eeprom.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. /*
  90. * Read values from EEPROM and store them in the capability structure
  91. */
  92. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  97. /* Return if we have an old EEPROM */
  98. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  99. return 0;
  100. #ifdef notyet
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  106. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  107. cksum ^= val;
  108. }
  109. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  110. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  111. return -EIO;
  112. }
  113. #endif
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  115. ee_ant_gain);
  116. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  119. /* XXX: Don't know which versions include these two */
  120. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  121. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  123. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  126. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  127. }
  128. }
  129. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  130. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  131. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  132. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  133. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  134. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  135. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  136. }
  137. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  138. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  139. ee->ee_is_hb63 = true;
  140. else
  141. ee->ee_is_hb63 = false;
  142. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  143. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  144. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  145. return 0;
  146. }
  147. /*
  148. * Read antenna infos from eeprom
  149. */
  150. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  151. unsigned int mode)
  152. {
  153. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  154. u32 o = *offset;
  155. u16 val;
  156. int ret, i = 0;
  157. AR5K_EEPROM_READ(o++, val);
  158. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  159. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  160. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  161. AR5K_EEPROM_READ(o++, val);
  162. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  163. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  164. ee->ee_ant_control[mode][i++] = val & 0x3f;
  165. AR5K_EEPROM_READ(o++, val);
  166. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  167. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  168. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  169. AR5K_EEPROM_READ(o++, val);
  170. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  171. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  172. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  173. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  174. AR5K_EEPROM_READ(o++, val);
  175. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  176. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  177. ee->ee_ant_control[mode][i++] = val & 0x3f;
  178. /* Get antenna switch tables */
  179. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  180. (ee->ee_ant_control[mode][0] << 4);
  181. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  182. ee->ee_ant_control[mode][1] |
  183. (ee->ee_ant_control[mode][2] << 6) |
  184. (ee->ee_ant_control[mode][3] << 12) |
  185. (ee->ee_ant_control[mode][4] << 18) |
  186. (ee->ee_ant_control[mode][5] << 24);
  187. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  188. ee->ee_ant_control[mode][6] |
  189. (ee->ee_ant_control[mode][7] << 6) |
  190. (ee->ee_ant_control[mode][8] << 12) |
  191. (ee->ee_ant_control[mode][9] << 18) |
  192. (ee->ee_ant_control[mode][10] << 24);
  193. /* return new offset */
  194. *offset = o;
  195. return 0;
  196. }
  197. /*
  198. * Read supported modes and some mode-specific calibration data
  199. * from eeprom
  200. */
  201. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  202. unsigned int mode)
  203. {
  204. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  205. u32 o = *offset;
  206. u16 val;
  207. int ret;
  208. ee->ee_n_piers[mode] = 0;
  209. AR5K_EEPROM_READ(o++, val);
  210. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  211. switch(mode) {
  212. case AR5K_EEPROM_MODE_11A:
  213. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  214. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  215. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  216. AR5K_EEPROM_READ(o++, val);
  217. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  218. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  219. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  220. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  221. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  222. ee->ee_db[mode][0] = val & 0x7;
  223. break;
  224. case AR5K_EEPROM_MODE_11G:
  225. case AR5K_EEPROM_MODE_11B:
  226. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  227. ee->ee_db[mode][1] = val & 0x7;
  228. break;
  229. }
  230. AR5K_EEPROM_READ(o++, val);
  231. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  232. ee->ee_thr_62[mode] = val & 0xff;
  233. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  234. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  235. AR5K_EEPROM_READ(o++, val);
  236. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  237. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  238. AR5K_EEPROM_READ(o++, val);
  239. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  240. if ((val & 0xff) & 0x80)
  241. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  242. else
  243. ee->ee_noise_floor_thr[mode] = val & 0xff;
  244. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  245. ee->ee_noise_floor_thr[mode] =
  246. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  247. AR5K_EEPROM_READ(o++, val);
  248. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  249. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  250. ee->ee_xpd[mode] = val & 0x1;
  251. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  252. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  253. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  254. AR5K_EEPROM_READ(o++, val);
  255. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  256. if (mode == AR5K_EEPROM_MODE_11A)
  257. ee->ee_xr_power[mode] = val & 0x3f;
  258. else {
  259. ee->ee_ob[mode][0] = val & 0x7;
  260. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  261. }
  262. }
  263. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  264. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  265. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  266. } else {
  267. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  268. AR5K_EEPROM_READ(o++, val);
  269. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  270. if (mode == AR5K_EEPROM_MODE_11G) {
  271. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  272. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  273. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  274. }
  275. }
  276. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  277. mode == AR5K_EEPROM_MODE_11A) {
  278. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  279. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  280. }
  281. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  282. goto done;
  283. /* Note: >= v5 have bg freq piers on another location
  284. * so these freq piers are ignored for >= v5 (should be 0xff
  285. * anyway) */
  286. switch(mode) {
  287. case AR5K_EEPROM_MODE_11A:
  288. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  289. break;
  290. AR5K_EEPROM_READ(o++, val);
  291. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  292. break;
  293. case AR5K_EEPROM_MODE_11B:
  294. AR5K_EEPROM_READ(o++, val);
  295. ee->ee_pwr_cal_b[0].freq =
  296. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  297. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  298. ee->ee_n_piers[mode]++;
  299. ee->ee_pwr_cal_b[1].freq =
  300. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  301. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  302. ee->ee_n_piers[mode]++;
