phy.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044
  1. /*
  2. * PHY functions
  3. *
  4. * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
  5. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  6. * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
  7. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  8. *
  9. * Permission to use, copy, modify, and distribute this software for any
  10. * purpose with or without fee is hereby granted, provided that the above
  11. * copyright notice and this permission notice appear in all copies.
  12. *
  13. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20. *
  21. */
  22. #define _ATH5K_PHY
  23. #include <linux/delay.h>
  24. #include "ath5k.h"
  25. #include "reg.h"
  26. #include "base.h"
  27. #include "rfbuffer.h"
  28. #include "rfgain.h"
  29. /*
  30. * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
  31. */
  32. static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
  33. const struct ath5k_rf_reg *rf_regs,
  34. u32 val, u8 reg_id, bool set)
  35. {
  36. const struct ath5k_rf_reg *rfreg = NULL;
  37. u8 offset, bank, num_bits, col, position;
  38. u16 entry;
  39. u32 mask, data, last_bit, bits_shifted, first_bit;
  40. u32 *rfb;
  41. s32 bits_left;
  42. int i;
  43. data = 0;
  44. rfb = ah->ah_rf_banks;
  45. for (i = 0; i < ah->ah_rf_regs_count; i++) {
  46. if (rf_regs[i].index == reg_id) {
  47. rfreg = &rf_regs[i];
  48. break;
  49. }
  50. }
  51. if (rfb == NULL || rfreg == NULL) {
  52. ATH5K_PRINTF("Rf register not found!\n");
  53. /* should not happen */
  54. return 0;
  55. }
  56. bank = rfreg->bank;
  57. num_bits = rfreg->field.len;
  58. first_bit = rfreg->field.pos;
  59. col = rfreg->field.col;
  60. /* first_bit is an offset from bank's
  61. * start. Since we have all banks on
  62. * the same array, we use this offset
  63. * to mark each bank's start */
  64. offset = ah->ah_offset[bank];
  65. /* Boundary check */
  66. if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
  67. ATH5K_PRINTF("invalid values at offset %u\n", offset);
  68. return 0;
  69. }
  70. entry = ((first_bit - 1) / 8) + offset;
  71. position = (first_bit - 1) % 8;
  72. if (set)
  73. data = ath5k_hw_bitswap(val, num_bits);
  74. for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
  75. position = 0, entry++) {
  76. last_bit = (position + bits_left > 8) ? 8 :
  77. position + bits_left;
  78. mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
  79. (col * 8);
  80. if (set) {
  81. rfb[entry] &= ~mask;
  82. rfb[entry] |= ((data << position) << (col * 8)) & mask;
  83. data >>= (8 - position);
  84. } else {
  85. data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
  86. << bits_shifted;
  87. bits_shifted += last_bit - position;
  88. }
  89. bits_left -= 8 - position;
  90. }
  91. data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
  92. return data;
  93. }
  94. /**********************\
  95. * RF Gain optimization *
  96. \**********************/
  97. /*
  98. * This code is used to optimize rf gain on different environments
  99. * (temprature mostly) based on feedback from a power detector.
  100. *
  101. * It's only used on RF5111 and RF5112, later RF chips seem to have
  102. * auto adjustment on hw -notice they have a much smaller BANK 7 and
  103. * no gain optimization ladder-.
  104. *
  105. * For more infos check out this patent doc
  106. * http://www.freepatentsonline.com/7400691.html
  107. *
  108. * This paper describes power drops as seen on the receiver due to
  109. * probe packets
  110. * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
  111. * %20of%20Power%20Control.pdf
  112. *
  113. * And this is the MadWiFi bug entry related to the above
  114. * http://madwifi-project.org/ticket/1659
  115. * with various measurements and diagrams
  116. *
  117. * TODO: Deal with power drops due to probes by setting an apropriate
  118. * tx power on the probe packets ! Make this part of the calibration process.
  119. */
  120. /* Initialize ah_gain durring attach */
  121. int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
  122. {
  123. /* Initialize the gain optimization values */
  124. switch (ah->ah_radio) {
  125. case AR5K_RF5111:
  126. ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
  127. ah->ah_gain.g_low = 20;
  128. ah->ah_gain.g_high = 35;
  129. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  130. break;
  131. case AR5K_RF5112:
  132. ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
  133. ah->ah_gain.g_low = 20;
  134. ah->ah_gain.g_high = 85;
  135. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  136. break;
  137. default:
  138. return -EINVAL;
  139. }
  140. return 0;
  141. }
  142. /* Schedule a gain probe check on the next transmited packet.
  143. * That means our next packet is going to be sent with lower
  144. * tx power and a Peak to Average Power Detector (PAPD) will try
  145. * to measure the gain.
  146. *
  147. * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
  148. * just after we enable the probe so that we don't mess with
  149. * standard traffic ? Maybe it's time to use sw interrupts and
  150. * a probe tasklet !!!
  151. */
  152. static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
  153. {
  154. /* Skip if gain calibration is inactive or
  155. * we already handle a probe request */
  156. if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
  157. return;
  158. /* Send the packet with 2dB below max power as
  159. * patent doc suggest */
  160. ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
  161. AR5K_PHY_PAPD_PROBE_TXPOWER) |
  162. AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
  163. ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
  164. }
  165. /* Calculate gain_F measurement correction
  166. * based on the current step for RF5112 rev. 2 */
  167. static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
  168. {
  169. u32 mix, step;
  170. u32 *rf;
  171. const struct ath5k_gain_opt *go;
  172. const struct ath5k_gain_opt_step *g_step;
  173. const struct ath5k_rf_reg *rf_regs;
  174. /* Only RF5112 Rev. 2 supports it */
  175. if ((ah->ah_radio != AR5K_RF5112) ||
  176. (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
  177. return 0;
  178. go = &rfgain_opt_5112;
  179. rf_regs = rf_regs_5112a;
  180. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
  181. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  182. if (ah->ah_rf_banks == NULL)
  183. return 0;
  184. rf = ah->ah_rf_banks;
  185. ah->ah_gain.g_f_corr = 0;
  186. /* No VGA (Variable Gain Amplifier) override, skip */
  187. if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
  188. return 0;
  189. /* Mix gain stepping */
  190. step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
  191. /* Mix gain override */
  192. mix = g_step->gos_param[0];
  193. switch (mix) {
  194. case 3:
  195. ah->ah_gain.g_f_corr = step * 2;
  196. break;
  197. case 2:
  198. ah->ah_gain.g_f_corr = (step - 5) * 2;
  199. break;
  200. case 1:
  201. ah->ah_gain.g_f_corr = step;
  202. break;
  203. default:
  204. ah->ah_gain.g_f_corr = 0;
  205. break;
  206. }
  207. return ah->ah_gain.g_f_corr;
  208. }
  209. /* Check if current gain_F measurement is in the range of our
  210. * power detector windows. If we get a measurement outside range
  211. * we know it's not accurate (detectors can't measure anything outside
  212. * their detection window) so we must ignore it */
  213. static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
  214. {
  215. const struct ath5k_rf_reg *rf_regs;
  216. u32 step, mix_ovr, level[4];
  217. u32 *rf;
  218. if (ah->ah_rf_banks == NULL)
  219. return false;
  220. rf = ah->ah_rf_banks;
  221. if (ah->ah_radio == AR5K_RF5111) {
  222. rf_regs = rf_regs_5111;
  223. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
  224. step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
  225. false);
  226. level[0] = 0;
  227. level[1] = (step == 63) ? 50 : step + 4;
  228. level[2] = (step != 63) ? 64 : level[0];
  229. level[3] = level[2] + 50 ;
  230. ah->ah_gain.g_high = level[3] -
  231. (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
  232. ah->ah_gain.g_low = level[0] +
  233. (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
  234. } else {
  235. rf_regs = rf_regs_5112;
  236. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
  237. mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
  238. false);
  239. level[0] = level[2] = 0;
  240. if (mix_ovr == 1) {
  241. level[1] = level[3] = 83;
  242. } else {
  243. level[1] = level[3] = 107;
  244. ah->ah_gain.g_high = 55;
  245. }
  246. }
  247. return (ah->ah_gain.g_current >= level[0] &&
  248. ah->ah_gain.g_current <= level[1]) ||
  249. (ah->ah_gain.g_current >= level[2] &&
  250. ah->ah_gain.g_current <= level[3]);
  251. }
  252. /* Perform gain_F adjustment by choosing the right set
  253. * of parameters from rf gain optimization ladder */
  254. static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
  255. {
  256. const struct ath5k_gain_opt *go;
  257. const struct ath5k_gain_opt_step *g_step;
  258. int ret = 0;
  259. switch (ah->ah_radio) {
  260. case AR5K_RF5111:
  261. go = &rfgain_opt_5111;
  262. break;
  263. case AR5K_RF5112:
  264. go = &rfgain_opt_5112;
  265. break;
  266. default:
  267. return 0;
  268. }
  269. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  270. if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
  271. /* Reached maximum */
  272. if (ah->ah_gain.g_step_idx == 0)
  273. return -1;
  274. for (ah->ah_gain.g_target = ah->ah_gain.g_current;
  275. ah->ah_gain.g_target >= ah->ah_gain.g_high &&
  276. ah->ah_gain.g_step_idx > 0;
  277. g_step = &go->go_step[ah->ah_gain.g_step_idx])
  278. ah->ah_gain.g_target -= 2 *
  279. (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
  280. g_step->gos_gain);
  281. ret = 1;
  282. goto done;
  283. }
  284. if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
  285. /* Reached minimum */
  286. if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
  287. return -2;
  288. for (ah->ah_gain.g_target = ah->ah_gain.g_current;
  289. ah->ah_gain.g_target <= ah->ah_gain.g_low &&
  290. ah->ah_gain.g_step_idx < go->go_steps_count-1;
  291. g_step = &go->go_step[ah->ah_gain.g_step_idx])
  292. ah->ah_gain.g_target -= 2 *
  293. (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
  294. g_step->gos_gain);
  295. ret = 2;
  296. goto done;
  297. }
  298. done:
  299. ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
  300. "ret %d, gain step %u, current gain %u, target gain %u\n",
  301. ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
  302. ah->ah_gain.g_target);
  303. return ret;
  304. }
  305. /* Main callback for thermal rf gain calibration engine
  306. * Check for a new gain reading and schedule an adjustment
  307. * if needed.
