skge.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/debugfs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #include "skge.h"
  43. #define DRV_NAME "skge"
  44. #define DRV_VERSION "1.13"
  45. #define PFX DRV_NAME " "
  46. #define DEFAULT_TX_RING_SIZE 128
  47. #define DEFAULT_RX_RING_SIZE 512
  48. #define MAX_TX_RING_SIZE 1024
  49. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  50. #define MAX_RX_RING_SIZE 4096
  51. #define RX_COPY_THRESHOLD 128
  52. #define RX_BUF_SIZE 1536
  53. #define PHY_RETRIES 1000
  54. #define ETH_JUMBO_MTU 9000
  55. #define TX_WATCHDOG (5 * HZ)
  56. #define NAPI_WEIGHT 64
  57. #define BLINK_MS 250
  58. #define LINK_HZ HZ
  59. #define SKGE_EEPROM_MAGIC 0x9933aabb
  60. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_VERSION);
  64. static const u32 default_msg
  65. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  66. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  67. static int debug = -1; /* defaults above */
  68. module_param(debug, int, 0);
  69. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  70. static const struct pci_device_id skge_id_table[] = {
  71. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  77. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  79. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  80. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  81. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  82. { 0 }
  83. };
  84. MODULE_DEVICE_TABLE(pci, skge_id_table);
  85. static int skge_up(struct net_device *dev);
  86. static int skge_down(struct net_device *dev);
  87. static void skge_phy_reset(struct skge_port *skge);
  88. static void skge_tx_clean(struct net_device *dev);
  89. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  90. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  92. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_init(struct skge_hw *hw, int port);
  94. static void genesis_mac_init(struct skge_hw *hw, int port);
  95. static void genesis_link_up(struct skge_port *skge);
  96. static void skge_set_multicast(struct net_device *dev);
  97. /* Avoid conditionals by using array */
  98. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  99. static const int rxqaddr[] = { Q_R1, Q_R2 };
  100. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  101. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  102. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  103. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  104. static int skge_get_regs_len(struct net_device *dev)
  105. {
  106. return 0x4000;
  107. }
  108. /*
  109. * Returns copy of whole control register region
  110. * Note: skip RAM address register because accessing it will
  111. * cause bus hangs!
  112. */
  113. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  114. void *p)
  115. {
  116. const struct skge_port *skge = netdev_priv(dev);
  117. const void __iomem *io = skge->hw->regs;
  118. regs->version = 1;
  119. memset(p, 0, regs->len);
  120. memcpy_fromio(p, io, B3_RAM_ADDR);
  121. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  122. regs->len - B3_RI_WTO_R1);
  123. }
  124. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  125. static u32 wol_supported(const struct skge_hw *hw)
  126. {
  127. if (hw->chip_id == CHIP_ID_GENESIS)
  128. return 0;
  129. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  130. return 0;
  131. return WAKE_MAGIC | WAKE_PHY;
  132. }
  133. static void skge_wol_init(struct skge_port *skge)
  134. {
  135. struct skge_hw *hw = skge->hw;
  136. int port = skge->port;
  137. u16 ctrl;
  138. skge_write16(hw, B0_CTST, CS_RST_CLR);
  139. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  140. /* Turn on Vaux */
  141. skge_write8(hw, B0_POWER_CTRL,
  142. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  143. /* WA code for COMA mode -- clear PHY reset */
  144. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  145. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  146. u32 reg = skge_read32(hw, B2_GP_IO);
  147. reg |= GP_DIR_9;
  148. reg &= ~GP_IO_9;
  149. skge_write32(hw, B2_GP_IO, reg);
  150. }
  151. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  152. GPC_DIS_SLEEP |
  153. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  154. GPC_ANEG_1 | GPC_RST_SET);
  155. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  156. GPC_DIS_SLEEP |
  157. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  158. GPC_ANEG_1 | GPC_RST_CLR);
  159. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  160. /* Force to 10/100 skge_reset will re-enable on resume */
  161. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  162. PHY_AN_100FULL | PHY_AN_100HALF |
  163. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  164. /* no 1000 HD/FD */
  165. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  166. gm_phy_write(hw, port, PHY_MARV_CTRL,
  167. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  168. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  169. /* Set GMAC to no flow control and auto update for speed/duplex */
  170. gma_write16(hw, port, GM_GP_CTRL,
  171. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  172. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  173. /* Set WOL address */
  174. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  175. skge->netdev->dev_addr, ETH_ALEN);
  176. /* Turn on appropriate WOL control bits */
  177. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  178. ctrl = 0;
  179. if (skge->wol & WAKE_PHY)
  180. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  181. else
  182. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  183. if (skge->wol & WAKE_MAGIC)
  184. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  185. else
  186. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  187. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  188. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  189. /* block receiver */
  190. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  191. }
  192. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  193. {
  194. struct skge_port *skge = netdev_priv(dev);
  195. wol->supported = wol_supported(skge->hw);
  196. wol->wolopts = skge->wol;
  197. }
  198. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  199. {
  200. struct skge_port *skge = netdev_priv(dev);
  201. struct skge_hw *hw = skge->hw;
  202. if ((wol->wolopts & ~wol_supported(hw))
  203. || !device_can_wakeup(&hw->pdev->dev))
  204. return -EOPNOTSUPP;
  205. skge->wol = wol->wolopts;
  206. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  207. return 0;
  208. }
  209. /* Determine supported/advertised modes based on hardware.
  210. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  211. */
  212. static u32 skge_supported_modes(const struct skge_hw *hw)
  213. {
  214. u32 supported;
  215. if (hw->copper) {
  216. supported = SUPPORTED_10baseT_Half
  217. | SUPPORTED_10baseT_Full
  218. | SUPPORTED_100baseT_Half
  219. | SUPPORTED_100baseT_Full
  220. | SUPPORTED_1000baseT_Half
  221. | SUPPORTED_1000baseT_Full
  222. | SUPPORTED_Autoneg| SUPPORTED_TP;
  223. if (hw->chip_id == CHIP_ID_GENESIS)
  224. supported &= ~(SUPPORTED_10baseT_Half
  225. | SUPPORTED_10baseT_Full
  226. | SUPPORTED_100baseT_Half
  227. | SUPPORTED_100baseT_Full);
  228. else if (hw->chip_id == CHIP_ID_YUKON)
  229. supported &= ~SUPPORTED_1000baseT_Half;
  230. } else
  231. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  232. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  233. return supported;
  234. }
  235. static int skge_get_settings(struct net_device *dev,
  236. struct ethtool_cmd *ecmd)
  237. {
  238. struct skge_port *skge = netdev_priv(dev);
  239. struct skge_hw *hw = skge->hw;
  240. ecmd->transceiver = XCVR_INTERNAL;
  241. ecmd->supported = skge_supported_modes(hw);
  242. if (hw->copper) {
  243. ecmd->port = PORT_TP;
  244. ecmd->phy_address = hw->phy_addr;
  245. } else
  246. ecmd->port = PORT_FIBRE;
  247. ecmd->advertising = skge->advertising;
  248. ecmd->autoneg = skge->autoneg;
  249. ecmd->speed = skge->speed;
  250. ecmd->duplex = skge->duplex;
  251. return 0;
  252. }
  253. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  254. {
  255. struct skge_port *skge = netdev_priv(dev);
  256. const struct skge_hw *hw = skge->hw;
  257. u32 supported = skge_supported_modes(hw);
  258. int err = 0;
  259. if (ecmd->autoneg == AUTONEG_ENABLE) {
  260. ecmd->advertising = supported;
  261. skge->duplex = -1;
  262. skge->speed = -1;
  263. } else {
  264. u32 setting;
  265. switch (ecmd->speed) {
  266. case SPEED_1000:
  267. if (ecmd->duplex == DUPLEX_FULL)
  268. setting = SUPPORTED_1000baseT_Full;
  269. else if (ecmd->duplex == DUPLEX_HALF)
  270. setting = SUPPORTED_1000baseT_Half;
  271. else
  272. return -EINVAL;
  273. break;
  274. case SPEED_100:
  275. if (ecmd->duplex == DUPLEX_FULL)
  276. setting = SUPPORTED_100baseT_Full;
  277. else if (ecmd->duplex == DUPLEX_HALF)
  278. setting = SUPPORTED_100baseT_Half;
  279. else
  280. return -EINVAL;
  281. break;
  282. case SPEED_10:
  283. if (ecmd->duplex == DUPLEX_FULL)
  284. setting = SUPPORTED_10baseT_Full;
  285. else if (ecmd->duplex == DUPLEX_HALF)
  286. setting = SUPPORTED_10baseT_Half;
  287. else
  288. return -EINVAL;
  289. break;
  290. default:
  291. return -EINVAL;
  292. }
  293. if ((setting & supported) == 0)
  294. return -EINVAL;
  295. skge->speed = ecmd->speed;
  296. skge->duplex = ecmd->duplex;
  297. }
  298. skge->autoneg = ecmd->autoneg;
  299. skge->advertising = ecmd->advertising;
  300. if (netif_running(dev)) {
  301. skge_down(dev);
  302. err = skge_up(dev);
  303. if (err) {
  304. dev_close(dev);
  305. return err;
  306. }
  307. }
  308. return (0);
  309. }
  310. static void skge_get_drvinfo(struct net_device *dev,
  311. struct ethtool_drvinfo *info)
  312. {
  313. struct skge_port *skge = netdev_priv(dev);
  314. strcpy(info->driver, DRV_NAME);
  315. strcpy(info->version, DRV_VERSION);
  316. strcpy(info->fw_version, "N/A");
  317. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  318. }
  319. static const struct skge_stat {
  320. char name[ETH_GSTRING_LEN];
  321. u16 xmac_offset;
  322. u16 gma_offset;
  323. } skge_stats[] = {
  324. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  325. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  326. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  327. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  328. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  329. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  330. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  331. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  332. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  333. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  334. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  335. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  336. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  337. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  338. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  339. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  340. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  341. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  342. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  343. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  344. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  345. };
  346. static int skge_get_sset_count(struct net_device *dev, int sset)
  347. {
  348. switch (sset) {
  349. case ETH_SS_STATS:
  350. return ARRAY_SIZE(skge_stats);
  351. default:
  352. return -EOPNOTSUPP;
  353. }
  354. }
  355. static void skge_get_ethtool_stats(struct net_device *dev,
  356. struct ethtool_stats *stats, u64 *data)
  357. {
  358. struct skge_port *skge = netdev_priv(dev);
  359. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  360. genesis_get_stats(skge, data);
  361. else
  362. yukon_get_stats(skge, data);
  363. }
  364. /* Use hardware MIB variables for critical path statistics and
  365. * transmit feedback not reported at interrupt.
  366. * Other errors are accounted for in interrupt handler.