  303. AR5K_EEPROM_READ(o++, val);
  304. ee->ee_pwr_cal_b[2].freq =
  305. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  306. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  307. ee->ee_n_piers[mode]++;
  308. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  309. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  310. break;
  311. case AR5K_EEPROM_MODE_11G:
  312. AR5K_EEPROM_READ(o++, val);
  313. ee->ee_pwr_cal_g[0].freq =
  314. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  315. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  316. ee->ee_n_piers[mode]++;
  317. ee->ee_pwr_cal_g[1].freq =
  318. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  319. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  320. ee->ee_n_piers[mode]++;
  321. AR5K_EEPROM_READ(o++, val);
  322. ee->ee_turbo_max_power[mode] = val & 0x7f;
  323. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  324. AR5K_EEPROM_READ(o++, val);
  325. ee->ee_pwr_cal_g[2].freq =
  326. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  327. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  328. ee->ee_n_piers[mode]++;
  329. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  330. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  331. AR5K_EEPROM_READ(o++, val);
  332. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  333. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  334. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  335. AR5K_EEPROM_READ(o++, val);
  336. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  337. }
  338. break;
  339. }
  340. done:
  341. /* return new offset */
  342. *offset = o;
  343. return 0;
  344. }
  345. /*
  346. * Read turbo mode information on newer EEPROM versions
  347. */
  348. static int
  349. ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
  350. u32 *offset, unsigned int mode)
  351. {
  352. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  353. u32 o = *offset;
  354. u16 val;
  355. int ret;
  356. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  357. return 0;
  358. switch (mode){
  359. case AR5K_EEPROM_MODE_11A:
  360. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  361. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  362. AR5K_EEPROM_READ(o++, val);
  363. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  364. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  365. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  366. AR5K_EEPROM_READ(o++, val);
  367. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  368. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  369. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  370. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  371. break;
  372. case AR5K_EEPROM_MODE_11G:
  373. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  374. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  375. AR5K_EEPROM_READ(o++, val);
  376. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  377. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  378. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  379. AR5K_EEPROM_READ(o++, val);
  380. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  381. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  382. break;
  383. }
  384. /* return new offset */
  385. *offset = o;
  386. return 0;
  387. }
  388. /* Read mode-specific data (except power calibration data) */
  389. static int
  390. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  391. {
  392. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  393. u32 mode_offset[3];
  394. unsigned int mode;
  395. u32 offset;
  396. int ret;
  397. /*
  398. * Get values for all modes
  399. */
  400. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  401. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  402. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  403. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  404. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  405. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  406. offset = mode_offset[mode];
  407. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  408. if (ret)
  409. return ret;
  410. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  411. if (ret)
  412. return ret;
  413. ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
  414. if (ret)
  415. return ret;
  416. }
  417. /* override for older eeprom versions for better performance */
  418. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  419. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  420. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  421. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  422. }
  423. return 0;
  424. }
  425. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  426. * frequency mask) */
  427. static inline int
  428. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  429. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  430. {
  431. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  432. int o = *offset;
  433. int i = 0;
  434. u8 freq1, freq2;
  435. int ret;
  436. u16 val;
  437. ee->ee_n_piers[mode] = 0;
  438. while(i < max) {
  439. AR5K_EEPROM_READ(o++, val);
  440. freq1 = val & 0xff;
  441. if (!freq1)
  442. break;
  443. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  444. freq1, mode);
  445. ee->ee_n_piers[mode]++;
  446. freq2 = (val >> 8) & 0xff;
  447. if (!freq2)
  448. break;
  449. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  450. freq2, mode);
  451. ee->ee_n_piers[mode]++;
  452. }
  453. /* return new offset */
  454. *offset = o;
  455. return 0;
  456. }
  457. /* Read frequency piers for 802.11a */
  458. static int
  459. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  460. {
  461. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  462. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  463. int i, ret;
  464. u16 val;
  465. u8 mask;
  466. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  467. ath5k_eeprom_read_freq_list(ah, &offset,
  468. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  469. AR5K_EEPROM_MODE_11A);
  470. } else {
  471. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  472. AR5K_EEPROM_READ(offset++, val);
  473. pcal[0].freq = (val >> 9) & mask;
  474. pcal[1].freq = (val >> 2) & mask;
  475. pcal[2].freq = (val << 5) & mask;
  476. AR5K_EEPROM_READ(offset++, val);
  477. pcal[2].freq |= (val >> 11) & 0x1f;
  478. pcal[3].freq = (val >> 4) & mask;
  479. pcal[4].freq = (val << 3) & mask;
  480. AR5K_EEPROM_READ(offset++, val);
  481. pcal[4].freq |= (val >> 13) & 0x7;
  482. pcal[5].freq = (val >> 6) & mask;
  483. pcal[6].freq = (val << 1) & mask;
  484. AR5K_EEPROM_READ(offset++, val);
  485. pcal[6].freq |= (val >> 15) & 0x1;
  486. pcal[7].freq = (val >> 8) & mask;
  487. pcal[8].freq = (val >> 1) & mask;
  488. pcal[9].freq = (val << 6) & mask;
  489. AR5K_EEPROM_READ(offset++, val);
  490. pcal[9].freq |= (val >> 10) & 0x3f;
  491. /* Fixed number of piers */
  492. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  493. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  494. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  495. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  496. }
  497. }
  498. return 0;
  499. }
  500. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  501. static inline int
  502. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  503. {
  504. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  505. struct ath5k_chan_pcal_info *pcal;
  506. switch(mode) {
  507. case AR5K_EEPROM_MODE_11B:
  508. pcal = ee->ee_pwr_cal_b;
  509. break;
  510. case AR5K_EEPROM_MODE_11G:
  511. pcal = ee->ee_pwr_cal_g;
  512. break;
  513. default:
  514. return -EINVAL;
  515. }
  516. ath5k_eeprom_read_freq_list(ah, &offset,
  517. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  518. mode);
  519. return 0;
  520. }
  521. /*
  522. * Read power calibration for RF5111 chips
  523. *
  524. * For RF5111 we have an XPD -eXternal Power Detector- curve
  525. * for each calibrated channel. Each curve has 0,5dB Power steps
  526. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  527. * exponential function. To recreate the curve we read 11 points
  528. * here and interpolate later.