  308. *
  309. * TODO: Use sw interrupt to schedule reset if gain_F needs
  310. * adjustment */
  311. enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
  312. {
  313. u32 data, type;
  314. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  315. ATH5K_TRACE(ah->ah_sc);
  316. if (ah->ah_rf_banks == NULL ||
  317. ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
  318. return AR5K_RFGAIN_INACTIVE;
  319. /* No check requested, either engine is inactive
  320. * or an adjustment is already requested */
  321. if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
  322. goto done;
  323. /* Read the PAPD (Peak to Average Power Detector)
  324. * register */
  325. data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
  326. /* No probe is scheduled, read gain_F measurement */
  327. if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
  328. ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
  329. type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
  330. /* If tx packet is CCK correct the gain_F measurement
  331. * by cck ofdm gain delta */
  332. if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
  333. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
  334. ah->ah_gain.g_current +=
  335. ee->ee_cck_ofdm_gain_delta;
  336. else
  337. ah->ah_gain.g_current +=
  338. AR5K_GAIN_CCK_PROBE_CORR;
  339. }
  340. /* Further correct gain_F measurement for
  341. * RF5112A radios */
  342. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
  343. ath5k_hw_rf_gainf_corr(ah);
  344. ah->ah_gain.g_current =
  345. ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
  346. (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
  347. 0;
  348. }
  349. /* Check if measurement is ok and if we need
  350. * to adjust gain, schedule a gain adjustment,
  351. * else switch back to the acive state */
  352. if (ath5k_hw_rf_check_gainf_readback(ah) &&
  353. AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
  354. ath5k_hw_rf_gainf_adjust(ah)) {
  355. ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
  356. } else {
  357. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  358. }
  359. }
  360. done:
  361. return ah->ah_gain.g_state;
  362. }
  363. /* Write initial rf gain table to set the RF sensitivity
  364. * this one works on all RF chips and has nothing to do
  365. * with gain_F calibration */
  366. int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
  367. {
  368. const struct ath5k_ini_rfgain *ath5k_rfg;
  369. unsigned int i, size;
  370. switch (ah->ah_radio) {
  371. case AR5K_RF5111:
  372. ath5k_rfg = rfgain_5111;
  373. size = ARRAY_SIZE(rfgain_5111);
  374. break;
  375. case AR5K_RF5112:
  376. ath5k_rfg = rfgain_5112;
  377. size = ARRAY_SIZE(rfgain_5112);
  378. break;
  379. case AR5K_RF2413:
  380. ath5k_rfg = rfgain_2413;
  381. size = ARRAY_SIZE(rfgain_2413);
  382. break;
  383. case AR5K_RF2316:
  384. ath5k_rfg = rfgain_2316;
  385. size = ARRAY_SIZE(rfgain_2316);
  386. break;
  387. case AR5K_RF5413:
  388. ath5k_rfg = rfgain_5413;
  389. size = ARRAY_SIZE(rfgain_5413);
  390. break;
  391. case AR5K_RF2317:
  392. case AR5K_RF2425:
  393. ath5k_rfg = rfgain_2425;
  394. size = ARRAY_SIZE(rfgain_2425);
  395. break;
  396. default:
  397. return -EINVAL;
  398. }
  399. switch (freq) {
  400. case AR5K_INI_RFGAIN_2GHZ:
  401. case AR5K_INI_RFGAIN_5GHZ:
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. for (i = 0; i < size; i++) {
  407. AR5K_REG_WAIT(i);
  408. ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
  409. (u32)ath5k_rfg[i].rfg_register);
  410. }
  411. return 0;
  412. }
  413. /********************\
  414. * RF Registers setup *
  415. \********************/
  416. /*
  417. * Setup RF registers by writing rf buffer on hw
  418. */
  419. int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
  420. unsigned int mode)
  421. {
  422. const struct ath5k_rf_reg *rf_regs;
  423. const struct ath5k_ini_rfbuffer *ini_rfb;
  424. const struct ath5k_gain_opt *go = NULL;
  425. const struct ath5k_gain_opt_step *g_step;
  426. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  427. u8 ee_mode = 0;
  428. u32 *rfb;
  429. int i, obdb = -1, bank = -1;
  430. switch (ah->ah_radio) {
  431. case AR5K_RF5111:
  432. rf_regs = rf_regs_5111;
  433. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
  434. ini_rfb = rfb_5111;
  435. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
  436. go = &rfgain_opt_5111;
  437. break;
  438. case AR5K_RF5112:
  439. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
  440. rf_regs = rf_regs_5112a;
  441. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
  442. ini_rfb = rfb_5112a;
  443. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
  444. } else {
  445. rf_regs = rf_regs_5112;
  446. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
  447. ini_rfb = rfb_5112;
  448. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
  449. }
  450. go = &rfgain_opt_5112;
  451. break;
  452. case AR5K_RF2413:
  453. rf_regs = rf_regs_2413;
  454. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
  455. ini_rfb = rfb_2413;
  456. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
  457. break;
  458. case AR5K_RF2316:
  459. rf_regs = rf_regs_2316;
  460. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
  461. ini_rfb = rfb_2316;
  462. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
  463. break;
  464. case AR5K_RF5413:
  465. rf_regs = rf_regs_5413;
  466. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
  467. ini_rfb = rfb_5413;
  468. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
  469. break;
  470. case AR5K_RF2317:
  471. rf_regs = rf_regs_2425;
  472. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
  473. ini_rfb = rfb_2317;
  474. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
  475. break;
  476. case AR5K_RF2425:
  477. rf_regs = rf_regs_2425;
  478. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
  479. if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
  480. ini_rfb = rfb_2425;
  481. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
  482. } else {
  483. ini_rfb = rfb_2417;
  484. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
  485. }
  486. break;
  487. default:
  488. return -EINVAL;
  489. }
  490. /* If it's the first time we set rf buffer, allocate
  491. * ah->ah_rf_banks based on ah->ah_rf_banks_size
  492. * we set above */
  493. if (ah->ah_rf_banks == NULL) {
  494. ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
  495. GFP_KERNEL);
  496. if (ah->ah_rf_banks == NULL) {
  497. ATH5K_ERR(ah->ah_sc, "out of memory\n");
  498. return -ENOMEM;
  499. }
  500. }
  501. /* Copy values to modify them */
  502. rfb = ah->ah_rf_banks;
  503. for (i = 0; i < ah->ah_rf_banks_size; i++) {
  504. if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
  505. ATH5K_ERR(ah->ah_sc, "invalid bank\n");
  506. return -EINVAL;
  507. }
  508. /* Bank changed, write down the offset */
  509. if (bank != ini_rfb[i].rfb_bank) {
  510. bank = ini_rfb[i].rfb_bank;
  511. ah->ah_offset[bank] = i;
  512. }
  513. rfb[i] = ini_rfb[i].rfb_mode_data[mode];
  514. }
  515. /* Set Output and Driver bias current (OB/DB) */
  516. if (channel->hw_value & CHANNEL_2GHZ) {
  517. if (channel->hw_value & CHANNEL_CCK)
  518. ee_mode = AR5K_EEPROM_MODE_11B;
  519. else
  520. ee_mode = AR5K_EEPROM_MODE_11G;
  521. /* For RF511X/RF211X combination we
  522. * use b_OB and b_DB parameters stored
  523. * in eeprom on ee->ee_ob[ee_mode][0]
  524. *
  525. * For all other chips we use OB/DB for 2Ghz
  526. * stored in the b/g modal section just like
  527. * 802.11a on ee->ee_ob[ee_mode][1] */
  528. if ((ah->ah_radio == AR5K_RF5111) ||
  529. (ah->ah_radio == AR5K_RF5112))
  530. obdb = 0;
  531. else
  532. obdb = 1;
  533. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
  534. AR5K_RF_OB_2GHZ, true);
  535. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
  536. AR5K_RF_DB_2GHZ, true);
  537. /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
  538. } else if ((channel->hw_value & CHANNEL_5GHZ) ||
  539. (ah->ah_radio == AR5K_RF5111)) {
  540. /* For 11a, Turbo and XR we need to choose
  541. * OB/DB based on frequency range */
  542. ee_mode = AR5K_EEPROM_MODE_11A;
  543. obdb = channel->center_freq >= 5725 ? 3 :
  544. (channel->center_freq >= 5500 ? 2 :
  545. (channel->center_freq >= 5260 ? 1 :
  546. (channel->center_freq > 4000 ? 0 : -1)));
  547. if (obdb < 0)
  548. return -EINVAL;
  549. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
  550. AR5K_RF_OB_5GHZ, true);
  551. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
  552. AR5K_RF_DB_5GHZ, true);
  553. }
  554. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  555. /* Bank Modifications (chip-specific) */
  556. if (ah->ah_radio == AR5K_RF5111) {
  557. /* Set gain_F settings according to current step */
  558. if (channel->hw_value & CHANNEL_OFDM) {
  559. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
  560. AR5K_PHY_FRAME_CTL_TX_CLIP,
  561. g_step->gos_param[0]);
  562. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
  563. AR5K_RF_PWD_90, true);
  564. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
  565. AR5K_RF_PWD_84, true);
  566. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
  567. AR5K_RF_RFGAIN_SEL, true);
  568. /* We programmed gain_F parameters, switch back
  569. * to active state */
  570. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  571. }
  572. /* Bank 6/7 setup */
  573. ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
  574. AR5K_RF_PWD_XPD, true);
  575. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
  576. AR5K_RF_XPD_GAIN, true);
  577. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
  578. AR5K_RF_GAIN_I, true);
  579. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
  580. AR5K_RF_PLO_SEL, true);
  581. /* TODO: Half/quarter channel support */
  582. }
  583. if (ah->ah_radio == AR5K_RF5112) {
  584. /* Set gain_F settings according to current step */
  585. if (channel->hw_value & CHANNEL_OFDM) {
  586. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
  587. AR5K_RF_MIXGAIN_OVR, true);
  588. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
  589. AR5K_RF_PWD_138, true);
  590. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
  591. AR5K_RF_PWD_137, true);
  592. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
  593. AR5K_RF_PWD_136, true);
  594. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
  595. AR5K_RF_PWD_132, true);
  596. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
  597. AR5K_RF_PWD_131, true);
  598. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
  599. AR5K_RF_PWD_130, true);
  600. /* We programmed gain_F parameters, switch back
  601. * to active state */
  602. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  603. }
  604. /* Bank 6/7 setup */
  605. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
  606. AR5K_RF_XPD_SEL, true);
  607. if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
  608. /* Rev. 1 supports only one xpd */
  609. ath5k_hw_rfb_op(ah, rf_regs,
  610. ee->ee_x_gain[ee_mode],
  611. AR5K_RF_XPD_GAIN, true);
  612. } else {
  613. /* TODO: Set high and low gain bits */
  614. ath5k_hw_rfb_op(ah, rf_regs,
  615. ee->ee_x_gain[ee_mode],
  616. AR5K_RF_PD_GAIN_LO, true);
  617. ath5k_hw_rfb_op(ah, rf_regs,
  618. ee->ee_x_gain[ee_mode],
  619. AR5K_RF_PD_GAIN_HI, true);
  620. /* Lower synth voltage on Rev 2 */
  621. ath5k_hw_rfb_op(ah, rf_regs, 2,
  622. AR5K_RF_HIGH_VC_CP, true);
  623. ath5k_hw_rfb_op(ah, rf_regs, 2,
  624. AR5K_RF_MID_VC_CP, true);
  625. ath5k_hw_rfb_op(ah, rf_regs, 2,
  626. AR5K_RF_LOW_VC_CP, true);
  627. ath5k_hw_rfb_op(ah, rf_regs, 2,
  628. AR5K_RF_PUSH_UP, true);
  629. /* Decrease power consumption on 5213+ BaseBand */
  630. if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
  631. ath5k_hw_rfb_op(ah, rf_regs, 1,
  632. AR5K_RF_PAD2GND, true);
  633. ath5k_hw_rfb_op(ah, rf_regs, 1,
  634. AR5K_RF_XB2_LVL, true);
  635. ath5k_hw_rfb_op(ah, rf_regs, 1,
  636. AR5K_RF_XB5_LVL, true);
  637. ath5k_hw_rfb_op(ah, rf_regs, 1,
  638. AR5K_RF_PWD_167, true);
  639. ath5k_hw_rfb_op(ah, rf_regs, 1,
  640. AR5K_RF_PWD_166, true);
  641. }
  642. }
  643. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
  644. AR5K_RF_GAIN_I, true);
  645. /* TODO: Half/quarter channel support */
  646. }
  647. if (ah->ah_radio == AR5K_RF5413 &&
  648. channel->hw_value & CHANNEL_2GHZ) {
  649. ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
  650. true);
  651. /* Set optimum value for early revisions (on pci-e chips) */
  652. if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
  653. ah->ah_mac_srev < AR5K_SREV_AR5413)
  654. ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
  655. AR5K_RF_PWD_ICLOBUF_2G, true);
  656. }
  657. /* Write RF banks on hw */
  658. for (i = 0; i < ah->ah_rf_banks_size; i++) {
  659. AR5K_REG_WAIT(i);
  660. ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
  661. }
  662. return 0;
  663. }
  664. /**************************\
  665. PHY/RF channel functions
  666. \**************************/
  667. /*
  668. * Check if a channel is supported
  669. */
  670. bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
  671. {
  672. /* Check if the channel is in our supported range */
  673. if (flags & CHANNEL_2GHZ) {
  674. if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
  675. (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
  676. return true;
  677. } else if (flags & CHANNEL_5GHZ)
  678. if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
  679. (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
  680. return true;
  681. return false;
  682. }
  683. /*
  684. * Convertion needed for RF5110
  685. */
  686. static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
  687. {
  688. u32 athchan;
  689. /*
  690. * Convert IEEE channel/MHz to an internal channel value used
  691. * by the AR5210 chipset. This has not been verified with
  692. * newer chipsets like the AR5212A who have a completely
  693. * different RF/PHY part.