  367. */
  368. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  369. {
  370. struct skge_port *skge = netdev_priv(dev);
  371. u64 data[ARRAY_SIZE(skge_stats)];
  372. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  373. genesis_get_stats(skge, data);
  374. else
  375. yukon_get_stats(skge, data);
  376. dev->stats.tx_bytes = data[0];
  377. dev->stats.rx_bytes = data[1];
  378. dev->stats.tx_packets = data[2] + data[4] + data[6];
  379. dev->stats.rx_packets = data[3] + data[5] + data[7];
  380. dev->stats.multicast = data[3] + data[5];
  381. dev->stats.collisions = data[10];
  382. dev->stats.tx_aborted_errors = data[12];
  383. return &dev->stats;
  384. }
  385. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  386. {
  387. int i;
  388. switch (stringset) {
  389. case ETH_SS_STATS:
  390. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  391. memcpy(data + i * ETH_GSTRING_LEN,
  392. skge_stats[i].name, ETH_GSTRING_LEN);
  393. break;
  394. }
  395. }
  396. static void skge_get_ring_param(struct net_device *dev,
  397. struct ethtool_ringparam *p)
  398. {
  399. struct skge_port *skge = netdev_priv(dev);
  400. p->rx_max_pending = MAX_RX_RING_SIZE;
  401. p->tx_max_pending = MAX_TX_RING_SIZE;
  402. p->rx_mini_max_pending = 0;
  403. p->rx_jumbo_max_pending = 0;
  404. p->rx_pending = skge->rx_ring.count;
  405. p->tx_pending = skge->tx_ring.count;
  406. p->rx_mini_pending = 0;
  407. p->rx_jumbo_pending = 0;
  408. }
  409. static int skge_set_ring_param(struct net_device *dev,
  410. struct ethtool_ringparam *p)
  411. {
  412. struct skge_port *skge = netdev_priv(dev);
  413. int err = 0;
  414. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  415. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  416. return -EINVAL;
  417. skge->rx_ring.count = p->rx_pending;
  418. skge->tx_ring.count = p->tx_pending;
  419. if (netif_running(dev)) {
  420. skge_down(dev);
  421. err = skge_up(dev);
  422. if (err)
  423. dev_close(dev);
  424. }
  425. return err;
  426. }
  427. static u32 skge_get_msglevel(struct net_device *netdev)
  428. {
  429. struct skge_port *skge = netdev_priv(netdev);
  430. return skge->msg_enable;
  431. }
  432. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  433. {
  434. struct skge_port *skge = netdev_priv(netdev);
  435. skge->msg_enable = value;
  436. }
  437. static int skge_nway_reset(struct net_device *dev)
  438. {
  439. struct skge_port *skge = netdev_priv(dev);
  440. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  441. return -EINVAL;
  442. skge_phy_reset(skge);
  443. return 0;
  444. }
  445. static int skge_set_sg(struct net_device *dev, u32 data)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. struct skge_hw *hw = skge->hw;
  449. if (hw->chip_id == CHIP_ID_GENESIS && data)
  450. return -EOPNOTSUPP;
  451. return ethtool_op_set_sg(dev, data);
  452. }
  453. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  454. {
  455. struct skge_port *skge = netdev_priv(dev);
  456. struct skge_hw *hw = skge->hw;
  457. if (hw->chip_id == CHIP_ID_GENESIS && data)
  458. return -EOPNOTSUPP;
  459. return ethtool_op_set_tx_csum(dev, data);
  460. }
  461. static u32 skge_get_rx_csum(struct net_device *dev)
  462. {
  463. struct skge_port *skge = netdev_priv(dev);
  464. return skge->rx_csum;
  465. }
  466. /* Only Yukon supports checksum offload. */
  467. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  471. return -EOPNOTSUPP;
  472. skge->rx_csum = data;
  473. return 0;
  474. }
  475. static void skge_get_pauseparam(struct net_device *dev,
  476. struct ethtool_pauseparam *ecmd)
  477. {
  478. struct skge_port *skge = netdev_priv(dev);
  479. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  480. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  481. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  482. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  483. }
  484. static int skge_set_pauseparam(struct net_device *dev,
  485. struct ethtool_pauseparam *ecmd)
  486. {
  487. struct skge_port *skge = netdev_priv(dev);
  488. struct ethtool_pauseparam old;
  489. int err = 0;
  490. skge_get_pauseparam(dev, &old);
  491. if (ecmd->autoneg != old.autoneg)
  492. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  493. else {
  494. if (ecmd->rx_pause && ecmd->tx_pause)
  495. skge->flow_control = FLOW_MODE_SYMMETRIC;
  496. else if (ecmd->rx_pause && !ecmd->tx_pause)
  497. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  498. else if (!ecmd->rx_pause && ecmd->tx_pause)
  499. skge->flow_control = FLOW_MODE_LOC_SEND;
  500. else
  501. skge->flow_control = FLOW_MODE_NONE;
  502. }
  503. if (netif_running(dev)) {
  504. skge_down(dev);
  505. err = skge_up(dev);
  506. if (err) {
  507. dev_close(dev);
  508. return err;
  509. }
  510. }
  511. return 0;
  512. }
  513. /* Chip internal frequency for clock calculations */
  514. static inline u32 hwkhz(const struct skge_hw *hw)
  515. {
  516. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  517. }
  518. /* Chip HZ to microseconds */
  519. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  520. {
  521. return (ticks * 1000) / hwkhz(hw);
  522. }
  523. /* Microseconds to chip HZ */
  524. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  525. {
  526. return hwkhz(hw) * usec / 1000;
  527. }
  528. static int skge_get_coalesce(struct net_device *dev,
  529. struct ethtool_coalesce *ecmd)
  530. {
  531. struct skge_port *skge = netdev_priv(dev);
  532. struct skge_hw *hw = skge->hw;
  533. int port = skge->port;
  534. ecmd->rx_coalesce_usecs = 0;
  535. ecmd->tx_coalesce_usecs = 0;
  536. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  537. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  538. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  539. if (msk & rxirqmask[port])
  540. ecmd->rx_coalesce_usecs = delay;
  541. if (msk & txirqmask[port])
  542. ecmd->tx_coalesce_usecs = delay;
  543. }
  544. return 0;
  545. }
  546. /* Note: interrupt timer is per board, but can turn on/off per port */
  547. static int skge_set_coalesce(struct net_device *dev,
  548. struct ethtool_coalesce *ecmd)
  549. {
  550. struct skge_port *skge = netdev_priv(dev);
  551. struct skge_hw *hw = skge->hw;
  552. int port = skge->port;
  553. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  554. u32 delay = 25;
  555. if (ecmd->rx_coalesce_usecs == 0)
  556. msk &= ~rxirqmask[port];
  557. else if (ecmd->rx_coalesce_usecs < 25 ||
  558. ecmd->rx_coalesce_usecs > 33333)
  559. return -EINVAL;
  560. else {
  561. msk |= rxirqmask[port];
  562. delay = ecmd->rx_coalesce_usecs;
  563. }
  564. if (ecmd->tx_coalesce_usecs == 0)
  565. msk &= ~txirqmask[port];
  566. else if (ecmd->tx_coalesce_usecs < 25 ||
  567. ecmd->tx_coalesce_usecs > 33333)
  568. return -EINVAL;
  569. else {
  570. msk |= txirqmask[port];
  571. delay = min(delay, ecmd->rx_coalesce_usecs);
  572. }
  573. skge_write32(hw, B2_IRQM_MSK, msk);
  574. if (msk == 0)
  575. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  576. else {
  577. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  578. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  579. }
  580. return 0;
  581. }
  582. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  583. static void skge_led(struct skge_port *skge, enum led_mode mode)
  584. {
  585. struct skge_hw *hw = skge->hw;
  586. int port = skge->port;
  587. spin_lock_bh(&hw->phy_lock);
  588. if (hw->chip_id == CHIP_ID_GENESIS) {
  589. switch (mode) {
  590. case LED_MODE_OFF:
  591. if (hw->phy_type == SK_PHY_BCOM)
  592. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  593. else {
  594. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  595. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  596. }
  597. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  598. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  599. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  600. break;
  601. case LED_MODE_ON:
  602. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  603. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  604. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  605. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  606. break;
  607. case LED_MODE_TST:
  608. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  609. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  610. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  611. if (hw->phy_type == SK_PHY_BCOM)
  612. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  613. else {
  614. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  615. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  616. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  617. }
  618. }
  619. } else {
  620. switch (mode) {
  621. case LED_MODE_OFF:
  622. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  623. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  624. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  625. PHY_M_LED_MO_10(MO_LED_OFF) |
  626. PHY_M_LED_MO_100(MO_LED_OFF) |
  627. PHY_M_LED_MO_1000(MO_LED_OFF) |
  628. PHY_M_LED_MO_RX(MO_LED_OFF));
  629. break;
  630. case LED_MODE_ON:
  631. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  632. PHY_M_LED_PULS_DUR(PULS_170MS) |
  633. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  634. PHY_M_LEDC_TX_CTRL |
  635. PHY_M_LEDC_DP_CTRL);
  636. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  637. PHY_M_LED_MO_RX(MO_LED_OFF) |
  638. (skge->speed == SPEED_100 ?
  639. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  640. break;
  641. case LED_MODE_TST:
  642. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  643. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  644. PHY_M_LED_MO_DUP(MO_LED_ON) |
  645. PHY_M_LED_MO_10(MO_LED_ON) |
  646. PHY_M_LED_MO_100(MO_LED_ON) |
  647. PHY_M_LED_MO_1000(MO_LED_ON) |
  648. PHY_M_LED_MO_RX(MO_LED_ON));
  649. }
  650. }
  651. spin_unlock_bh(&hw->phy_lock);
  652. }
  653. /* blink LED's for finding board */
  654. static int skge_phys_id(struct net_device *dev, u32 data)
  655. {
  656. struct skge_port *skge = netdev_priv(dev);
  657. unsigned long ms;
  658. enum led_mode mode = LED_MODE_TST;
  659. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  660. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  661. else
  662. ms = data * 1000;
  663. while (ms > 0) {
  664. skge_led(skge, mode);
  665. mode ^= LED_MODE_TST;
  666. if (msleep_interruptible(BLINK_MS))
  667. break;
  668. ms -= BLINK_MS;
  669. }
  670. /* back to regular LED state */
  671. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  672. return 0;
  673. }
  674. static int skge_get_eeprom_len(struct net_device *dev)
  675. {
  676. struct skge_port *skge = netdev_priv(dev);
  677. u32 reg2;
  678. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  679. return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  680. }
  681. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  682. {
  683. u32 val;
  684. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  685. do {
  686. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  687. } while (!(offset & PCI_VPD_ADDR_F));
  688. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  689. return val;
  690. }
  691. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  692. {
  693. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  694. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  695. offset | PCI_VPD_ADDR_F);
  696. do {
  697. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  698. } while (offset & PCI_VPD_ADDR_F);
  699. }
  700. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  701. u8 *data)
  702. {
  703. struct skge_port *skge = netdev_priv(dev);
  704. struct pci_dev *pdev = skge->hw->pdev;
  705. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  706. int length = eeprom->len;
  707. u16 offset = eeprom->offset;
  708. if (!cap)
  709. return -EINVAL;
  710. eeprom->magic = SKGE_EEPROM_MAGIC;
  711. while (length > 0) {
  712. u32 val = skge_vpd_read(pdev, cap, offset);
  713. int n = min_t(int, length, sizeof(val));
  714. memcpy(data, &val, n);
  715. length -= n;
  716. data += n;
  717. offset += n;
  718. }
  719. return 0;
  720. }
  721. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  722. u8 *data)
  723. {
  724. struct skge_port *skge = netdev_priv(dev);
  725. struct pci_dev *pdev = skge->hw->pdev;
  726. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  727. int length = eeprom->len;
  728. u16 offset = eeprom->offset;
  729. if (!cap)
  730. return -EINVAL;
  731. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  732. return -EINVAL;
  733. while (length > 0) {
  734. u32 val;
  735. int n = min_t(int, length, sizeof(val));
  736. if (n < sizeof(val))
  737. val = skge_vpd_read(pdev, cap, offset);
  738. memcpy(&val, data, n);
  739. skge_vpd_write(pdev, cap, offset, val);
  740. length -= n;
  741. data += n;
  742. offset += n;
  743. }
  744. return 0;
  745. }
  746. static const struct ethtool_ops skge_ethtool_ops = {
  747. .get_settings = skge_get_settings,
  748. .set_settings = skge_set_settings,
  749. .get_drvinfo = skge_get_drvinfo,
  750. .get_regs_len = skge_get_regs_len,
  751. .get_regs = skge_get_regs,
  752. .get_wol = skge_get_wol,
  753. .set_wol = skge_set_wol,
  754. .get_msglevel = skge_get_msglevel,
  755. .set_msglevel = skge_set_msglevel,
  756. .nway_reset = skge_nway_reset,
  757. .get_link = ethtool_op_get_link,
  758. .get_eeprom_len = skge_get_eeprom_len,
  759. .get_eeprom = skge_get_eeprom,
  760. .set_eeprom = skge_set_eeprom,
  761. .get_ringparam = skge_get_ring_param,
  762. .set_ringparam = skge_set_ring_param,
  763. .get_pauseparam = skge_get_pauseparam,
  764. .set_pauseparam = skge_set_pauseparam,
  765. .get_coalesce = skge_get_coalesce,
  766. .set_coalesce = skge_set_coalesce,
  767. .set_sg = skge_set_sg,
  768. .set_tx_csum = skge_set_tx_csum,
  769. .get_rx_csum = skge_get_rx_csum,
  770. .set_rx_csum = skge_set_rx_csum,
  771. .get_strings = skge_get_strings,
  772. .phys_id = skge_phys_id,
  773. .get_sset_count = skge_get_sset_count,
  774. .get_ethtool_stats = skge_get_ethtool_stats,
  775. };
  776. /*
  777. * Allocate ring elements and chain them together
  778. * One-to-one association of board descriptors with ring elements
  779. */
  780. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  781. {
  782. struct skge_tx_desc *d;
  783. struct skge_element *e;
  784. int i;
  785. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  786. if (!ring->start)
  787. return -ENOMEM;
  788. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  789. e->desc = d;
  790. if (i == ring->count - 1) {
  791. e->next = ring->start;
  792. d->next_offset = base;
  793. } else {
  794. e->next = e + 1;
  795. d->next_offset = base + (i+1) * sizeof(*d);
  796. }
  797. }
  798. ring->to_use = ring->to_clean = ring->start;
  799. return 0;
  800. }
  801. /* Allocate and setup a new buffer for receiving */
  802. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  803. struct sk_buff *skb, unsigned int bufsize)
  804. {
  805. struct skge_rx_desc *rd = e->desc;
  806. u64 map;
  807. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  808. PCI_DMA_FROMDEVICE);
  809. rd->dma_lo = map;
  810. rd->dma_hi = map >> 32;
  811. e->skb = skb;
  812. rd->csum1_start = ETH_HLEN;
  813. rd->csum2_start = ETH_HLEN;
  814. rd->csum1 = 0;
  815. rd->csum2 = 0;
  816. wmb();
  817. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  818. pci_unmap_addr_set(e, mapaddr, map);
  819. pci_unmap_len_set(e, maplen, bufsize);
  820. }
  821. /* Resume receiving using existing skb,
  822. * Note: DMA address is not changed by chip.
  823. * MTU not changed while receiver active.
  824. */
  825. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  826. {
  827. struct skge_rx_desc *rd = e->desc;
  828. rd->csum2 = 0;
  829. rd->csum2_start = ETH_HLEN;
  830. wmb();
  831. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  832. }
  833. /* Free all buffers in receive ring, assumes receiver stopped */
  834. static void skge_rx_clean(struct skge_port *skge)
  835. {
  836. struct skge_hw *hw = skge->hw;
  837. struct skge_ring *ring = &skge->rx_ring;
  838. struct skge_element *e;
  839. e = ring->start;
  840. do {
  841. struct skge_rx_desc *rd = e->desc;
  842. rd->control = 0;
  843. if (e->skb) {
  844. pci_unmap_single(hw->pdev,
  845. pci_unmap_addr(e, mapaddr),
  846. pci_unmap_len(e, maplen),
  847. PCI_DMA_FROMDEVICE);
  848. dev_kfree_skb(e->skb);
  849. e->skb = NULL;
  850. }
  851. } while ((e = e->next) != ring->start);
  852. }
  853. /* Allocate buffers for receive ring
  854. * For receive: to_clean is next received frame.
