qlge_main.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  195. if (status)
  196. return status;
  197. status = ql_wait_cfg(qdev, bit);
  198. if (status) {
  199. QPRINTK(qdev, IFUP, ERR,
  200. "Timed out waiting for CFG to come ready.\n");
  201. goto exit;
  202. }
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Set or clear MAC address in hardware. We sometimes
  382. * have to clear it to prevent wrong frame routing
  383. * especially in a bonding environment.
  384. */
  385. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  386. {
  387. int status;
  388. char zero_mac_addr[ETH_ALEN];
  389. char *addr;
  390. if (set) {
  391. addr = &qdev->ndev->dev_addr[0];
  392. QPRINTK(qdev, IFUP, DEBUG,
  393. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  394. addr[0], addr[1], addr[2], addr[3],
  395. addr[4], addr[5]);
  396. } else {
  397. memset(zero_mac_addr, 0, ETH_ALEN);
  398. addr = &zero_mac_addr[0];
  399. QPRINTK(qdev, IFUP, DEBUG,
  400. "Clearing MAC address on %s\n",
  401. qdev->ndev->name);
  402. }
  403. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  404. if (status)
  405. return status;
  406. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  407. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  408. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  409. if (status)
  410. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  411. "address.\n");
  412. return status;
  413. }
  414. void ql_link_on(struct ql_adapter *qdev)
  415. {
  416. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  417. qdev->ndev->name);
  418. netif_carrier_on(qdev->ndev);
  419. ql_set_mac_addr(qdev, 1);
  420. }
  421. void ql_link_off(struct ql_adapter *qdev)
  422. {
  423. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  424. qdev->ndev->name);
  425. netif_carrier_off(qdev->ndev);
  426. ql_set_mac_addr(qdev, 0);
  427. }
  428. /* Get a specific frame routing value from the CAM.
  429. * Used for debug and reg dump.
  430. */
  431. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  432. {
  433. int status = 0;
  434. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  435. if (status)
  436. goto exit;
  437. ql_write32(qdev, RT_IDX,
  438. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  439. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  440. if (status)
  441. goto exit;
  442. *value = ql_read32(qdev, RT_DATA);
  443. exit:
  444. return status;
  445. }
  446. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  447. * to route different frame types to various inbound queues. We send broadcast/
  448. * multicast/error frames to the default queue for slow handling,
  449. * and CAM hit/RSS frames to the fast handling queues.
  450. */
  451. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  452. int enable)
  453. {
  454. int status = -EINVAL; /* Return error if no mask match. */
  455. u32 value = 0;
  456. QPRINTK(qdev, IFUP, DEBUG,
  457. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  458. (enable ? "Adding" : "Removing"),
  459. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  460. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  461. ((index ==
  462. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  463. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  464. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  465. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  466. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  467. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  468. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  469. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  470. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  471. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  472. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  473. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  474. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  475. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  476. (enable ? "to" : "from"));
  477. switch (mask) {
  478. case RT_IDX_CAM_HIT:
  479. {
  480. value = RT_IDX_DST_CAM_Q | /* dest */
  481. RT_IDX_TYPE_NICQ | /* type */
  482. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  483. break;
  484. }
  485. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  486. {
  487. value = RT_IDX_DST_DFLT_Q | /* dest */
  488. RT_IDX_TYPE_NICQ | /* type */
  489. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  490. break;
  491. }
  492. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  493. {
  494. value = RT_IDX_DST_DFLT_Q | /* dest */
  495. RT_IDX_TYPE_NICQ | /* type */
  496. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  497. break;
  498. }
  499. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  500. {
  501. value = RT_IDX_DST_DFLT_Q | /* dest */
  502. RT_IDX_TYPE_NICQ | /* type */
  503. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  504. break;
  505. }
  506. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  507. {
  508. value = RT_IDX_DST_CAM_Q | /* dest */
  509. RT_IDX_TYPE_NICQ | /* type */
  510. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  511. break;
  512. }
  513. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  514. {
  515. value = RT_IDX_DST_CAM_Q | /* dest */
  516. RT_IDX_TYPE_NICQ | /* type */
  517. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  518. break;
  519. }
  520. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  521. {
  522. value = RT_IDX_DST_RSS | /* dest */
  523. RT_IDX_TYPE_NICQ | /* type */
  524. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  525. break;
  526. }
  527. case 0: /* Clear the E-bit on an entry. */
  528. {
  529. value = RT_IDX_DST_DFLT_Q | /* dest */
  530. RT_IDX_TYPE_NICQ | /* type */
  531. (index << RT_IDX_IDX_SHIFT);/* index */
  532. break;
  533. }
  534. default:
  535. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  536. mask);
  537. status = -EPERM;
  538. goto exit;
  539. }
  540. if (value) {
  541. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  542. if (status)
  543. goto exit;
  544. value |= (enable ? RT_IDX_E : 0);
  545. ql_write32(qdev, RT_IDX, value);
  546. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  547. }
  548. exit:
  549. return status;
  550. }
  551. static void ql_enable_interrupts(struct ql_adapter *qdev)
  552. {
  553. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  554. }
  555. static void ql_disable_interrupts(struct ql_adapter *qdev)
  556. {
  557. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  558. }
  559. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  560. * Otherwise, we may have multiple outstanding workers and don't want to
  561. * enable until the last one finishes. In this case, the irq_cnt gets
  562. * incremented everytime we queue a worker and decremented everytime
  563. * a worker finishes. Once it hits zero we enable the interrupt.
  564. */
  565. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  566. {
  567. u32 var = 0;
  568. unsigned long hw_flags = 0;
  569. struct intr_context *ctx = qdev->intr_context + intr;
  570. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  571. /* Always enable if we're MSIX multi interrupts and
  572. * it's not the default (zeroeth) interrupt.
  573. */
  574. ql_write32(qdev, INTR_EN,
  575. ctx->intr_en_mask);
  576. var = ql_read32(qdev, STS);
  577. return var;
  578. }
  579. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  580. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  581. ql_write32(qdev, INTR_EN,
  582. ctx->intr_en_mask);
  583. var = ql_read32(qdev, STS);
  584. }
  585. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  586. return var;
  587. }
  588. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  589. {
  590. u32 var = 0;
  591. struct intr_context *ctx;
  592. /* HW disables for us if we're MSIX multi interrupts and
  593. * it's not the default (zeroeth) interrupt.
  594. */
  595. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  596. return 0;
  597. ctx = qdev->intr_context + intr;
  598. spin_lock(&qdev->hw_lock);
  599. if (!atomic_read(&ctx->irq_cnt)) {
  600. ql_write32(qdev, INTR_EN,
  601. ctx->intr_dis_mask);
  602. var = ql_read32(qdev, STS);
  603. }
  604. atomic_inc(&ctx->irq_cnt);
  605. spin_unlock(&qdev->hw_lock);
  606. return var;
  607. }
  608. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  609. {
  610. int i;
  611. for (i = 0; i < qdev->intr_count; i++) {
  612. /* The enable call does a atomic_dec_and_test
  613. * and enables only if the result is zero.
  614. * So we precharge it here.
  615. */
  616. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  617. i == 0))
  618. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  619. ql_enable_completion_interrupt(qdev, i);
  620. }
  621. }
  622. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  623. {
  624. int status, i;
  625. u16 csum = 0;
  626. __le16 *flash = (__le16 *)&qdev->flash;
  627. status = strncmp((char *)&qdev->flash, str, 4);
  628. if (status) {
  629. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  630. return status;
  631. }
  632. for (i = 0; i < size; i++)
  633. csum += le16_to_cpu(*flash++);
  634. if (csum)
  635. QPRINTK(qdev, IFUP, ERR,
  636. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  637. return csum;
  638. }
  639. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  640. {
  641. int status = 0;
  642. /* wait for reg to come ready */
  643. status = ql_wait_reg_rdy(qdev,
  644. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  645. if (status)
  646. goto exit;
  647. /* set up for reg read */
  648. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  649. /* wait for reg to come ready */
  650. status = ql_wait_reg_rdy(qdev,
  651. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  652. if (status)
  653. goto exit;
  654. /* This data is stored on flash as an array of
  655. * __le32. Since ql_read32() returns cpu endian
  656. * we need to swap it back.
  657. */
  658. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  659. exit:
  660. return status;
  661. }
  662. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  663. {
  664. u32 i, size;
  665. int status;
  666. __le32 *p = (__le32 *)&qdev->flash;
  667. u32 offset;
  668. u8 mac_addr[6];
  669. /* Get flash offset for function and adjust
  670. * for dword access.
  671. */
  672. if (!qdev->port)
  673. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  674. else
  675. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  676. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  677. return -ETIMEDOUT;
  678. size = sizeof(struct flash_params_8000) / sizeof(u32);
  679. for (i = 0; i < size; i++, p++) {
  680. status = ql_read_flash_word(qdev, i+offset, p);
  681. if (status) {
  682. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  683. goto exit;
  684. }
  685. }
  686. status = ql_validate_flash(qdev,
  687. sizeof(struct flash_params_8000) / sizeof(u16),
  688. "8000");
  689. if (status) {
  690. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  691. status = -EINVAL;
  692. goto exit;
  693. }
  694. /* Extract either manufacturer or BOFM modified
  695. * MAC address.
  696. */
  697. if (qdev->flash.flash_params_8000.data_type1 == 2)
  698. memcpy(mac_addr,
  699. qdev->flash.flash_params_8000.mac_addr1,
  700. qdev->ndev->addr_len);
  701. else
  702. memcpy(mac_addr,
  703. qdev->flash.flash_params_8000.mac_addr,
  704. qdev->ndev->addr_len);
  705. if (!is_valid_ether_addr(mac_addr)) {
  706. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  707. status = -EINVAL;
  708. goto exit;
  709. }
  710. memcpy(qdev->ndev->dev_addr,
  711. mac_addr,
  712. qdev->ndev->addr_len);
  713. exit:
  714. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  715. return status;
  716. }
  717. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  718. {
  719. int i;
  720. int status;
  721. __le32 *p = (__le32 *)&qdev->flash;
  722. u32 offset = 0;
  723. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  724. /* Second function's parameters follow the first
  725. * function's.
  726. */
  727. if (qdev->port)
  728. offset = size;
  729. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  730. return -ETIMEDOUT;
  731. for (i = 0; i < size; i++, p++) {
  732. status = ql_read_flash_word(qdev, i+offset, p);
  733. if (status) {
  734. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  735. goto exit;
  736. }
  737. }
  738. status = ql_validate_flash(qdev,
  739. sizeof(struct flash_params_8012) / sizeof(u16),
  740. "8012");
  741. if (status) {
  742. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  743. status = -EINVAL;
  744. goto exit;
  745. }
  746. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  747. status = -EINVAL;
  748. goto exit;
  749. }
  750. memcpy(qdev->ndev->dev_addr,
  751. qdev->flash.flash_params_8012.mac_addr,
  752. qdev->ndev->addr_len);
  753. exit:
  754. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  755. return status;
  756. }
  757. /* xgmac register are located behind the xgmac_addr and xgmac_data
  758. * register pair. Each read/write requires us to wait for the ready
  759. * bit before reading/writing the data.
  760. */
  761. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  762. {
  763. int status;
  764. /* wait for reg to come ready */
  765. status = ql_wait_reg_rdy(qdev,
  766. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  767. if (status)
  768. return status;
  769. /* write the data to the data reg */
  770. ql_write32(qdev, XGMAC_DATA, data);
  771. /* trigger the write */
  772. ql_write32(qdev, XGMAC_ADDR, reg);
  773. return status;
  774. }
  775. /* xgmac register are located behind the xgmac_addr and xgmac_data
  776. * register pair. Each read/write requires us to wait for the ready
  777. * bit before reading/writing the data.