  694. */
  695. athchan = (ath5k_hw_bitswap(
  696. (ieee80211_frequency_to_channel(
  697. channel->center_freq) - 24) / 2, 5)
  698. << 1) | (1 << 6) | 0x1;
  699. return athchan;
  700. }
  701. /*
  702. * Set channel on RF5110
  703. */
  704. static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
  705. struct ieee80211_channel *channel)
  706. {
  707. u32 data;
  708. /*
  709. * Set the channel and wait
  710. */
  711. data = ath5k_hw_rf5110_chan2athchan(channel);
  712. ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
  713. ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
  714. mdelay(1);
  715. return 0;
  716. }
  717. /*
  718. * Convertion needed for 5111
  719. */
  720. static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
  721. struct ath5k_athchan_2ghz *athchan)
  722. {
  723. int channel;
  724. /* Cast this value to catch negative channel numbers (>= -19) */
  725. channel = (int)ieee;
  726. /*
  727. * Map 2GHz IEEE channel to 5GHz Atheros channel
  728. */
  729. if (channel <= 13) {
  730. athchan->a2_athchan = 115 + channel;
  731. athchan->a2_flags = 0x46;
  732. } else if (channel == 14) {
  733. athchan->a2_athchan = 124;
  734. athchan->a2_flags = 0x44;
  735. } else if (channel >= 15 && channel <= 26) {
  736. athchan->a2_athchan = ((channel - 14) * 4) + 132;
  737. athchan->a2_flags = 0x46;
  738. } else
  739. return -EINVAL;
  740. return 0;
  741. }
  742. /*
  743. * Set channel on 5111
  744. */
  745. static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
  746. struct ieee80211_channel *channel)
  747. {
  748. struct ath5k_athchan_2ghz ath5k_channel_2ghz;
  749. unsigned int ath5k_channel =
  750. ieee80211_frequency_to_channel(channel->center_freq);
  751. u32 data0, data1, clock;
  752. int ret;
  753. /*
  754. * Set the channel on the RF5111 radio
  755. */
  756. data0 = data1 = 0;
  757. if (channel->hw_value & CHANNEL_2GHZ) {
  758. /* Map 2GHz channel to 5GHz Atheros channel ID */
  759. ret = ath5k_hw_rf5111_chan2athchan(
  760. ieee80211_frequency_to_channel(channel->center_freq),
  761. &ath5k_channel_2ghz);
  762. if (ret)
  763. return ret;
  764. ath5k_channel = ath5k_channel_2ghz.a2_athchan;
  765. data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
  766. << 5) | (1 << 4);
  767. }
  768. if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
  769. clock = 1;
  770. data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
  771. (clock << 1) | (1 << 10) | 1;
  772. } else {
  773. clock = 0;
  774. data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
  775. << 2) | (clock << 1) | (1 << 10) | 1;
  776. }
  777. ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
  778. AR5K_RF_BUFFER);
  779. ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
  780. AR5K_RF_BUFFER_CONTROL_3);
  781. return 0;
  782. }
  783. /*
  784. * Set channel on 5112 and newer
  785. */
  786. static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
  787. struct ieee80211_channel *channel)
  788. {
  789. u32 data, data0, data1, data2;
  790. u16 c;
  791. data = data0 = data1 = data2 = 0;
  792. c = channel->center_freq;
  793. if (c < 4800) {
  794. if (!((c - 2224) % 5)) {
  795. data0 = ((2 * (c - 704)) - 3040) / 10;
  796. data1 = 1;
  797. } else if (!((c - 2192) % 5)) {
  798. data0 = ((2 * (c - 672)) - 3040) / 10;
  799. data1 = 0;
  800. } else
  801. return -EINVAL;
  802. data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
  803. } else if ((c - (c % 5)) != 2 || c > 5435) {
  804. if (!(c % 20) && c >= 5120) {
  805. data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
  806. data2 = ath5k_hw_bitswap(3, 2);
  807. } else if (!(c % 10)) {
  808. data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
  809. data2 = ath5k_hw_bitswap(2, 2);
  810. } else if (!(c % 5)) {
  811. data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
  812. data2 = ath5k_hw_bitswap(1, 2);
  813. } else
  814. return -EINVAL;
  815. } else {
  816. data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
  817. data2 = ath5k_hw_bitswap(0, 2);
  818. }
  819. data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
  820. ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
  821. ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
  822. return 0;
  823. }
  824. /*
  825. * Set the channel on the RF2425
  826. */
  827. static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
  828. struct ieee80211_channel *channel)
  829. {
  830. u32 data, data0, data2;
  831. u16 c;
  832. data = data0 = data2 = 0;
  833. c = channel->center_freq;
  834. if (c < 4800) {
  835. data0 = ath5k_hw_bitswap((c - 2272), 8);
  836. data2 = 0;
  837. /* ? 5GHz ? */
  838. } else if ((c - (c % 5)) != 2 || c > 5435) {
  839. if (!(c % 20) && c < 5120)
  840. data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
  841. else if (!(c % 10))
  842. data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
  843. else if (!(c % 5))
  844. data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
  845. else
  846. return -EINVAL;
  847. data2 = ath5k_hw_bitswap(1, 2);
  848. } else {
  849. data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
  850. data2 = ath5k_hw_bitswap(0, 2);
  851. }
  852. data = (data0 << 4) | data2 << 2 | 0x1001;
  853. ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
  854. ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
  855. return 0;
  856. }
  857. /*
  858. * Set a channel on the radio chip
  859. */
  860. int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
  861. {
  862. int ret;
  863. /*
  864. * Check bounds supported by the PHY (we don't care about regultory
  865. * restrictions at this point). Note: hw_value already has the band
  866. * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
  867. * of the band by that */
  868. if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
  869. ATH5K_ERR(ah->ah_sc,
  870. "channel frequency (%u MHz) out of supported "
  871. "band range\n",
  872. channel->center_freq);
  873. return -EINVAL;
  874. }
  875. /*
  876. * Set the channel and wait
  877. */
  878. switch (ah->ah_radio) {
  879. case AR5K_RF5110:
  880. ret = ath5k_hw_rf5110_channel(ah, channel);
  881. break;
  882. case AR5K_RF5111:
  883. ret = ath5k_hw_rf5111_channel(ah, channel);
  884. break;
  885. case AR5K_RF2425:
  886. ret = ath5k_hw_rf2425_channel(ah, channel);
  887. break;
  888. default:
  889. ret = ath5k_hw_rf5112_channel(ah, channel);
  890. break;
  891. }
  892. if (ret)
  893. return ret;
  894. /* Set JAPAN setting for channel 14 */
  895. if (channel->center_freq == 2484) {
  896. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
  897. AR5K_PHY_CCKTXCTL_JAPAN);
  898. } else {
  899. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
  900. AR5K_PHY_CCKTXCTL_WORLD);
  901. }
  902. ah->ah_current_channel.center_freq = channel->center_freq;
  903. ah->ah_current_channel.hw_value = channel->hw_value;
  904. ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
  905. return 0;
  906. }
  907. /*****************\
  908. PHY calibration
  909. \*****************/
  910. /**
  911. * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
  912. *
  913. * @ah: struct ath5k_hw pointer we are operating on
  914. * @freq: the channel frequency, just used for error logging
  915. *
  916. * This function performs a noise floor calibration of the PHY and waits for
  917. * it to complete. Then the noise floor value is compared to some maximum
  918. * noise floor we consider valid.
  919. *
  920. * Note that this is different from what the madwifi HAL does: it reads the
  921. * noise floor and afterwards initiates the calibration. Since the noise floor
  922. * calibration can take some time to finish, depending on the current channel
  923. * use, that avoids the occasional timeout warnings we are seeing now.
  924. *
  925. * See the following link for an Atheros patent on noise floor calibration:
  926. * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
  927. * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
  928. *
  929. * XXX: Since during noise floor calibration antennas are detached according to
  930. * the patent, we should stop tx queues here.