  529. */
  530. /* Used to match PCDAC steps with power values on RF5111 chips
  531. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  532. * steps that match with the power values we read from eeprom. On
  533. * older eeprom versions (< 3.2) these steps are equaly spaced at
  534. * 10% of the pcdac curve -until the curve reaches it's maximum-
  535. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  536. * these 11 steps are spaced in a different way. This function returns
  537. * the pcdac steps based on eeprom version and curve min/max so that we
  538. * can have pcdac/pwr points.
  539. */
  540. static inline void
  541. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  542. {
  543. static const u16 intercepts3[] =
  544. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  545. static const u16 intercepts3_2[] =
  546. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  547. const u16 *ip;
  548. int i;
  549. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  550. ip = intercepts3_2;
  551. else
  552. ip = intercepts3;
  553. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  554. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  555. }
  556. /* Convert RF5111 specific data to generic raw data
  557. * used by interpolation code */
  558. static int
  559. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  560. struct ath5k_chan_pcal_info *chinfo)
  561. {
  562. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  563. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  564. struct ath5k_pdgain_info *pd;
  565. u8 pier, point, idx;
  566. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  567. /* Fill raw data for each calibration pier */
  568. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  569. pcinfo = &chinfo[pier].rf5111_info;
  570. /* Allocate pd_curves for this cal pier */
  571. chinfo[pier].pd_curves =
  572. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  573. sizeof(struct ath5k_pdgain_info),
  574. GFP_KERNEL);
  575. if (!chinfo[pier].pd_curves)
  576. return -ENOMEM;
  577. /* Only one curve for RF5111
  578. * find out which one and place
  579. * in in pd_curves.
  580. * Note: ee_x_gain is reversed here */
  581. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  582. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  583. pdgain_idx[0] = idx;
  584. break;
  585. }
  586. }
  587. ee->ee_pd_gains[mode] = 1;
  588. pd = &chinfo[pier].pd_curves[idx];
  589. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  590. /* Allocate pd points for this curve */
  591. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  592. sizeof(u8), GFP_KERNEL);
  593. if (!pd->pd_step)
  594. return -ENOMEM;
  595. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  596. sizeof(s16), GFP_KERNEL);
  597. if (!pd->pd_pwr)
  598. return -ENOMEM;
  599. /* Fill raw dataset
  600. * (convert power to 0.25dB units
  601. * for RF5112 combatibility) */
  602. for (point = 0; point < pd->pd_points; point++) {
  603. /* Absolute values */
  604. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  605. /* Already sorted */
  606. pd->pd_step[point] = pcinfo->pcdac[point];
  607. }
  608. /* Set min/max pwr */
  609. chinfo[pier].min_pwr = pd->pd_pwr[0];
  610. chinfo[pier].max_pwr = pd->pd_pwr[10];
  611. }
  612. return 0;
  613. }
  614. /* Parse EEPROM data */
  615. static int
  616. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  617. {
  618. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  619. struct ath5k_chan_pcal_info *pcal;
  620. int offset, ret;
  621. int i;
  622. u16 val;
  623. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  624. switch(mode) {
  625. case AR5K_EEPROM_MODE_11A:
  626. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  627. return 0;
  628. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  629. offset + AR5K_EEPROM_GROUP1_OFFSET);
  630. if (ret < 0)
  631. return ret;
  632. offset += AR5K_EEPROM_GROUP2_OFFSET;
  633. pcal = ee->ee_pwr_cal_a;
  634. break;
  635. case AR5K_EEPROM_MODE_11B:
  636. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  637. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  638. return 0;
  639. pcal = ee->ee_pwr_cal_b;
  640. offset += AR5K_EEPROM_GROUP3_OFFSET;
  641. /* fixed piers */
  642. pcal[0].freq = 2412;
  643. pcal[1].freq = 2447;
  644. pcal[2].freq = 2484;
  645. ee->ee_n_piers[mode] = 3;
  646. break;
  647. case AR5K_EEPROM_MODE_11G:
  648. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  649. return 0;
  650. pcal = ee->ee_pwr_cal_g;
  651. offset += AR5K_EEPROM_GROUP4_OFFSET;
  652. /* fixed piers */
  653. pcal[0].freq = 2312;
  654. pcal[1].freq = 2412;
  655. pcal[2].freq = 2484;
  656. ee->ee_n_piers[mode] = 3;
  657. break;
  658. default:
  659. return -EINVAL;
  660. }
  661. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  662. struct ath5k_chan_pcal_info_rf5111 *cdata =
  663. &pcal[i].rf5111_info;
  664. AR5K_EEPROM_READ(offset++, val);
  665. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  666. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  667. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  668. AR5K_EEPROM_READ(offset++, val);
  669. cdata->pwr[0] |= ((val >> 14) & 0x3);
  670. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  671. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  672. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  673. AR5K_EEPROM_READ(offset++, val);
  674. cdata->pwr[3] |= ((val >> 12) & 0xf);
  675. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  676. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  677. AR5K_EEPROM_READ(offset++, val);
  678. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  679. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  680. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  681. AR5K_EEPROM_READ(offset++, val);
  682. cdata->pwr[8] |= ((val >> 14) & 0x3);
  683. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  684. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  685. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  686. cdata->pcdac_max, cdata->pcdac);
  687. }
  688. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  689. }
  690. /*
  691. * Read power calibration for RF5112 chips
  692. *
  693. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  694. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  695. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  696. * power steps on x axis and PCDAC steps on y axis and looks like a
  697. * linear function. To recreate the curve and pass the power values
  698. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  699. * and 3 points for xpd 3 (higher gain -> lower power) here and
  700. * interpolate later.