  778. */
  779. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  780. {
  781. int status = 0;
  782. /* wait for reg to come ready */
  783. status = ql_wait_reg_rdy(qdev,
  784. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  785. if (status)
  786. goto exit;
  787. /* set up for reg read */
  788. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  789. /* wait for reg to come ready */
  790. status = ql_wait_reg_rdy(qdev,
  791. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  792. if (status)
  793. goto exit;
  794. /* get the data */
  795. *data = ql_read32(qdev, XGMAC_DATA);
  796. exit:
  797. return status;
  798. }
  799. /* This is used for reading the 64-bit statistics regs. */
  800. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  801. {
  802. int status = 0;
  803. u32 hi = 0;
  804. u32 lo = 0;
  805. status = ql_read_xgmac_reg(qdev, reg, &lo);
  806. if (status)
  807. goto exit;
  808. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  809. if (status)
  810. goto exit;
  811. *data = (u64) lo | ((u64) hi << 32);
  812. exit:
  813. return status;
  814. }
  815. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  816. {
  817. int status;
  818. /*
  819. * Get MPI firmware version for driver banner
  820. * and ethool info.
  821. */
  822. status = ql_mb_about_fw(qdev);
  823. if (status)
  824. goto exit;
  825. status = ql_mb_get_fw_state(qdev);
  826. if (status)
  827. goto exit;
  828. /* Wake up a worker to get/set the TX/RX frame sizes. */
  829. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  830. exit:
  831. return status;
  832. }
  833. /* Take the MAC Core out of reset.
  834. * Enable statistics counting.
  835. * Take the transmitter/receiver out of reset.
  836. * This functionality may be done in the MPI firmware at a
  837. * later date.
  838. */
  839. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  840. {
  841. int status = 0;
  842. u32 data;
  843. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  844. /* Another function has the semaphore, so
  845. * wait for the port init bit to come ready.
  846. */
  847. QPRINTK(qdev, LINK, INFO,
  848. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  849. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  850. if (status) {
  851. QPRINTK(qdev, LINK, CRIT,
  852. "Port initialize timed out.\n");
  853. }
  854. return status;
  855. }
  856. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  857. /* Set the core reset. */
  858. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  859. if (status)
  860. goto end;
  861. data |= GLOBAL_CFG_RESET;
  862. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  863. if (status)
  864. goto end;
  865. /* Clear the core reset and turn on jumbo for receiver. */
  866. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  867. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  868. data |= GLOBAL_CFG_TX_STAT_EN;
  869. data |= GLOBAL_CFG_RX_STAT_EN;
  870. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  871. if (status)
  872. goto end;
  873. /* Enable transmitter, and clear it's reset. */
  874. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  875. if (status)
  876. goto end;
  877. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  878. data |= TX_CFG_EN; /* Enable the transmitter. */
  879. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  880. if (status)
  881. goto end;
  882. /* Enable receiver and clear it's reset. */
  883. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  884. if (status)
  885. goto end;
  886. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  887. data |= RX_CFG_EN; /* Enable the receiver. */
  888. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  889. if (status)
  890. goto end;
  891. /* Turn on jumbo. */
  892. status =
  893. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  894. if (status)
  895. goto end;
  896. status =
  897. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  898. if (status)
  899. goto end;
  900. /* Signal to the world that the port is enabled. */
  901. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  902. end:
  903. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  904. return status;
  905. }
  906. /* Get the next large buffer. */
  907. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  908. {
  909. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  910. rx_ring->lbq_curr_idx++;
  911. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  912. rx_ring->lbq_curr_idx = 0;
  913. rx_ring->lbq_free_cnt++;
  914. return lbq_desc;
  915. }
  916. /* Get the next small buffer. */
  917. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  918. {
  919. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  920. rx_ring->sbq_curr_idx++;
  921. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  922. rx_ring->sbq_curr_idx = 0;
  923. rx_ring->sbq_free_cnt++;
  924. return sbq_desc;
  925. }
  926. /* Update an rx ring index. */
  927. static void ql_update_cq(struct rx_ring *rx_ring)
  928. {
  929. rx_ring->cnsmr_idx++;
  930. rx_ring->curr_entry++;
  931. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  932. rx_ring->cnsmr_idx = 0;
  933. rx_ring->curr_entry = rx_ring->cq_base;
  934. }
  935. }
  936. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  937. {
  938. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  939. }
  940. /* Process (refill) a large buffer queue. */
  941. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  942. {
  943. u32 clean_idx = rx_ring->lbq_clean_idx;
  944. u32 start_idx = clean_idx;
  945. struct bq_desc *lbq_desc;
  946. u64 map;
  947. int i;
  948. while (rx_ring->lbq_free_cnt > 16) {
  949. for (i = 0; i < 16; i++) {
  950. QPRINTK(qdev, RX_STATUS, DEBUG,
  951. "lbq: try cleaning clean_idx = %d.\n",
  952. clean_idx);
  953. lbq_desc = &rx_ring->lbq[clean_idx];
  954. if (lbq_desc->p.lbq_page == NULL) {
  955. QPRINTK(qdev, RX_STATUS, DEBUG,
  956. "lbq: getting new page for index %d.\n",
  957. lbq_desc->index);
  958. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  959. if (lbq_desc->p.lbq_page == NULL) {
  960. rx_ring->lbq_clean_idx = clean_idx;
  961. QPRINTK(qdev, RX_STATUS, ERR,
  962. "Couldn't get a page.\n");
  963. return;
  964. }
  965. map = pci_map_page(qdev->pdev,
  966. lbq_desc->p.lbq_page,
  967. 0, PAGE_SIZE,
  968. PCI_DMA_FROMDEVICE);
  969. if (pci_dma_mapping_error(qdev->pdev, map)) {
  970. rx_ring->lbq_clean_idx = clean_idx;
  971. put_page(lbq_desc->p.lbq_page);
  972. lbq_desc->p.lbq_page = NULL;
  973. QPRINTK(qdev, RX_STATUS, ERR,
  974. "PCI mapping failed.\n");
  975. return;
  976. }
  977. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  978. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  979. *lbq_desc->addr = cpu_to_le64(map);
  980. }
  981. clean_idx++;
  982. if (clean_idx == rx_ring->lbq_len)
  983. clean_idx = 0;
  984. }
  985. rx_ring->lbq_clean_idx = clean_idx;
  986. rx_ring->lbq_prod_idx += 16;
  987. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  988. rx_ring->lbq_prod_idx = 0;
  989. rx_ring->lbq_free_cnt -= 16;
  990. }
  991. if (start_idx != clean_idx) {
  992. QPRINTK(qdev, RX_STATUS, DEBUG,
  993. "lbq: updating prod idx = %d.\n",
  994. rx_ring->lbq_prod_idx);
  995. ql_write_db_reg(rx_ring->lbq_prod_idx,
  996. rx_ring->lbq_prod_idx_db_reg);
  997. }
  998. }
  999. /* Process (refill) a small buffer queue. */
  1000. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1001. {
  1002. u32 clean_idx = rx_ring->sbq_clean_idx;
  1003. u32 start_idx = clean_idx;
  1004. struct bq_desc *sbq_desc;
  1005. u64 map;
  1006. int i;
  1007. while (rx_ring->sbq_free_cnt > 16) {
  1008. for (i = 0; i < 16; i++) {
  1009. sbq_desc = &rx_ring->sbq[clean_idx];
  1010. QPRINTK(qdev, RX_STATUS, DEBUG,
  1011. "sbq: try cleaning clean_idx = %d.\n",
  1012. clean_idx);
  1013. if (sbq_desc->p.skb == NULL) {
  1014. QPRINTK(qdev, RX_STATUS, DEBUG,
  1015. "sbq: getting new skb for index %d.\n",
  1016. sbq_desc->index);
  1017. sbq_desc->p.skb =
  1018. netdev_alloc_skb(qdev->ndev,
  1019. rx_ring->sbq_buf_size);
  1020. if (sbq_desc->p.skb == NULL) {
  1021. QPRINTK(qdev, PROBE, ERR,
  1022. "Couldn't get an skb.\n");
  1023. rx_ring->sbq_clean_idx = clean_idx;
  1024. return;
  1025. }
  1026. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1027. map = pci_map_single(qdev->pdev,
  1028. sbq_desc->p.skb->data,
  1029. rx_ring->sbq_buf_size /
  1030. 2, PCI_DMA_FROMDEVICE);
  1031. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1032. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1033. rx_ring->sbq_clean_idx = clean_idx;
  1034. dev_kfree_skb_any(sbq_desc->p.skb);
  1035. sbq_desc->p.skb = NULL;
  1036. return;
  1037. }
  1038. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1039. pci_unmap_len_set(sbq_desc, maplen,
  1040. rx_ring->sbq_buf_size / 2);
  1041. *sbq_desc->addr = cpu_to_le64(map);
  1042. }
  1043. clean_idx++;
  1044. if (clean_idx == rx_ring->sbq_len)
  1045. clean_idx = 0;
  1046. }
  1047. rx_ring->sbq_clean_idx = clean_idx;
  1048. rx_ring->sbq_prod_idx += 16;
  1049. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1050. rx_ring->sbq_prod_idx = 0;
  1051. rx_ring->sbq_free_cnt -= 16;
  1052. }
  1053. if (start_idx != clean_idx) {
  1054. QPRINTK(qdev, RX_STATUS, DEBUG,
  1055. "sbq: updating prod idx = %d.\n",
  1056. rx_ring->sbq_prod_idx);
  1057. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1058. rx_ring->sbq_prod_idx_db_reg);
  1059. }
  1060. }
  1061. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1062. struct rx_ring *rx_ring)
  1063. {
  1064. ql_update_sbq(qdev, rx_ring);
  1065. ql_update_lbq(qdev, rx_ring);
  1066. }
  1067. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1068. * fails at some stage, or from the interrupt when a tx completes.
  1069. */
  1070. static void ql_unmap_send(struct ql_adapter *qdev,
  1071. struct tx_ring_desc *tx_ring_desc, int mapped)
  1072. {
  1073. int i;
  1074. for (i = 0; i < mapped; i++) {
  1075. if (i == 0 || (i == 7 && mapped > 7)) {
  1076. /*
  1077. * Unmap the skb->data area, or the
  1078. * external sglist (AKA the Outbound
  1079. * Address List (OAL)).
  1080. * If its the zeroeth element, then it's
  1081. * the skb->data area. If it's the 7th
  1082. * element and there is more than 6 frags,
  1083. * then its an OAL.
  1084. */
  1085. if (i == 7) {
  1086. QPRINTK(qdev, TX_DONE, DEBUG,
  1087. "unmapping OAL area.\n");
  1088. }
  1089. pci_unmap_single(qdev->pdev,
  1090. pci_unmap_addr(&tx_ring_desc->map[i],
  1091. mapaddr),
  1092. pci_unmap_len(&tx_ring_desc->map[i],
  1093. maplen),
  1094. PCI_DMA_TODEVICE);
  1095. } else {
  1096. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1097. i);
  1098. pci_unmap_page(qdev->pdev,
  1099. pci_unmap_addr(&tx_ring_desc->map[i],
  1100. mapaddr),
  1101. pci_unmap_len(&tx_ring_desc->map[i],
  1102. maplen), PCI_DMA_TODEVICE);
  1103. }
  1104. }
  1105. }
  1106. /* Map the buffers for this transmit. This will return
  1107. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1108. */
  1109. static int ql_map_send(struct ql_adapter *qdev,
  1110. struct ob_mac_iocb_req *mac_iocb_ptr,
  1111. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1112. {
  1113. int len = skb_headlen(skb);
  1114. dma_addr_t map;
  1115. int frag_idx, err, map_idx = 0;
  1116. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1117. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1118. if (frag_cnt) {
  1119. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1120. }
  1121. /*
  1122. * Map the skb buffer first.