  931. */
  932. int
  933. ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
  934. {
  935. int ret;
  936. unsigned int i;
  937. s32 noise_floor;
  938. /*
  939. * Enable noise floor calibration
  940. */
  941. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  942. AR5K_PHY_AGCCTL_NF);
  943. ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
  944. AR5K_PHY_AGCCTL_NF, 0, false);
  945. if (ret) {
  946. ATH5K_ERR(ah->ah_sc,
  947. "noise floor calibration timeout (%uMHz)\n", freq);
  948. return -EAGAIN;
  949. }
  950. /* Wait until the noise floor is calibrated and read the value */
  951. for (i = 20; i > 0; i--) {
  952. mdelay(1);
  953. noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
  954. noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
  955. if (noise_floor & AR5K_PHY_NF_ACTIVE) {
  956. noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
  957. if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
  958. break;
  959. }
  960. }
  961. ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
  962. "noise floor %d\n", noise_floor);
  963. if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
  964. ATH5K_ERR(ah->ah_sc,
  965. "noise floor calibration failed (%uMHz)\n", freq);
  966. return -EAGAIN;
  967. }
  968. ah->ah_noise_floor = noise_floor;
  969. return 0;
  970. }
  971. /*
  972. * Perform a PHY calibration on RF5110
  973. * -Fix BPSK/QAM Constellation (I/Q correction)
  974. * -Calculate Noise Floor
  975. */
  976. static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
  977. struct ieee80211_channel *channel)
  978. {
  979. u32 phy_sig, phy_agc, phy_sat, beacon;
  980. int ret;
  981. /*
  982. * Disable beacons and RX/TX queues, wait
  983. */
  984. AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
  985. AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
  986. beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
  987. ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
  988. mdelay(2);
  989. /*
  990. * Set the channel (with AGC turned off)
  991. */
  992. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  993. udelay(10);
  994. ret = ath5k_hw_channel(ah, channel);
  995. /*
  996. * Activate PHY and wait
  997. */
  998. ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
  999. mdelay(1);
  1000. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1001. if (ret)
  1002. return ret;
  1003. /*
  1004. * Calibrate the radio chip
  1005. */
  1006. /* Remember normal state */
  1007. phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
  1008. phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
  1009. phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
  1010. /* Update radio registers */
  1011. ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
  1012. AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
  1013. ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
  1014. AR5K_PHY_AGCCOARSE_LO)) |
  1015. AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
  1016. AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
  1017. ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
  1018. AR5K_PHY_ADCSAT_THR)) |
  1019. AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
  1020. AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
  1021. udelay(20);
  1022. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1023. udelay(10);
  1024. ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
  1025. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1026. mdelay(1);
  1027. /*
  1028. * Enable calibration and wait until completion
  1029. */
  1030. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
  1031. ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
  1032. AR5K_PHY_AGCCTL_CAL, 0, false);
  1033. /* Reset to normal state */
  1034. ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
  1035. ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
  1036. ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
  1037. if (ret) {
  1038. ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
  1039. channel->center_freq);
  1040. return ret;
  1041. }
  1042. ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
  1043. /*
  1044. * Re-enable RX/TX and beacons
  1045. */
  1046. AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
  1047. AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
  1048. ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
  1049. return 0;
  1050. }
  1051. /*
  1052. * Perform a PHY calibration on RF5111/5112 and newer chips
  1053. */
  1054. static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
  1055. struct ieee80211_channel *channel)
  1056. {
  1057. u32 i_pwr, q_pwr;
  1058. s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
  1059. int i;
  1060. ATH5K_TRACE(ah->ah_sc);
  1061. if (!ah->ah_calibration ||
  1062. ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
  1063. goto done;
  1064. /* Calibration has finished, get the results and re-run */
  1065. for (i = 0; i <= 10; i++) {
  1066. iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
  1067. i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
  1068. q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
  1069. }
  1070. i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
  1071. q_coffd = q_pwr >> 7;
  1072. /* No correction */
  1073. if (i_coffd == 0 || q_coffd == 0)
  1074. goto done;
  1075. i_coff = ((-iq_corr) / i_coffd) & 0x3f;
  1076. /* Boundary check */
  1077. if (i_coff > 31)
  1078. i_coff = 31;
  1079. if (i_coff < -32)
  1080. i_coff = -32;
  1081. q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
  1082. /* Boundary check */
  1083. if (q_coff > 15)
  1084. q_coff = 15;
  1085. if (q_coff < -16)
  1086. q_coff = -16;
  1087. /* Commit new I/Q value */
  1088. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
  1089. ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
  1090. /* Re-enable calibration -if we don't we'll commit
  1091. * the same values again and again */
  1092. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
  1093. AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
  1094. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
  1095. done:
  1096. /* TODO: Separate noise floor calibration from I/Q calibration
  1097. * since noise floor calibration interrupts rx path while I/Q
  1098. * calibration doesn't. We don't need to run noise floor calibration
  1099. * as often as I/Q calibration.*/
  1100. ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
  1101. /* Initiate a gain_F calibration */
  1102. ath5k_hw_request_rfgain_probe(ah);
  1103. return 0;
  1104. }
  1105. /*
  1106. * Perform a PHY calibration
  1107. */
  1108. int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
  1109. struct ieee80211_channel *channel)
  1110. {
  1111. int ret;
  1112. if (ah->ah_radio == AR5K_RF5110)
  1113. ret = ath5k_hw_rf5110_calibrate(ah, channel);
  1114. else
  1115. ret = ath5k_hw_rf511x_calibrate(ah, channel);
  1116. return ret;
  1117. }
  1118. /***************************\
  1119. * Spur mitigation functions *
  1120. \***************************/
  1121. bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
  1122. struct ieee80211_channel *channel)
  1123. {
  1124. u8 refclk_freq;
  1125. if ((ah->ah_radio == AR5K_RF5112) ||
  1126. (ah->ah_radio == AR5K_RF5413) ||
  1127. (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
  1128. refclk_freq = 40;
  1129. else
  1130. refclk_freq = 32;
  1131. if ((channel->center_freq % refclk_freq != 0) &&
  1132. ((channel->center_freq % refclk_freq < 10) ||
  1133. (channel->center_freq % refclk_freq > 22)))
  1134. return true;
  1135. else
  1136. return false;
  1137. }
  1138. void
  1139. ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
  1140. struct ieee80211_channel *channel)
  1141. {
  1142. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1143. u32 mag_mask[4] = {0, 0, 0, 0};
  1144. u32 pilot_mask[2] = {0, 0};
  1145. /* Note: fbin values are scaled up by 2 */
  1146. u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
  1147. s32 spur_delta_phase, spur_freq_sigma_delta;
  1148. s32 spur_offset, num_symbols_x16;
  1149. u8 num_symbol_offsets, i, freq_band;
  1150. /* Convert current frequency to fbin value (the same way channels
  1151. * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
  1152. * up by 2 so we can compare it later */
  1153. if (channel->hw_value & CHANNEL_2GHZ) {
  1154. chan_fbin = (channel->center_freq - 2300) * 10;
  1155. freq_band = AR5K_EEPROM_BAND_2GHZ;
  1156. } else {
  1157. chan_fbin = (channel->center_freq - 4900) * 10;
  1158. freq_band = AR5K_EEPROM_BAND_5GHZ;
  1159. }
  1160. /* Check if any spur_chan_fbin from EEPROM is
  1161. * within our current channel's spur detection range */
  1162. spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
  1163. spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
  1164. /* XXX: Half/Quarter channels ?*/
  1165. if (channel->hw_value & CHANNEL_TURBO)
  1166. spur_detection_window *= 2;
  1167. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1168. spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
  1169. /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
  1170. * so it's zero if we got nothing from EEPROM */
  1171. if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
  1172. spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
  1173. break;
  1174. }
  1175. if ((chan_fbin - spur_detection_window <=
  1176. (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
  1177. (chan_fbin + spur_detection_window >=
  1178. (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
  1179. spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
  1180. break;
  1181. }
  1182. }
  1183. /* We need to enable spur filter for this channel */
  1184. if (spur_chan_fbin) {
  1185. spur_offset = spur_chan_fbin - chan_fbin;
  1186. /*
  1187. * Calculate deltas:
  1188. * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
  1189. * spur_delta_phase -> spur_offset / chip_freq << 11
  1190. * Note: Both values have 100KHz resolution
  1191. */
  1192. /* XXX: Half/Quarter rate channels ? */
  1193. switch (channel->hw_value) {
  1194. case CHANNEL_A:
  1195. /* Both sample_freq and chip_freq are 40MHz */
  1196. spur_delta_phase = (spur_offset << 17) / 25;
  1197. spur_freq_sigma_delta = (spur_delta_phase >> 10);
  1198. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
  1199. break;
  1200. case CHANNEL_G:
  1201. /* sample_freq -> 40MHz chip_freq -> 44MHz
  1202. * (for b compatibility) */
  1203. spur_freq_sigma_delta = (spur_offset << 8) / 55;
  1204. spur_delta_phase = (spur_offset << 17) / 25;
  1205. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
  1206. break;
  1207. case CHANNEL_T:
  1208. case CHANNEL_TG:
  1209. /* Both sample_freq and chip_freq are 80MHz */
  1210. spur_delta_phase = (spur_offset << 16) / 25;
  1211. spur_freq_sigma_delta = (spur_delta_phase >> 10);
  1212. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
  1213. break;
  1214. default:
  1215. return;
  1216. }
  1217. /* Calculate pilot and magnitude masks */
  1218. /* Scale up spur_offset by 1000 to switch to 100HZ resolution
  1219. * and divide by symbol_width to find how many symbols we have
  1220. * Note: number of symbols is scaled up by 16 */
  1221. num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
  1222. /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
  1223. if (!(num_symbols_x16 & 0xF))
  1224. /* _X_ */
  1225. num_symbol_offsets = 3;
  1226. else
  1227. /* _xx_ */
  1228. num_symbol_offsets = 4;
  1229. for (i = 0; i < num_symbol_offsets; i++) {
  1230. /* Calculate pilot mask */
  1231. s32 curr_sym_off =
  1232. (num_symbols_x16 / 16) + i + 25;
  1233. /* Pilot magnitude mask seems to be a way to
  1234. * declare the boundaries for our detection
  1235. * window or something, it's 2 for the middle
  1236. * value(s) where the symbol is expected to be
  1237. * and 1 on the boundary values */
  1238. u8 plt_mag_map =
  1239. (i == 0 || i == (num_symbol_offsets - 1))
  1240. ? 1 : 2;
  1241. if (curr_sym_off >= 0 && curr_sym_off <= 32) {
  1242. if (curr_sym_off <= 25)
  1243. pilot_mask[0] |= 1 << curr_sym_off;
  1244. else if (curr_sym_off >= 27)
  1245. pilot_mask[0] |= 1 << (curr_sym_off - 1);
  1246. } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
  1247. pilot_mask[1] |= 1 << (curr_sym_off - 33);
  1248. /* Calculate magnitude mask (for viterbi decoder) */
  1249. if (curr_sym_off >= -1 && curr_sym_off <= 14)
  1250. mag_mask[0] |=
  1251. plt_mag_map << (curr_sym_off + 1) * 2;
  1252. else if (curr_sym_off >= 15 && curr_sym_off <= 30)
  1253. mag_mask[1] |=
  1254. plt_mag_map << (curr_sym_off - 15) * 2;
  1255. else if (curr_sym_off >= 31 && curr_sym_off <= 46)
  1256. mag_mask[2] |=
  1257. plt_mag_map << (curr_sym_off - 31) * 2;
  1258. else if (curr_sym_off >= 46 && curr_sym_off <= 53)
  1259. mag_mask[3] |=
  1260. plt_mag_map << (curr_sym_off - 47) * 2;
  1261. }
  1262. /* Write settings on hw to enable spur filter */
  1263. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1264. AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
  1265. /* XXX: Self correlator also ? */
  1266. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
  1267. AR5K_PHY_IQ_PILOT_MASK_EN |
  1268. AR5K_PHY_IQ_CHAN_MASK_EN |
  1269. AR5K_PHY_IQ_SPUR_FILT_EN);
  1270. /* Set delta phase and freq sigma delta */
  1271. ath5k_hw_reg_write(ah,
  1272. AR5K_REG_SM(spur_delta_phase,
  1273. AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
  1274. AR5K_REG_SM(spur_freq_sigma_delta,
  1275. AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
  1276. AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
  1277. AR5K_PHY_TIMING_11);
  1278. /* Write pilot masks */