  701. *
  702. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  703. */
  704. /* Convert RF5112 specific data to generic raw data
  705. * used by interpolation code */
  706. static int
  707. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  708. struct ath5k_chan_pcal_info *chinfo)
  709. {
  710. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  711. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  712. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  713. unsigned int pier, pdg, point;
  714. /* Fill raw data for each calibration pier */
  715. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  716. pcinfo = &chinfo[pier].rf5112_info;
  717. /* Allocate pd_curves for this cal pier */
  718. chinfo[pier].pd_curves =
  719. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  720. sizeof(struct ath5k_pdgain_info),
  721. GFP_KERNEL);
  722. if (!chinfo[pier].pd_curves)
  723. return -ENOMEM;
  724. /* Fill pd_curves */
  725. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  726. u8 idx = pdgain_idx[pdg];
  727. struct ath5k_pdgain_info *pd =
  728. &chinfo[pier].pd_curves[idx];
  729. /* Lowest gain curve (max power) */
  730. if (pdg == 0) {
  731. /* One more point for better accuracy */
  732. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  733. /* Allocate pd points for this curve */
  734. pd->pd_step = kcalloc(pd->pd_points,
  735. sizeof(u8), GFP_KERNEL);
  736. if (!pd->pd_step)
  737. return -ENOMEM;
  738. pd->pd_pwr = kcalloc(pd->pd_points,
  739. sizeof(s16), GFP_KERNEL);
  740. if (!pd->pd_pwr)
  741. return -ENOMEM;
  742. /* Fill raw dataset
  743. * (all power levels are in 0.25dB units) */
  744. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  745. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  746. for (point = 1; point < pd->pd_points;
  747. point++) {
  748. /* Absolute values */
  749. pd->pd_pwr[point] =
  750. pcinfo->pwr_x0[point];
  751. /* Deltas */
  752. pd->pd_step[point] =
  753. pd->pd_step[point - 1] +
  754. pcinfo->pcdac_x0[point];
  755. }
  756. /* Set min power for this frequency */
  757. chinfo[pier].min_pwr = pd->pd_pwr[0];
  758. /* Highest gain curve (min power) */
  759. } else if (pdg == 1) {
  760. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  761. /* Allocate pd points for this curve */
  762. pd->pd_step = kcalloc(pd->pd_points,
  763. sizeof(u8), GFP_KERNEL);
  764. if (!pd->pd_step)
  765. return -ENOMEM;
  766. pd->pd_pwr = kcalloc(pd->pd_points,
  767. sizeof(s16), GFP_KERNEL);
  768. if (!pd->pd_pwr)
  769. return -ENOMEM;
  770. /* Fill raw dataset
  771. * (all power levels are in 0.25dB units) */
  772. for (point = 0; point < pd->pd_points;
  773. point++) {
  774. /* Absolute values */
  775. pd->pd_pwr[point] =
  776. pcinfo->pwr_x3[point];
  777. /* Fixed points */
  778. pd->pd_step[point] =
  779. pcinfo->pcdac_x3[point];
  780. }
  781. /* Since we have a higher gain curve
  782. * override min power */
  783. chinfo[pier].min_pwr = pd->pd_pwr[0];
  784. }
  785. }
  786. }
  787. return 0;
  788. }
  789. /* Parse EEPROM data */
  790. static int
  791. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  792. {
  793. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  794. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  795. struct ath5k_chan_pcal_info *gen_chan_info;
  796. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  797. u32 offset;
  798. u8 i, c;
  799. u16 val;
  800. int ret;
  801. u8 pd_gains = 0;
  802. /* Count how many curves we have and
  803. * identify them (which one of the 4
  804. * available curves we have on each count).