  1123. */
  1124. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1125. err = pci_dma_mapping_error(qdev->pdev, map);
  1126. if (err) {
  1127. QPRINTK(qdev, TX_QUEUED, ERR,
  1128. "PCI mapping failed with error: %d\n", err);
  1129. return NETDEV_TX_BUSY;
  1130. }
  1131. tbd->len = cpu_to_le32(len);
  1132. tbd->addr = cpu_to_le64(map);
  1133. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1134. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1135. map_idx++;
  1136. /*
  1137. * This loop fills the remainder of the 8 address descriptors
  1138. * in the IOCB. If there are more than 7 fragments, then the
  1139. * eighth address desc will point to an external list (OAL).
  1140. * When this happens, the remainder of the frags will be stored
  1141. * in this list.
  1142. */
  1143. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1144. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1145. tbd++;
  1146. if (frag_idx == 6 && frag_cnt > 7) {
  1147. /* Let's tack on an sglist.
  1148. * Our control block will now
  1149. * look like this:
  1150. * iocb->seg[0] = skb->data
  1151. * iocb->seg[1] = frag[0]
  1152. * iocb->seg[2] = frag[1]
  1153. * iocb->seg[3] = frag[2]
  1154. * iocb->seg[4] = frag[3]
  1155. * iocb->seg[5] = frag[4]
  1156. * iocb->seg[6] = frag[5]
  1157. * iocb->seg[7] = ptr to OAL (external sglist)
  1158. * oal->seg[0] = frag[6]
  1159. * oal->seg[1] = frag[7]
  1160. * oal->seg[2] = frag[8]
  1161. * oal->seg[3] = frag[9]
  1162. * oal->seg[4] = frag[10]
  1163. * etc...
  1164. */
  1165. /* Tack on the OAL in the eighth segment of IOCB. */
  1166. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1167. sizeof(struct oal),
  1168. PCI_DMA_TODEVICE);
  1169. err = pci_dma_mapping_error(qdev->pdev, map);
  1170. if (err) {
  1171. QPRINTK(qdev, TX_QUEUED, ERR,
  1172. "PCI mapping outbound address list with error: %d\n",
  1173. err);
  1174. goto map_error;
  1175. }
  1176. tbd->addr = cpu_to_le64(map);
  1177. /*
  1178. * The length is the number of fragments
  1179. * that remain to be mapped times the length
  1180. * of our sglist (OAL).
  1181. */
  1182. tbd->len =
  1183. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1184. (frag_cnt - frag_idx)) | TX_DESC_C);
  1185. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1186. map);
  1187. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1188. sizeof(struct oal));
  1189. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1190. map_idx++;
  1191. }
  1192. map =
  1193. pci_map_page(qdev->pdev, frag->page,
  1194. frag->page_offset, frag->size,
  1195. PCI_DMA_TODEVICE);
  1196. err = pci_dma_mapping_error(qdev->pdev, map);
  1197. if (err) {
  1198. QPRINTK(qdev, TX_QUEUED, ERR,
  1199. "PCI mapping frags failed with error: %d.\n",
  1200. err);
  1201. goto map_error;
  1202. }
  1203. tbd->addr = cpu_to_le64(map);
  1204. tbd->len = cpu_to_le32(frag->size);
  1205. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1206. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1207. frag->size);
  1208. }
  1209. /* Save the number of segments we've mapped. */
  1210. tx_ring_desc->map_cnt = map_idx;
  1211. /* Terminate the last segment. */
  1212. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1213. return NETDEV_TX_OK;
  1214. map_error:
  1215. /*
  1216. * If the first frag mapping failed, then i will be zero.
  1217. * This causes the unmap of the skb->data area. Otherwise
  1218. * we pass in the number of frags that mapped successfully
  1219. * so they can be umapped.
  1220. */
  1221. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1222. return NETDEV_TX_BUSY;
  1223. }
  1224. static void ql_realign_skb(struct sk_buff *skb, int len)
  1225. {
  1226. void *temp_addr = skb->data;
  1227. /* Undo the skb_reserve(skb,32) we did before
  1228. * giving to hardware, and realign data on
  1229. * a 2-byte boundary.
  1230. */
  1231. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1232. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1233. skb_copy_to_linear_data(skb, temp_addr,
  1234. (unsigned int)len);
  1235. }
  1236. /*
  1237. * This function builds an skb for the given inbound
  1238. * completion. It will be rewritten for readability in the near
  1239. * future, but for not it works well.
  1240. */
  1241. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1242. struct rx_ring *rx_ring,
  1243. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1244. {
  1245. struct bq_desc *lbq_desc;
  1246. struct bq_desc *sbq_desc;
  1247. struct sk_buff *skb = NULL;
  1248. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1249. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1250. /*
  1251. * Handle the header buffer if present.
  1252. */
  1253. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1254. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1255. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1256. /*
  1257. * Headers fit nicely into a small buffer.
  1258. */
  1259. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1260. pci_unmap_single(qdev->pdev,
  1261. pci_unmap_addr(sbq_desc, mapaddr),
  1262. pci_unmap_len(sbq_desc, maplen),
  1263. PCI_DMA_FROMDEVICE);
  1264. skb = sbq_desc->p.skb;
  1265. ql_realign_skb(skb, hdr_len);
  1266. skb_put(skb, hdr_len);
  1267. sbq_desc->p.skb = NULL;
  1268. }
  1269. /*
  1270. * Handle the data buffer(s).
  1271. */
  1272. if (unlikely(!length)) { /* Is there data too? */
  1273. QPRINTK(qdev, RX_STATUS, DEBUG,
  1274. "No Data buffer in this packet.\n");
  1275. return skb;
  1276. }
  1277. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1278. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1279. QPRINTK(qdev, RX_STATUS, DEBUG,
  1280. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1281. /*
  1282. * Data is less than small buffer size so it's
  1283. * stuffed in a small buffer.
  1284. * For this case we append the data
  1285. * from the "data" small buffer to the "header" small
  1286. * buffer.
  1287. */
  1288. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1289. pci_dma_sync_single_for_cpu(qdev->pdev,
  1290. pci_unmap_addr
  1291. (sbq_desc, mapaddr),
  1292. pci_unmap_len
  1293. (sbq_desc, maplen),
  1294. PCI_DMA_FROMDEVICE);
  1295. memcpy(skb_put(skb, length),
  1296. sbq_desc->p.skb->data, length);
  1297. pci_dma_sync_single_for_device(qdev->pdev,
  1298. pci_unmap_addr
  1299. (sbq_desc,
  1300. mapaddr),
  1301. pci_unmap_len
  1302. (sbq_desc,
  1303. maplen),
  1304. PCI_DMA_FROMDEVICE);
  1305. } else {
  1306. QPRINTK(qdev, RX_STATUS, DEBUG,
  1307. "%d bytes in a single small buffer.\n", length);
  1308. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1309. skb = sbq_desc->p.skb;
  1310. ql_realign_skb(skb, length);
  1311. skb_put(skb, length);
  1312. pci_unmap_single(qdev->pdev,
  1313. pci_unmap_addr(sbq_desc,
  1314. mapaddr),
  1315. pci_unmap_len(sbq_desc,
  1316. maplen),
  1317. PCI_DMA_FROMDEVICE);
  1318. sbq_desc->p.skb = NULL;
  1319. }
  1320. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1321. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1322. QPRINTK(qdev, RX_STATUS, DEBUG,
  1323. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1324. /*
  1325. * The data is in a single large buffer. We
  1326. * chain it to the header buffer's skb and let
  1327. * it rip.
  1328. */
  1329. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1330. pci_unmap_page(qdev->pdev,
  1331. pci_unmap_addr(lbq_desc,
  1332. mapaddr),
  1333. pci_unmap_len(lbq_desc, maplen),
  1334. PCI_DMA_FROMDEVICE);
  1335. QPRINTK(qdev, RX_STATUS, DEBUG,
  1336. "Chaining page to skb.\n");
  1337. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1338. 0, length);
  1339. skb->len += length;
  1340. skb->data_len += length;
  1341. skb->truesize += length;
  1342. lbq_desc->p.lbq_page = NULL;
  1343. } else {
  1344. /*
  1345. * The headers and data are in a single large buffer. We
  1346. * copy it to a new skb and let it go. This can happen with
  1347. * jumbo mtu on a non-TCP/UDP frame.
  1348. */
  1349. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1350. skb = netdev_alloc_skb(qdev->ndev, length);
  1351. if (skb == NULL) {
  1352. QPRINTK(qdev, PROBE, DEBUG,
  1353. "No skb available, drop the packet.\n");
  1354. return NULL;
  1355. }
  1356. pci_unmap_page(qdev->pdev,
  1357. pci_unmap_addr(lbq_desc,
  1358. mapaddr),
  1359. pci_unmap_len(lbq_desc, maplen),
  1360. PCI_DMA_FROMDEVICE);
  1361. skb_reserve(skb, NET_IP_ALIGN);
  1362. QPRINTK(qdev, RX_STATUS, DEBUG,
  1363. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1364. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1365. 0, length);
  1366. skb->len += length;
  1367. skb->data_len += length;
  1368. skb->truesize += length;
  1369. length -= length;
  1370. lbq_desc->p.lbq_page = NULL;
  1371. __pskb_pull_tail(skb,
  1372. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1373. VLAN_ETH_HLEN : ETH_HLEN);
  1374. }
  1375. } else {
  1376. /*
  1377. * The data is in a chain of large buffers
  1378. * pointed to by a small buffer. We loop
  1379. * thru and chain them to the our small header
  1380. * buffer's skb.
  1381. * frags: There are 18 max frags and our small
  1382. * buffer will hold 32 of them. The thing is,
  1383. * we'll use 3 max for our 9000 byte jumbo
  1384. * frames. If the MTU goes up we could
  1385. * eventually be in trouble.
  1386. */
  1387. int size, offset, i = 0;
  1388. __le64 *bq, bq_array[8];
  1389. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1390. pci_unmap_single(qdev->pdev,
  1391. pci_unmap_addr(sbq_desc, mapaddr),
  1392. pci_unmap_len(sbq_desc, maplen),
  1393. PCI_DMA_FROMDEVICE);
  1394. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1395. /*
  1396. * This is an non TCP/UDP IP frame, so
  1397. * the headers aren't split into a small
  1398. * buffer. We have to use the small buffer
  1399. * that contains our sg list as our skb to
  1400. * send upstairs. Copy the sg list here to
  1401. * a local buffer and use it to find the
  1402. * pages to chain.
  1403. */
  1404. QPRINTK(qdev, RX_STATUS, DEBUG,
  1405. "%d bytes of headers & data in chain of large.\n", length);
  1406. skb = sbq_desc->p.skb;
  1407. bq = &bq_array[0];
  1408. memcpy(bq, skb->data, sizeof(bq_array));
  1409. sbq_desc->p.skb = NULL;
  1410. skb_reserve(skb, NET_IP_ALIGN);
  1411. } else {
  1412. QPRINTK(qdev, RX_STATUS, DEBUG,
  1413. "Headers in small, %d bytes of data in chain of large.\n", length);
  1414. bq = (__le64 *)sbq_desc->p.skb->data;
  1415. }
  1416. while (length > 0) {
  1417. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1418. pci_unmap_page(qdev->pdev,
  1419. pci_unmap_addr(lbq_desc,
  1420. mapaddr),
  1421. pci_unmap_len(lbq_desc,
  1422. maplen),
  1423. PCI_DMA_FROMDEVICE);
  1424. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1425. offset = 0;
  1426. QPRINTK(qdev, RX_STATUS, DEBUG,
  1427. "Adding page %d to skb for %d bytes.\n",
  1428. i, size);
  1429. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1430. offset, size);
  1431. skb->len += size;
  1432. skb->data_len += size;
  1433. skb->truesize += size;
  1434. length -= size;
  1435. lbq_desc->p.lbq_page = NULL;
  1436. bq++;
  1437. i++;
  1438. }
  1439. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1440. VLAN_ETH_HLEN : ETH_HLEN);
  1441. }
  1442. return skb;
  1443. }
  1444. /* Process an inbound completion from an rx ring. */
  1445. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1446. struct rx_ring *rx_ring,
  1447. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1448. {
  1449. struct net_device *ndev = qdev->ndev;
  1450. struct sk_buff *skb = NULL;
  1451. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1452. IB_MAC_IOCB_RSP_VLAN_MASK)
  1453. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1454. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1455. if (unlikely(!skb)) {
  1456. QPRINTK(qdev, RX_STATUS, DEBUG,
  1457. "No skb available, drop packet.\n");
  1458. return;
  1459. }
  1460. /* Frame error, so drop the packet. */
  1461. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1462. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1463. ib_mac_rsp->flags2);
  1464. dev_kfree_skb_any(skb);
  1465. return;
  1466. }
  1467. /* The max framesize filter on this chip is set higher than
  1468. * MTU since FCoE uses 2k frames.