  1279. ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
  1280. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
  1281. AR5K_PHY_TIMING_8_PILOT_MASK_2,
  1282. pilot_mask[1]);
  1283. ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
  1284. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
  1285. AR5K_PHY_TIMING_10_PILOT_MASK_2,
  1286. pilot_mask[1]);
  1287. /* Write magnitude masks */
  1288. ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
  1289. ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
  1290. ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
  1291. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1292. AR5K_PHY_BIN_MASK_CTL_MASK_4,
  1293. mag_mask[3]);
  1294. ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
  1295. ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
  1296. ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
  1297. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
  1298. AR5K_PHY_BIN_MASK2_4_MASK_4,
  1299. mag_mask[3]);
  1300. } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
  1301. AR5K_PHY_IQ_SPUR_FILT_EN) {
  1302. /* Clean up spur mitigation settings and disable fliter */
  1303. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1304. AR5K_PHY_BIN_MASK_CTL_RATE, 0);
  1305. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
  1306. AR5K_PHY_IQ_PILOT_MASK_EN |
  1307. AR5K_PHY_IQ_CHAN_MASK_EN |
  1308. AR5K_PHY_IQ_SPUR_FILT_EN);
  1309. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
  1310. /* Clear pilot masks */
  1311. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
  1312. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
  1313. AR5K_PHY_TIMING_8_PILOT_MASK_2,
  1314. 0);
  1315. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
  1316. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
  1317. AR5K_PHY_TIMING_10_PILOT_MASK_2,
  1318. 0);
  1319. /* Clear magnitude masks */
  1320. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
  1321. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
  1322. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
  1323. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1324. AR5K_PHY_BIN_MASK_CTL_MASK_4,
  1325. 0);
  1326. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
  1327. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
  1328. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
  1329. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
  1330. AR5K_PHY_BIN_MASK2_4_MASK_4,
  1331. 0);
  1332. }
  1333. }
  1334. /********************\
  1335. Misc PHY functions
  1336. \********************/
  1337. int ath5k_hw_phy_disable(struct ath5k_hw *ah)
  1338. {
  1339. ATH5K_TRACE(ah->ah_sc);
  1340. /*Just a try M.F.*/
  1341. ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
  1342. return 0;
  1343. }
  1344. /*
  1345. * Get the PHY Chip revision
  1346. */
  1347. u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
  1348. {
  1349. unsigned int i;
  1350. u32 srev;
  1351. u16 ret;
  1352. ATH5K_TRACE(ah->ah_sc);
  1353. /*
  1354. * Set the radio chip access register
  1355. */
  1356. switch (chan) {
  1357. case CHANNEL_2GHZ:
  1358. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  1359. break;
  1360. case CHANNEL_5GHZ:
  1361. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  1362. break;
  1363. default:
  1364. return 0;
  1365. }
  1366. mdelay(2);
  1367. /* ...wait until PHY is ready and read the selected radio revision */
  1368. ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
  1369. for (i = 0; i < 8; i++)
  1370. ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
  1371. if (ah->ah_version == AR5K_AR5210) {
  1372. srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
  1373. ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
  1374. } else {
  1375. srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
  1376. ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
  1377. ((srev & 0x0f) << 4), 8);
  1378. }
  1379. /* Reset to the 5GHz mode */
  1380. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  1381. return ret;
  1382. }
  1383. /*****************\
  1384. * Antenna control *
  1385. \*****************/
  1386. void /*TODO:Boundary check*/
  1387. ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
  1388. {
  1389. ATH5K_TRACE(ah->ah_sc);
  1390. if (ah->ah_version != AR5K_AR5210)
  1391. ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
  1392. }
  1393. unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
  1394. {
  1395. ATH5K_TRACE(ah->ah_sc);
  1396. if (ah->ah_version != AR5K_AR5210)
  1397. return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
  1398. return false; /*XXX: What do we return for 5210 ?*/
  1399. }
  1400. /*
  1401. * Enable/disable fast rx antenna diversity
  1402. */
  1403. static void
  1404. ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
  1405. {
  1406. switch (ee_mode) {
  1407. case AR5K_EEPROM_MODE_11G:
  1408. /* XXX: This is set to
  1409. * disabled on initvals !!! */
  1410. case AR5K_EEPROM_MODE_11A:
  1411. if (enable)
  1412. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1413. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1414. else
  1415. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1416. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1417. break;
  1418. case AR5K_EEPROM_MODE_11B:
  1419. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1420. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1421. break;
  1422. default:
  1423. return;
  1424. }
  1425. if (enable) {
  1426. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
  1427. AR5K_PHY_RESTART_DIV_GC, 0xc);
  1428. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
  1429. AR5K_PHY_FAST_ANT_DIV_EN);
  1430. } else {
  1431. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
  1432. AR5K_PHY_RESTART_DIV_GC, 0x8);
  1433. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
  1434. AR5K_PHY_FAST_ANT_DIV_EN);
  1435. }
  1436. }
  1437. /*
  1438. * Set antenna operating mode
  1439. */
  1440. void
  1441. ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
  1442. {
  1443. struct ieee80211_channel *channel = &ah->ah_current_channel;
  1444. bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
  1445. bool use_def_for_sg;
  1446. u8 def_ant, tx_ant, ee_mode;
  1447. u32 sta_id1 = 0;
  1448. def_ant = ah->ah_def_ant;
  1449. ATH5K_TRACE(ah->ah_sc);
  1450. switch (channel->hw_value & CHANNEL_MODES) {
  1451. case CHANNEL_A:
  1452. case CHANNEL_T:
  1453. case CHANNEL_XR:
  1454. ee_mode = AR5K_EEPROM_MODE_11A;
  1455. break;
  1456. case CHANNEL_G:
  1457. case CHANNEL_TG:
  1458. ee_mode = AR5K_EEPROM_MODE_11G;
  1459. break;
  1460. case CHANNEL_B:
  1461. ee_mode = AR5K_EEPROM_MODE_11B;
  1462. break;
  1463. default:
  1464. ATH5K_ERR(ah->ah_sc,
  1465. "invalid channel: %d\n", channel->center_freq);
  1466. return;
  1467. }
  1468. switch (ant_mode) {
  1469. case AR5K_ANTMODE_DEFAULT:
  1470. tx_ant = 0;
  1471. use_def_for_tx = false;
  1472. update_def_on_tx = false;
  1473. use_def_for_rts = false;
  1474. use_def_for_sg = false;
  1475. fast_div = true;
  1476. break;
  1477. case AR5K_ANTMODE_FIXED_A:
  1478. def_ant = 1;
  1479. tx_ant = 0;
  1480. use_def_for_tx = true;
  1481. update_def_on_tx = false;
  1482. use_def_for_rts = true;
  1483. use_def_for_sg = true;
  1484. fast_div = false;
  1485. break;
  1486. case AR5K_ANTMODE_FIXED_B:
  1487. def_ant = 2;
  1488. tx_ant = 0;
  1489. use_def_for_tx = true;
  1490. update_def_on_tx = false;
  1491. use_def_for_rts = true;
  1492. use_def_for_sg = true;
  1493. fast_div = false;
  1494. break;
  1495. case AR5K_ANTMODE_SINGLE_AP:
  1496. def_ant = 1; /* updated on tx */
  1497. tx_ant = 0;
  1498. use_def_for_tx = true;
  1499. update_def_on_tx = true;
  1500. use_def_for_rts = true;
  1501. use_def_for_sg = true;
  1502. fast_div = true;
  1503. break;
  1504. case AR5K_ANTMODE_SECTOR_AP:
  1505. tx_ant = 1; /* variable */
  1506. use_def_for_tx = false;
  1507. update_def_on_tx = false;
  1508. use_def_for_rts = true;
  1509. use_def_for_sg = false;
  1510. fast_div = false;
  1511. break;
  1512. case AR5K_ANTMODE_SECTOR_STA:
  1513. tx_ant = 1; /* variable */
  1514. use_def_for_tx = true;
  1515. update_def_on_tx = false;
  1516. use_def_for_rts = true;
  1517. use_def_for_sg = false;
  1518. fast_div = true;
  1519. break;
  1520. case AR5K_ANTMODE_DEBUG:
  1521. def_ant = 1;
  1522. tx_ant = 2;
  1523. use_def_for_tx = false;
  1524. update_def_on_tx = false;
  1525. use_def_for_rts = false;
  1526. use_def_for_sg = false;
  1527. fast_div = false;
  1528. break;
  1529. default:
  1530. return;
  1531. }
  1532. ah->ah_tx_ant = tx_ant;
  1533. ah->ah_ant_mode = ant_mode;
  1534. sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
  1535. sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
  1536. sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
  1537. sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
  1538. AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
  1539. if (sta_id1)
  1540. AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
  1541. /* Note: set diversity before default antenna
  1542. * because it won't work correctly */
  1543. ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
  1544. ath5k_hw_set_def_antenna(ah, def_ant);
  1545. }
  1546. /****************\
  1547. * TX power setup *
  1548. \****************/
  1549. /*
  1550. * Helper functions
  1551. */
  1552. /*
  1553. * Do linear interpolation between two given (x, y) points
  1554. */
  1555. static s16
  1556. ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
  1557. s16 y_left, s16 y_right)
  1558. {
  1559. s16 ratio, result;
  1560. /* Avoid divide by zero and skip interpolation
  1561. * if we have the same point */
  1562. if ((x_left == x_right) || (y_left == y_right))
  1563. return y_left;
  1564. /*
  1565. * Since we use ints and not fps, we need to scale up in
  1566. * order to get a sane ratio value (or else we 'll eg. get
  1567. * always 1 instead of 1.25, 1.75 etc). We scale up by 100
  1568. * to have some accuracy both for 0.5 and 0.25 steps.
  1569. */
  1570. ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
  1571. /* Now scale down to be in range */
  1572. result = y_left + (ratio * (target - x_left) / 100);
  1573. return result;
  1574. }
  1575. /*
  1576. * Find vertical boundary (min pwr) for the linear PCDAC curve.
  1577. *
  1578. * Since we have the top of the curve and we draw the line below
  1579. * until we reach 1 (1 pcdac step) we need to know which point
  1580. * (x value) that is so that we don't go below y axis and have negative
  1581. * pcdac values when creating the curve, or fill the table with zeroes.
  1582. */
  1583. static s16
  1584. ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
  1585. const s16 *pwrL, const s16 *pwrR)
  1586. {
  1587. s8 tmp;
  1588. s16 min_pwrL, min_pwrR;
  1589. s16 pwr_i;
  1590. if (WARN_ON(stepL[0] == stepL[1] || stepR[0] == stepR[1]))
  1591. return 0;
  1592. if (pwrL[0] == pwrL[1])
  1593. min_pwrL = pwrL[0];
  1594. else {
  1595. pwr_i = pwrL[0];
  1596. do {
  1597. pwr_i--;
  1598. tmp = (s8) ath5k_get_interpolated_value(pwr_i,
  1599. pwrL[0], pwrL[1],
  1600. stepL[0], stepL[1]);
  1601. } while (tmp > 1);
  1602. min_pwrL = pwr_i;
  1603. }
  1604. if (pwrR[0] == pwrR[1])
  1605. min_pwrR = pwrR[0];
  1606. else {
  1607. pwr_i = pwrR[0];
  1608. do {
  1609. pwr_i--;
  1610. tmp = (s8) ath5k_get_interpolated_value(pwr_i,
  1611. pwrR[0], pwrR[1],
  1612. stepR[0], stepR[1]);
  1613. } while (tmp > 1);
  1614. min_pwrR = pwr_i;
  1615. }
  1616. /* Keep the right boundary so that it works for both curves */
  1617. return max(min_pwrL, min_pwrR);
  1618. }
  1619. /*
  1620. * Interpolate (pwr,vpd) points to create a Power to PDADC or a
  1621. * Power to PCDAC curve.
  1622. *
  1623. * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
  1624. * steps (offsets) on y axis. Power can go up to 31.5dB and max
  1625. * PCDAC/PDADC step for each curve is 64 but we can write more than
  1626. * one curves on hw so we can go up to 128 (which is the max step we
  1627. * can write on the final table).
  1628. *
  1629. * We write y values (PCDAC/PDADC steps) on hw.
  1630. */
  1631. static void
  1632. ath5k_create_power_curve(s16 pmin, s16 pmax,
  1633. const s16 *pwr, const u8 *vpd,
  1634. u8 num_points,
  1635. u8 *vpd_table, u8 type)
  1636. {
  1637. u8 idx[2] = { 0, 1 };
  1638. s16 pwr_i = 2*pmin;
  1639. int i;
  1640. if (num_points < 2)
  1641. return;
  1642. /* We want the whole line, so adjust boundaries
  1643. * to cover the entire power range. Note that
  1644. * power values are already 0.25dB so no need
  1645. * to multiply pwr_i by 2 */
  1646. if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
  1647. pwr_i = pmin;
  1648. pmin = 0;
  1649. pmax = 63;
  1650. }
  1651. /* Find surrounding turning points (TPs)
  1652. * and interpolate between them */
  1653. for (i = 0; (i <= (u16) (pmax - pmin)) &&
  1654. (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
  1655. /* We passed the right TP, move to the next set of TPs
  1656. * if we pass the last TP, extrapolate above using the last
  1657. * two TPs for ratio */
  1658. if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
  1659. idx[0]++;
  1660. idx[1]++;
  1661. }
  1662. vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
  1663. pwr[idx[0]], pwr[idx[1]],
  1664. vpd[idx[0]], vpd[idx[1]]);
  1665. /* Increase by 0.5dB
  1666. * (0.25 dB units) */
  1667. pwr_i += 2;
  1668. }
  1669. }
  1670. /*
  1671. * Get the surrounding per-channel power calibration piers
  1672. * for a given frequency so that we can interpolate between
  1673. * them and come up with an apropriate dataset for our current
  1674. * channel.