  805. * Curves are stored from lower (x0) to
  806. * higher (x3) gain */
  807. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  808. /* ee_x_gain[mode] is x gain mask */
  809. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  810. pdgain_idx[pd_gains++] = i;
  811. }
  812. ee->ee_pd_gains[mode] = pd_gains;
  813. if (pd_gains == 0 || pd_gains > 2)
  814. return -EINVAL;
  815. switch (mode) {
  816. case AR5K_EEPROM_MODE_11A:
  817. /*
  818. * Read 5GHz EEPROM channels
  819. */
  820. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  821. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  822. offset += AR5K_EEPROM_GROUP2_OFFSET;
  823. gen_chan_info = ee->ee_pwr_cal_a;
  824. break;
  825. case AR5K_EEPROM_MODE_11B:
  826. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  827. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  828. offset += AR5K_EEPROM_GROUP3_OFFSET;
  829. /* NB: frequency piers parsed during mode init */
  830. gen_chan_info = ee->ee_pwr_cal_b;
  831. break;
  832. case AR5K_EEPROM_MODE_11G:
  833. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  834. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  835. offset += AR5K_EEPROM_GROUP4_OFFSET;
  836. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  837. offset += AR5K_EEPROM_GROUP2_OFFSET;
  838. /* NB: frequency piers parsed during mode init */
  839. gen_chan_info = ee->ee_pwr_cal_g;
  840. break;
  841. default:
  842. return -EINVAL;
  843. }
  844. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  845. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  846. /* Power values in quarter dB
  847. * for the lower xpd gain curve
  848. * (0 dBm -> higher output power) */
  849. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  850. AR5K_EEPROM_READ(offset++, val);
  851. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  852. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  853. }
  854. /* PCDAC steps
  855. * corresponding to the above power
  856. * measurements */
  857. AR5K_EEPROM_READ(offset++, val);
  858. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  859. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  860. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  861. /* Power values in quarter dB
  862. * for the higher xpd gain curve
  863. * (18 dBm -> lower output power) */
  864. AR5K_EEPROM_READ(offset++, val);
  865. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  866. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  867. AR5K_EEPROM_READ(offset++, val);
  868. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  869. /* PCDAC steps
  870. * corresponding to the above power
  871. * measurements (fixed) */
  872. chan_pcal_info->pcdac_x3[0] = 20;
  873. chan_pcal_info->pcdac_x3[1] = 35;
  874. chan_pcal_info->pcdac_x3[2] = 63;
  875. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  876. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  877. /* Last xpd0 power level is also channel maximum */
  878. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  879. } else {
  880. chan_pcal_info->pcdac_x0[0] = 1;
  881. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  882. }
  883. }
  884. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  885. }
  886. /*
  887. * Read power calibration for RF2413 chips
  888. *
  889. * For RF2413 we have a Power to PDDAC table (Power Detector)
  890. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  891. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  892. * axis and looks like an exponential function like the RF5111 curve.
  893. *
  894. * To recreate the curves we read here the points and interpolate
  895. * later. Note that in most cases only 2 (higher and lower) curves are
  896. * used (like RF5112) but vendors have the oportunity to include all
  897. * 4 curves on eeprom. The final curve (higher power) has an extra
  898. * point for better accuracy like RF5112.
  899. */
  900. /* For RF2413 power calibration data doesn't start on a fixed location and
  901. * if a mode is not supported, it's section is missing -not zeroed-.
  902. * So we need to calculate the starting offset for each section by using
  903. * these two functions */
  904. /* Return the size of each section based on the mode and the number of pd
  905. * gains available (maximum 4). */
  906. static inline unsigned int
  907. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  908. {
  909. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  910. unsigned int sz;
  911. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  912. sz *= ee->ee_n_piers[mode];
  913. return sz;
  914. }
  915. /* Return the starting offset for a section based on the modes supported
  916. * and each section's size. */
  917. static unsigned int
  918. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  919. {
  920. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  921. switch(mode) {
  922. case AR5K_EEPROM_MODE_11G:
  923. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  924. offset += ath5k_pdgains_size_2413(ee,
  925. AR5K_EEPROM_MODE_11B) +
  926. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  927. /* fall through */
  928. case AR5K_EEPROM_MODE_11B:
  929. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  930. offset += ath5k_pdgains_size_2413(ee,
  931. AR5K_EEPROM_MODE_11A) +
  932. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  933. /* fall through */
  934. case AR5K_EEPROM_MODE_11A:
  935. break;
  936. default:
  937. break;
  938. }
  939. return offset;
  940. }
  941. /* Convert RF2413 specific data to generic raw data
  942. * used by interpolation code */
  943. static int
  944. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  945. struct ath5k_chan_pcal_info *chinfo)
  946. {
  947. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  948. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  949. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  950. unsigned int pier, pdg, point;
  951. /* Fill raw data for each calibration pier */
  952. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  953. pcinfo = &chinfo[pier].rf2413_info;
  954. /* Allocate pd_curves for this cal pier */
  955. chinfo[pier].pd_curves =
  956. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  957. sizeof(struct ath5k_pdgain_info),
  958. GFP_KERNEL);
  959. if (!chinfo[pier].pd_curves)
  960. return -ENOMEM;
  961. /* Fill pd_curves */
  962. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  963. u8 idx = pdgain_idx[pdg];
  964. struct ath5k_pdgain_info *pd =
  965. &chinfo[pier].pd_curves[idx];
  966. /* One more point for the highest power
  967. * curve (lowest gain) */
  968. if (pdg == ee->ee_pd_gains[mode] - 1)
  969. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  970. else
  971. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  972. /* Allocate pd points for this curve */
  973. pd->pd_step = kcalloc(pd->pd_points,
  974. sizeof(u8), GFP_KERNEL);
  975. if (!pd->pd_step)
  976. return -ENOMEM;
  977. pd->pd_pwr = kcalloc(pd->pd_points,
  978. sizeof(s16), GFP_KERNEL);
  979. if (!pd->pd_pwr)
  980. return -ENOMEM;
  981. /* Fill raw dataset
  982. * convert all pwr levels to
  983. * quarter dB for RF5112 combatibility */
  984. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  985. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  986. for (point = 1; point < pd->pd_points; point++) {
  987. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  988. 2 * pcinfo->pwr[pdg][point - 1];
  989. pd->pd_step[point] = pd->pd_step[point - 1] +
  990. pcinfo->pddac[pdg][point - 1];
  991. }
  992. /* Highest gain curve -> min power */
  993. if (pdg == 0)
  994. chinfo[pier].min_pwr = pd->pd_pwr[0];
  995. /* Lowest gain curve -> max power */
  996. if (pdg == ee->ee_pd_gains[mode] - 1)
  997. chinfo[pier].max_pwr =
  998. pd->pd_pwr[pd->pd_points - 1];
  999. }
  1000. }
  1001. return 0;
  1002. }
  1003. /* Parse EEPROM data */
  1004. static int
  1005. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1006. {
  1007. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1008. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1009. struct ath5k_chan_pcal_info *chinfo;
  1010. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1011. u32 offset;
  1012. int idx, i, ret;
  1013. u16 val;
  1014. u8 pd_gains = 0;
  1015. /* Count how many curves we have and
  1016. * identify them (which one of the 4
  1017. * available curves we have on each count).