  1469. */
  1470. if (skb->len > ndev->mtu + ETH_HLEN) {
  1471. dev_kfree_skb_any(skb);
  1472. return;
  1473. }
  1474. prefetch(skb->data);
  1475. skb->dev = ndev;
  1476. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1477. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1478. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1479. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1480. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1481. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1482. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1483. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1484. }
  1485. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1486. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1487. }
  1488. skb->protocol = eth_type_trans(skb, ndev);
  1489. skb->ip_summed = CHECKSUM_NONE;
  1490. /* If rx checksum is on, and there are no
  1491. * csum or frame errors.
  1492. */
  1493. if (qdev->rx_csum &&
  1494. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1495. /* TCP frame. */
  1496. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1497. QPRINTK(qdev, RX_STATUS, DEBUG,
  1498. "TCP checksum done!\n");
  1499. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1500. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1501. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1502. /* Unfragmented ipv4 UDP frame. */
  1503. struct iphdr *iph = (struct iphdr *) skb->data;
  1504. if (!(iph->frag_off &
  1505. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1506. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1507. QPRINTK(qdev, RX_STATUS, DEBUG,
  1508. "TCP checksum done!\n");
  1509. }
  1510. }
  1511. }
  1512. qdev->stats.rx_packets++;
  1513. qdev->stats.rx_bytes += skb->len;
  1514. skb_record_rx_queue(skb,
  1515. rx_ring->cq_id - qdev->rss_ring_first_cq_id);
  1516. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1517. if (qdev->vlgrp &&
  1518. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1519. (vlan_id != 0))
  1520. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1521. vlan_id, skb);
  1522. else
  1523. napi_gro_receive(&rx_ring->napi, skb);
  1524. } else {
  1525. if (qdev->vlgrp &&
  1526. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1527. (vlan_id != 0))
  1528. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1529. else
  1530. netif_receive_skb(skb);
  1531. }
  1532. }
  1533. /* Process an outbound completion from an rx ring. */
  1534. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1535. struct ob_mac_iocb_rsp *mac_rsp)
  1536. {
  1537. struct tx_ring *tx_ring;
  1538. struct tx_ring_desc *tx_ring_desc;
  1539. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1540. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1541. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1542. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1543. qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1544. qdev->stats.tx_packets++;
  1545. dev_kfree_skb(tx_ring_desc->skb);
  1546. tx_ring_desc->skb = NULL;
  1547. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1548. OB_MAC_IOCB_RSP_S |
  1549. OB_MAC_IOCB_RSP_L |
  1550. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1551. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1552. QPRINTK(qdev, TX_DONE, WARNING,
  1553. "Total descriptor length did not match transfer length.\n");
  1554. }
  1555. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1556. QPRINTK(qdev, TX_DONE, WARNING,
  1557. "Frame too short to be legal, not sent.\n");
  1558. }
  1559. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1560. QPRINTK(qdev, TX_DONE, WARNING,
  1561. "Frame too long, but sent anyway.\n");
  1562. }
  1563. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1564. QPRINTK(qdev, TX_DONE, WARNING,
  1565. "PCI backplane error. Frame not sent.\n");
  1566. }
  1567. }
  1568. atomic_inc(&tx_ring->tx_count);
  1569. }
  1570. /* Fire up a handler to reset the MPI processor. */
  1571. void ql_queue_fw_error(struct ql_adapter *qdev)
  1572. {
  1573. ql_link_off(qdev);
  1574. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1575. }
  1576. void ql_queue_asic_error(struct ql_adapter *qdev)
  1577. {
  1578. ql_link_off(qdev);
  1579. ql_disable_interrupts(qdev);
  1580. /* Clear adapter up bit to signal the recovery
  1581. * process that it shouldn't kill the reset worker
  1582. * thread
  1583. */
  1584. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1585. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1586. }
  1587. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1588. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1589. {
  1590. switch (ib_ae_rsp->event) {
  1591. case MGMT_ERR_EVENT:
  1592. QPRINTK(qdev, RX_ERR, ERR,
  1593. "Management Processor Fatal Error.\n");
  1594. ql_queue_fw_error(qdev);
  1595. return;
  1596. case CAM_LOOKUP_ERR_EVENT:
  1597. QPRINTK(qdev, LINK, ERR,
  1598. "Multiple CAM hits lookup occurred.\n");
  1599. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1600. ql_queue_asic_error(qdev);
  1601. return;
  1602. case SOFT_ECC_ERROR_EVENT:
  1603. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1604. ql_queue_asic_error(qdev);
  1605. break;
  1606. case PCI_ERR_ANON_BUF_RD:
  1607. QPRINTK(qdev, RX_ERR, ERR,
  1608. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1609. ib_ae_rsp->q_id);
  1610. ql_queue_asic_error(qdev);
  1611. break;
  1612. default:
  1613. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1614. ib_ae_rsp->event);
  1615. ql_queue_asic_error(qdev);
  1616. break;
  1617. }
  1618. }
  1619. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1620. {
  1621. struct ql_adapter *qdev = rx_ring->qdev;
  1622. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1623. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1624. int count = 0;
  1625. struct tx_ring *tx_ring;
  1626. /* While there are entries in the completion queue. */
  1627. while (prod != rx_ring->cnsmr_idx) {
  1628. QPRINTK(qdev, RX_STATUS, DEBUG,
  1629. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1630. prod, rx_ring->cnsmr_idx);
  1631. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1632. rmb();
  1633. switch (net_rsp->opcode) {
  1634. case OPCODE_OB_MAC_TSO_IOCB:
  1635. case OPCODE_OB_MAC_IOCB:
  1636. ql_process_mac_tx_intr(qdev, net_rsp);
  1637. break;
  1638. default:
  1639. QPRINTK(qdev, RX_STATUS, DEBUG,
  1640. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1641. net_rsp->opcode);
  1642. }
  1643. count++;
  1644. ql_update_cq(rx_ring);
  1645. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1646. }
  1647. ql_write_cq_idx(rx_ring);
  1648. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1649. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1650. net_rsp != NULL) {
  1651. if (atomic_read(&tx_ring->queue_stopped) &&
  1652. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1653. /*
  1654. * The queue got stopped because the tx_ring was full.
  1655. * Wake it up, because it's now at least 25% empty.
  1656. */
  1657. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1658. }
  1659. return count;
  1660. }
  1661. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1662. {
  1663. struct ql_adapter *qdev = rx_ring->qdev;
  1664. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1665. struct ql_net_rsp_iocb *net_rsp;
  1666. int count = 0;
  1667. /* While there are entries in the completion queue. */
  1668. while (prod != rx_ring->cnsmr_idx) {
  1669. QPRINTK(qdev, RX_STATUS, DEBUG,
  1670. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1671. prod, rx_ring->cnsmr_idx);
  1672. net_rsp = rx_ring->curr_entry;
  1673. rmb();
  1674. switch (net_rsp->opcode) {
  1675. case OPCODE_IB_MAC_IOCB:
  1676. ql_process_mac_rx_intr(qdev, rx_ring,
  1677. (struct ib_mac_iocb_rsp *)
  1678. net_rsp);
  1679. break;
  1680. case OPCODE_IB_AE_IOCB:
  1681. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1682. net_rsp);
  1683. break;
  1684. default:
  1685. {
  1686. QPRINTK(qdev, RX_STATUS, DEBUG,
  1687. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1688. net_rsp->opcode);
  1689. }
  1690. }
  1691. count++;
  1692. ql_update_cq(rx_ring);
  1693. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1694. if (count == budget)
  1695. break;
  1696. }
  1697. ql_update_buffer_queues(qdev, rx_ring);
  1698. ql_write_cq_idx(rx_ring);
  1699. return count;
  1700. }
  1701. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1702. {
  1703. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1704. struct ql_adapter *qdev = rx_ring->qdev;
  1705. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1706. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1707. rx_ring->cq_id);
  1708. if (work_done < budget) {
  1709. napi_complete(napi);
  1710. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1711. }
  1712. return work_done;
  1713. }
  1714. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1715. {
  1716. struct ql_adapter *qdev = netdev_priv(ndev);
  1717. qdev->vlgrp = grp;
  1718. if (grp) {
  1719. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1720. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1721. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1722. } else {
  1723. QPRINTK(qdev, IFUP, DEBUG,
  1724. "Turning off VLAN in NIC_RCV_CFG.\n");
  1725. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1726. }
  1727. }
  1728. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1729. {
  1730. struct ql_adapter *qdev = netdev_priv(ndev);
  1731. u32 enable_bit = MAC_ADDR_E;
  1732. int status;
  1733. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1734. if (status)
  1735. return;
  1736. spin_lock(&qdev->hw_lock);
  1737. if (ql_set_mac_addr_reg
  1738. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1739. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1740. }
  1741. spin_unlock(&qdev->hw_lock);
  1742. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1743. }
  1744. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1745. {
  1746. struct ql_adapter *qdev = netdev_priv(ndev);
  1747. u32 enable_bit = 0;
  1748. int status;
  1749. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1750. if (status)
  1751. return;
  1752. spin_lock(&qdev->hw_lock);
  1753. if (ql_set_mac_addr_reg
  1754. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1755. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1756. }
  1757. spin_unlock(&qdev->hw_lock);
  1758. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1759. }
  1760. /* Worker thread to process a given rx_ring that is dedicated
  1761. * to outbound completions.
  1762. */
  1763. static void ql_tx_clean(struct work_struct *work)
  1764. {
  1765. struct rx_ring *rx_ring =
  1766. container_of(work, struct rx_ring, rx_work.work);
  1767. ql_clean_outbound_rx_ring(rx_ring);
  1768. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1769. }
  1770. /* Worker thread to process a given rx_ring that is dedicated
  1771. * to inbound completions.
  1772. */
  1773. static void ql_rx_clean(struct work_struct *work)
  1774. {
  1775. struct rx_ring *rx_ring =
  1776. container_of(work, struct rx_ring, rx_work.work);
  1777. ql_clean_inbound_rx_ring(rx_ring, 64);
  1778. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1779. }
  1780. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1781. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1782. {
  1783. struct rx_ring *rx_ring = dev_id;
  1784. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1785. &rx_ring->rx_work, 0);
  1786. return IRQ_HANDLED;
  1787. }
  1788. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1789. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1790. {
  1791. struct rx_ring *rx_ring = dev_id;
  1792. napi_schedule(&rx_ring->napi);
  1793. return IRQ_HANDLED;
  1794. }
  1795. /* This handles a fatal error, MPI activity, and the default
  1796. * rx_ring in an MSI-X multiple vector environment.
  1797. * In MSI/Legacy environment it also process the rest of
  1798. * the rx_rings.
  1799. */
  1800. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1801. {
  1802. struct rx_ring *rx_ring = dev_id;
  1803. struct ql_adapter *qdev = rx_ring->qdev;
  1804. struct intr_context *intr_context = &qdev->intr_context[0];
  1805. u32 var;
  1806. int i;
  1807. int work_done = 0;
  1808. spin_lock(&qdev->hw_lock);
  1809. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1810. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1811. spin_unlock(&qdev->hw_lock);
  1812. return IRQ_NONE;
  1813. }
  1814. spin_unlock(&qdev->hw_lock);
  1815. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1816. /*
  1817. * Check for fatal error.