  1675. */
  1676. static void
  1677. ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
  1678. struct ieee80211_channel *channel,
  1679. struct ath5k_chan_pcal_info **pcinfo_l,
  1680. struct ath5k_chan_pcal_info **pcinfo_r)
  1681. {
  1682. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1683. struct ath5k_chan_pcal_info *pcinfo;
  1684. u8 idx_l, idx_r;
  1685. u8 mode, max, i;
  1686. u32 target = channel->center_freq;
  1687. idx_l = 0;
  1688. idx_r = 0;
  1689. if (!(channel->hw_value & CHANNEL_OFDM)) {
  1690. pcinfo = ee->ee_pwr_cal_b;
  1691. mode = AR5K_EEPROM_MODE_11B;
  1692. } else if (channel->hw_value & CHANNEL_2GHZ) {
  1693. pcinfo = ee->ee_pwr_cal_g;
  1694. mode = AR5K_EEPROM_MODE_11G;
  1695. } else {
  1696. pcinfo = ee->ee_pwr_cal_a;
  1697. mode = AR5K_EEPROM_MODE_11A;
  1698. }
  1699. max = ee->ee_n_piers[mode] - 1;
  1700. /* Frequency is below our calibrated
  1701. * range. Use the lowest power curve
  1702. * we have */
  1703. if (target < pcinfo[0].freq) {
  1704. idx_l = idx_r = 0;
  1705. goto done;
  1706. }
  1707. /* Frequency is above our calibrated
  1708. * range. Use the highest power curve
  1709. * we have */
  1710. if (target > pcinfo[max].freq) {
  1711. idx_l = idx_r = max;
  1712. goto done;
  1713. }
  1714. /* Frequency is inside our calibrated
  1715. * channel range. Pick the surrounding
  1716. * calibration piers so that we can
  1717. * interpolate */
  1718. for (i = 0; i <= max; i++) {
  1719. /* Frequency matches one of our calibration
  1720. * piers, no need to interpolate, just use
  1721. * that calibration pier */
  1722. if (pcinfo[i].freq == target) {
  1723. idx_l = idx_r = i;
  1724. goto done;
  1725. }
  1726. /* We found a calibration pier that's above
  1727. * frequency, use this pier and the previous
  1728. * one to interpolate */
  1729. if (target < pcinfo[i].freq) {
  1730. idx_r = i;
  1731. idx_l = idx_r - 1;
  1732. goto done;
  1733. }
  1734. }
  1735. done:
  1736. *pcinfo_l = &pcinfo[idx_l];
  1737. *pcinfo_r = &pcinfo[idx_r];
  1738. return;
  1739. }
  1740. /*
  1741. * Get the surrounding per-rate power calibration data
  1742. * for a given frequency and interpolate between power
  1743. * values to set max target power supported by hw for
  1744. * each rate.
  1745. */
  1746. static void
  1747. ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
  1748. struct ieee80211_channel *channel,
  1749. struct ath5k_rate_pcal_info *rates)
  1750. {
  1751. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1752. struct ath5k_rate_pcal_info *rpinfo;
  1753. u8 idx_l, idx_r;
  1754. u8 mode, max, i;
  1755. u32 target = channel->center_freq;
  1756. idx_l = 0;
  1757. idx_r = 0;
  1758. if (!(channel->hw_value & CHANNEL_OFDM)) {
  1759. rpinfo = ee->ee_rate_tpwr_b;
  1760. mode = AR5K_EEPROM_MODE_11B;
  1761. } else if (channel->hw_value & CHANNEL_2GHZ) {
  1762. rpinfo = ee->ee_rate_tpwr_g;
  1763. mode = AR5K_EEPROM_MODE_11G;
  1764. } else {
  1765. rpinfo = ee->ee_rate_tpwr_a;
  1766. mode = AR5K_EEPROM_MODE_11A;
  1767. }
  1768. max = ee->ee_rate_target_pwr_num[mode] - 1;
  1769. /* Get the surrounding calibration
  1770. * piers - same as above */
  1771. if (target < rpinfo[0].freq) {
  1772. idx_l = idx_r = 0;
  1773. goto done;
  1774. }
  1775. if (target > rpinfo[max].freq) {
  1776. idx_l = idx_r = max;
  1777. goto done;
  1778. }
  1779. for (i = 0; i <= max; i++) {
  1780. if (rpinfo[i].freq == target) {
  1781. idx_l = idx_r = i;
  1782. goto done;
  1783. }
  1784. if (target < rpinfo[i].freq) {
  1785. idx_r = i;
  1786. idx_l = idx_r - 1;
  1787. goto done;
  1788. }
  1789. }
  1790. done:
  1791. /* Now interpolate power value, based on the frequency */
  1792. rates->freq = target;
  1793. rates->target_power_6to24 =
  1794. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1795. rpinfo[idx_r].freq,
  1796. rpinfo[idx_l].target_power_6to24,
  1797. rpinfo[idx_r].target_power_6to24);
  1798. rates->target_power_36 =
  1799. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1800. rpinfo[idx_r].freq,
  1801. rpinfo[idx_l].target_power_36,
  1802. rpinfo[idx_r].target_power_36);
  1803. rates->target_power_48 =
  1804. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1805. rpinfo[idx_r].freq,
  1806. rpinfo[idx_l].target_power_48,
  1807. rpinfo[idx_r].target_power_48);
  1808. rates->target_power_54 =
  1809. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1810. rpinfo[idx_r].freq,
  1811. rpinfo[idx_l].target_power_54,
  1812. rpinfo[idx_r].target_power_54);
  1813. }
  1814. /*
  1815. * Get the max edge power for this channel if
  1816. * we have such data from EEPROM's Conformance Test
  1817. * Limits (CTL), and limit max power if needed.
  1818. */
  1819. static void
  1820. ath5k_get_max_ctl_power(struct ath5k_hw *ah,
  1821. struct ieee80211_channel *channel)
  1822. {
  1823. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1824. struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
  1825. u8 *ctl_val = ee->ee_ctl;
  1826. s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
  1827. s16 edge_pwr = 0;
  1828. u8 rep_idx;
  1829. u8 i, ctl_mode;
  1830. u8 ctl_idx = 0xFF;
  1831. u32 target = channel->center_freq;
  1832. ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
  1833. switch (channel->hw_value & CHANNEL_MODES) {
  1834. case CHANNEL_A:
  1835. ctl_mode |= AR5K_CTL_11A;
  1836. break;
  1837. case CHANNEL_G:
  1838. ctl_mode |= AR5K_CTL_11G;
  1839. break;
  1840. case CHANNEL_B:
  1841. ctl_mode |= AR5K_CTL_11B;
  1842. break;
  1843. case CHANNEL_T:
  1844. ctl_mode |= AR5K_CTL_TURBO;
  1845. break;
  1846. case CHANNEL_TG:
  1847. ctl_mode |= AR5K_CTL_TURBOG;
  1848. break;
  1849. case CHANNEL_XR:
  1850. /* Fall through */
  1851. default:
  1852. return;
  1853. }
  1854. for (i = 0; i < ee->ee_ctls; i++) {
  1855. if (ctl_val[i] == ctl_mode) {
  1856. ctl_idx = i;
  1857. break;
  1858. }
  1859. }
  1860. /* If we have a CTL dataset available grab it and find the
  1861. * edge power for our frequency */
  1862. if (ctl_idx == 0xFF)
  1863. return;
  1864. /* Edge powers are sorted by frequency from lower
  1865. * to higher. Each CTL corresponds to 8 edge power
  1866. * measurements. */
  1867. rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
  1868. /* Don't do boundaries check because we
  1869. * might have more that one bands defined
  1870. * for this mode */
  1871. /* Get the edge power that's closer to our
  1872. * frequency */
  1873. for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
  1874. rep_idx += i;
  1875. if (target <= rep[rep_idx].freq)
  1876. edge_pwr = (s16) rep[rep_idx].edge;
  1877. }
  1878. if (edge_pwr)
  1879. ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
  1880. }
  1881. /*
  1882. * Power to PCDAC table functions
  1883. */
  1884. /*
  1885. * Fill Power to PCDAC table on RF5111
  1886. *
  1887. * No further processing is needed for RF5111, the only thing we have to
  1888. * do is fill the values below and above calibration range since eeprom data
  1889. * may not cover the entire PCDAC table.
  1890. */
  1891. static void
  1892. ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
  1893. s16 *table_max)
  1894. {
  1895. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  1896. u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
  1897. u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
  1898. s16 min_pwr, max_pwr;
  1899. /* Get table boundaries */
  1900. min_pwr = table_min[0];
  1901. pcdac_0 = pcdac_tmp[0];
  1902. max_pwr = table_max[0];
  1903. pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
  1904. /* Extrapolate below minimum using pcdac_0 */
  1905. pcdac_i = 0;
  1906. for (i = 0; i < min_pwr; i++)
  1907. pcdac_out[pcdac_i++] = pcdac_0;
  1908. /* Copy values from pcdac_tmp */
  1909. pwr_idx = min_pwr;
  1910. for (i = 0 ; pwr_idx <= max_pwr &&
  1911. pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
  1912. pcdac_out[pcdac_i++] = pcdac_tmp[i];
  1913. pwr_idx++;
  1914. }
  1915. /* Extrapolate above maximum */
  1916. while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
  1917. pcdac_out[pcdac_i++] = pcdac_n;
  1918. }
  1919. /*
  1920. * Combine available XPD Curves and fill Linear Power to PCDAC table
  1921. * on RF5112
  1922. *
  1923. * RFX112 can have up to 2 curves (one for low txpower range and one for
  1924. * higher txpower range). We need to put them both on pcdac_out and place
  1925. * them in the correct location. In case we only have one curve available
  1926. * just fit it on pcdac_out (it's supposed to cover the entire range of
  1927. * available pwr levels since it's always the higher power curve). Extrapolate
  1928. * below and above final table if needed.
  1929. */
  1930. static void
  1931. ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
  1932. s16 *table_max, u8 pdcurves)
  1933. {
  1934. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  1935. u8 *pcdac_low_pwr;
  1936. u8 *pcdac_high_pwr;
  1937. u8 *pcdac_tmp;
  1938. u8 pwr;
  1939. s16 max_pwr_idx;
  1940. s16 min_pwr_idx;
  1941. s16 mid_pwr_idx = 0;
  1942. /* Edge flag turs on the 7nth bit on the PCDAC
  1943. * to delcare the higher power curve (force values
  1944. * to be greater than 64). If we only have one curve
  1945. * we don't need to set this, if we have 2 curves and
  1946. * fill the table backwards this can also be used to
  1947. * switch from higher power curve to lower power curve */
  1948. u8 edge_flag;
  1949. int i;
  1950. /* When we have only one curve available
  1951. * that's the higher power curve. If we have
  1952. * two curves the first is the high power curve
  1953. * and the next is the low power curve. */
  1954. if (pdcurves > 1) {
  1955. pcdac_low_pwr = ah->ah_txpower.tmpL[1];
  1956. pcdac_high_pwr = ah->ah_txpower.tmpL[0];
  1957. mid_pwr_idx = table_max[1] - table_min[1] - 1;
  1958. max_pwr_idx = (table_max[0] - table_min[0]) / 2;
  1959. /* If table size goes beyond 31.5dB, keep the
  1960. * upper 31.5dB range when setting tx power.
  1961. * Note: 126 = 31.5 dB in quarter dB steps */
  1962. if (table_max[0] - table_min[1] > 126)
  1963. min_pwr_idx = table_max[0] - 126;
  1964. else
  1965. min_pwr_idx = table_min[1];
  1966. /* Since we fill table backwards
  1967. * start from high power curve */
  1968. pcdac_tmp = pcdac_high_pwr;
  1969. edge_flag = 0x40;
  1970. #if 0
  1971. /* If both min and max power limits are in lower
  1972. * power curve's range, only use the low power curve.
