2Data != NULL) {
  236. kfree(ah->analogBank2Data);
  237. ah->analogBank2Data = NULL;
  238. }
  239. if (ah->analogBank3Data != NULL) {
  240. kfree(ah->analogBank3Data);
  241. ah->analogBank3Data = NULL;
  242. }
  243. if (ah->analogBank6Data != NULL) {
  244. kfree(ah->analogBank6Data);
  245. ah->analogBank6Data = NULL;
  246. }
  247. if (ah->analogBank6TPCData != NULL) {
  248. kfree(ah->analogBank6TPCData);
  249. ah->analogBank6TPCData = NULL;
  250. }
  251. if (ah->analogBank7Data != NULL) {
  252. kfree(ah->analogBank7Data);
  253. ah->analogBank7Data = NULL;
  254. }
  255. if (ah->addac5416_21 != NULL) {
  256. kfree(ah->addac5416_21);
  257. ah->addac5416_21 = NULL;
  258. }
  259. if (ah->bank6Temp != NULL) {
  260. kfree(ah->bank6Temp);
  261. ah->bank6Temp = NULL;
  262. }
  263. }
  264. bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
  265. {
  266. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  267. ah->analogBank0Data =
  268. kzalloc((sizeof(u32) *
  269. ah->iniBank0.ia_rows), GFP_KERNEL);
  270. ah->analogBank1Data =
  271. kzalloc((sizeof(u32) *
  272. ah->iniBank1.ia_rows), GFP_KERNEL);
  273. ah->analogBank2Data =
  274. kzalloc((sizeof(u32) *
  275. ah->iniBank2.ia_rows), GFP_KERNEL);
  276. ah->analogBank3Data =
  277. kzalloc((sizeof(u32) *
  278. ah->iniBank3.ia_rows), GFP_KERNEL);
  279. ah->analogBank6Data =
  280. kzalloc((sizeof(u32) *
  281. ah->iniBank6.ia_rows), GFP_KERNEL);
  282. ah->analogBank6TPCData =
  283. kzalloc((sizeof(u32) *
  284. ah->iniBank6TPC.ia_rows), GFP_KERNEL);
  285. ah->analogBank7Data =
  286. kzalloc((sizeof(u32) *
  287. ah->iniBank7.ia_rows), GFP_KERNEL);
  288. if (ah->analogBank0Data == NULL
  289. || ah->analogBank1Data == NULL
  290. || ah->analogBank2Data == NULL
  291. || ah->analogBank3Data == NULL
  292. || ah->analogBank6Data == NULL
  293. || ah->analogBank6TPCData == NULL
  294. || ah->analogBank7Data == NULL) {
  295. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  296. "Cannot allocate RF banks\n");
  297. *status = -ENOMEM;
  298. return false;
  299. }
  300. ah->addac5416_21 =
  301. kzalloc((sizeof(u32) *
  302. ah->iniAddac.ia_rows *
  303. ah->iniAddac.ia_columns), GFP_KERNEL);
  304. if (ah->addac5416_21 == NULL) {
  305. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  306. "Cannot allocate addac5416_21\n");
  307. *status = -ENOMEM;
  308. return false;
  309. }
  310. ah->bank6Temp =
  311. kzalloc((sizeof(u32) *
  312. ah->iniBank6.ia_rows), GFP_KERNEL);
  313. if (ah->bank6Temp == NULL) {
  314. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  315. "Cannot allocate bank6Temp\n");
  316. *status = -ENOMEM;
  317. return false;
  318. }
  319. }
  320. return true;
  321. }
  322. void
  323. ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
  324. {
  325. int i, regWrites = 0;
  326. u32 bank6SelMask;
  327. u32 *bank6Temp = ah->bank6Temp;
  328. switch (ah->diversity_control) {
  329. case ATH9K_ANT_FIXED_A:
  330. bank6SelMask =
  331. (ah->
  332. antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
  333. REDUCE_CHAIN_1;
  334. break;
  335. case ATH9K_ANT_FIXED_B:
  336. bank6SelMask =
  337. (ah->
  338. antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
  339. REDUCE_CHAIN_0;
  340. break;
  341. case ATH9K_ANT_VARIABLE:
  342. return;
  343. break;
  344. default:
  345. return;
  346. break;
  347. }
  348. for (i = 0; i < ah->iniBank6.ia_rows; i++)
  349. bank6Temp[i] = ah->analogBank6Data[i];
  350. REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
  351. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
  352. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
  353. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
  354. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
  355. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
  356. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
  357. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
  358. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
  359. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
  360. REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
  361. REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
  362. #ifdef ALTER_SWITCH
  363. REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
  364. (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
  365. | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
  366. #endif
  367. }