  1818. */
  1819. if (var & STS_FE) {
  1820. ql_queue_asic_error(qdev);
  1821. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1822. var = ql_read32(qdev, ERR_STS);
  1823. QPRINTK(qdev, INTR, ERR,
  1824. "Resetting chip. Error Status Register = 0x%x\n", var);
  1825. return IRQ_HANDLED;
  1826. }
  1827. /*
  1828. * Check MPI processor activity.
  1829. */
  1830. if (var & STS_PI) {
  1831. /*
  1832. * We've got an async event or mailbox completion.
  1833. * Handle it and clear the source of the interrupt.
  1834. */
  1835. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1836. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1837. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1838. &qdev->mpi_work, 0);
  1839. work_done++;
  1840. }
  1841. /*
  1842. * Check the default queue and wake handler if active.
  1843. */
  1844. rx_ring = &qdev->rx_ring[0];
  1845. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1846. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1847. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1848. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1849. &rx_ring->rx_work, 0);
  1850. work_done++;
  1851. }
  1852. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1853. /*
  1854. * Start the DPC for each active queue.
  1855. */
  1856. for (i = 1; i < qdev->rx_ring_count; i++) {
  1857. rx_ring = &qdev->rx_ring[i];
  1858. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1859. rx_ring->cnsmr_idx) {
  1860. QPRINTK(qdev, INTR, INFO,
  1861. "Waking handler for rx_ring[%d].\n", i);
  1862. ql_disable_completion_interrupt(qdev,
  1863. intr_context->
  1864. intr);
  1865. if (i < qdev->rss_ring_first_cq_id)
  1866. queue_delayed_work_on(rx_ring->cpu,
  1867. qdev->q_workqueue,
  1868. &rx_ring->rx_work,
  1869. 0);
  1870. else
  1871. napi_schedule(&rx_ring->napi);
  1872. work_done++;
  1873. }
  1874. }
  1875. }
  1876. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1877. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1878. }
  1879. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1880. {
  1881. if (skb_is_gso(skb)) {
  1882. int err;
  1883. if (skb_header_cloned(skb)) {
  1884. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1885. if (err)
  1886. return err;
  1887. }
  1888. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1889. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1890. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1891. mac_iocb_ptr->total_hdrs_len =
  1892. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1893. mac_iocb_ptr->net_trans_offset =
  1894. cpu_to_le16(skb_network_offset(skb) |
  1895. skb_transport_offset(skb)
  1896. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1897. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1898. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1899. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1900. struct iphdr *iph = ip_hdr(skb);
  1901. iph->check = 0;
  1902. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1903. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1904. iph->daddr, 0,
  1905. IPPROTO_TCP,
  1906. 0);
  1907. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1908. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1909. tcp_hdr(skb)->check =
  1910. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1911. &ipv6_hdr(skb)->daddr,
  1912. 0, IPPROTO_TCP, 0);
  1913. }
  1914. return 1;
  1915. }
  1916. return 0;
  1917. }
  1918. static void ql_hw_csum_setup(struct sk_buff *skb,
  1919. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1920. {
  1921. int len;
  1922. struct iphdr *iph = ip_hdr(skb);
  1923. __sum16 *check;
  1924. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1925. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1926. mac_iocb_ptr->net_trans_offset =
  1927. cpu_to_le16(skb_network_offset(skb) |
  1928. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1929. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1930. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1931. if (likely(iph->protocol == IPPROTO_TCP)) {
  1932. check = &(tcp_hdr(skb)->check);
  1933. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1934. mac_iocb_ptr->total_hdrs_len =
  1935. cpu_to_le16(skb_transport_offset(skb) +
  1936. (tcp_hdr(skb)->doff << 2));
  1937. } else {
  1938. check = &(udp_hdr(skb)->check);
  1939. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1940. mac_iocb_ptr->total_hdrs_len =
  1941. cpu_to_le16(skb_transport_offset(skb) +
  1942. sizeof(struct udphdr));
  1943. }
  1944. *check = ~csum_tcpudp_magic(iph->saddr,
  1945. iph->daddr, len, iph->protocol, 0);
  1946. }
  1947. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1948. {
  1949. struct tx_ring_desc *tx_ring_desc;
  1950. struct ob_mac_iocb_req *mac_iocb_ptr;
  1951. struct ql_adapter *qdev = netdev_priv(ndev);
  1952. int tso;
  1953. struct tx_ring *tx_ring;
  1954. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1955. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1956. if (skb_padto(skb, ETH_ZLEN))
  1957. return NETDEV_TX_OK;
  1958. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1959. QPRINTK(qdev, TX_QUEUED, INFO,
  1960. "%s: shutting down tx queue %d du to lack of resources.\n",
  1961. __func__, tx_ring_idx);
  1962. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1963. atomic_inc(&tx_ring->queue_stopped);
  1964. return NETDEV_TX_BUSY;
  1965. }
  1966. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1967. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1968. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  1969. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1970. mac_iocb_ptr->tid = tx_ring_desc->index;
  1971. /* We use the upper 32-bits to store the tx queue for this IO.
  1972. * When we get the completion we can use it to establish the context.
  1973. */
  1974. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1975. tx_ring_desc->skb = skb;
  1976. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1977. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1978. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1979. vlan_tx_tag_get(skb));
  1980. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1981. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1982. }
  1983. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1984. if (tso < 0) {
  1985. dev_kfree_skb_any(skb);
  1986. return NETDEV_TX_OK;
  1987. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1988. ql_hw_csum_setup(skb,
  1989. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1990. }
  1991. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1992. NETDEV_TX_OK) {
  1993. QPRINTK(qdev, TX_QUEUED, ERR,
  1994. "Could not map the segments.\n");
  1995. return NETDEV_TX_BUSY;
  1996. }
  1997. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1998. tx_ring->prod_idx++;
  1999. if (tx_ring->prod_idx == tx_ring->wq_len)
  2000. tx_ring->prod_idx = 0;
  2001. wmb();
  2002. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2003. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2004. tx_ring->prod_idx, skb->len);
  2005. atomic_dec(&tx_ring->tx_count);
  2006. return NETDEV_TX_OK;
  2007. }
  2008. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2009. {
  2010. if (qdev->rx_ring_shadow_reg_area) {
  2011. pci_free_consistent(qdev->pdev,
  2012. PAGE_SIZE,
  2013. qdev->rx_ring_shadow_reg_area,
  2014. qdev->rx_ring_shadow_reg_dma);
  2015. qdev->rx_ring_shadow_reg_area = NULL;
  2016. }
  2017. if (qdev->tx_ring_shadow_reg_area) {
  2018. pci_free_consistent(qdev->pdev,
  2019. PAGE_SIZE,
  2020. qdev->tx_ring_shadow_reg_area,
  2021. qdev->tx_ring_shadow_reg_dma);
  2022. qdev->tx_ring_shadow_reg_area = NULL;
  2023. }
  2024. }
  2025. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2026. {
  2027. qdev->rx_ring_shadow_reg_area =
  2028. pci_alloc_consistent(qdev->pdev,
  2029. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2030. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2031. QPRINTK(qdev, IFUP, ERR,
  2032. "Allocation of RX shadow space failed.\n");
  2033. return -ENOMEM;
  2034. }
  2035. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2036. qdev->tx_ring_shadow_reg_area =
  2037. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2038. &qdev->tx_ring_shadow_reg_dma);
  2039. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2040. QPRINTK(qdev, IFUP, ERR,
  2041. "Allocation of TX shadow space failed.\n");
  2042. goto err_wqp_sh_area;
  2043. }
  2044. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2045. return 0;
  2046. err_wqp_sh_area:
  2047. pci_free_consistent(qdev->pdev,
  2048. PAGE_SIZE,
  2049. qdev->rx_ring_shadow_reg_area,
  2050. qdev->rx_ring_shadow_reg_dma);
  2051. return -ENOMEM;
  2052. }
  2053. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2054. {
  2055. struct tx_ring_desc *tx_ring_desc;
  2056. int i;
  2057. struct ob_mac_iocb_req *mac_iocb_ptr;
  2058. mac_iocb_ptr = tx_ring->wq_base;
  2059. tx_ring_desc = tx_ring->q;
  2060. for (i = 0; i < tx_ring->wq_len; i++) {
  2061. tx_ring_desc->index = i;
  2062. tx_ring_desc->skb = NULL;
  2063. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2064. mac_iocb_ptr++;
  2065. tx_ring_desc++;
  2066. }
  2067. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2068. atomic_set(&tx_ring->queue_stopped, 0);
  2069. }
  2070. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2071. struct tx_ring *tx_ring)
  2072. {
  2073. if (tx_ring->wq_base) {
  2074. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2075. tx_ring->wq_base, tx_ring->wq_base_dma);
  2076. tx_ring->wq_base = NULL;
  2077. }
  2078. kfree(tx_ring->q);
  2079. tx_ring->q = NULL;
  2080. }
  2081. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2082. struct tx_ring *tx_ring)
  2083. {
  2084. tx_ring->wq_base =
  2085. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2086. &tx_ring->wq_base_dma);
  2087. if ((tx_ring->wq_base == NULL)
  2088. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2089. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2090. return -ENOMEM;
  2091. }
  2092. tx_ring->q =
  2093. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2094. if (tx_ring->q == NULL)
  2095. goto err;
  2096. return 0;
  2097. err:
  2098. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2099. tx_ring->wq_base, tx_ring->wq_base_dma);
  2100. return -ENOMEM;
  2101. }
  2102. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2103. {
  2104. int i;
  2105. struct bq_desc *lbq_desc;
  2106. for (i = 0; i < rx_ring->lbq_len; i++) {
  2107. lbq_desc = &rx_ring->lbq[i];
  2108. if (lbq_desc->p.lbq_page) {
  2109. pci_unmap_page(qdev->pdev,
  2110. pci_unmap_addr(lbq_desc, mapaddr),
  2111. pci_unmap_len(lbq_desc, maplen),
  2112. PCI_DMA_FROMDEVICE);
  2113. put_page(lbq_desc->p.lbq_page);
  2114. lbq_desc->p.lbq_page = NULL;
  2115. }
  2116. }
  2117. }
  2118. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2119. {
  2120. int i;
  2121. struct bq_desc *sbq_desc;
  2122. for (i = 0; i < rx_ring->sbq_len; i++) {
  2123. sbq_desc = &rx_ring->sbq[i];
  2124. if (sbq_desc == NULL) {
  2125. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2126. return;
  2127. }
  2128. if (sbq_desc->p.skb) {
  2129. pci_unmap_single(qdev->pdev,
  2130. pci_unmap_addr(sbq_desc, mapaddr),
  2131. pci_unmap_len(sbq_desc, maplen),
  2132. PCI_DMA_FROMDEVICE);
  2133. dev_kfree_skb(sbq_desc->p.skb);
  2134. sbq_desc->p.skb = NULL;
  2135. }
  2136. }
  2137. }
  2138. /* Free all large and small rx buffers associated
  2139. * with the completion queues for this device.