  855. */
  856. static int skge_rx_fill(struct net_device *dev)
  857. {
  858. struct skge_port *skge = netdev_priv(dev);
  859. struct skge_ring *ring = &skge->rx_ring;
  860. struct skge_element *e;
  861. e = ring->start;
  862. do {
  863. struct sk_buff *skb;
  864. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  865. GFP_KERNEL);
  866. if (!skb)
  867. return -ENOMEM;
  868. skb_reserve(skb, NET_IP_ALIGN);
  869. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  870. } while ( (e = e->next) != ring->start);
  871. ring->to_clean = ring->start;
  872. return 0;
  873. }
  874. static const char *skge_pause(enum pause_status status)
  875. {
  876. switch(status) {
  877. case FLOW_STAT_NONE:
  878. return "none";
  879. case FLOW_STAT_REM_SEND:
  880. return "rx only";
  881. case FLOW_STAT_LOC_SEND:
  882. return "tx_only";
  883. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  884. return "both";
  885. default:
  886. return "indeterminated";
  887. }
  888. }
  889. static void skge_link_up(struct skge_port *skge)
  890. {
  891. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  892. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  893. netif_carrier_on(skge->netdev);
  894. netif_wake_queue(skge->netdev);
  895. if (netif_msg_link(skge)) {
  896. printk(KERN_INFO PFX
  897. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  898. skge->netdev->name, skge->speed,
  899. skge->duplex == DUPLEX_FULL ? "full" : "half",
  900. skge_pause(skge->flow_status));
  901. }
  902. }
  903. static void skge_link_down(struct skge_port *skge)
  904. {
  905. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  906. netif_carrier_off(skge->netdev);
  907. netif_stop_queue(skge->netdev);
  908. if (netif_msg_link(skge))
  909. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  910. }
  911. static void xm_link_down(struct skge_hw *hw, int port)
  912. {
  913. struct net_device *dev = hw->dev[port];
  914. struct skge_port *skge = netdev_priv(dev);
  915. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  916. if (netif_carrier_ok(dev))
  917. skge_link_down(skge);
  918. }
  919. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  920. {
  921. int i;
  922. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  923. *val = xm_read16(hw, port, XM_PHY_DATA);
  924. if (hw->phy_type == SK_PHY_XMAC)
  925. goto ready;
  926. for (i = 0; i < PHY_RETRIES; i++) {
  927. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  928. goto ready;
  929. udelay(1);
  930. }
  931. return -ETIMEDOUT;
  932. ready:
  933. *val = xm_read16(hw, port, XM_PHY_DATA);
  934. return 0;
  935. }
  936. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  937. {
  938. u16 v = 0;
  939. if (__xm_phy_read(hw, port, reg, &v))
  940. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  941. hw->dev[port]->name);
  942. return v;
  943. }
  944. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  945. {
  946. int i;
  947. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  948. for (i = 0; i < PHY_RETRIES; i++) {
  949. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  950. goto ready;
  951. udelay(1);
  952. }
  953. return -EIO;
  954. ready:
  955. xm_write16(hw, port, XM_PHY_DATA, val);
  956. for (i = 0; i < PHY_RETRIES; i++) {
  957. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  958. return 0;
  959. udelay(1);
  960. }
  961. return -ETIMEDOUT;
  962. }
  963. static void genesis_init(struct skge_hw *hw)
  964. {
  965. /* set blink source counter */
  966. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  967. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  968. /* configure mac arbiter */
  969. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  970. /* configure mac arbiter timeout values */
  971. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  972. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  973. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  976. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  977. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  978. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  979. /* configure packet arbiter timeout */
  980. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  981. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  982. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  983. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  985. }
  986. static void genesis_reset(struct skge_hw *hw, int port)
  987. {
  988. const u8 zero[8] = { 0 };
  989. u32 reg;
  990. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  991. /* reset the statistics module */
  992. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  993. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  994. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  995. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  996. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  997. /* disable Broadcom PHY IRQ */
  998. if (hw->phy_type == SK_PHY_BCOM)
  999. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1000. xm_outhash(hw, port, XM_HSM, zero);
  1001. /* Flush TX and RX fifo */
  1002. reg = xm_read32(hw, port, XM_MODE);
  1003. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1004. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1005. }
  1006. /* Convert mode to MII values */
  1007. static const u16 phy_pause_map[] = {
  1008. [FLOW_MODE_NONE] = 0,
  1009. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1010. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1011. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1012. };
  1013. /* special defines for FIBER (88E1011S only) */
  1014. static const u16 fiber_pause_map[] = {
  1015. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1016. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1017. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1018. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1019. };
  1020. /* Check status of Broadcom phy link */
  1021. static void bcom_check_link(struct skge_hw *hw, int port)
  1022. {
  1023. struct net_device *dev = hw->dev[port];
  1024. struct skge_port *skge = netdev_priv(dev);
  1025. u16 status;
  1026. /* read twice because of latch */
  1027. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1028. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1029. if ((status & PHY_ST_LSYNC) == 0) {
  1030. xm_link_down(hw, port);
  1031. return;
  1032. }
  1033. if (skge->autoneg == AUTONEG_ENABLE) {
  1034. u16 lpa, aux;
  1035. if (!(status & PHY_ST_AN_OVER))
  1036. return;
  1037. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1038. if (lpa & PHY_B_AN_RF) {
  1039. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1040. dev->name);
  1041. return;
  1042. }
  1043. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1044. /* Check Duplex mismatch */
  1045. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1046. case PHY_B_RES_1000FD:
  1047. skge->duplex = DUPLEX_FULL;
  1048. break;
  1049. case PHY_B_RES_1000HD:
  1050. skge->duplex = DUPLEX_HALF;
  1051. break;
  1052. default:
  1053. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1054. dev->name);
  1055. return;
  1056. }
  1057. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1058. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1059. case PHY_B_AS_PAUSE_MSK:
  1060. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1061. break;
  1062. case PHY_B_AS_PRR:
  1063. skge->flow_status = FLOW_STAT_REM_SEND;
  1064. break;
  1065. case PHY_B_AS_PRT:
  1066. skge->flow_status = FLOW_STAT_LOC_SEND;
  1067. break;
  1068. default:
  1069. skge->flow_status = FLOW_STAT_NONE;
  1070. }
  1071. skge->speed = SPEED_1000;
  1072. }
  1073. if (!netif_carrier_ok(dev))
  1074. genesis_link_up(skge);
  1075. }
  1076. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1077. * Phy on for 100 or 10Mbit operation
  1078. */
  1079. static void bcom_phy_init(struct skge_port *skge)
  1080. {
  1081. struct skge_hw *hw = skge->hw;
  1082. int port = skge->port;
  1083. int i;
  1084. u16 id1, r, ext, ctl;
  1085. /* magic workaround patterns for Broadcom */
  1086. static const struct {
  1087. u16 reg;
  1088. u16 val;
  1089. } A1hack[] = {
  1090. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1091. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1092. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1093. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1094. }, C0hack[] = {
  1095. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1096. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1097. };
  1098. /* read Id from external PHY (all have the same address) */
  1099. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1100. /* Optimize MDIO transfer by suppressing preamble. */
  1101. r = xm_read16(hw, port, XM_MMU_CMD);
  1102. r |= XM_MMU_NO_PRE;
  1103. xm_write16(hw, port, XM_MMU_CMD,r);
  1104. switch (id1) {
  1105. case PHY_BCOM_ID1_C0:
  1106. /*
  1107. * Workaround BCOM Errata for the C0 type.
  1108. * Write magic patterns to reserved registers.
  1109. */
  1110. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1111. xm_phy_write(hw, port,
  1112. C0hack[i].reg, C0hack[i].val);
  1113. break;
  1114. case PHY_BCOM_ID1_A1:
  1115. /*
  1116. * Workaround BCOM Errata for the A1 type.
  1117. * Write magic patterns to reserved registers.
  1118. */
  1119. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1120. xm_phy_write(hw, port,
  1121. A1hack[i].reg, A1hack[i].val);
  1122. break;
  1123. }
  1124. /*
  1125. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1126. * Disable Power Management after reset.
  1127. */
  1128. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1129. r |= PHY_B_AC_DIS_PM;
  1130. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1131. /* Dummy read */
  1132. xm_read16(hw, port, XM_ISRC);
  1133. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1134. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1135. if (skge->autoneg == AUTONEG_ENABLE) {
  1136. /*
  1137. * Workaround BCOM Errata #1 for the C5 type.
  1138. * 1000Base-T Link Acquisition Failure in Slave Mode
  1139. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1140. */
  1141. u16 adv = PHY_B_1000C_RD;
  1142. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1143. adv |= PHY_B_1000C_AHD;
  1144. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1145. adv |= PHY_B_1000C_AFD;
  1146. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1147. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1148. } else {
  1149. if (skge->duplex == DUPLEX_FULL)
  1150. ctl |= PHY_CT_DUP_MD;
  1151. /* Force to slave */
  1152. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1153. }
  1154. /* Set autonegotiation pause parameters */
  1155. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1156. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1157. /* Handle Jumbo frames */
  1158. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1159. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1160. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1161. ext |= PHY_B_PEC_HIGH_LA;
  1162. }
  1163. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1164. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1165. /* Use link status change interrupt */
  1166. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1167. }
  1168. static void xm_phy_init(struct skge_port *skge)
  1169. {
  1170. struct skge_hw *hw = skge->hw;
  1171. int port = skge->port;
  1172. u16 ctrl = 0;
  1173. if (skge->autoneg == AUTONEG_ENABLE) {
  1174. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1175. ctrl |= PHY_X_AN_HD;
  1176. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1177. ctrl |= PHY_X_AN_FD;
  1178. ctrl |= fiber_pause_map[skge->flow_control];
  1179. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1180. /* Restart Auto-negotiation */
  1181. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1182. } else {
  1183. /* Set DuplexMode in Config register */
  1184. if (skge->duplex == DUPLEX_FULL)
  1185. ctrl |= PHY_CT_DUP_MD;
  1186. /*
  1187. * Do NOT enable Auto-negotiation here. This would hold
  1188. * the link down because no IDLEs are transmitted
  1189. */
  1190. }
  1191. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1192. /* Poll PHY for status changes */
  1193. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1194. }
  1195. static int xm_check_link(struct net_device *dev)
  1196. {
  1197. struct skge_port *skge = netdev_priv(dev);
  1198. struct skge_hw *hw = skge->hw;
  1199. int port = skge->port;
  1200. u16 status;
  1201. /* read twice because of latch */
  1202. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1203. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1204. if ((status & PHY_ST_LSYNC) == 0) {
  1205. xm_link_down(hw, port);
  1206. return 0;
  1207. }
  1208. if (skge->autoneg == AUTONEG_ENABLE) {
  1209. u16 lpa, res;
  1210. if (!(status & PHY_ST_AN_OVER))
  1211. return 0;
  1212. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1213. if (lpa & PHY_B_AN_RF) {
  1214. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1215. dev->name);
  1216. return 0;
  1217. }
  1218. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1219. /* Check Duplex mismatch */
  1220. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1221. case PHY_X_RS_FD:
  1222. skge->duplex = DUPLEX_FULL;
  1223. break;
  1224. case PHY_X_RS_HD:
  1225. skge->duplex = DUPLEX_HALF;
  1226. break;
  1227. default:
  1228. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1229. dev->name);
  1230. return 0;
  1231. }
  1232. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1233. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1234. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1235. (lpa & PHY_X_P_SYM_MD))
  1236. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1237. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1238. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1239. /* Enable PAUSE receive, disable PAUSE transmit */
  1240. skge->flow_status = FLOW_STAT_REM_SEND;
  1241. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1242. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1243. /* Disable PAUSE receive, enable PAUSE transmit */
  1244. skge->flow_status = FLOW_STAT_LOC_SEND;
  1245. else
  1246. skge->flow_status = FLOW_STAT_NONE;
  1247. skge->speed = SPEED_1000;
  1248. }
  1249. if (!netif_carrier_ok(dev))
  1250. genesis_link_up(skge);
  1251. return 1;
  1252. }
  1253. /* Poll to check for link coming up.
  1254. *
  1255. * Since internal PHY is wired to a level triggered pin, can't
  1256. * get an interrupt when carrier is detected, need to poll for
  1257. * link coming up.
  1258. */
  1259. static void xm_link_timer(unsigned long arg)
  1260. {
  1261. struct skge_port *skge = (struct skge_port *) arg;
  1262. struct net_device *dev = skge->netdev;
  1263. struct skge_hw *hw = skge->hw;
  1264. int port = skge->port;
  1265. int i;
  1266. unsigned long flags;
  1267. if (!netif_running(dev))
  1268. return;
  1269. spin_lock_irqsave(&hw->phy_lock, flags);
  1270. /*
  1271. * Verify that the link by checking GPIO register three times.
  1272. * This pin has the signal from the link_sync pin connected to it.
  1273. */
  1274. for (i = 0; i < 3; i++) {
  1275. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1276. goto link_down;
  1277. }
  1278. /* Re-enable interrupt to detect link down */
  1279. if (xm_check_link(dev)) {
  1280. u16 msk = xm_read16(hw, port, XM_IMSK);
  1281. msk &= ~XM_IS_INP_ASS;
  1282. xm_write16(hw, port, XM_IMSK, msk);
  1283. xm_read16(hw, port, XM_ISRC);
  1284. } else {
  1285. link_down:
  1286. mod_timer(&skge->link_timer,
  1287. round_jiffies(jiffies + LINK_HZ));
  1288. }
  1289. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1290. }
  1291. static void genesis_mac_init(struct skge_hw *hw, int port)
  1292. {
  1293. struct net_device *dev = hw->dev[port];
  1294. struct skge_port *skge = netdev_priv(dev);
  1295. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1296. int i;
  1297. u32 r;
  1298. const u8 zero[6] = { 0 };
  1299. for (i = 0; i < 10; i++) {
  1300. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1301. MFF_SET_MAC_RST);
  1302. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1303. goto reset_ok;
  1304. udelay(1);
  1305. }
  1306. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1307. reset_ok:
  1308. /* Unreset the XMAC. */
  1309. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1310. /*
  1311. * Perform additional initialization for external PHYs,
  1312. * namely for the 1000baseTX cards that use the XMAC's
  1313. * GMII mode.