  1018. * Curves are stored from higher to
  1019. * lower gain so we go backwards */
  1020. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1021. /* ee_x_gain[mode] is x gain mask */
  1022. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1023. pdgain_idx[pd_gains++] = idx;
  1024. }
  1025. ee->ee_pd_gains[mode] = pd_gains;
  1026. if (pd_gains == 0)
  1027. return -EINVAL;
  1028. offset = ath5k_cal_data_offset_2413(ee, mode);
  1029. switch (mode) {
  1030. case AR5K_EEPROM_MODE_11A:
  1031. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1032. return 0;
  1033. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1034. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1035. chinfo = ee->ee_pwr_cal_a;
  1036. break;
  1037. case AR5K_EEPROM_MODE_11B:
  1038. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1039. return 0;
  1040. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1041. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1042. chinfo = ee->ee_pwr_cal_b;
  1043. break;
  1044. case AR5K_EEPROM_MODE_11G:
  1045. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1046. return 0;
  1047. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1048. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1049. chinfo = ee->ee_pwr_cal_g;
  1050. break;
  1051. default:
  1052. return -EINVAL;
  1053. }
  1054. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1055. pcinfo = &chinfo[i].rf2413_info;
  1056. /*
  1057. * Read pwr_i, pddac_i and the first
  1058. * 2 pd points (pwr, pddac)
  1059. */
  1060. AR5K_EEPROM_READ(offset++, val);
  1061. pcinfo->pwr_i[0] = val & 0x1f;
  1062. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1063. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1064. AR5K_EEPROM_READ(offset++, val);
  1065. pcinfo->pddac[0][0] = val & 0x3f;
  1066. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1067. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1068. AR5K_EEPROM_READ(offset++, val);
  1069. pcinfo->pwr[0][2] = val & 0xf;
  1070. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1071. pcinfo->pwr[0][3] = 0;
  1072. pcinfo->pddac[0][3] = 0;
  1073. if (pd_gains > 1) {
  1074. /*
  1075. * Pd gain 0 is not the last pd gain
  1076. * so it only has 2 pd points.
  1077. * Continue wih pd gain 1.
  1078. */
  1079. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1080. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1081. AR5K_EEPROM_READ(offset++, val);
  1082. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1083. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1084. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1085. AR5K_EEPROM_READ(offset++, val);
  1086. pcinfo->pwr[1][1] = val & 0xf;
  1087. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1088. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1089. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1090. AR5K_EEPROM_READ(offset++, val);
  1091. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1092. pcinfo->pwr[1][3] = 0;
  1093. pcinfo->pddac[1][3] = 0;
  1094. } else if (pd_gains == 1) {
  1095. /*
  1096. * Pd gain 0 is the last one so
  1097. * read the extra point.
  1098. */
  1099. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1100. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1101. AR5K_EEPROM_READ(offset++, val);
  1102. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1103. }
  1104. /*
  1105. * Proceed with the other pd_gains
  1106. * as above.
  1107. */
  1108. if (pd_gains > 2) {
  1109. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1110. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1111. AR5K_EEPROM_READ(offset++, val);
  1112. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1113. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1114. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1115. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1116. AR5K_EEPROM_READ(offset++, val);
  1117. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1118. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1119. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1120. pcinfo->pwr[2][3] = 0;
  1121. pcinfo->pddac[2][3] = 0;
  1122. } else if (pd_gains == 2) {
  1123. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1124. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1125. }
  1126. if (pd_gains > 3) {
  1127. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1128. AR5K_EEPROM_READ(offset++, val);
  1129. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1130. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1131. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1132. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1133. AR5K_EEPROM_READ(offset++, val);
  1134. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1135. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1136. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1137. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1138. AR5K_EEPROM_READ(offset++, val);
  1139. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1140. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1141. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1142. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1143. AR5K_EEPROM_READ(offset++, val);
  1144. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1145. } else if (pd_gains == 3) {
  1146. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1147. AR5K_EEPROM_READ(offset++, val);
  1148. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1149. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1150. }
  1151. }
  1152. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1153. }
  1154. /*
  1155. * Read per rate target power (this is the maximum tx power
  1156. * supported by the card). This info is used when setting
  1157. * tx power, no matter the channel.