  2140. */
  2141. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2142. {
  2143. int i;
  2144. struct rx_ring *rx_ring;
  2145. for (i = 0; i < qdev->rx_ring_count; i++) {
  2146. rx_ring = &qdev->rx_ring[i];
  2147. if (rx_ring->lbq)
  2148. ql_free_lbq_buffers(qdev, rx_ring);
  2149. if (rx_ring->sbq)
  2150. ql_free_sbq_buffers(qdev, rx_ring);
  2151. }
  2152. }
  2153. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2154. {
  2155. struct rx_ring *rx_ring;
  2156. int i;
  2157. for (i = 0; i < qdev->rx_ring_count; i++) {
  2158. rx_ring = &qdev->rx_ring[i];
  2159. if (rx_ring->type != TX_Q)
  2160. ql_update_buffer_queues(qdev, rx_ring);
  2161. }
  2162. }
  2163. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2164. struct rx_ring *rx_ring)
  2165. {
  2166. int i;
  2167. struct bq_desc *lbq_desc;
  2168. __le64 *bq = rx_ring->lbq_base;
  2169. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2170. for (i = 0; i < rx_ring->lbq_len; i++) {
  2171. lbq_desc = &rx_ring->lbq[i];
  2172. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2173. lbq_desc->index = i;
  2174. lbq_desc->addr = bq;
  2175. bq++;
  2176. }
  2177. }
  2178. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2179. struct rx_ring *rx_ring)
  2180. {
  2181. int i;
  2182. struct bq_desc *sbq_desc;
  2183. __le64 *bq = rx_ring->sbq_base;
  2184. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2185. for (i = 0; i < rx_ring->sbq_len; i++) {
  2186. sbq_desc = &rx_ring->sbq[i];
  2187. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2188. sbq_desc->index = i;
  2189. sbq_desc->addr = bq;
  2190. bq++;
  2191. }
  2192. }
  2193. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2194. struct rx_ring *rx_ring)
  2195. {
  2196. /* Free the small buffer queue. */
  2197. if (rx_ring->sbq_base) {
  2198. pci_free_consistent(qdev->pdev,
  2199. rx_ring->sbq_size,
  2200. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2201. rx_ring->sbq_base = NULL;
  2202. }
  2203. /* Free the small buffer queue control blocks. */
  2204. kfree(rx_ring->sbq);
  2205. rx_ring->sbq = NULL;
  2206. /* Free the large buffer queue. */
  2207. if (rx_ring->lbq_base) {
  2208. pci_free_consistent(qdev->pdev,
  2209. rx_ring->lbq_size,
  2210. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2211. rx_ring->lbq_base = NULL;
  2212. }
  2213. /* Free the large buffer queue control blocks. */
  2214. kfree(rx_ring->lbq);
  2215. rx_ring->lbq = NULL;
  2216. /* Free the rx queue. */
  2217. if (rx_ring->cq_base) {
  2218. pci_free_consistent(qdev->pdev,
  2219. rx_ring->cq_size,
  2220. rx_ring->cq_base, rx_ring->cq_base_dma);
  2221. rx_ring->cq_base = NULL;
  2222. }
  2223. }
  2224. /* Allocate queues and buffers for this completions queue based
  2225. * on the values in the parameter structure. */
  2226. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2227. struct rx_ring *rx_ring)
  2228. {
  2229. /*
  2230. * Allocate the completion queue for this rx_ring.
  2231. */
  2232. rx_ring->cq_base =
  2233. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2234. &rx_ring->cq_base_dma);
  2235. if (rx_ring->cq_base == NULL) {
  2236. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2237. return -ENOMEM;
  2238. }
  2239. if (rx_ring->sbq_len) {
  2240. /*
  2241. * Allocate small buffer queue.
  2242. */
  2243. rx_ring->sbq_base =
  2244. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2245. &rx_ring->sbq_base_dma);
  2246. if (rx_ring->sbq_base == NULL) {
  2247. QPRINTK(qdev, IFUP, ERR,
  2248. "Small buffer queue allocation failed.\n");
  2249. goto err_mem;
  2250. }
  2251. /*
  2252. * Allocate small buffer queue control blocks.
  2253. */
  2254. rx_ring->sbq =
  2255. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2256. GFP_KERNEL);
  2257. if (rx_ring->sbq == NULL) {
  2258. QPRINTK(qdev, IFUP, ERR,
  2259. "Small buffer queue control block allocation failed.\n");
  2260. goto err_mem;
  2261. }
  2262. ql_init_sbq_ring(qdev, rx_ring);
  2263. }
  2264. if (rx_ring->lbq_len) {
  2265. /*
  2266. * Allocate large buffer queue.
  2267. */
  2268. rx_ring->lbq_base =
  2269. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2270. &rx_ring->lbq_base_dma);
  2271. if (rx_ring->lbq_base == NULL) {
  2272. QPRINTK(qdev, IFUP, ERR,
  2273. "Large buffer queue allocation failed.\n");
  2274. goto err_mem;
  2275. }
  2276. /*
  2277. * Allocate large buffer queue control blocks.
  2278. */
  2279. rx_ring->lbq =
  2280. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2281. GFP_KERNEL);
  2282. if (rx_ring->lbq == NULL) {
  2283. QPRINTK(qdev, IFUP, ERR,
  2284. "Large buffer queue control block allocation failed.\n");
  2285. goto err_mem;
  2286. }
  2287. ql_init_lbq_ring(qdev, rx_ring);
  2288. }
  2289. return 0;
  2290. err_mem:
  2291. ql_free_rx_resources(qdev, rx_ring);
  2292. return -ENOMEM;
  2293. }
  2294. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2295. {
  2296. struct tx_ring *tx_ring;
  2297. struct tx_ring_desc *tx_ring_desc;
  2298. int i, j;
  2299. /*
  2300. * Loop through all queues and free
  2301. * any resources.
  2302. */
  2303. for (j = 0; j < qdev->tx_ring_count; j++) {
  2304. tx_ring = &qdev->tx_ring[j];
  2305. for (i = 0; i < tx_ring->wq_len; i++) {
  2306. tx_ring_desc = &tx_ring->q[i];
  2307. if (tx_ring_desc && tx_ring_desc->skb) {
  2308. QPRINTK(qdev, IFDOWN, ERR,
  2309. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2310. tx_ring_desc->skb, j,
  2311. tx_ring_desc->index);
  2312. ql_unmap_send(qdev, tx_ring_desc,
  2313. tx_ring_desc->map_cnt);
  2314. dev_kfree_skb(tx_ring_desc->skb);
  2315. tx_ring_desc->skb = NULL;
  2316. }
  2317. }
  2318. }
  2319. }
  2320. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2321. {
  2322. int i;
  2323. for (i = 0; i < qdev->tx_ring_count; i++)
  2324. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2325. for (i = 0; i < qdev->rx_ring_count; i++)
  2326. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2327. ql_free_shadow_space(qdev);
  2328. }
  2329. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2330. {
  2331. int i;
  2332. /* Allocate space for our shadow registers and such. */
  2333. if (ql_alloc_shadow_space(qdev))
  2334. return -ENOMEM;
  2335. for (i = 0; i < qdev->rx_ring_count; i++) {
  2336. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2337. QPRINTK(qdev, IFUP, ERR,
  2338. "RX resource allocation failed.\n");
  2339. goto err_mem;
  2340. }
  2341. }
  2342. /* Allocate tx queue resources */
  2343. for (i = 0; i < qdev->tx_ring_count; i++) {
  2344. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2345. QPRINTK(qdev, IFUP, ERR,
  2346. "TX resource allocation failed.\n");
  2347. goto err_mem;
  2348. }
  2349. }
  2350. return 0;
  2351. err_mem:
  2352. ql_free_mem_resources(qdev);
  2353. return -ENOMEM;
  2354. }
  2355. /* Set up the rx ring control block and pass it to the chip.
  2356. * The control block is defined as
  2357. * "Completion Queue Initialization Control Block", or cqicb.
  2358. */
  2359. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2360. {
  2361. struct cqicb *cqicb = &rx_ring->cqicb;
  2362. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2363. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2364. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2365. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2366. void __iomem *doorbell_area =
  2367. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2368. int err = 0;
  2369. u16 bq_len;
  2370. u64 tmp;
  2371. __le64 *base_indirect_ptr;
  2372. int page_entries;
  2373. /* Set up the shadow registers for this ring. */
  2374. rx_ring->prod_idx_sh_reg = shadow_reg;
  2375. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2376. shadow_reg += sizeof(u64);
  2377. shadow_reg_dma += sizeof(u64);
  2378. rx_ring->lbq_base_indirect = shadow_reg;
  2379. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2380. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2381. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2382. rx_ring->sbq_base_indirect = shadow_reg;
  2383. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2384. /* PCI doorbell mem area + 0x00 for consumer index register */
  2385. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2386. rx_ring->cnsmr_idx = 0;
  2387. rx_ring->curr_entry = rx_ring->cq_base;
  2388. /* PCI doorbell mem area + 0x04 for valid register */
  2389. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2390. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2391. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2392. /* PCI doorbell mem area + 0x1c */
  2393. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2394. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2395. cqicb->msix_vect = rx_ring->irq;
  2396. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2397. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2398. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2399. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2400. /*
  2401. * Set up the control block load flags.
  2402. */
  2403. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2404. FLAGS_LV | /* Load MSI-X vector */
  2405. FLAGS_LI; /* Load irq delay values */
  2406. if (rx_ring->lbq_len) {
  2407. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2408. tmp = (u64)rx_ring->lbq_base_dma;;
  2409. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2410. page_entries = 0;
  2411. do {
  2412. *base_indirect_ptr = cpu_to_le64(tmp);
  2413. tmp += DB_PAGE_SIZE;
  2414. base_indirect_ptr++;
  2415. page_entries++;
  2416. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2417. cqicb->lbq_addr =
  2418. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2419. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2420. (u16) rx_ring->lbq_buf_size;
  2421. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2422. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2423. (u16) rx_ring->lbq_len;
  2424. cqicb->lbq_len = cpu_to_le16(bq_len);
  2425. rx_ring->lbq_prod_idx = 0;
  2426. rx_ring->lbq_curr_idx = 0;
  2427. rx_ring->lbq_clean_idx = 0;
  2428. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2429. }
  2430. if (rx_ring->sbq_len) {
  2431. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2432. tmp = (u64)rx_ring->sbq_base_dma;;
  2433. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2434. page_entries = 0;
  2435. do {
  2436. *base_indirect_ptr = cpu_to_le64(tmp);
  2437. tmp += DB_PAGE_SIZE;
  2438. base_indirect_ptr++;
  2439. page_entries++;
  2440. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2441. cqicb->sbq_addr =
  2442. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2443. cqicb->sbq_buf_size =
  2444. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2445. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2446. (u16) rx_ring->sbq_len;
  2447. cqicb->sbq_len = cpu_to_le16(bq_len);
  2448. rx_ring->sbq_prod_idx = 0;
  2449. rx_ring->sbq_curr_idx = 0;
  2450. rx_ring->sbq_clean_idx = 0;
  2451. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2452. }
  2453. switch (rx_ring->type) {
  2454. case TX_Q:
  2455. /* If there's only one interrupt, then we use
  2456. * worker threads to process the outbound
  2457. * completion handling rx_rings. We do this so
  2458. * they can be run on multiple CPUs. There is
  2459. * room to play with this more where we would only
  2460. * run in a worker if there are more than x number
  2461. * of outbound completions on the queue and more
  2462. * than one queue active. Some threshold that
  2463. * would indicate a benefit in spite of the cost
  2464. * of a context switch.
  2465. * If there's more than one interrupt, then the
  2466. * outbound completions are processed in the ISR.
  2467. */
  2468. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2469. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2470. else {
  2471. /* With all debug warnings on we see a WARN_ON message
  2472. * when we free the skb in the interrupt context.
  2473. */
  2474. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2475. }
  2476. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2477. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2478. break;
  2479. case DEFAULT_Q:
  2480. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2481. cqicb->irq_delay = 0;
  2482. cqicb->pkt_delay = 0;
  2483. break;
  2484. case RX_Q:
  2485. /* Inbound completion handling rx_rings run in
  2486. * separate NAPI contexts.