  1314. */
  1315. if (hw->phy_type != SK_PHY_XMAC) {
  1316. /* Take external Phy out of reset */
  1317. r = skge_read32(hw, B2_GP_IO);
  1318. if (port == 0)
  1319. r |= GP_DIR_0|GP_IO_0;
  1320. else
  1321. r |= GP_DIR_2|GP_IO_2;
  1322. skge_write32(hw, B2_GP_IO, r);
  1323. /* Enable GMII interface */
  1324. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1325. }
  1326. switch(hw->phy_type) {
  1327. case SK_PHY_XMAC:
  1328. xm_phy_init(skge);
  1329. break;
  1330. case SK_PHY_BCOM:
  1331. bcom_phy_init(skge);
  1332. bcom_check_link(hw, port);
  1333. }
  1334. /* Set Station Address */
  1335. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1336. /* We don't use match addresses so clear */
  1337. for (i = 1; i < 16; i++)
  1338. xm_outaddr(hw, port, XM_EXM(i), zero);
  1339. /* Clear MIB counters */
  1340. xm_write16(hw, port, XM_STAT_CMD,
  1341. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1342. /* Clear two times according to Errata #3 */
  1343. xm_write16(hw, port, XM_STAT_CMD,
  1344. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1345. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1346. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1347. /* We don't need the FCS appended to the packet. */
  1348. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1349. if (jumbo)
  1350. r |= XM_RX_BIG_PK_OK;
  1351. if (skge->duplex == DUPLEX_HALF) {
  1352. /*
  1353. * If in manual half duplex mode the other side might be in
  1354. * full duplex mode, so ignore if a carrier extension is not seen
  1355. * on frames received
  1356. */
  1357. r |= XM_RX_DIS_CEXT;
  1358. }
  1359. xm_write16(hw, port, XM_RX_CMD, r);
  1360. /* We want short frames padded to 60 bytes. */
  1361. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1362. /* Increase threshold for jumbo frames on dual port */
  1363. if (hw->ports > 1 && jumbo)
  1364. xm_write16(hw, port, XM_TX_THR, 1020);
  1365. else
  1366. xm_write16(hw, port, XM_TX_THR, 512);
  1367. /*
  1368. * Enable the reception of all error frames. This is is
  1369. * a necessary evil due to the design of the XMAC. The
  1370. * XMAC's receive FIFO is only 8K in size, however jumbo
  1371. * frames can be up to 9000 bytes in length. When bad
  1372. * frame filtering is enabled, the XMAC's RX FIFO operates
  1373. * in 'store and forward' mode. For this to work, the
  1374. * entire frame has to fit into the FIFO, but that means
  1375. * that jumbo frames larger than 8192 bytes will be
  1376. * truncated. Disabling all bad frame filtering causes
  1377. * the RX FIFO to operate in streaming mode, in which
  1378. * case the XMAC will start transferring frames out of the
  1379. * RX FIFO as soon as the FIFO threshold is reached.
  1380. */
  1381. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1382. /*
  1383. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1384. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1385. * and 'Octets Rx OK Hi Cnt Ov'.
  1386. */
  1387. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1388. /*
  1389. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1390. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1391. * and 'Octets Tx OK Hi Cnt Ov'.
  1392. */
  1393. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1394. /* Configure MAC arbiter */
  1395. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1396. /* configure timeout values */
  1397. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1398. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1399. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1400. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1401. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1402. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1403. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1404. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1405. /* Configure Rx MAC FIFO */
  1406. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1407. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1408. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1409. /* Configure Tx MAC FIFO */
  1410. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1411. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1412. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1413. if (jumbo) {
  1414. /* Enable frame flushing if jumbo frames used */
  1415. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1416. } else {
  1417. /* enable timeout timers if normal frames */
  1418. skge_write16(hw, B3_PA_CTRL,
  1419. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1420. }
  1421. }
  1422. static void genesis_stop(struct skge_port *skge)
  1423. {
  1424. struct skge_hw *hw = skge->hw;
  1425. int port = skge->port;
  1426. unsigned retries = 1000;
  1427. u16 cmd;
  1428. /* Disable Tx and Rx */
  1429. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1430. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1431. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1432. genesis_reset(hw, port);
  1433. /* Clear Tx packet arbiter timeout IRQ */
  1434. skge_write16(hw, B3_PA_CTRL,
  1435. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1436. /* Reset the MAC */
  1437. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1438. do {
  1439. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1440. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1441. break;
  1442. } while (--retries > 0);
  1443. /* For external PHYs there must be special handling */
  1444. if (hw->phy_type != SK_PHY_XMAC) {
  1445. u32 reg = skge_read32(hw, B2_GP_IO);
  1446. if (port == 0) {
  1447. reg |= GP_DIR_0;
  1448. reg &= ~GP_IO_0;
  1449. } else {
  1450. reg |= GP_DIR_2;
  1451. reg &= ~GP_IO_2;
  1452. }
  1453. skge_write32(hw, B2_GP_IO, reg);
  1454. skge_read32(hw, B2_GP_IO);
  1455. }
  1456. xm_write16(hw, port, XM_MMU_CMD,
  1457. xm_read16(hw, port, XM_MMU_CMD)
  1458. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1459. xm_read16(hw, port, XM_MMU_CMD);
  1460. }
  1461. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1462. {
  1463. struct skge_hw *hw = skge->hw;
  1464. int port = skge->port;
  1465. int i;
  1466. unsigned long timeout = jiffies + HZ;
  1467. xm_write16(hw, port,
  1468. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1469. /* wait for update to complete */
  1470. while (xm_read16(hw, port, XM_STAT_CMD)
  1471. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1472. if (time_after(jiffies, timeout))
  1473. break;
  1474. udelay(10);
  1475. }
  1476. /* special case for 64 bit octet counter */
  1477. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1478. | xm_read32(hw, port, XM_TXO_OK_LO);
  1479. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1480. | xm_read32(hw, port, XM_RXO_OK_LO);
  1481. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1482. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1483. }
  1484. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1485. {
  1486. struct net_device *dev = hw->dev[port];
  1487. struct skge_port *skge = netdev_priv(dev);
  1488. u16 status = xm_read16(hw, port, XM_ISRC);
  1489. if (netif_msg_intr(skge))
  1490. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1491. dev->name, status);
  1492. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1493. xm_link_down(hw, port);
  1494. mod_timer(&skge->link_timer, jiffies + 1);
  1495. }
  1496. if (status & XM_IS_TXF_UR) {
  1497. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1498. ++dev->stats.tx_fifo_errors;
  1499. }
  1500. }
  1501. static void genesis_link_up(struct skge_port *skge)
  1502. {
  1503. struct skge_hw *hw = skge->hw;
  1504. int port = skge->port;
  1505. u16 cmd, msk;
  1506. u32 mode;
  1507. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1508. /*
  1509. * enabling pause frame reception is required for 1000BT
  1510. * because the XMAC is not reset if the link is going down
  1511. */
  1512. if (skge->flow_status == FLOW_STAT_NONE ||
  1513. skge->flow_status == FLOW_STAT_LOC_SEND)
  1514. /* Disable Pause Frame Reception */
  1515. cmd |= XM_MMU_IGN_PF;
  1516. else
  1517. /* Enable Pause Frame Reception */
  1518. cmd &= ~XM_MMU_IGN_PF;
  1519. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1520. mode = xm_read32(hw, port, XM_MODE);
  1521. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1522. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1523. /*
  1524. * Configure Pause Frame Generation
  1525. * Use internal and external Pause Frame Generation.
  1526. * Sending pause frames is edge triggered.
  1527. * Send a Pause frame with the maximum pause time if
  1528. * internal oder external FIFO full condition occurs.
  1529. * Send a zero pause time frame to re-start transmission.
  1530. */
  1531. /* XM_PAUSE_DA = '010000C28001' (default) */
  1532. /* XM_MAC_PTIME = 0xffff (maximum) */
  1533. /* remember this value is defined in big endian (!) */
  1534. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1535. mode |= XM_PAUSE_MODE;
  1536. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1537. } else {
  1538. /*
  1539. * disable pause frame generation is required for 1000BT
  1540. * because the XMAC is not reset if the link is going down
  1541. */
  1542. /* Disable Pause Mode in Mode Register */
  1543. mode &= ~XM_PAUSE_MODE;
  1544. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1545. }
  1546. xm_write32(hw, port, XM_MODE, mode);
  1547. /* Turn on detection of Tx underrun */
  1548. msk = xm_read16(hw, port, XM_IMSK);
  1549. msk &= ~XM_IS_TXF_UR;
  1550. xm_write16(hw, port, XM_IMSK, msk);
  1551. xm_read16(hw, port, XM_ISRC);
  1552. /* get MMU Command Reg. */
  1553. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1554. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1555. cmd |= XM_MMU_GMII_FD;
  1556. /*
  1557. * Workaround BCOM Errata (#10523) for all BCom Phys
  1558. * Enable Power Management after link up
  1559. */
  1560. if (hw->phy_type == SK_PHY_BCOM) {
  1561. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1562. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1563. & ~PHY_B_AC_DIS_PM);
  1564. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1565. }
  1566. /* enable Rx/Tx */
  1567. xm_write16(hw, port, XM_MMU_CMD,
  1568. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1569. skge_link_up(skge);
  1570. }
  1571. static inline void bcom_phy_intr(struct skge_port *skge)
  1572. {
  1573. struct skge_hw *hw = skge->hw;
  1574. int port = skge->port;
  1575. u16 isrc;
  1576. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1577. if (netif_msg_intr(skge))
  1578. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1579. skge->netdev->name, isrc);
  1580. if (isrc & PHY_B_IS_PSE)
  1581. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1582. hw->dev[port]->name);
  1583. /* Workaround BCom Errata:
  1584. * enable and disable loopback mode if "NO HCD" occurs.
  1585. */
  1586. if (isrc & PHY_B_IS_NO_HDCL) {
  1587. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1588. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1589. ctrl | PHY_CT_LOOP);
  1590. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1591. ctrl & ~PHY_CT_LOOP);
  1592. }
  1593. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1594. bcom_check_link(hw, port);
  1595. }
  1596. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1597. {
  1598. int i;
  1599. gma_write16(hw, port, GM_SMI_DATA, val);
  1600. gma_write16(hw, port, GM_SMI_CTRL,
  1601. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1602. for (i = 0; i < PHY_RETRIES; i++) {
  1603. udelay(1);
  1604. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1605. return 0;
  1606. }
  1607. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1608. hw->dev[port]->name);
  1609. return -EIO;
  1610. }
  1611. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1612. {
  1613. int i;
  1614. gma_write16(hw, port, GM_SMI_CTRL,
  1615. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1616. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1617. for (i = 0; i < PHY_RETRIES; i++) {
  1618. udelay(1);
  1619. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1620. goto ready;
  1621. }
  1622. return -ETIMEDOUT;
  1623. ready:
  1624. *val = gma_read16(hw, port, GM_SMI_DATA);
  1625. return 0;
  1626. }
  1627. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1628. {
  1629. u16 v = 0;
  1630. if (__gm_phy_read(hw, port, reg, &v))
  1631. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1632. hw->dev[port]->name);
  1633. return v;
  1634. }
  1635. /* Marvell Phy Initialization */
  1636. static void yukon_init(struct skge_hw *hw, int port)
  1637. {
  1638. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1639. u16 ctrl, ct1000, adv;
  1640. if (skge->autoneg == AUTONEG_ENABLE) {
  1641. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1642. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1643. PHY_M_EC_MAC_S_MSK);
  1644. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1645. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1646. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1647. }
  1648. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1649. if (skge->autoneg == AUTONEG_DISABLE)
  1650. ctrl &= ~PHY_CT_ANE;
  1651. ctrl |= PHY_CT_RESET;
  1652. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1653. ctrl = 0;
  1654. ct1000 = 0;
  1655. adv = PHY_AN_CSMA;
  1656. if (skge->autoneg == AUTONEG_ENABLE) {
  1657. if (hw->copper) {
  1658. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1659. ct1000 |= PHY_M_1000C_AFD;
  1660. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1661. ct1000 |= PHY_M_1000C_AHD;
  1662. if (skge->advertising & ADVERTISED_100baseT_Full)
  1663. adv |= PHY_M_AN_100_FD;
  1664. if (skge->advertising & ADVERTISED_100baseT_Half)
  1665. adv |= PHY_M_AN_100_HD;
  1666. if (skge->advertising & ADVERTISED_10baseT_Full)
  1667. adv |= PHY_M_AN_10_FD;
  1668. if (skge->advertising & ADVERTISED_10baseT_Half)
  1669. adv |= PHY_M_AN_10_HD;
  1670. /* Set Flow-control capabilities */
  1671. adv |= phy_pause_map[skge->flow_control];
  1672. } else {
  1673. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1674. adv |= PHY_M_AN_1000X_AFD;
  1675. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1676. adv |= PHY_M_AN_1000X_AHD;
  1677. adv |= fiber_pause_map[skge->flow_control];
  1678. }
  1679. /* Restart Auto-negotiation */
  1680. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1681. } else {
  1682. /* forced speed/duplex settings */
  1683. ct1000 = PHY_M_1000C_MSE;
  1684. if (skge->duplex == DUPLEX_FULL)
  1685. ctrl |= PHY_CT_DUP_MD;
  1686. switch (skge->speed) {
  1687. case SPEED_1000:
  1688. ctrl |= PHY_CT_SP1000;
  1689. break;
  1690. case SPEED_100:
  1691. ctrl |= PHY_CT_SP100;
  1692. break;
  1693. }
  1694. ctrl |= PHY_CT_RESET;
  1695. }
  1696. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1697. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1698. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1699. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1700. if (skge->autoneg == AUTONEG_ENABLE)
  1701. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1702. else
  1703. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1704. }
  1705. static void yukon_reset(struct skge_hw *hw, int port)
  1706. {
  1707. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1708. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1709. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1710. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1711. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1712. gma_write16(hw, port, GM_RX_CTRL,
  1713. gma_read16(hw, port, GM_RX_CTRL)
  1714. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1715. }
  1716. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1717. static int is_yukon_lite_a0(struct skge_hw *hw)
  1718. {
  1719. u32 reg;
  1720. int ret;
  1721. if (hw->chip_id != CHIP_ID_YUKON)
  1722. return 0;
  1723. reg = skge_read32(hw, B2_FAR);
  1724. skge_write8(hw, B2_FAR + 3, 0xff);
  1725. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1726. skge_write32(hw, B2_FAR, reg);
  1727. return ret;
  1728. }
  1729. static void yukon_mac_init(struct skge_hw *hw, int port)
  1730. {
  1731. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1732. int i;
  1733. u32 reg;
  1734. const u8 *addr = hw->dev[port]->dev_addr;
  1735. /* WA code for COMA mode -- set PHY reset */
  1736. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1737. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1738. reg = skge_read32(hw, B2_GP_IO);
  1739. reg |= GP_DIR_9 | GP_IO_9;
  1740. skge_write32(hw, B2_GP_IO, reg);
  1741. }
  1742. /* hard reset */
  1743. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1744. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1745. /* WA code for COMA mode -- clear PHY reset */
  1746. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1747. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1748. reg = skge_read32(hw, B2_GP_IO);
  1749. reg |= GP_DIR_9;
  1750. reg &= ~GP_IO_9;
  1751. skge_write32(hw, B2_GP_IO, reg);
  1752. }
  1753. /* Set hardware config mode */
  1754. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1755. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1756. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1757. /* Clear GMC reset */
  1758. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1759. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1760. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1761. if (skge->autoneg == AUTONEG_DISABLE) {
  1762. reg = GM_GPCR_AU_ALL_DIS;
  1763. gma_write16(hw, port, GM_GP_CTRL,
  1764. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1765. switch (skge->speed) {
  1766. case SPEED_1000:
  1767. reg &= ~GM_GPCR_SPEED_100;
  1768. reg |= GM_GPCR_SPEED_1000;
  1769. break;
  1770. case SPEED_100:
  1771. reg &= ~GM_GPCR_SPEED_1000;
  1772. reg |= GM_GPCR_SPEED_100;
  1773. break;
  1774. case SPEED_10:
  1775. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1776. break;
  1777. }
  1778. if (skge->duplex == DUPLEX_FULL)
  1779. reg |= GM_GPCR_DUP_FULL;
  1780. } else
  1781. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1782. switch (skge->flow_control) {
  1783. case FLOW_MODE_NONE:
  1784. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1785. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1786. break;
  1787. case FLOW_MODE_LOC_SEND:
  1788. /* disable Rx flow-control */
  1789. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1790. break;
  1791. case FLOW_MODE_SYMMETRIC:
  1792. case FLOW_MODE_SYM_OR_REM:
  1793. /* enable Tx & Rx flow-control */
  1794. break;
  1795. }
  1796. gma_write16(hw, port, GM_GP_CTRL, reg);