  1973. * TODO: min/max levels are related to target
  1974. * power values requested from driver/user
  1975. * XXX: Is this really needed ? */
  1976. if (min_pwr < table_max[1] &&
  1977. max_pwr < table_max[1]) {
  1978. edge_flag = 0;
  1979. pcdac_tmp = pcdac_low_pwr;
  1980. max_pwr_idx = (table_max[1] - table_min[1])/2;
  1981. }
  1982. #endif
  1983. } else {
  1984. pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
  1985. pcdac_high_pwr = ah->ah_txpower.tmpL[0];
  1986. min_pwr_idx = table_min[0];
  1987. max_pwr_idx = (table_max[0] - table_min[0]) / 2;
  1988. pcdac_tmp = pcdac_high_pwr;
  1989. edge_flag = 0;
  1990. }
  1991. /* This is used when setting tx power*/
  1992. ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
  1993. /* Fill Power to PCDAC table backwards */
  1994. pwr = max_pwr_idx;
  1995. for (i = 63; i >= 0; i--) {
  1996. /* Entering lower power range, reset
  1997. * edge flag and set pcdac_tmp to lower
  1998. * power curve.*/
  1999. if (edge_flag == 0x40 &&
  2000. (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
  2001. edge_flag = 0x00;
  2002. pcdac_tmp = pcdac_low_pwr;
  2003. pwr = mid_pwr_idx/2;
  2004. }
  2005. /* Don't go below 1, extrapolate below if we have
  2006. * already swithced to the lower power curve -or
  2007. * we only have one curve and edge_flag is zero
  2008. * anyway */
  2009. if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
  2010. while (i >= 0) {
  2011. pcdac_out[i] = pcdac_out[i + 1];
  2012. i--;
  2013. }
  2014. break;
  2015. }
  2016. pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
  2017. /* Extrapolate above if pcdac is greater than
  2018. * 126 -this can happen because we OR pcdac_out
  2019. * value with edge_flag on high power curve */
  2020. if (pcdac_out[i] > 126)
  2021. pcdac_out[i] = 126;
  2022. /* Decrease by a 0.5dB step */
  2023. pwr--;
  2024. }
  2025. }
  2026. /* Write PCDAC values on hw */
  2027. static void
  2028. ath5k_setup_pcdac_table(struct ath5k_hw *ah)
  2029. {
  2030. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  2031. int i;
  2032. /*
  2033. * Write TX power values
  2034. */
  2035. for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
  2036. ath5k_hw_reg_write(ah,
  2037. (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
  2038. (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
  2039. AR5K_PHY_PCDAC_TXPOWER(i));
  2040. }
  2041. }
  2042. /*
  2043. * Power to PDADC table functions
  2044. */
  2045. /*
  2046. * Set the gain boundaries and create final Power to PDADC table
  2047. *
  2048. * We can have up to 4 pd curves, we need to do a simmilar process
  2049. * as we do for RF5112. This time we don't have an edge_flag but we
  2050. * set the gain boundaries on a separate register.
  2051. */
  2052. static void
  2053. ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
  2054. s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
  2055. {
  2056. u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
  2057. u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
  2058. u8 *pdadc_tmp;
  2059. s16 pdadc_0;
  2060. u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
  2061. u8 pd_gain_overlap;
  2062. /* Note: Register value is initialized on initvals
  2063. * there is no feedback from hw.
  2064. * XXX: What about pd_gain_overlap from EEPROM ? */
  2065. pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
  2066. AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
  2067. /* Create final PDADC table */
  2068. for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
  2069. pdadc_tmp = ah->ah_txpower.tmpL[pdg];
  2070. if (pdg == pdcurves - 1)
  2071. /* 2 dB boundary stretch for last
  2072. * (higher power) curve */
  2073. gain_boundaries[pdg] = pwr_max[pdg] + 4;
  2074. else
  2075. /* Set gain boundary in the middle
  2076. * between this curve and the next one */
  2077. gain_boundaries[pdg] =
  2078. (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
  2079. /* Sanity check in case our 2 db stretch got out of
  2080. * range. */
  2081. if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
  2082. gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
  2083. /* For the first curve (lower power)
  2084. * start from 0 dB */
  2085. if (pdg == 0)
  2086. pdadc_0 = 0;
  2087. else
  2088. /* For the other curves use the gain overlap */
  2089. pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
  2090. pd_gain_overlap;
  2091. /* Force each power step to be at least 0.5 dB */
  2092. if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
  2093. pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
  2094. else
  2095. pwr_step = 1;
  2096. /* If pdadc_0 is negative, we need to extrapolate
  2097. * below this pdgain by a number of pwr_steps */
  2098. while ((pdadc_0 < 0) && (pdadc_i < 128)) {
  2099. s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
  2100. pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
  2101. pdadc_0++;
  2102. }
  2103. /* Set last pwr level, using gain boundaries */
  2104. pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
  2105. /* Limit it to be inside pwr range */
  2106. table_size = pwr_max[pdg] - pwr_min[pdg];
  2107. max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
  2108. /* Fill pdadc_out table */
  2109. while (pdadc_0 < max_idx)
  2110. pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
  2111. /* Need to extrapolate above this pdgain? */
  2112. if (pdadc_n <= max_idx)
  2113. continue;
  2114. /* Force each power step to be at least 0.5 dB */
  2115. if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
  2116. pwr_step = pdadc_tmp[table_size - 1] -
  2117. pdadc_tmp[table_size - 2];
  2118. else
  2119. pwr_step = 1;
  2120. /* Extrapolate above */
  2121. while ((pdadc_0 < (s16) pdadc_n) &&
  2122. (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
  2123. s16 tmp = pdadc_tmp[table_size - 1] +
  2124. (pdadc_0 - max_idx) * pwr_step;
  2125. pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
  2126. pdadc_0++;
  2127. }
  2128. }
  2129. while (pdg < AR5K_EEPROM_N_PD_GAINS) {
  2130. gain_boundaries[pdg] = gain_boundaries[pdg - 1];
  2131. pdg++;
  2132. }
  2133. while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
  2134. pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
  2135. pdadc_i++;
  2136. }
  2137. /* Set gain boundaries */
  2138. ath5k_hw_reg_write(ah,
  2139. AR5K_REG_SM(pd_gain_overlap,
  2140. AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
  2141. AR5K_REG_SM(gain_boundaries[0],
  2142. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
  2143. AR5K_REG_SM(gain_boundaries[1],
  2144. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
  2145. AR5K_REG_SM(gain_boundaries[2],
  2146. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
  2147. AR5K_REG_SM(gain_boundaries[3],
  2148. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
  2149. AR5K_PHY_TPC_RG5);
  2150. /* Used for setting rate power table */
  2151. ah->ah_txpower.txp_min_idx = pwr_min[0];
  2152. }
  2153. /* Write PDADC values on hw */
  2154. static void
  2155. ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
  2156. u8 pdcurves, u8 *pdg_to_idx)
  2157. {
  2158. u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
  2159. u32 reg;
  2160. u8 i;
  2161. /* Select the right pdgain curves */
  2162. /* Clear current settings */
  2163. reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
  2164. reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
  2165. AR5K_PHY_TPC_RG1_PDGAIN_2 |
  2166. AR5K_PHY_TPC_RG1_PDGAIN_3 |
  2167. AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
  2168. /*
  2169. * Use pd_gains curve from eeprom
  2170. *
  2171. * This overrides the default setting from initvals
  2172. * in case some vendors (e.g. Zcomax) don't use the default
  2173. * curves. If we don't honor their settings we 'll get a
  2174. * 5dB (1 * gain overlap ?) drop.
  2175. */
  2176. reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
  2177. switch (pdcurves) {
  2178. case 3:
  2179. reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
  2180. /* Fall through */
  2181. case 2:
  2182. reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
  2183. /* Fall through */
  2184. case 1:
  2185. reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
  2186. break;
  2187. }
  2188. ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
  2189. /*
  2190. * Write TX power values
  2191. */
  2192. for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
  2193. ath5k_hw_reg_write(ah,
  2194. ((pdadc_out[4*i + 0] & 0xff) << 0) |
  2195. ((pdadc_out[4*i + 1] & 0xff) << 8) |
  2196. ((pdadc_out[4*i + 2] & 0xff) << 16) |
  2197. ((pdadc_out[4*i + 3] & 0xff) << 24),
  2198. AR5K_PHY_PDADC_TXPOWER(i));
  2199. }
  2200. }
  2201. /*
  2202. * Common code for PCDAC/PDADC tables
  2203. */
  2204. /*
  2205. * This is the main function that uses all of the above
  2206. * to set PCDAC/PDADC table on hw for the current channel.
  2207. * This table is used for tx power calibration on the basband,
  2208. * without it we get weird tx power levels and in some cases
  2209. * distorted spectral mask
  2210. */
  2211. static int
  2212. ath5k_setup_channel_powertable(struct ath5k_hw *ah,
  2213. struct ieee80211_channel *channel,
  2214. u8 ee_mode, u8 type)
  2215. {
  2216. struct ath5k_pdgain_info *pdg_L, *pdg_R;
  2217. struct ath5k_chan_pcal_info *pcinfo_L;
  2218. struct ath5k_chan_pcal_info *pcinfo_R;
  2219. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  2220. u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
  2221. s16 table_min[AR5K_EEPROM_N_PD_GAINS];
  2222. s16 table_max[AR5K_EEPROM_N_PD_GAINS];
  2223. u8 *tmpL;
  2224. u8 *tmpR;
  2225. u32 target = channel->center_freq;
  2226. int pdg, i;
  2227. /* Get surounding freq piers for this channel */
  2228. ath5k_get_chan_pcal_surrounding_piers(ah, channel,
  2229. &pcinfo_L,
  2230. &pcinfo_R);
  2231. /* Loop over pd gain curves on
  2232. * surounding freq piers by index */
  2233. for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
  2234. /* Fill curves in reverse order
  2235. * from lower power (max gain)
  2236. * to higher power. Use curve -> idx
  2237. * backmaping we did on eeprom init */
  2238. u8 idx = pdg_curve_to_idx[pdg];
  2239. /* Grab the needed curves by index */
  2240. pdg_L = &pcinfo_L->pd_curves[idx];
  2241. pdg_R = &pcinfo_R->pd_curves[idx];
  2242. /* Initialize the temp tables */
  2243. tmpL = ah->ah_txpower.tmpL[pdg];
  2244. tmpR = ah->ah_txpower.tmpR[pdg];
  2245. /* Set curve's x boundaries and create
  2246. * curves so that they cover the same
  2247. * range (if we don't do that one table
  2248. * will have values on some range and the
  2249. * other one won't have any so interpolation
  2250. * will fail) */
  2251. table_min[pdg] = min(pdg_L->pd_pwr[0],
  2252. pdg_R->pd_pwr[0]) / 2;
  2253. table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
  2254. pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
  2255. /* Now create the curves on surrounding channels
  2256. * and interpolate if needed to get the final
  2257. * curve for this gain on this channel */
  2258. switch (type) {
  2259. case AR5K_PWRTABLE_LINEAR_PCDAC:
  2260. /* Override min/max so that we don't loose
  2261. * accuracy (don't divide by 2) */
  2262. table_min[pdg] = min(pdg_L->pd_pwr[0],
  2263. pdg_R->pd_pwr[0]);
  2264. table_max[pdg] =
  2265. max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
  2266. pdg_R->pd_pwr[pdg_R->pd_points - 1]);
  2267. /* Override minimum so that we don't get
  2268. * out of bounds while extrapolating
  2269. * below. Don't do this when we have 2
  2270. * curves and we are on the high power curve
  2271. * because table_min is ok in this case */
  2272. if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
  2273. table_min[pdg] =
  2274. ath5k_get_linear_pcdac_min(pdg_L->pd_step,
  2275. pdg_R->pd_step,
  2276. pdg_L->pd_pwr,
  2277. pdg_R->pd_pwr);
  2278. /* Don't go too low because we will
  2279. * miss the upper part of the curve.