  2487. */
  2488. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2489. 64);
  2490. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2491. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2492. break;
  2493. default:
  2494. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2495. rx_ring->type);
  2496. }
  2497. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2498. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2499. CFG_LCQ, rx_ring->cq_id);
  2500. if (err) {
  2501. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2502. return err;
  2503. }
  2504. return err;
  2505. }
  2506. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2507. {
  2508. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2509. void __iomem *doorbell_area =
  2510. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2511. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2512. (tx_ring->wq_id * sizeof(u64));
  2513. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2514. (tx_ring->wq_id * sizeof(u64));
  2515. int err = 0;
  2516. /*
  2517. * Assign doorbell registers for this tx_ring.
  2518. */
  2519. /* TX PCI doorbell mem area for tx producer index */
  2520. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2521. tx_ring->prod_idx = 0;
  2522. /* TX PCI doorbell mem area + 0x04 */
  2523. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2524. /*
  2525. * Assign shadow registers for this tx_ring.
  2526. */
  2527. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2528. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2529. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2530. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2531. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2532. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2533. wqicb->rid = 0;
  2534. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2535. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2536. ql_init_tx_ring(qdev, tx_ring);
  2537. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2538. (u16) tx_ring->wq_id);
  2539. if (err) {
  2540. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2541. return err;
  2542. }
  2543. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2544. return err;
  2545. }
  2546. static void ql_disable_msix(struct ql_adapter *qdev)
  2547. {
  2548. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2549. pci_disable_msix(qdev->pdev);
  2550. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2551. kfree(qdev->msi_x_entry);
  2552. qdev->msi_x_entry = NULL;
  2553. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2554. pci_disable_msi(qdev->pdev);
  2555. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2556. }
  2557. }
  2558. static void ql_enable_msix(struct ql_adapter *qdev)
  2559. {
  2560. int i;
  2561. qdev->intr_count = 1;
  2562. /* Get the MSIX vectors. */
  2563. if (irq_type == MSIX_IRQ) {
  2564. /* Try to alloc space for the msix struct,
  2565. * if it fails then go to MSI/legacy.
  2566. */
  2567. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2568. sizeof(struct msix_entry),
  2569. GFP_KERNEL);
  2570. if (!qdev->msi_x_entry) {
  2571. irq_type = MSI_IRQ;
  2572. goto msi;
  2573. }
  2574. for (i = 0; i < qdev->rx_ring_count; i++)
  2575. qdev->msi_x_entry[i].entry = i;
  2576. if (!pci_enable_msix
  2577. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2578. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2579. qdev->intr_count = qdev->rx_ring_count;
  2580. QPRINTK(qdev, IFUP, DEBUG,
  2581. "MSI-X Enabled, got %d vectors.\n",
  2582. qdev->intr_count);
  2583. return;
  2584. } else {
  2585. kfree(qdev->msi_x_entry);
  2586. qdev->msi_x_entry = NULL;
  2587. QPRINTK(qdev, IFUP, WARNING,
  2588. "MSI-X Enable failed, trying MSI.\n");
  2589. irq_type = MSI_IRQ;
  2590. }
  2591. }
  2592. msi:
  2593. if (irq_type == MSI_IRQ) {
  2594. if (!pci_enable_msi(qdev->pdev)) {
  2595. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2596. QPRINTK(qdev, IFUP, INFO,
  2597. "Running with MSI interrupts.\n");
  2598. return;
  2599. }
  2600. }
  2601. irq_type = LEG_IRQ;
  2602. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2603. }
  2604. /*
  2605. * Here we build the intr_context structures based on
  2606. * our rx_ring count and intr vector count.
  2607. * The intr_context structure is used to hook each vector
  2608. * to possibly different handlers.
  2609. */
  2610. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2611. {
  2612. int i = 0;
  2613. struct intr_context *intr_context = &qdev->intr_context[0];
  2614. ql_enable_msix(qdev);
  2615. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2616. /* Each rx_ring has it's
  2617. * own intr_context since we have separate
  2618. * vectors for each queue.
  2619. * This only true when MSI-X is enabled.
  2620. */
  2621. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2622. qdev->rx_ring[i].irq = i;
  2623. intr_context->intr = i;
  2624. intr_context->qdev = qdev;
  2625. /*
  2626. * We set up each vectors enable/disable/read bits so
  2627. * there's no bit/mask calculations in the critical path.
  2628. */
  2629. intr_context->intr_en_mask =
  2630. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2631. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2632. | i;
  2633. intr_context->intr_dis_mask =
  2634. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2635. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2636. INTR_EN_IHD | i;
  2637. intr_context->intr_read_mask =
  2638. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2639. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2640. i;
  2641. if (i == 0) {
  2642. /*
  2643. * Default queue handles bcast/mcast plus
  2644. * async events. Needs buffers.
  2645. */
  2646. intr_context->handler = qlge_isr;
  2647. sprintf(intr_context->name, "%s-default-queue",
  2648. qdev->ndev->name);
  2649. } else if (i < qdev->rss_ring_first_cq_id) {
  2650. /*
  2651. * Outbound queue is for outbound completions only.
  2652. */
  2653. intr_context->handler = qlge_msix_tx_isr;
  2654. sprintf(intr_context->name, "%s-tx-%d",
  2655. qdev->ndev->name, i);
  2656. } else {
  2657. /*
  2658. * Inbound queues handle unicast frames only.
  2659. */
  2660. intr_context->handler = qlge_msix_rx_isr;
  2661. sprintf(intr_context->name, "%s-rx-%d",
  2662. qdev->ndev->name, i);
  2663. }
  2664. }
  2665. } else {
  2666. /*
  2667. * All rx_rings use the same intr_context since
  2668. * there is only one vector.
  2669. */
  2670. intr_context->intr = 0;
  2671. intr_context->qdev = qdev;
  2672. /*
  2673. * We set up each vectors enable/disable/read bits so
  2674. * there's no bit/mask calculations in the critical path.
  2675. */
  2676. intr_context->intr_en_mask =
  2677. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2678. intr_context->intr_dis_mask =
  2679. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2680. INTR_EN_TYPE_DISABLE;
  2681. intr_context->intr_read_mask =
  2682. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2683. /*
  2684. * Single interrupt means one handler for all rings.
  2685. */
  2686. intr_context->handler = qlge_isr;
  2687. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2688. for (i = 0; i < qdev->rx_ring_count; i++)
  2689. qdev->rx_ring[i].irq = 0;
  2690. }
  2691. }
  2692. static void ql_free_irq(struct ql_adapter *qdev)
  2693. {
  2694. int i;
  2695. struct intr_context *intr_context = &qdev->intr_context[0];
  2696. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2697. if (intr_context->hooked) {
  2698. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2699. free_irq(qdev->msi_x_entry[i].vector,
  2700. &qdev->rx_ring[i]);
  2701. QPRINTK(qdev, IFDOWN, DEBUG,
  2702. "freeing msix interrupt %d.\n", i);
  2703. } else {
  2704. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2705. QPRINTK(qdev, IFDOWN, DEBUG,
  2706. "freeing msi interrupt %d.\n", i);
  2707. }
  2708. }
  2709. }
  2710. ql_disable_msix(qdev);
  2711. }
  2712. static int ql_request_irq(struct ql_adapter *qdev)
  2713. {
  2714. int i;
  2715. int status = 0;
  2716. struct pci_dev *pdev = qdev->pdev;
  2717. struct intr_context *intr_context = &qdev->intr_context[0];
  2718. ql_resolve_queues_to_irqs(qdev);
  2719. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2720. atomic_set(&intr_context->irq_cnt, 0);
  2721. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2722. status = request_irq(qdev->msi_x_entry[i].vector,
  2723. intr_context->handler,
  2724. 0,
  2725. intr_context->name,
  2726. &qdev->rx_ring[i]);
  2727. if (status) {
  2728. QPRINTK(qdev, IFUP, ERR,
  2729. "Failed request for MSIX interrupt %d.\n",
  2730. i);
  2731. goto err_irq;
  2732. } else {
  2733. QPRINTK(qdev, IFUP, DEBUG,
  2734. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2735. i,
  2736. qdev->rx_ring[i].type ==
  2737. DEFAULT_Q ? "DEFAULT_Q" : "",
  2738. qdev->rx_ring[i].type ==
  2739. TX_Q ? "TX_Q" : "",
  2740. qdev->rx_ring[i].type ==
  2741. RX_Q ? "RX_Q" : "", intr_context->name);
  2742. }
  2743. } else {
  2744. QPRINTK(qdev, IFUP, DEBUG,
  2745. "trying msi or legacy interrupts.\n");
  2746. QPRINTK(qdev, IFUP, DEBUG,
  2747. "%s: irq = %d.\n", __func__, pdev->irq);
  2748. QPRINTK(qdev, IFUP, DEBUG,
  2749. "%s: context->name = %s.\n", __func__,
  2750. intr_context->name);
  2751. QPRINTK(qdev, IFUP, DEBUG,
  2752. "%s: dev_id = 0x%p.\n", __func__,
  2753. &qdev->rx_ring[0]);
  2754. status =
  2755. request_irq(pdev->irq, qlge_isr,
  2756. test_bit(QL_MSI_ENABLED,
  2757. &qdev->
  2758. flags) ? 0 : IRQF_SHARED,
  2759. intr_context->name, &qdev->rx_ring[0]);
  2760. if (status)
  2761. goto err_irq;
  2762. QPRINTK(qdev, IFUP, ERR,
  2763. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2764. i,
  2765. qdev->rx_ring[0].type ==
  2766. DEFAULT_Q ? "DEFAULT_Q" : "",
  2767. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2768. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2769. intr_context->name);
  2770. }
  2771. intr_context->hooked = 1;
  2772. }
  2773. return status;
  2774. err_irq:
  2775. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2776. ql_free_irq(qdev);
  2777. return status;
  2778. }
  2779. static int ql_start_rss(struct ql_adapter *qdev)
  2780. {
  2781. struct ricb *ricb = &qdev->ricb;
  2782. int status = 0;
  2783. int i;
  2784. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2785. memset((void *)ricb, 0, sizeof(*ricb));
  2786. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2787. ricb->flags =
  2788. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2789. RSS_RT6);
  2790. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2791. /*
  2792. * Fill out the Indirection Table.
  2793. */
  2794. for (i = 0; i < 256; i++)
  2795. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2796. /*
  2797. * Random values for the IPv6 and IPv4 Hash Keys.
  2798. */
  2799. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2800. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2801. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2802. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2803. if (status) {
  2804. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2805. return status;
  2806. }
  2807. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2808. return status;
  2809. }
  2810. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2811. {
  2812. int i, status = 0;
  2813. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2814. if (status)
  2815. return status;
  2816. /* Clear all the entries in the routing table. */
  2817. for (i = 0; i < 16; i++) {
  2818. status = ql_set_routing_reg(qdev, i, 0, 0);
  2819. if (status) {
  2820. QPRINTK(qdev, IFUP, ERR,
  2821. "Failed to init routing register for CAM "
  2822. "packets.\n");
  2823. break;
  2824. }
  2825. }
  2826. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2827. return status;
  2828. }
  2829. /* Initialize the frame-to-queue routing. */
  2830. static int ql_route_initialize(struct ql_adapter *qdev)
  2831. {
  2832. int status = 0;
  2833. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2834. if (status)
  2835. return status;
  2836. /* Clear all the entries in the routing table. */
  2837. status = ql_clear_routing_entries(qdev);
  2838. if (status)
  2839. goto exit;
  2840. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2841. if (status) {
  2842. QPRINTK(qdev, IFUP, ERR,
  2843. "Failed to init routing register for error packets.\n");
  2844. goto exit;
  2845. }
  2846. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2847. if (status) {
  2848. QPRINTK(qdev, IFUP, ERR,
  2849. "Failed to init routing register for broadcast packets.\n");
  2850. goto exit;
  2851. }
  2852. /* If we have more than one inbound queue, then turn on RSS in the
  2853. * routing block.