  1797. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1798. yukon_init(hw, port);
  1799. /* MIB clear */
  1800. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1801. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1802. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1803. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1804. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1805. /* transmit control */
  1806. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1807. /* receive control reg: unicast + multicast + no FCS */
  1808. gma_write16(hw, port, GM_RX_CTRL,
  1809. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1810. /* transmit flow control */
  1811. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1812. /* transmit parameter */
  1813. gma_write16(hw, port, GM_TX_PARAM,
  1814. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1815. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1816. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1817. /* configure the Serial Mode Register */
  1818. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1819. | GM_SMOD_VLAN_ENA
  1820. | IPG_DATA_VAL(IPG_DATA_DEF);
  1821. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1822. reg |= GM_SMOD_JUMBO_ENA;
  1823. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1824. /* physical address: used for pause frames */
  1825. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1826. /* virtual address for data */
  1827. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1828. /* enable interrupt mask for counter overflows */
  1829. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1830. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1831. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1832. /* Initialize Mac Fifo */
  1833. /* Configure Rx MAC FIFO */
  1834. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1835. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1836. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1837. if (is_yukon_lite_a0(hw))
  1838. reg &= ~GMF_RX_F_FL_ON;
  1839. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1840. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1841. /*
  1842. * because Pause Packet Truncation in GMAC is not working
  1843. * we have to increase the Flush Threshold to 64 bytes
  1844. * in order to flush pause packets in Rx FIFO on Yukon-1
  1845. */
  1846. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1847. /* Configure Tx MAC FIFO */
  1848. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1849. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1850. }
  1851. /* Go into power down mode */
  1852. static void yukon_suspend(struct skge_hw *hw, int port)
  1853. {
  1854. u16 ctrl;
  1855. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1856. ctrl |= PHY_M_PC_POL_R_DIS;
  1857. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1858. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1859. ctrl |= PHY_CT_RESET;
  1860. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1861. /* switch IEEE compatible power down mode on */
  1862. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1863. ctrl |= PHY_CT_PDOWN;
  1864. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1865. }
  1866. static void yukon_stop(struct skge_port *skge)
  1867. {
  1868. struct skge_hw *hw = skge->hw;
  1869. int port = skge->port;
  1870. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1871. yukon_reset(hw, port);
  1872. gma_write16(hw, port, GM_GP_CTRL,
  1873. gma_read16(hw, port, GM_GP_CTRL)
  1874. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1875. gma_read16(hw, port, GM_GP_CTRL);
  1876. yukon_suspend(hw, port);
  1877. /* set GPHY Control reset */
  1878. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1879. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1880. }
  1881. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1882. {
  1883. struct skge_hw *hw = skge->hw;
  1884. int port = skge->port;
  1885. int i;
  1886. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1887. | gma_read32(hw, port, GM_TXO_OK_LO);
  1888. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1889. | gma_read32(hw, port, GM_RXO_OK_LO);
  1890. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1891. data[i] = gma_read32(hw, port,
  1892. skge_stats[i].gma_offset);
  1893. }
  1894. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1895. {
  1896. struct net_device *dev = hw->dev[port];
  1897. struct skge_port *skge = netdev_priv(dev);
  1898. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1899. if (netif_msg_intr(skge))
  1900. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1901. dev->name, status);
  1902. if (status & GM_IS_RX_FF_OR) {
  1903. ++dev->stats.rx_fifo_errors;
  1904. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1905. }
  1906. if (status & GM_IS_TX_FF_UR) {
  1907. ++dev->stats.tx_fifo_errors;
  1908. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1909. }
  1910. }
  1911. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1912. {
  1913. switch (aux & PHY_M_PS_SPEED_MSK) {
  1914. case PHY_M_PS_SPEED_1000:
  1915. return SPEED_1000;
  1916. case PHY_M_PS_SPEED_100:
  1917. return SPEED_100;
  1918. default:
  1919. return SPEED_10;
  1920. }
  1921. }
  1922. static void yukon_link_up(struct skge_port *skge)
  1923. {
  1924. struct skge_hw *hw = skge->hw;
  1925. int port = skge->port;
  1926. u16 reg;
  1927. /* Enable Transmit FIFO Underrun */
  1928. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1929. reg = gma_read16(hw, port, GM_GP_CTRL);
  1930. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1931. reg |= GM_GPCR_DUP_FULL;
  1932. /* enable Rx/Tx */
  1933. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1934. gma_write16(hw, port, GM_GP_CTRL, reg);
  1935. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1936. skge_link_up(skge);
  1937. }
  1938. static void yukon_link_down(struct skge_port *skge)
  1939. {
  1940. struct skge_hw *hw = skge->hw;
  1941. int port = skge->port;
  1942. u16 ctrl;
  1943. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1944. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1945. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1946. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1947. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1948. ctrl |= PHY_M_AN_ASP;
  1949. /* restore Asymmetric Pause bit */
  1950. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1951. }
  1952. skge_link_down(skge);
  1953. yukon_init(hw, port);
  1954. }
  1955. static void yukon_phy_intr(struct skge_port *skge)
  1956. {
  1957. struct skge_hw *hw = skge->hw;
  1958. int port = skge->port;
  1959. const char *reason = NULL;
  1960. u16 istatus, phystat;
  1961. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1962. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1963. if (netif_msg_intr(skge))
  1964. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1965. skge->netdev->name, istatus, phystat);
  1966. if (istatus & PHY_M_IS_AN_COMPL) {
  1967. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1968. & PHY_M_AN_RF) {
  1969. reason = "remote fault";
  1970. goto failed;
  1971. }
  1972. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1973. reason = "master/slave fault";
  1974. goto failed;
  1975. }
  1976. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1977. reason = "speed/duplex";
  1978. goto failed;
  1979. }
  1980. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1981. ? DUPLEX_FULL : DUPLEX_HALF;
  1982. skge->speed = yukon_speed(hw, phystat);
  1983. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1984. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1985. case PHY_M_PS_PAUSE_MSK:
  1986. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1987. break;
  1988. case PHY_M_PS_RX_P_EN:
  1989. skge->flow_status = FLOW_STAT_REM_SEND;
  1990. break;
  1991. case PHY_M_PS_TX_P_EN:
  1992. skge->flow_status = FLOW_STAT_LOC_SEND;
  1993. break;
  1994. default:
  1995. skge->flow_status = FLOW_STAT_NONE;
  1996. }
  1997. if (skge->flow_status == FLOW_STAT_NONE ||
  1998. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1999. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  2000. else
  2001. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  2002. yukon_link_up(skge);
  2003. return;
  2004. }
  2005. if (istatus & PHY_M_IS_LSP_CHANGE)
  2006. skge->speed = yukon_speed(hw, phystat);
  2007. if (istatus & PHY_M_IS_DUP_CHANGE)
  2008. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2009. if (istatus & PHY_M_IS_LST_CHANGE) {
  2010. if (phystat & PHY_M_PS_LINK_UP)
  2011. yukon_link_up(skge);
  2012. else
  2013. yukon_link_down(skge);
  2014. }
  2015. return;
  2016. failed:
  2017. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  2018. skge->netdev->name, reason);
  2019. /* XXX restart autonegotiation? */
  2020. }
  2021. static void skge_phy_reset(struct skge_port *skge)
  2022. {
  2023. struct skge_hw *hw = skge->hw;
  2024. int port = skge->port;
  2025. struct net_device *dev = hw->dev[port];
  2026. netif_stop_queue(skge->netdev);
  2027. netif_carrier_off(skge->netdev);
  2028. spin_lock_bh(&hw->phy_lock);
  2029. if (hw->chip_id == CHIP_ID_GENESIS) {
  2030. genesis_reset(hw, port);
  2031. genesis_mac_init(hw, port);
  2032. } else {
  2033. yukon_reset(hw, port);
  2034. yukon_init(hw, port);
  2035. }
  2036. spin_unlock_bh(&hw->phy_lock);
  2037. skge_set_multicast(dev);
  2038. }
  2039. /* Basic MII support */
  2040. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2041. {
  2042. struct mii_ioctl_data *data = if_mii(ifr);
  2043. struct skge_port *skge = netdev_priv(dev);
  2044. struct skge_hw *hw = skge->hw;
  2045. int err = -EOPNOTSUPP;
  2046. if (!netif_running(dev))
  2047. return -ENODEV; /* Phy still in reset */
  2048. switch(cmd) {
  2049. case SIOCGMIIPHY:
  2050. data->phy_id = hw->phy_addr;
  2051. /* fallthru */
  2052. case SIOCGMIIREG: {
  2053. u16 val = 0;
  2054. spin_lock_bh(&hw->phy_lock);
  2055. if (hw->chip_id == CHIP_ID_GENESIS)
  2056. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2057. else
  2058. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2059. spin_unlock_bh(&hw->phy_lock);
  2060. data->val_out = val;
  2061. break;
  2062. }
  2063. case SIOCSMIIREG:
  2064. if (!capable(CAP_NET_ADMIN))
  2065. return -EPERM;
  2066. spin_lock_bh(&hw->phy_lock);
  2067. if (hw->chip_id == CHIP_ID_GENESIS)
  2068. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2069. data->val_in);
  2070. else
  2071. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2072. data->val_in);
  2073. spin_unlock_bh(&hw->phy_lock);
  2074. break;
  2075. }
  2076. return err;
  2077. }
  2078. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2079. {
  2080. u32 end;
  2081. start /= 8;
  2082. len /= 8;
  2083. end = start + len - 1;
  2084. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2085. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2086. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2087. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2088. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2089. if (q == Q_R1 || q == Q_R2) {
  2090. /* Set thresholds on receive queue's */
  2091. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2092. start + (2*len)/3);
  2093. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2094. start + (len/3));
  2095. } else {
  2096. /* Enable store & forward on Tx queue's because
  2097. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2098. */
  2099. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2100. }
  2101. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2102. }
  2103. /* Setup Bus Memory Interface */
  2104. static void skge_qset(struct skge_port *skge, u16 q,
  2105. const struct skge_element *e)
  2106. {
  2107. struct skge_hw *hw = skge->hw;
  2108. u32 watermark = 0x600;
  2109. u64 base = skge->dma + (e->desc - skge->mem);
  2110. /* optimization to reduce window on 32bit/33mhz */
  2111. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2112. watermark /= 2;
  2113. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2114. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2115. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2116. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2117. }
  2118. static int skge_up(struct net_device *dev)
  2119. {
  2120. struct skge_port *skge = netdev_priv(dev);
  2121. struct skge_hw *hw = skge->hw;
  2122. int port = skge->port;
  2123. u32 chunk, ram_addr;
  2124. size_t rx_size, tx_size;
  2125. int err;
  2126. if (!is_valid_ether_addr(dev->dev_addr))
  2127. return -EINVAL;
  2128. if (netif_msg_ifup(skge))
  2129. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2130. if (dev->mtu > RX_BUF_SIZE)
  2131. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2132. else
  2133. skge->rx_buf_size = RX_BUF_SIZE;
  2134. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2135. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2136. skge->mem_size = tx_size + rx_size;
  2137. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2138. if (!skge->mem)
  2139. return -ENOMEM;
  2140. BUG_ON(skge->dma & 7);
  2141. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2142. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2143. err = -EINVAL;
  2144. goto free_pci_mem;
  2145. }
  2146. memset(skge->mem, 0, skge->mem_size);
  2147. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2148. if (err)
  2149. goto free_pci_mem;
  2150. err = skge_rx_fill(dev);
  2151. if (err)
  2152. goto free_rx_ring;
  2153. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2154. skge->dma + rx_size);
  2155. if (err)
  2156. goto free_rx_ring;
  2157. /* Initialize MAC */
  2158. spin_lock_bh(&hw->phy_lock);
  2159. if (hw->chip_id == CHIP_ID_GENESIS)
  2160. genesis_mac_init(hw, port);
  2161. else
  2162. yukon_mac_init(hw, port);
  2163. spin_unlock_bh(&hw->phy_lock);
  2164. /* Configure RAMbuffers - equally between ports and tx/rx */
  2165. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2166. ram_addr = hw->ram_offset + 2 * chunk * port;
  2167. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2168. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2169. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2170. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2171. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2172. /* Start receiver BMU */
  2173. wmb();
  2174. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2175. skge_led(skge, LED_MODE_ON);
  2176. spin_lock_irq(&hw->hw_lock);
  2177. hw->intr_mask |= portmask[port];
  2178. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2179. spin_unlock_irq(&hw->hw_lock);
  2180. napi_enable(&skge->napi);
  2181. return 0;
  2182. free_rx_ring:
  2183. skge_rx_clean(skge);
  2184. kfree(skge->rx_ring.start);
  2185. free_pci_mem:
  2186. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2187. skge->mem = NULL;
  2188. return err;
  2189. }
  2190. /* stop receiver */
  2191. static void skge_rx_stop(struct skge_hw *hw, int port)
  2192. {
  2193. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2194. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2195. RB_RST_SET|RB_DIS_OP_MD);
  2196. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2197. }
  2198. static int skge_down(struct net_device *dev)
  2199. {
  2200. struct skge_port *skge = netdev_priv(dev);
  2201. struct skge_hw *hw = skge->hw;
  2202. int port = skge->port;
  2203. if (skge->mem == NULL)
  2204. return 0;
  2205. if (netif_msg_ifdown(skge))
  2206. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2207. netif_tx_disable(dev);
  2208. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2209. del_timer_sync(&skge->link_timer);
  2210. napi_disable(&skge->napi);
  2211. netif_carrier_off(dev);
  2212. spin_lock_irq(&hw->hw_lock);
  2213. hw->intr_mask &= ~portmask[port];
  2214. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2215. spin_unlock_irq(&hw->hw_lock);
  2216. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2217. if (hw->chip_id == CHIP_ID_GENESIS)
  2218. genesis_stop(skge);
  2219. else
  2220. yukon_stop(skge);
  2221. /* Stop transmitter */
  2222. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2223. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2224. RB_RST_SET|RB_DIS_OP_MD);
  2225. /* Disable Force Sync bit and Enable Alloc bit */
  2226. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2227. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2228. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2229. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2230. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2231. /* Reset PCI FIFO */
  2232. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2233. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2234. /* Reset the RAM Buffer async Tx queue */
  2235. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2236. skge_rx_stop(hw, port);
  2237. if (hw->chip_id == CHIP_ID_GENESIS) {
  2238. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2239. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2240. } else {
  2241. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2242. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2243. }
  2244. skge_led(skge, LED_MODE_OFF);
  2245. netif_tx_lock_bh(dev);
  2246. skge_tx_clean(dev);
  2247. netif_tx_unlock_bh(dev);
  2248. skge_rx_clean(skge);
  2249. kfree(skge->rx_ring.start);
  2250. kfree(skge->tx_ring.start);
  2251. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2252. skge->mem = NULL;
  2253. return 0;
  2254. }
  2255. static inline int skge_avail(const struct skge_ring *ring)
  2256. {
  2257. smp_mb();
  2258. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2259. + (ring->to_clean - ring->to_use) - 1;
  2260. }
  2261. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2262. {
  2263. struct skge_port *skge = netdev_priv(dev);
  2264. struct skge_hw *hw = skge->hw;
  2265. struct skge_element *e;
  2266. struct skge_tx_desc *td;
  2267. int i;
  2268. u32 control, len;
  2269. u64 map;
  2270. if (skb_padto(skb, ETH_ZLEN))
  2271. return NETDEV_TX_OK;
  2272. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2273. return NETDEV_TX_BUSY;
  2274. e = skge->tx_ring.to_use;
  2275. td = e->desc;
  2276. BUG_ON(td->control & BMU_OWN);
  2277. e->skb = skb;
  2278. len = skb_headlen(skb);
  2279. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2280. pci_unmap_addr_set(e, mapaddr, map);
  2281. pci_unmap_len_set(e, maplen, len);
  2282. td->dma_lo = map;
  2283. td->dma_hi = map >> 32;
  2284. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2285. const int offset = skb_transport_offset(skb);
  2286. /* This seems backwards, but it is what the sk98lin
  2287. * does. Looks like hardware is wrong?