  1158. *
  1159. * This also works for v5 EEPROMs.
  1160. */
  1161. static int
  1162. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1163. {
  1164. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1165. struct ath5k_rate_pcal_info *rate_pcal_info;
  1166. u8 *rate_target_pwr_num;
  1167. u32 offset;
  1168. u16 val;
  1169. int ret, i;
  1170. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1171. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1172. switch (mode) {
  1173. case AR5K_EEPROM_MODE_11A:
  1174. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1175. rate_pcal_info = ee->ee_rate_tpwr_a;
  1176. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1177. break;
  1178. case AR5K_EEPROM_MODE_11B:
  1179. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1180. rate_pcal_info = ee->ee_rate_tpwr_b;
  1181. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1182. break;
  1183. case AR5K_EEPROM_MODE_11G:
  1184. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1185. rate_pcal_info = ee->ee_rate_tpwr_g;
  1186. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1187. break;
  1188. default:
  1189. return -EINVAL;
  1190. }
  1191. /* Different freq mask for older eeproms (<= v3.2) */
  1192. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1193. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1194. AR5K_EEPROM_READ(offset++, val);
  1195. rate_pcal_info[i].freq =
  1196. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1197. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1198. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1199. AR5K_EEPROM_READ(offset++, val);
  1200. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1201. val == 0) {
  1202. (*rate_target_pwr_num) = i;
  1203. break;
  1204. }
  1205. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1206. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1207. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1208. }
  1209. } else {
  1210. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1211. AR5K_EEPROM_READ(offset++, val);
  1212. rate_pcal_info[i].freq =
  1213. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1214. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1215. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1216. AR5K_EEPROM_READ(offset++, val);
  1217. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1218. val == 0) {
  1219. (*rate_target_pwr_num) = i;
  1220. break;
  1221. }
  1222. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1223. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1224. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1225. }
  1226. }
  1227. return 0;
  1228. }
  1229. /*
  1230. * Read per channel calibration info from EEPROM
  1231. *
  1232. * This info is used to calibrate the baseband power table. Imagine
  1233. * that for each channel there is a power curve that's hw specific
  1234. * (depends on amplifier etc) and we try to "correct" this curve using
  1235. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1236. * it can use accurate power values when setting tx power (takes amplifier's
  1237. * performance on each channel into account).
  1238. *
  1239. * EEPROM provides us with the offsets for some pre-calibrated channels
  1240. * and we have to interpolate to create the full table for these channels and
  1241. * also the table for any channel.
  1242. */
  1243. static int
  1244. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1245. {
  1246. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1247. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1248. int mode;
  1249. int err;
  1250. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1251. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1252. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1253. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1254. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1255. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1256. else
  1257. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1258. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1259. mode++) {
  1260. err = read_pcal(ah, mode);
  1261. if (err)
  1262. return err;
  1263. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1264. if (err < 0)
  1265. return err;
  1266. }
  1267. return 0;
  1268. }
  1269. static int
  1270. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1271. {
  1272. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1273. struct ath5k_chan_pcal_info *chinfo;
  1274. u8 pier, pdg;
  1275. switch (mode) {
  1276. case AR5K_EEPROM_MODE_11A:
  1277. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1278. return 0;
  1279. chinfo = ee->ee_pwr_cal_a;
  1280. break;
  1281. case AR5K_EEPROM_MODE_11B:
  1282. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1283. return 0;
  1284. chinfo = ee->ee_pwr_cal_b;
  1285. break;
  1286. case AR5K_EEPROM_MODE_11G:
  1287. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1288. return 0;
  1289. chinfo = ee->ee_pwr_cal_g;
  1290. break;
  1291. default:
  1292. return -EINVAL;
  1293. }
  1294. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1295. if (!chinfo[pier].pd_curves)
  1296. continue;
  1297. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1298. struct ath5k_pdgain_info *pd =
  1299. &chinfo[pier].pd_curves[pdg];
  1300. if (pd != NULL) {
  1301. kfree(pd->pd_step);
  1302. kfree(pd->pd_pwr);
  1303. }
  1304. }
  1305. kfree(chinfo[pier].pd_curves);
  1306. }
  1307. return 0;
  1308. }
  1309. void
  1310. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1311. {
  1312. u8 mode;
  1313. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1314. ath5k_eeprom_free_pcal_info(ah, mode);
  1315. }
  1316. /* Read conformance test limits used for regulatory control */
  1317. static int