  2280. * Note: 126 = 31.5dB (max power supported)
  2281. * in 0.25dB units */
  2282. if (table_max[pdg] - table_min[pdg] > 126)
  2283. table_min[pdg] = table_max[pdg] - 126;
  2284. }
  2285. /* Fall through */
  2286. case AR5K_PWRTABLE_PWR_TO_PCDAC:
  2287. case AR5K_PWRTABLE_PWR_TO_PDADC:
  2288. ath5k_create_power_curve(table_min[pdg],
  2289. table_max[pdg],
  2290. pdg_L->pd_pwr,
  2291. pdg_L->pd_step,
  2292. pdg_L->pd_points, tmpL, type);
  2293. /* We are in a calibration
  2294. * pier, no need to interpolate
  2295. * between freq piers */
  2296. if (pcinfo_L == pcinfo_R)
  2297. continue;
  2298. ath5k_create_power_curve(table_min[pdg],
  2299. table_max[pdg],
  2300. pdg_R->pd_pwr,
  2301. pdg_R->pd_step,
  2302. pdg_R->pd_points, tmpR, type);
  2303. break;
  2304. default:
  2305. return -EINVAL;
  2306. }
  2307. /* Interpolate between curves
  2308. * of surounding freq piers to
  2309. * get the final curve for this
  2310. * pd gain. Re-use tmpL for interpolation
  2311. * output */
  2312. for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
  2313. (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
  2314. tmpL[i] = (u8) ath5k_get_interpolated_value(target,
  2315. (s16) pcinfo_L->freq,
  2316. (s16) pcinfo_R->freq,
  2317. (s16) tmpL[i],
  2318. (s16) tmpR[i]);
  2319. }
  2320. }
  2321. /* Now we have a set of curves for this
  2322. * channel on tmpL (x range is table_max - table_min
  2323. * and y values are tmpL[pdg][]) sorted in the same
  2324. * order as EEPROM (because we've used the backmaping).
  2325. * So for RF5112 it's from higher power to lower power
  2326. * and for RF2413 it's from lower power to higher power.
  2327. * For RF5111 we only have one curve. */
  2328. /* Fill min and max power levels for this
  2329. * channel by interpolating the values on
  2330. * surounding channels to complete the dataset */
  2331. ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
  2332. (s16) pcinfo_L->freq,
  2333. (s16) pcinfo_R->freq,
  2334. pcinfo_L->min_pwr, pcinfo_R->min_pwr);
  2335. ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
  2336. (s16) pcinfo_L->freq,
  2337. (s16) pcinfo_R->freq,
  2338. pcinfo_L->max_pwr, pcinfo_R->max_pwr);
  2339. /* We are ready to go, fill PCDAC/PDADC
  2340. * table and write settings on hardware */
  2341. switch (type) {
  2342. case AR5K_PWRTABLE_LINEAR_PCDAC:
  2343. /* For RF5112 we can have one or two curves
  2344. * and each curve covers a certain power lvl
  2345. * range so we need to do some more processing */
  2346. ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
  2347. ee->ee_pd_gains[ee_mode]);
  2348. /* Set txp.offset so that we can
  2349. * match max power value with max
  2350. * table index */
  2351. ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
  2352. /* Write settings on hw */
  2353. ath5k_setup_pcdac_table(ah);
  2354. break;
  2355. case AR5K_PWRTABLE_PWR_TO_PCDAC:
  2356. /* We are done for RF5111 since it has only
  2357. * one curve, just fit the curve on the table */
  2358. ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
  2359. /* No rate powertable adjustment for RF5111 */
  2360. ah->ah_txpower.txp_min_idx = 0;
  2361. ah->ah_txpower.txp_offset = 0;
  2362. /* Write settings on hw */
  2363. ath5k_setup_pcdac_table(ah);
  2364. break;
  2365. case AR5K_PWRTABLE_PWR_TO_PDADC:
  2366. /* Set PDADC boundaries and fill
  2367. * final PDADC table */
  2368. ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
  2369. ee->ee_pd_gains[ee_mode]);
  2370. /* Write settings on hw */
  2371. ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
  2372. /* Set txp.offset, note that table_min
  2373. * can be negative */
  2374. ah->ah_txpower.txp_offset = table_min[0];
  2375. break;
  2376. default:
  2377. return -EINVAL;
  2378. }
  2379. return 0;
  2380. }
  2381. /*
  2382. * Per-rate tx power setting
  2383. *
  2384. * This is the code that sets the desired tx power (below
  2385. * maximum) on hw for each rate (we also have TPC that sets
  2386. * power per packet). We do that by providing an index on the
  2387. * PCDAC/PDADC table we set up.
  2388. */
  2389. /*
  2390. * Set rate power table
  2391. *
  2392. * For now we only limit txpower based on maximum tx power
  2393. * supported by hw (what's inside rate_info). We need to limit
  2394. * this even more, based on regulatory domain etc.
  2395. *
  2396. * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
  2397. * and is indexed as follows:
  2398. * rates[0] - rates[7] -> OFDM rates
  2399. * rates[8] - rates[14] -> CCK rates
  2400. * rates[15] -> XR rates (they all have the same power)
  2401. */
  2402. static void
  2403. ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
  2404. struct ath5k_rate_pcal_info *rate_info,
  2405. u8 ee_mode)
  2406. {
  2407. unsigned int i;
  2408. u16 *rates;
  2409. /* max_pwr is power level we got from driver/user in 0.5dB
  2410. * units, switch to 0.25dB units so we can compare */
  2411. max_pwr *= 2;
  2412. max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
  2413. /* apply rate limits */
  2414. rates = ah->ah_txpower.txp_rates_power_table;
  2415. /* OFDM rates 6 to 24Mb/s */
  2416. for (i = 0; i < 5; i++)
  2417. rates[i] = min(max_pwr, rate_info->target_power_6to24);
  2418. /* Rest OFDM rates */
  2419. rates[5] = min(rates[0], rate_info->target_power_36);
  2420. rates[6] = min(rates[0], rate_info->target_power_48);
  2421. rates[7] = min(rates[0], rate_info->target_power_54);
  2422. /* CCK rates */
  2423. /* 1L */
  2424. rates[8] = min(rates[0], rate_info->target_power_6to24);
  2425. /* 2L */
  2426. rates[9] = min(rates[0], rate_info->target_power_36);
  2427. /* 2S */
  2428. rates[10] = min(rates[0], rate_info->target_power_36);
  2429. /* 5L */
  2430. rates[11] = min(rates[0], rate_info->target_power_48);
  2431. /* 5S */
  2432. rates[12] = min(rates[0], rate_info->target_power_48);
  2433. /* 11L */
  2434. rates[13] = min(rates[0], rate_info->target_power_54);
  2435. /* 11S */
  2436. rates[14] = min(rates[0], rate_info->target_power_54);
  2437. /* XR rates */
  2438. rates[15] = min(rates[0], rate_info->target_power_6to24);
  2439. /* CCK rates have different peak to average ratio
  2440. * so we have to tweak their power so that gainf
  2441. * correction works ok. For this we use OFDM to
  2442. * CCK delta from eeprom */
  2443. if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
  2444. (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
  2445. for (i = 8; i <= 15; i++)
  2446. rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
  2447. /* Now that we have all rates setup use table offset to
  2448. * match the power range set by user with the power indices
  2449. * on PCDAC/PDADC table */
  2450. for (i = 0; i < 16; i++) {
  2451. rates[i] += ah->ah_txpower.txp_offset;
  2452. /* Don't get out of bounds */
  2453. if (rates[i] > 63)
  2454. rates[i] = 63;
  2455. }
  2456. /* Min/max in 0.25dB units */
  2457. ah->ah_txpower.txp_min_pwr = 2 * rates[7];
  2458. ah->ah_txpower.txp_max_pwr = 2 * rates[0];
  2459. ah->ah_txpower.txp_ofdm = rates[7];
  2460. }
  2461. /*
  2462. * Set transmition power
  2463. */
  2464. int
  2465. ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
  2466. u8 ee_mode, u8 txpower)
  2467. {
  2468. struct ath5k_rate_pcal_info rate_info;
  2469. u8 type;
  2470. int ret;
  2471. ATH5K_TRACE(ah->ah_sc);
  2472. if (txpower > AR5K_TUNE_MAX_TXPOWER) {
  2473. ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
  2474. return -EINVAL;
  2475. }
  2476. if (txpower == 0)
  2477. txpower = AR5K_TUNE_DEFAULT_TXPOWER;
  2478. /* Reset TX power values */
  2479. memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
  2480. ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
  2481. ah->ah_txpower.txp_min_pwr = 0;
  2482. ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
  2483. /* Initialize TX power table */
  2484. switch (ah->ah_radio) {
  2485. case AR5K_RF5111:
  2486. type = AR5K_PWRTABLE_PWR_TO_PCDAC;
  2487. break;
  2488. case AR5K_RF5112:
  2489. type = AR5K_PWRTABLE_LINEAR_PCDAC;
  2490. break;
  2491. case AR5K_RF2413:
  2492. case AR5K_RF5413:
  2493. case AR5K_RF2316:
  2494. case AR5K_RF2317:
  2495. case AR5K_RF2425:
  2496. type = AR5K_PWRTABLE_PWR_TO_PDADC;
  2497. break;
  2498. default:
  2499. return -EINVAL;
  2500. }
  2501. /* FIXME: Only on channel/mode change */
  2502. ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
  2503. if (ret)
  2504. return ret;
  2505. /* Limit max power if we have a CTL available */
  2506. ath5k_get_max_ctl_power(ah, channel);
  2507. /* FIXME: Tx power limit for this regdomain
  2508. * XXX: Mac80211/CRDA will do that anyway ? */
  2509. /* FIXME: Antenna reduction stuff */
  2510. /* FIXME: Limit power on turbo modes */
  2511. /* FIXME: TPC scale reduction */
  2512. /* Get surounding channels for per-rate power table
  2513. * calibration */
  2514. ath5k_get_rate_pcal_data(ah, channel, &rate_info);
  2515. /* Setup rate power table */
  2516. ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
  2517. /* Write rate power table on hw */
  2518. ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
  2519. AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
  2520. AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
  2521. ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
  2522. AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
  2523. AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
  2524. ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
  2525. AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
  2526. AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
  2527. ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
  2528. AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
  2529. AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
  2530. /* FIXME: TPC support */
  2531. if (ah->ah_txpower.txp_tpc) {
  2532. ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
  2533. AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
  2534. ath5k_hw_reg_write(ah,
  2535. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
  2536. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
  2537. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
  2538. AR5K_TPC);
  2539. } else {
  2540. ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
  2541. AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
  2542. }
  2543. return 0;
  2544. }
  2545. int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
  2546. {
  2547. /*Just a try M.F.*/
  2548. struct ieee80211_channel *channel = &ah->ah_current_channel;
  2549. u8 ee_mode;
  2550. ATH5K_TRACE(ah->ah_sc);
  2551. switch (channel->hw_value & CHANNEL_MODES) {
  2552. case CHANNEL_A:
  2553. case CHANNEL_T:
  2554. case CHANNEL_XR:
  2555. ee_mode = AR5K_EEPROM_MODE_11A;
  2556. break;
  2557. case CHANNEL_G:
  2558. case CHANNEL_TG:
  2559. ee_mode = AR5K_EEPROM_MODE_11G;
  2560. break;
  2561. case CHANNEL_B:
  2562. ee_mode = AR5K_EEPROM_MODE_11B;
  2563. break;
  2564. default:
  2565. ATH5K_ERR(ah->ah_sc,
  2566. "invalid channel: %d\n", channel->center_freq);
  2567. return -EINVAL;
  2568. }
  2569. ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
  2570. "changing txpower to %d\n", txpower);
  2571. return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
  2572. }
  2573. #undef _ATH5K_PHY