  2288. */
  2289. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2290. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2291. control = BMU_TCP_CHECK;
  2292. else
  2293. control = BMU_UDP_CHECK;
  2294. td->csum_offs = 0;
  2295. td->csum_start = offset;
  2296. td->csum_write = offset + skb->csum_offset;
  2297. } else
  2298. control = BMU_CHECK;
  2299. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2300. control |= BMU_EOF| BMU_IRQ_EOF;
  2301. else {
  2302. struct skge_tx_desc *tf = td;
  2303. control |= BMU_STFWD;
  2304. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2305. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2306. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2307. frag->size, PCI_DMA_TODEVICE);
  2308. e = e->next;
  2309. e->skb = skb;
  2310. tf = e->desc;
  2311. BUG_ON(tf->control & BMU_OWN);
  2312. tf->dma_lo = map;
  2313. tf->dma_hi = (u64) map >> 32;
  2314. pci_unmap_addr_set(e, mapaddr, map);
  2315. pci_unmap_len_set(e, maplen, frag->size);
  2316. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2317. }
  2318. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2319. }
  2320. /* Make sure all the descriptors written */
  2321. wmb();
  2322. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2323. wmb();
  2324. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2325. if (unlikely(netif_msg_tx_queued(skge)))
  2326. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2327. dev->name, e - skge->tx_ring.start, skb->len);
  2328. skge->tx_ring.to_use = e->next;
  2329. smp_wmb();
  2330. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2331. pr_debug("%s: transmit queue full\n", dev->name);
  2332. netif_stop_queue(dev);
  2333. }
  2334. return NETDEV_TX_OK;
  2335. }
  2336. /* Free resources associated with this reing element */
  2337. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2338. u32 control)
  2339. {
  2340. struct pci_dev *pdev = skge->hw->pdev;
  2341. /* skb header vs. fragment */
  2342. if (control & BMU_STF)
  2343. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2344. pci_unmap_len(e, maplen),
  2345. PCI_DMA_TODEVICE);
  2346. else
  2347. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2348. pci_unmap_len(e, maplen),
  2349. PCI_DMA_TODEVICE);
  2350. if (control & BMU_EOF) {
  2351. if (unlikely(netif_msg_tx_done(skge)))
  2352. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2353. skge->netdev->name, e - skge->tx_ring.start);
  2354. dev_kfree_skb(e->skb);
  2355. }
  2356. }
  2357. /* Free all buffers in transmit ring */
  2358. static void skge_tx_clean(struct net_device *dev)
  2359. {
  2360. struct skge_port *skge = netdev_priv(dev);
  2361. struct skge_element *e;
  2362. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2363. struct skge_tx_desc *td = e->desc;
  2364. skge_tx_free(skge, e, td->control);
  2365. td->control = 0;
  2366. }
  2367. skge->tx_ring.to_clean = e;
  2368. }
  2369. static void skge_tx_timeout(struct net_device *dev)
  2370. {
  2371. struct skge_port *skge = netdev_priv(dev);
  2372. if (netif_msg_timer(skge))
  2373. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2374. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2375. skge_tx_clean(dev);
  2376. netif_wake_queue(dev);
  2377. }
  2378. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2379. {
  2380. int err;
  2381. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2382. return -EINVAL;
  2383. if (!netif_running(dev)) {
  2384. dev->mtu = new_mtu;
  2385. return 0;
  2386. }
  2387. skge_down(dev);
  2388. dev->mtu = new_mtu;
  2389. err = skge_up(dev);
  2390. if (err)
  2391. dev_close(dev);
  2392. return err;
  2393. }
  2394. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2395. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2396. {
  2397. u32 crc, bit;
  2398. crc = ether_crc_le(ETH_ALEN, addr);
  2399. bit = ~crc & 0x3f;
  2400. filter[bit/8] |= 1 << (bit%8);
  2401. }
  2402. static void genesis_set_multicast(struct net_device *dev)
  2403. {
  2404. struct skge_port *skge = netdev_priv(dev);
  2405. struct skge_hw *hw = skge->hw;
  2406. int port = skge->port;
  2407. int i, count = dev->mc_count;
  2408. struct dev_mc_list *list = dev->mc_list;
  2409. u32 mode;
  2410. u8 filter[8];
  2411. mode = xm_read32(hw, port, XM_MODE);
  2412. mode |= XM_MD_ENA_HASH;
  2413. if (dev->flags & IFF_PROMISC)
  2414. mode |= XM_MD_ENA_PROM;
  2415. else
  2416. mode &= ~XM_MD_ENA_PROM;
  2417. if (dev->flags & IFF_ALLMULTI)
  2418. memset(filter, 0xff, sizeof(filter));
  2419. else {
  2420. memset(filter, 0, sizeof(filter));
  2421. if (skge->flow_status == FLOW_STAT_REM_SEND
  2422. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2423. genesis_add_filter(filter, pause_mc_addr);
  2424. for (i = 0; list && i < count; i++, list = list->next)
  2425. genesis_add_filter(filter, list->dmi_addr);
  2426. }
  2427. xm_write32(hw, port, XM_MODE, mode);
  2428. xm_outhash(hw, port, XM_HSM, filter);
  2429. }
  2430. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2431. {
  2432. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2433. filter[bit/8] |= 1 << (bit%8);
  2434. }
  2435. static void yukon_set_multicast(struct net_device *dev)
  2436. {
  2437. struct skge_port *skge = netdev_priv(dev);
  2438. struct skge_hw *hw = skge->hw;
  2439. int port = skge->port;
  2440. struct dev_mc_list *list = dev->mc_list;
  2441. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2442. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2443. u16 reg;
  2444. u8 filter[8];
  2445. memset(filter, 0, sizeof(filter));
  2446. reg = gma_read16(hw, port, GM_RX_CTRL);
  2447. reg |= GM_RXCR_UCF_ENA;
  2448. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2449. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2450. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2451. memset(filter, 0xff, sizeof(filter));
  2452. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2453. reg &= ~GM_RXCR_MCF_ENA;
  2454. else {
  2455. int i;
  2456. reg |= GM_RXCR_MCF_ENA;
  2457. if (rx_pause)
  2458. yukon_add_filter(filter, pause_mc_addr);
  2459. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2460. yukon_add_filter(filter, list->dmi_addr);
  2461. }
  2462. gma_write16(hw, port, GM_MC_ADDR_H1,
  2463. (u16)filter[0] | ((u16)filter[1] << 8));
  2464. gma_write16(hw, port, GM_MC_ADDR_H2,
  2465. (u16)filter[2] | ((u16)filter[3] << 8));
  2466. gma_write16(hw, port, GM_MC_ADDR_H3,
  2467. (u16)filter[4] | ((u16)filter[5] << 8));
  2468. gma_write16(hw, port, GM_MC_ADDR_H4,
  2469. (u16)filter[6] | ((u16)filter[7] << 8));
  2470. gma_write16(hw, port, GM_RX_CTRL, reg);
  2471. }
  2472. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2473. {
  2474. if (hw->chip_id == CHIP_ID_GENESIS)
  2475. return status >> XMR_FS_LEN_SHIFT;
  2476. else
  2477. return status >> GMR_FS_LEN_SHIFT;
  2478. }
  2479. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2480. {
  2481. if (hw->chip_id == CHIP_ID_GENESIS)
  2482. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2483. else
  2484. return (status & GMR_FS_ANY_ERR) ||
  2485. (status & GMR_FS_RX_OK) == 0;
  2486. }
  2487. static void skge_set_multicast(struct net_device *dev)
  2488. {
  2489. struct skge_port *skge = netdev_priv(dev);
  2490. struct skge_hw *hw = skge->hw;
  2491. if (hw->chip_id == CHIP_ID_GENESIS)
  2492. genesis_set_multicast(dev);
  2493. else
  2494. yukon_set_multicast(dev);
  2495. }
  2496. /* Get receive buffer from descriptor.
  2497. * Handles copy of small buffers and reallocation failures
  2498. */
  2499. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2500. struct skge_element *e,
  2501. u32 control, u32 status, u16 csum)
  2502. {
  2503. struct skge_port *skge = netdev_priv(dev);
  2504. struct sk_buff *skb;
  2505. u16 len = control & BMU_BBC;
  2506. if (unlikely(netif_msg_rx_status(skge)))
  2507. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2508. dev->name, e - skge->rx_ring.start,
  2509. status, len);
  2510. if (len > skge->rx_buf_size)
  2511. goto error;
  2512. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2513. goto error;
  2514. if (bad_phy_status(skge->hw, status))
  2515. goto error;
  2516. if (phy_length(skge->hw, status) != len)
  2517. goto error;
  2518. if (len < RX_COPY_THRESHOLD) {
  2519. skb = netdev_alloc_skb(dev, len + 2);
  2520. if (!skb)
  2521. goto resubmit;
  2522. skb_reserve(skb, 2);
  2523. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2524. pci_unmap_addr(e, mapaddr),
  2525. len, PCI_DMA_FROMDEVICE);
  2526. skb_copy_from_linear_data(e->skb, skb->data, len);
  2527. pci_dma_sync_single_for_device(skge->hw->pdev,
  2528. pci_unmap_addr(e, mapaddr),
  2529. len, PCI_DMA_FROMDEVICE);
  2530. skge_rx_reuse(e, skge->rx_buf_size);
  2531. } else {
  2532. struct sk_buff *nskb;
  2533. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2534. if (!nskb)
  2535. goto resubmit;
  2536. skb_reserve(nskb, NET_IP_ALIGN);
  2537. pci_unmap_single(skge->hw->pdev,
  2538. pci_unmap_addr(e, mapaddr),
  2539. pci_unmap_len(e, maplen),
  2540. PCI_DMA_FROMDEVICE);
  2541. skb = e->skb;
  2542. prefetch(skb->data);
  2543. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2544. }
  2545. skb_put(skb, len);
  2546. if (skge->rx_csum) {
  2547. skb->csum = csum;
  2548. skb->ip_summed = CHECKSUM_COMPLETE;
  2549. }
  2550. skb->protocol = eth_type_trans(skb, dev);
  2551. return skb;
  2552. error:
  2553. if (netif_msg_rx_err(skge))
  2554. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2555. dev->name, e - skge->rx_ring.start,
  2556. control, status);
  2557. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2558. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2559. dev->stats.rx_length_errors++;
  2560. if (status & XMR_FS_FRA_ERR)
  2561. dev->stats.rx_frame_errors++;
  2562. if (status & XMR_FS_FCS_ERR)
  2563. dev->stats.rx_crc_errors++;
  2564. } else {
  2565. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2566. dev->stats.rx_length_errors++;
  2567. if (status & GMR_FS_FRAGMENT)
  2568. dev->stats.rx_frame_errors++;
  2569. if (status & GMR_FS_CRC_ERR)
  2570. dev->stats.rx_crc_errors++;
  2571. }
  2572. resubmit:
  2573. skge_rx_reuse(e, skge->rx_buf_size);
  2574. return NULL;
  2575. }
  2576. /* Free all buffers in Tx ring which are no longer owned by device */
  2577. static void skge_tx_done(struct net_device *dev)
  2578. {
  2579. struct skge_port *skge = netdev_priv(dev);
  2580. struct skge_ring *ring = &skge->tx_ring;
  2581. struct skge_element *e;
  2582. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2583. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2584. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2585. if (control & BMU_OWN)
  2586. break;
  2587. skge_tx_free(skge, e, control);
  2588. }
  2589. skge->tx_ring.to_clean = e;
  2590. /* Can run lockless until we need to synchronize to restart queue. */
  2591. smp_mb();
  2592. if (unlikely(netif_queue_stopped(dev) &&
  2593. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2594. netif_tx_lock(dev);
  2595. if (unlikely(netif_queue_stopped(dev) &&
  2596. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2597. netif_wake_queue(dev);
  2598. }
  2599. netif_tx_unlock(dev);
  2600. }
  2601. }
  2602. static int skge_poll(struct napi_struct *napi, int to_do)
  2603. {
  2604. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2605. struct net_device *dev = skge->netdev;
  2606. struct skge_hw *hw = skge->hw;
  2607. struct skge_ring *ring = &skge->rx_ring;
  2608. struct skge_element *e;
  2609. int work_done = 0;
  2610. skge_tx_done(dev);
  2611. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2612. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2613. struct skge_rx_desc *rd = e->desc;
  2614. struct sk_buff *skb;
  2615. u32 control;
  2616. rmb();
  2617. control = rd->control;
  2618. if (control & BMU_OWN)
  2619. break;
  2620. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2621. if (likely(skb)) {
  2622. netif_receive_skb(skb);
  2623. ++work_done;
  2624. }
  2625. }
  2626. ring->to_clean = e;
  2627. /* restart receiver */
  2628. wmb();
  2629. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2630. if (work_done < to_do) {
  2631. unsigned long flags;
  2632. spin_lock_irqsave(&hw->hw_lock, flags);
  2633. __napi_complete(napi);
  2634. hw->intr_mask |= napimask[skge->port];
  2635. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2636. skge_read32(hw, B0_IMSK);
  2637. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2638. }
  2639. return work_done;
  2640. }
  2641. /* Parity errors seem to happen when Genesis is connected to a switch
  2642. * with no other ports present. Heartbeat error??