  1318. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1319. {
  1320. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1321. struct ath5k_edge_power *rep;
  1322. unsigned int fmask, pmask;
  1323. unsigned int ctl_mode;
  1324. int ret, i, j;
  1325. u32 offset;
  1326. u16 val;
  1327. pmask = AR5K_EEPROM_POWER_M;
  1328. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1329. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1330. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1331. for (i = 0; i < ee->ee_ctls; i += 2) {
  1332. AR5K_EEPROM_READ(offset++, val);
  1333. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1334. ee->ee_ctl[i + 1] = val & 0xff;
  1335. }
  1336. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1337. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1338. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1339. AR5K_EEPROM_GROUP5_OFFSET;
  1340. else
  1341. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1342. rep = ee->ee_ctl_pwr;
  1343. for(i = 0; i < ee->ee_ctls; i++) {
  1344. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1345. case AR5K_CTL_11A:
  1346. case AR5K_CTL_TURBO:
  1347. ctl_mode = AR5K_EEPROM_MODE_11A;
  1348. break;
  1349. default:
  1350. ctl_mode = AR5K_EEPROM_MODE_11G;
  1351. break;
  1352. }
  1353. if (ee->ee_ctl[i] == 0) {
  1354. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1355. offset += 8;
  1356. else
  1357. offset += 7;
  1358. rep += AR5K_EEPROM_N_EDGES;
  1359. continue;
  1360. }
  1361. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1362. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1363. AR5K_EEPROM_READ(offset++, val);
  1364. rep[j].freq = (val >> 8) & fmask;
  1365. rep[j + 1].freq = val & fmask;
  1366. }
  1367. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1368. AR5K_EEPROM_READ(offset++, val);
  1369. rep[j].edge = (val >> 8) & pmask;
  1370. rep[j].flag = (val >> 14) & 1;
  1371. rep[j + 1].edge = val & pmask;
  1372. rep[j + 1].flag = (val >> 6) & 1;
  1373. }
  1374. } else {
  1375. AR5K_EEPROM_READ(offset++, val);
  1376. rep[0].freq = (val >> 9) & fmask;
  1377. rep[1].freq = (val >> 2) & fmask;
  1378. rep[2].freq = (val << 5) & fmask;
  1379. AR5K_EEPROM_READ(offset++, val);
  1380. rep[2].freq |= (val >> 11) & 0x1f;
  1381. rep[3].freq = (val >> 4) & fmask;
  1382. rep[4].freq = (val << 3) & fmask;
  1383. AR5K_EEPROM_READ(offset++, val);
  1384. rep[4].freq |= (val >> 13) & 0x7;
  1385. rep[5].freq = (val >> 6) & fmask;
  1386. rep[6].freq = (val << 1) & fmask;
  1387. AR5K_EEPROM_READ(offset++, val);
  1388. rep[6].freq |= (val >> 15) & 0x1;
  1389. rep[7].freq = (val >> 8) & fmask;
  1390. rep[0].edge = (val >> 2) & pmask;
  1391. rep[1].edge = (val << 4) & pmask;
  1392. AR5K_EEPROM_READ(offset++, val);
  1393. rep[1].edge |= (val >> 12) & 0xf;
  1394. rep[2].edge = (val >> 6) & pmask;
  1395. rep[3].edge = val & pmask;
  1396. AR5K_EEPROM_READ(offset++, val);
  1397. rep[4].edge = (val >> 10) & pmask;
  1398. rep[5].edge = (val >> 4) & pmask;
  1399. rep[6].edge = (val << 2) & pmask;
  1400. AR5K_EEPROM_READ(offset++, val);
  1401. rep[6].edge |= (val >> 14) & 0x3;
  1402. rep[7].edge = (val >> 8) & pmask;
  1403. }
  1404. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1405. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1406. rep[j].freq, ctl_mode);
  1407. }
  1408. rep += AR5K_EEPROM_N_EDGES;
  1409. }
  1410. return 0;
  1411. }
  1412. static int
  1413. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1414. {
  1415. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1416. u32 offset;
  1417. u16 val;
  1418. int ret = 0, i;
  1419. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1420. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1421. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1422. /* No spur info for 5GHz */
  1423. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1424. /* 2 channels for 2GHz (2464/2420) */
  1425. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1426. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1427. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1428. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1429. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1430. AR5K_EEPROM_READ(offset, val);
  1431. ee->ee_spur_chans[i][0] = val;
  1432. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1433. val);
  1434. ee->ee_spur_chans[i][1] = val;
  1435. offset++;
  1436. }
  1437. }
  1438. return ret;
  1439. }
  1440. /*
  1441. * Initialize eeprom data structure
  1442. */
  1443. int
  1444. ath5k_eeprom_init(struct ath5k_hw *ah)
  1445. {
  1446. int err;
  1447. err = ath5k_eeprom_init_header(ah);
  1448. if (err < 0)
  1449. return err;
  1450. err = ath5k_eeprom_init_modes(ah);
  1451. if (err < 0)
  1452. return err;
  1453. err = ath5k_eeprom_read_pcal_info(ah);
  1454. if (err < 0)
  1455. return err;
  1456. err = ath5k_eeprom_read_ctl_info(ah);
  1457. if (err < 0)
  1458. return err;
  1459. err = ath5k_eeprom_read_spur_chans(ah);
  1460. if (err < 0)
  1461. return err;
  1462. return 0;
  1463. }
  1464. /*
  1465. * Read the MAC address from eeprom
  1466. */
  1467. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1468. {
  1469. u8 mac_d[ETH_ALEN] = {};
  1470. u32 total, offset;
  1471. u16 data;
  1472. int octet, ret;
  1473. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1474. if (ret)
  1475. return ret;
  1476. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1477. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1478. if (ret)
  1479. return ret;
  1480. total += data;
  1481. mac_d[octet + 1] = data & 0xff;
  1482. mac_d[octet] = data >> 8;
  1483. octet += 2;
  1484. }
  1485. if (!total || total == 3 * 0xffff)
  1486. return -EINVAL;
  1487. memcpy(mac, mac_d, ETH_ALEN);
  1488. return 0;
  1489. }