  2643. */
  2644. static void skge_mac_parity(struct skge_hw *hw, int port)
  2645. {
  2646. struct net_device *dev = hw->dev[port];
  2647. ++dev->stats.tx_heartbeat_errors;
  2648. if (hw->chip_id == CHIP_ID_GENESIS)
  2649. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2650. MFF_CLR_PERR);
  2651. else
  2652. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2653. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2654. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2655. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2656. }
  2657. static void skge_mac_intr(struct skge_hw *hw, int port)
  2658. {
  2659. if (hw->chip_id == CHIP_ID_GENESIS)
  2660. genesis_mac_intr(hw, port);
  2661. else
  2662. yukon_mac_intr(hw, port);
  2663. }
  2664. /* Handle device specific framing and timeout interrupts */
  2665. static void skge_error_irq(struct skge_hw *hw)
  2666. {
  2667. struct pci_dev *pdev = hw->pdev;
  2668. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2669. if (hw->chip_id == CHIP_ID_GENESIS) {
  2670. /* clear xmac errors */
  2671. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2672. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2673. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2674. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2675. } else {
  2676. /* Timestamp (unused) overflow */
  2677. if (hwstatus & IS_IRQ_TIST_OV)
  2678. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2679. }
  2680. if (hwstatus & IS_RAM_RD_PAR) {
  2681. dev_err(&pdev->dev, "Ram read data parity error\n");
  2682. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2683. }
  2684. if (hwstatus & IS_RAM_WR_PAR) {
  2685. dev_err(&pdev->dev, "Ram write data parity error\n");
  2686. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2687. }
  2688. if (hwstatus & IS_M1_PAR_ERR)
  2689. skge_mac_parity(hw, 0);
  2690. if (hwstatus & IS_M2_PAR_ERR)
  2691. skge_mac_parity(hw, 1);
  2692. if (hwstatus & IS_R1_PAR_ERR) {
  2693. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2694. hw->dev[0]->name);
  2695. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2696. }
  2697. if (hwstatus & IS_R2_PAR_ERR) {
  2698. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2699. hw->dev[1]->name);
  2700. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2701. }
  2702. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2703. u16 pci_status, pci_cmd;
  2704. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2705. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2706. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2707. pci_cmd, pci_status);
  2708. /* Write the error bits back to clear them. */
  2709. pci_status &= PCI_STATUS_ERROR_BITS;
  2710. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2711. pci_write_config_word(pdev, PCI_COMMAND,
  2712. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2713. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2714. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2715. /* if error still set then just ignore it */
  2716. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2717. if (hwstatus & IS_IRQ_STAT) {
  2718. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2719. hw->intr_mask &= ~IS_HW_ERR;
  2720. }
  2721. }
  2722. }
  2723. /*
  2724. * Interrupt from PHY are handled in tasklet (softirq)
  2725. * because accessing phy registers requires spin wait which might
  2726. * cause excess interrupt latency.
  2727. */
  2728. static void skge_extirq(unsigned long arg)
  2729. {
  2730. struct skge_hw *hw = (struct skge_hw *) arg;
  2731. int port;
  2732. for (port = 0; port < hw->ports; port++) {
  2733. struct net_device *dev = hw->dev[port];
  2734. if (netif_running(dev)) {
  2735. struct skge_port *skge = netdev_priv(dev);
  2736. spin_lock(&hw->phy_lock);
  2737. if (hw->chip_id != CHIP_ID_GENESIS)
  2738. yukon_phy_intr(skge);
  2739. else if (hw->phy_type == SK_PHY_BCOM)
  2740. bcom_phy_intr(skge);
  2741. spin_unlock(&hw->phy_lock);
  2742. }
  2743. }
  2744. spin_lock_irq(&hw->hw_lock);
  2745. hw->intr_mask |= IS_EXT_REG;
  2746. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2747. skge_read32(hw, B0_IMSK);
  2748. spin_unlock_irq(&hw->hw_lock);
  2749. }
  2750. static irqreturn_t skge_intr(int irq, void *dev_id)
  2751. {
  2752. struct skge_hw *hw = dev_id;
  2753. u32 status;
  2754. int handled = 0;
  2755. spin_lock(&hw->hw_lock);
  2756. /* Reading this register masks IRQ */
  2757. status = skge_read32(hw, B0_SP_ISRC);
  2758. if (status == 0 || status == ~0)
  2759. goto out;
  2760. handled = 1;
  2761. status &= hw->intr_mask;
  2762. if (status & IS_EXT_REG) {
  2763. hw->intr_mask &= ~IS_EXT_REG;
  2764. tasklet_schedule(&hw->phy_task);
  2765. }
  2766. if (status & (IS_XA1_F|IS_R1_F)) {
  2767. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2768. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2769. napi_schedule(&skge->napi);
  2770. }
  2771. if (status & IS_PA_TO_TX1)
  2772. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2773. if (status & IS_PA_TO_RX1) {
  2774. ++hw->dev[0]->stats.rx_over_errors;
  2775. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2776. }
  2777. if (status & IS_MAC1)
  2778. skge_mac_intr(hw, 0);
  2779. if (hw->dev[1]) {
  2780. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2781. if (status & (IS_XA2_F|IS_R2_F)) {
  2782. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2783. napi_schedule(&skge->napi);
  2784. }
  2785. if (status & IS_PA_TO_RX2) {
  2786. ++hw->dev[1]->stats.rx_over_errors;
  2787. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2788. }
  2789. if (status & IS_PA_TO_TX2)
  2790. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2791. if (status & IS_MAC2)
  2792. skge_mac_intr(hw, 1);
  2793. }
  2794. if (status & IS_HW_ERR)
  2795. skge_error_irq(hw);
  2796. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2797. skge_read32(hw, B0_IMSK);
  2798. out:
  2799. spin_unlock(&hw->hw_lock);
  2800. return IRQ_RETVAL(handled);
  2801. }
  2802. #ifdef CONFIG_NET_POLL_CONTROLLER
  2803. static void skge_netpoll(struct net_device *dev)
  2804. {
  2805. struct skge_port *skge = netdev_priv(dev);
  2806. disable_irq(dev->irq);
  2807. skge_intr(dev->irq, skge->hw);
  2808. enable_irq(dev->irq);
  2809. }
  2810. #endif
  2811. static int skge_set_mac_address(struct net_device *dev, void *p)
  2812. {
  2813. struct skge_port *skge = netdev_priv(dev);
  2814. struct skge_hw *hw = skge->hw;
  2815. unsigned port = skge->port;
  2816. const struct sockaddr *addr = p;
  2817. u16 ctrl;
  2818. if (!is_valid_ether_addr(addr->sa_data))
  2819. return -EADDRNOTAVAIL;
  2820. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2821. if (!netif_running(dev)) {
  2822. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2823. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2824. } else {
  2825. /* disable Rx */
  2826. spin_lock_bh(&hw->phy_lock);
  2827. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2828. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2829. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2830. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2831. if (hw->chip_id == CHIP_ID_GENESIS)
  2832. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2833. else {
  2834. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2835. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2836. }
  2837. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2838. spin_unlock_bh(&hw->phy_lock);
  2839. }
  2840. return 0;
  2841. }
  2842. static const struct {
  2843. u8 id;
  2844. const char *name;
  2845. } skge_chips[] = {
  2846. { CHIP_ID_GENESIS, "Genesis" },
  2847. { CHIP_ID_YUKON, "Yukon" },
  2848. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2849. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2850. };
  2851. static const char *skge_board_name(const struct skge_hw *hw)
  2852. {
  2853. int i;
  2854. static char buf[16];
  2855. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2856. if (skge_chips[i].id == hw->chip_id)
  2857. return skge_chips[i].name;
  2858. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2859. return buf;
  2860. }
  2861. /*
  2862. * Setup the board data structure, but don't bring up
  2863. * the port(s)
  2864. */
  2865. static int skge_reset(struct skge_hw *hw)
  2866. {
  2867. u32 reg;
  2868. u16 ctst, pci_status;
  2869. u8 t8, mac_cfg, pmd_type;
  2870. int i;
  2871. ctst = skge_read16(hw, B0_CTST);
  2872. /* do a SW reset */
  2873. skge_write8(hw, B0_CTST, CS_RST_SET);
  2874. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2875. /* clear PCI errors, if any */
  2876. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2877. skge_write8(hw, B2_TST_CTRL2, 0);
  2878. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2879. pci_write_config_word(hw->pdev, PCI_STATUS,
  2880. pci_status | PCI_STATUS_ERROR_BITS);
  2881. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2882. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2883. /* restore CLK_RUN bits (for Yukon-Lite) */
  2884. skge_write16(hw, B0_CTST,
  2885. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2886. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2887. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2888. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2889. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2890. switch (hw->chip_id) {
  2891. case CHIP_ID_GENESIS:
  2892. switch (hw->phy_type) {
  2893. case SK_PHY_XMAC:
  2894. hw->phy_addr = PHY_ADDR_XMAC;
  2895. break;
  2896. case SK_PHY_BCOM:
  2897. hw->phy_addr = PHY_ADDR_BCOM;
  2898. break;
  2899. default:
  2900. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2901. hw->phy_type);
  2902. return -EOPNOTSUPP;
  2903. }
  2904. break;
  2905. case CHIP_ID_YUKON:
  2906. case CHIP_ID_YUKON_LITE:
  2907. case CHIP_ID_YUKON_LP:
  2908. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2909. hw->copper = 1;
  2910. hw->phy_addr = PHY_ADDR_MARV;
  2911. break;
  2912. default:
  2913. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2914. hw->chip_id);
  2915. return -EOPNOTSUPP;
  2916. }
  2917. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2918. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2919. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2920. /* read the adapters RAM size */
  2921. t8 = skge_read8(hw, B2_E_0);
  2922. if (hw->chip_id == CHIP_ID_GENESIS) {
  2923. if (t8 == 3) {
  2924. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2925. hw->ram_size = 0x100000;
  2926. hw->ram_offset = 0x80000;
  2927. } else
  2928. hw->ram_size = t8 * 512;
  2929. }
  2930. else if (t8 == 0)
  2931. hw->ram_size = 0x20000;
  2932. else
  2933. hw->ram_size = t8 * 4096;
  2934. hw->intr_mask = IS_HW_ERR;
  2935. /* Use PHY IRQ for all but fiber based Genesis board */
  2936. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2937. hw->intr_mask |= IS_EXT_REG;
  2938. if (hw->chip_id == CHIP_ID_GENESIS)
  2939. genesis_init(hw);
  2940. else {
  2941. /* switch power to VCC (WA for VAUX problem) */
  2942. skge_write8(hw, B0_POWER_CTRL,
  2943. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2944. /* avoid boards with stuck Hardware error bits */
  2945. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2946. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2947. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2948. hw->intr_mask &= ~IS_HW_ERR;
  2949. }
  2950. /* Clear PHY COMA */
  2951. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2952. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2953. reg &= ~PCI_PHY_COMA;
  2954. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2955. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2956. for (i = 0; i < hw->ports; i++) {
  2957. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2958. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2959. }
  2960. }
  2961. /* turn off hardware timer (unused) */
  2962. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2963. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2964. skge_write8(hw, B0_LED, LED_STAT_ON);
  2965. /* enable the Tx Arbiters */
  2966. for (i = 0; i < hw->ports; i++)
  2967. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2968. /* Initialize ram interface */
  2969. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2970. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2971. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2972. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2973. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2974. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2975. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2976. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2977. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2978. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2979. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2980. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2981. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2982. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2983. /* Set interrupt moderation for Transmit only
  2984. * Receive interrupts avoided by NAPI
  2985. */
  2986. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2987. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2988. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2989. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2990. for (i = 0; i < hw->ports; i++) {
  2991. if (hw->chip_id == CHIP_ID_GENESIS)
  2992. genesis_reset(hw, i);
  2993. else
  2994. yukon_reset(hw, i);
  2995. }
  2996. return 0;
  2997. }
  2998. #ifdef CONFIG_SKGE_DEBUG
  2999. static struct dentry *skge_debug;
  3000. static int skge_debug_show(struct seq_file *seq, void *v)
  3001. {
  3002. struct net_device *dev = seq->private;
  3003. const struct skge_port *skge = netdev_priv(dev);
  3004. const struct skge_hw *hw = skge->hw;
  3005. const struct skge_element *e;
  3006. if (!netif_running(dev))
  3007. return -ENETDOWN;
  3008. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3009. skge_read32(hw, B0_IMSK));
  3010. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3011. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3012. const struct skge_tx_desc *t = e->desc;
  3013. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3014. t->control, t->dma_hi, t->dma_lo, t->status,
  3015. t->csum_offs, t->csum_write, t->csum_start);
  3016. }
  3017. seq_printf(seq, "\nRx Ring: \n");
  3018. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3019. const struct skge_rx_desc *r = e->desc;
  3020. if (r->control & BMU_OWN)
  3021. break;
  3022. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3023. r->control, r->dma_hi, r->dma_lo, r->status,
  3024. r->timestamp, r->csum1, r->csum1_start);
  3025. }
  3026. return 0;
  3027. }
  3028. static int skge_debug_open(struct inode *inode, struct file *file)
  3029. {
  3030. return single_open(file, skge_debug_show, inode->i_private);
  3031. }
  3032. static const struct file_operations skge_debug_fops = {
  3033. .owner = THIS_MODULE,
  3034. .open = skge_debug_open,
  3035. .read = seq_read,
  3036. .llseek = seq_lseek,
  3037. .release = single_release,
  3038. };
  3039. /*
  3040. * Use network device events to create/remove/rename
  3041. * debugfs file entries
  3042. */
  3043. static int skge_device_event(struct notifier_block *unused,
  3044. unsigned long event, void *ptr)
  3045. {
  3046. struct net_device *dev = ptr;
  3047. struct skge_port *skge;
  3048. struct dentry *d;
  3049. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3050. goto done;
  3051. skge = netdev_priv(dev);
  3052. switch(event) {
  3053. case NETDEV_CHANGENAME:
  3054. if (skge->debugfs) {
  3055. d = debugfs_rename(skge_debug, skge->debugfs,
  3056. skge_debug, dev->name);
  3057. if (d)
  3058. skge->debugfs = d;
  3059. else {
  3060. pr_info(PFX "%s: rename failed\n", dev->name);
  3061. debugfs_remove(skge->debugfs);
  3062. }
  3063. }
  3064. break;
  3065. case NETDEV_GOING_DOWN:
  3066. if (skge->debugfs) {
  3067. debugfs_remove(skge->debugfs);
  3068. skge->debugfs = NULL;
  3069. }
  3070. break;
  3071. case NETDEV_UP:
  3072. d = debugfs_create_file(dev->name, S_IRUGO,
  3073. skge_debug, dev,
  3074. &skge_debug_fops);
  3075. if (!d || IS_ERR(d))
  3076. pr_info(PFX "%s: debugfs create failed\n",
  3077. dev->name);
  3078. else
  3079. skge->debugfs = d;
  3080. break;
  3081. }
  3082. done:
  3083. return NOTIFY_DONE;
  3084. }
  3085. static struct notifier_block skge_notifier = {
  3086. .notifier_call = skge_device_event,
  3087. };
  3088. static __init void skge_debug_init(void)
  3089. {
  3090. struct dentry *ent;
  3091. ent = debugfs_create_dir("skge", NULL);
  3092. if (!ent || IS_ERR(ent)) {
  3093. pr_info(PFX "debugfs create directory failed\n");
  3094. return;
  3095. }
  3096. skge_debug = ent;
  3097. register_netdevice_notifier(&skge_notifier);
  3098. }
  3099. static __exit void skge_debug_cleanup(void)
  3100. {
  3101. if (skge_debug) {
  3102. unregister_netdevice_notifier(&skge_notifier);
  3103. debugfs_remove(skge_debug);
  3104. skge_debug = NULL;
  3105. }
  3106. }
  3107. #else
  3108. #define skge_debug_init()
  3109. #define skge_debug_cleanup()
  3110. #endif
  3111. static const struct net_device_ops skge_netdev_ops = {
  3112. .ndo_open = skge_up,
  3113. .ndo_stop = skge_down,
  3114. .ndo_start_xmit = skge_xmit_frame,
  3115. .ndo_do_ioctl = skge_ioctl,
  3116. .ndo_get_stats = skge_get_stats,
  3117. .ndo_tx_timeout = skge_tx_timeout,
  3118. .ndo_change_mtu = skge_change_mtu,
  3119. .ndo_validate_addr = eth_validate_addr,
  3120. .ndo_set_multicast_list = skge_set_multicast,
  3121. .ndo_set_mac_address = skge_set_mac_address,
  3122. #ifdef CONFIG_NET_POLL_CONTROLLER
  3123. .ndo_poll_controller = skge_netpoll,
  3124. #endif
  3125. };
  3126. /* Initialize network device */
  3127. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3128. int highmem)
  3129. {
  3130. struct skge_port *skge;
  3131. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3132. if (!dev) {
  3133. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3134. return NULL;
  3135. }
  3136. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3137. dev->netdev_ops = &skge_netdev_ops;
  3138. dev->ethtool_ops = &skge_ethtool_ops;
  3139. dev->watchdog_timeo = TX_WATCHDOG;
  3140. dev->irq = hw->pdev->irq;
  3141. if (highmem)
  3142. dev->features |= NETIF_F_HIGHDMA;
  3143. skge = netdev_priv(dev);
  3144. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3145. skge->netdev = dev;
  3146. skge->hw = hw;
  3147. skge->msg_enable = netif_msg_init(debug, default_msg);
  3148. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3149. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3150. /* Auto speed and flow control */
  3151. skge->autoneg = AUTONEG_ENABLE;
  3152. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3153. skge->duplex = -1;
  3154. skge->speed = -1;
  3155. skge->advertising = skge_supported_modes(hw);
  3156. if (device_may_wakeup(&hw->pdev->dev))
  3157. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3158. hw->dev[port] = dev;
  3159. skge->port = port;
  3160. /* Only used for Genesis XMAC */
  3161. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3162. if (hw->chip_id != CHIP_ID_GENESIS) {
  3163. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3164. skge->rx_csum = 1;
  3165. }
  3166. /* read the mac address */
  3167. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3168. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3169. /* device is off until link detection */
  3170. netif_carrier_off(dev);
  3171. netif_stop_queue(dev);
  3172. return dev;
  3173. }
  3174. static void __devinit skge_show_addr(struct net_device *dev)
  3175. {
  3176. const struct skge_port *skge = netdev_priv(dev);
  3177. if (netif_msg_probe(skge))
  3178. printk(KERN_INFO PFX "%s: addr %pM\n",
  3179. dev->name, dev->dev_addr);
  3180. }
  3181. static int __devinit skge_probe(struct pci_dev *pdev,
  3182. const struct pci_device_id *ent)
  3183. {
  3184. struct net_device *dev, *dev1;
  3185. struct skge_hw *hw;
  3186. int err, using_dac = 0;
  3187. err = pci_enable_device(pdev);
  3188. if (err) {
  3189. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3190. goto err_out;
  3191. }
  3192. err = pci_request_regions(pdev, DRV_NAME);
  3193. if (err) {
  3194. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3195. goto err_out_disable_pdev;
  3196. }
  3197. pci_set_master(pdev);
  3198. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3199. using_dac = 1;
  3200. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3201. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3202. using_dac = 0;
  3203. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3204. }
  3205. if (err) {
  3206. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3207. goto err_out_free_regions;
  3208. }
  3209. #ifdef __BIG_ENDIAN
  3210. /* byte swap descriptors in hardware */
  3211. {
  3212. u32 reg;
  3213. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3214. reg |= PCI_REV_DESC;
  3215. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3216. }
  3217. #endif
  3218. err = -ENOMEM;
  3219. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3220. if (!hw) {
  3221. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3222. goto err_out_free_regions;
  3223. }
  3224. hw->pdev = pdev;
  3225. spin_lock_init(&hw->hw_lock);
  3226. spin_lock_init(&hw->phy_lock);
  3227. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3228. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3229. if (!hw->regs) {
  3230. dev_err(&pdev->dev, "cannot map device registers\n");
  3231. goto err_out_free_hw;
  3232. }
  3233. err = skge_reset(hw);
  3234. if (err)
  3235. goto err_out_iounmap;
  3236. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3237. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3238. skge_board_name(hw), hw->chip_rev);
  3239. dev = skge_devinit(hw, 0, using_dac);
  3240. if (!dev)
  3241. goto err_out_led_off;
  3242. /* Some motherboards are broken and has zero in ROM. */
  3243. if (!is_valid_ether_addr(dev->dev_addr))
  3244. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3245. err = register_netdev(dev);
  3246. if (err) {
  3247. dev_err(&pdev->dev, "cannot register net device\n");
  3248. goto err_out_free_netdev;
  3249. }
  3250. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3251. if (err) {
  3252. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3253. dev->name, pdev->irq);
  3254. goto err_out_unregister;
  3255. }
  3256. skge_show_addr(dev);
  3257. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3258. if (register_netdev(dev1) == 0)
  3259. skge_show_addr(dev1);
  3260. else {
  3261. /* Failure to register second port need not be fatal */
  3262. dev_warn(&pdev->dev, "register of second port failed\n");
  3263. hw->dev[1] = NULL;
  3264. free_netdev(dev1);
  3265. }
  3266. }
  3267. pci_set_drvdata(pdev, hw);
  3268. return 0;
  3269. err_out_unregister:
  3270. unregister_netdev(dev);
  3271. err_out_free_netdev:
  3272. free_netdev(dev);
  3273. err_out_led_off:
  3274. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3275. err_out_iounmap:
  3276. iounmap(hw->regs);
  3277. err_out_free_hw:
  3278. kfree(hw);
  3279. err_out_free_regions:
  3280. pci_release_regions(pdev);
  3281. err_out_disable_pdev:
  3282. pci_disable_device(pdev);
  3283. pci_set_drvdata(pdev, NULL);
  3284. err_out:
  3285. return err;
  3286. }
  3287. static void __devexit skge_remove(struct pci_dev *pdev)
  3288. {
  3289. struct skge_hw *hw = pci_get_drvdata(pdev);
  3290. struct net_device *dev0, *dev1;
  3291. if (!hw)
  3292. return;
  3293. flush_scheduled_work();
  3294. if ((dev1 = hw->dev[1]))
  3295. unregister_netdev(dev1);
  3296. dev0 = hw->dev[0];
  3297. unregister_netdev(dev0);
  3298. tasklet_disable(&hw->phy_task);
  3299. spin_lock_irq(&hw->hw_lock);
  3300. hw->intr_mask = 0;
  3301. skge_write32(hw, B0_IMSK, 0);
  3302. skge_read32(hw, B0_IMSK);
  3303. spin_unlock_irq(&hw->hw_lock);
  3304. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3305. skge_write8(hw, B0_CTST, CS_RST_SET);
  3306. free_irq(pdev->irq, hw);
  3307. pci_release_regions(pdev);
  3308. pci_disable_device(pdev);
  3309. if (dev1)
  3310. free_netdev(dev1);
  3311. free_netdev(dev0);
  3312. iounmap(hw->regs);
  3313. kfree(hw);
  3314. pci_set_drvdata(pdev, NULL);
  3315. }
  3316. #ifdef CONFIG_PM
  3317. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3318. {
  3319. struct skge_hw *hw = pci_get_drvdata(pdev);
  3320. int i, err, wol = 0;
  3321. if (!hw)
  3322. return 0;
  3323. err = pci_save_state(pdev);
  3324. if (err)
  3325. return err;
  3326. for (i = 0; i < hw->ports; i++) {
  3327. struct net_device *dev = hw->dev[i];
  3328. struct skge_port *skge = netdev_priv(dev);
  3329. if (netif_running(dev))
  3330. skge_down(dev);
  3331. if (skge->wol)
  3332. skge_wol_init(skge);
  3333. wol |= skge->wol;
  3334. }
  3335. skge_write32(hw, B0_IMSK, 0);
  3336. pci_prepare_to_sleep(pdev);
  3337. return 0;
  3338. }
  3339. static int skge_resume(struct pci_dev *pdev)
  3340. {
  3341. struct skge_hw *hw = pci_get_drvdata(pdev);
  3342. int i, err;
  3343. if (!hw)
  3344. return 0;
  3345. err = pci_back_from_sleep(pdev);
  3346. if (err)
  3347. goto out;
  3348. err = pci_restore_state(pdev);
  3349. if (err)
  3350. goto out;
  3351. err = skge_reset(hw);
  3352. if (err)
  3353. goto out;
  3354. for (i = 0; i < hw->ports; i++) {
  3355. struct net_device *dev = hw->dev[i];
  3356. if (netif_running(dev)) {
  3357. err = skge_up(dev);
  3358. if (err) {
  3359. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3360. dev->name, err);
  3361. dev_close(dev);
  3362. goto out;
  3363. }
  3364. }
  3365. }
  3366. out:
  3367. return err;
  3368. }
  3369. #endif
  3370. static void skge_shutdown(struct pci_dev *pdev)
  3371. {
  3372. struct skge_hw *hw = pci_get_drvdata(pdev);
  3373. int i, wol = 0;
  3374. if (!hw)
  3375. return;
  3376. for (i = 0; i < hw->ports; i++) {
  3377. struct net_device *dev = hw->dev[i];
  3378. struct skge_port *skge = netdev_priv(dev);
  3379. if (skge->wol)
  3380. skge_wol_init(skge);
  3381. wol |= skge->wol;
  3382. }
  3383. if (pci_enable_wake(pdev, PCI_D3cold, wol))
  3384. pci_enable_wake(pdev, PCI_D3hot, wol);
  3385. pci_disable_device(pdev);
  3386. pci_set_power_state(pdev, PCI_D3hot);
  3387. }
  3388. static struct pci_driver skge_driver = {
  3389. .name = DRV_NAME,
  3390. .id_table = skge_id_table,
  3391. .probe = skge_probe,
  3392. .remove = __devexit_p(skge_remove),
  3393. #ifdef CONFIG_PM
  3394. .suspend = skge_suspend,
  3395. .resume = skge_resume,
  3396. #endif
  3397. .shutdown = skge_shutdown,
  3398. };
  3399. static int __init skge_init_module(void)
  3400. {
  3401. skge_debug_init();
  3402. return pci_register_driver(&skge_driver);
  3403. }
  3404. static void __exit skge_cleanup_module(void)
  3405. {
  3406. pci_unregister_driver(&skge_driver);
  3407. skge_debug_cleanup();
  3408. }
  3409. module_init(skge_init_module);
  3410. module_exit(skge_cleanup_module);