  2854. */
  2855. if (qdev->rss_ring_count > 1) {
  2856. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2857. RT_IDX_RSS_MATCH, 1);
  2858. if (status) {
  2859. QPRINTK(qdev, IFUP, ERR,
  2860. "Failed to init routing register for MATCH RSS packets.\n");
  2861. goto exit;
  2862. }
  2863. }
  2864. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2865. RT_IDX_CAM_HIT, 1);
  2866. if (status)
  2867. QPRINTK(qdev, IFUP, ERR,
  2868. "Failed to init routing register for CAM packets.\n");
  2869. exit:
  2870. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2871. return status;
  2872. }
  2873. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2874. {
  2875. int status, set;
  2876. /* If check if the link is up and use to
  2877. * determine if we are setting or clearing
  2878. * the MAC address in the CAM.
  2879. */
  2880. set = ql_read32(qdev, STS);
  2881. set &= qdev->port_link_up;
  2882. status = ql_set_mac_addr(qdev, set);
  2883. if (status) {
  2884. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2885. return status;
  2886. }
  2887. status = ql_route_initialize(qdev);
  2888. if (status)
  2889. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2890. return status;
  2891. }
  2892. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2893. {
  2894. u32 value, mask;
  2895. int i;
  2896. int status = 0;
  2897. /*
  2898. * Set up the System register to halt on errors.
  2899. */
  2900. value = SYS_EFE | SYS_FAE;
  2901. mask = value << 16;
  2902. ql_write32(qdev, SYS, mask | value);
  2903. /* Set the default queue, and VLAN behavior. */
  2904. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2905. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2906. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2907. /* Set the MPI interrupt to enabled. */
  2908. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2909. /* Enable the function, set pagesize, enable error checking. */
  2910. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2911. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2912. /* Set/clear header splitting. */
  2913. mask = FSC_VM_PAGESIZE_MASK |
  2914. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2915. ql_write32(qdev, FSC, mask | value);
  2916. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2917. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2918. /* Start up the rx queues. */
  2919. for (i = 0; i < qdev->rx_ring_count; i++) {
  2920. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2921. if (status) {
  2922. QPRINTK(qdev, IFUP, ERR,
  2923. "Failed to start rx ring[%d].\n", i);
  2924. return status;
  2925. }
  2926. }
  2927. /* If there is more than one inbound completion queue
  2928. * then download a RICB to configure RSS.
  2929. */
  2930. if (qdev->rss_ring_count > 1) {
  2931. status = ql_start_rss(qdev);
  2932. if (status) {
  2933. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2934. return status;
  2935. }
  2936. }
  2937. /* Start up the tx queues. */
  2938. for (i = 0; i < qdev->tx_ring_count; i++) {
  2939. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2940. if (status) {
  2941. QPRINTK(qdev, IFUP, ERR,
  2942. "Failed to start tx ring[%d].\n", i);
  2943. return status;
  2944. }
  2945. }
  2946. /* Initialize the port and set the max framesize. */
  2947. status = qdev->nic_ops->port_initialize(qdev);
  2948. if (status) {
  2949. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2950. return status;
  2951. }
  2952. /* Set up the MAC address and frame routing filter. */
  2953. status = ql_cam_route_initialize(qdev);
  2954. if (status) {
  2955. QPRINTK(qdev, IFUP, ERR,
  2956. "Failed to init CAM/Routing tables.\n");
  2957. return status;
  2958. }
  2959. /* Start NAPI for the RSS queues. */
  2960. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2961. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2962. i);
  2963. napi_enable(&qdev->rx_ring[i].napi);
  2964. }
  2965. return status;
  2966. }
  2967. /* Issue soft reset to chip. */
  2968. static int ql_adapter_reset(struct ql_adapter *qdev)
  2969. {
  2970. u32 value;
  2971. int status = 0;
  2972. unsigned long end_jiffies;
  2973. /* Clear all the entries in the routing table. */
  2974. status = ql_clear_routing_entries(qdev);
  2975. if (status) {
  2976. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  2977. return status;
  2978. }
  2979. end_jiffies = jiffies +
  2980. max((unsigned long)1, usecs_to_jiffies(30));
  2981. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2982. do {
  2983. value = ql_read32(qdev, RST_FO);
  2984. if ((value & RST_FO_FR) == 0)
  2985. break;
  2986. cpu_relax();
  2987. } while (time_before(jiffies, end_jiffies));
  2988. if (value & RST_FO_FR) {
  2989. QPRINTK(qdev, IFDOWN, ERR,
  2990. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  2991. status = -ETIMEDOUT;
  2992. }
  2993. return status;
  2994. }
  2995. static void ql_display_dev_info(struct net_device *ndev)
  2996. {
  2997. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2998. QPRINTK(qdev, PROBE, INFO,
  2999. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3000. "XG Roll = %d, XG Rev = %d.\n",
  3001. qdev->func,
  3002. qdev->port,
  3003. qdev->chip_rev_id & 0x0000000f,
  3004. qdev->chip_rev_id >> 4 & 0x0000000f,
  3005. qdev->chip_rev_id >> 8 & 0x0000000f,
  3006. qdev->chip_rev_id >> 12 & 0x0000000f);
  3007. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3008. }
  3009. static int ql_adapter_down(struct ql_adapter *qdev)
  3010. {
  3011. int i, status = 0;
  3012. struct rx_ring *rx_ring;
  3013. ql_link_off(qdev);
  3014. /* Don't kill the reset worker thread if we
  3015. * are in the process of recovery.
  3016. */
  3017. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3018. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3019. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3020. cancel_delayed_work_sync(&qdev->mpi_work);
  3021. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3022. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3023. /* The default queue at index 0 is always processed in
  3024. * a workqueue.
  3025. */
  3026. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  3027. /* The rest of the rx_rings are processed in
  3028. * a workqueue only if it's a single interrupt
  3029. * environment (MSI/Legacy).
  3030. */
  3031. for (i = 1; i < qdev->rx_ring_count; i++) {
  3032. rx_ring = &qdev->rx_ring[i];
  3033. /* Only the RSS rings use NAPI on multi irq
  3034. * environment. Outbound completion processing
  3035. * is done in interrupt context.
  3036. */
  3037. if (i >= qdev->rss_ring_first_cq_id) {
  3038. napi_disable(&rx_ring->napi);
  3039. } else {
  3040. cancel_delayed_work_sync(&rx_ring->rx_work);
  3041. }
  3042. }
  3043. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3044. ql_disable_interrupts(qdev);
  3045. ql_tx_ring_clean(qdev);
  3046. /* Call netif_napi_del() from common point.
  3047. */
  3048. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3049. netif_napi_del(&qdev->rx_ring[i].napi);
  3050. ql_free_rx_buffers(qdev);
  3051. spin_lock(&qdev->hw_lock);
  3052. status = ql_adapter_reset(qdev);
  3053. if (status)
  3054. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3055. qdev->func);
  3056. spin_unlock(&qdev->hw_lock);
  3057. return status;
  3058. }
  3059. static int ql_adapter_up(struct ql_adapter *qdev)
  3060. {
  3061. int err = 0;
  3062. err = ql_adapter_initialize(qdev);
  3063. if (err) {
  3064. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3065. goto err_init;
  3066. }
  3067. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3068. ql_alloc_rx_buffers(qdev);
  3069. /* If the port is initialized and the
  3070. * link is up the turn on the carrier.
  3071. */
  3072. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3073. (ql_read32(qdev, STS) & qdev->port_link_up))
  3074. ql_link_on(qdev);
  3075. ql_enable_interrupts(qdev);
  3076. ql_enable_all_completion_interrupts(qdev);
  3077. netif_tx_start_all_queues(qdev->ndev);
  3078. return 0;
  3079. err_init:
  3080. ql_adapter_reset(qdev);
  3081. return err;
  3082. }
  3083. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3084. {
  3085. ql_free_mem_resources(qdev);
  3086. ql_free_irq(qdev);
  3087. }
  3088. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3089. {
  3090. int status = 0;
  3091. if (ql_alloc_mem_resources(qdev)) {
  3092. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3093. return -ENOMEM;
  3094. }
  3095. status = ql_request_irq(qdev);
  3096. return status;
  3097. }
  3098. static int qlge_close(struct net_device *ndev)
  3099. {
  3100. struct ql_adapter *qdev = netdev_priv(ndev);
  3101. /*
  3102. * Wait for device to recover from a reset.
  3103. * (Rarely happens, but possible.)
  3104. */
  3105. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3106. msleep(1);
  3107. ql_adapter_down(qdev);
  3108. ql_release_adapter_resources(qdev);
  3109. return 0;
  3110. }
  3111. static int ql_configure_rings(struct ql_adapter *qdev)
  3112. {
  3113. int i;
  3114. struct rx_ring *rx_ring;
  3115. struct tx_ring *tx_ring;
  3116. int cpu_cnt = num_online_cpus();
  3117. /*
  3118. * For each processor present we allocate one
  3119. * rx_ring for outbound completions, and one
  3120. * rx_ring for inbound completions. Plus there is
  3121. * always the one default queue. For the CPU
  3122. * counts we end up with the following rx_rings:
  3123. * rx_ring count =
  3124. * one default queue +
  3125. * (CPU count * outbound completion rx_ring) +
  3126. * (CPU count * inbound (RSS) completion rx_ring)
  3127. * To keep it simple we limit the total number of
  3128. * queues to < 32, so we truncate CPU to 8.
  3129. * This limitation can be removed when requested.
  3130. */
  3131. if (cpu_cnt > MAX_CPUS)
  3132. cpu_cnt = MAX_CPUS;
  3133. /*
  3134. * rx_ring[0] is always the default queue.
  3135. */
  3136. /* Allocate outbound completion ring for each CPU. */
  3137. qdev->tx_ring_count = cpu_cnt;
  3138. /* Allocate inbound completion (RSS) ring for each CPU. */
  3139. qdev->rss_ring_count = cpu_cnt;
  3140. /* cq_id for the first inbound ring handler. */
  3141. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3142. /*
  3143. * qdev->rx_ring_count:
  3144. * Total number of rx_rings. This includes the one
  3145. * default queue, a number of outbound completion
  3146. * handler rx_rings, and the number of inbound
  3147. * completion handler rx_rings.
  3148. */
  3149. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3150. for (i = 0; i < qdev->tx_ring_count; i++) {
  3151. tx_ring = &qdev->tx_ring[i];
  3152. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3153. tx_ring->qdev = qdev;
  3154. tx_ring->wq_id = i;
  3155. tx_ring->wq_len = qdev->tx_ring_size;
  3156. tx_ring->wq_size =
  3157. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3158. /*
  3159. * The completion queue ID for the tx rings start
  3160. * immediately after the default Q ID, which is zero.
  3161. */
  3162. tx_ring->cq_id = i + 1;
  3163. }
  3164. for (i = 0; i < qdev->rx_ring_count; i++) {
  3165. rx_ring = &qdev->rx_ring[i];
  3166. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3167. rx_ring->qdev = qdev;
  3168. rx_ring->cq_id = i;
  3169. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3170. if (i == 0) { /* Default queue at index 0. */
  3171. /*
  3172. * Default queue handles bcast/mcast plus
  3173. * async events. Needs buffers.
  3174. */
  3175. rx_ring->cq_len = qdev->rx_ring_size;
  3176. rx_ring->cq_size =
  3177. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3178. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3179. rx_ring->lbq_size =
  3180. rx_ring->lbq_len * sizeof(__le64);
  3181. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3182. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3183. rx_ring->sbq_size =
  3184. rx_ring->sbq_len * sizeof(__le64);
  3185. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3186. rx_ring->type = DEFAULT_Q;
  3187. } else if (i < qdev->rss_ring_first_cq_id) {
  3188. /*
  3189. * Outbound queue handles outbound completions only.
  3190. */
  3191. /* outbound cq is same size as tx_ring it services. */
  3192. rx_ring->cq_len = qdev->tx_ring_size;
  3193. rx_ring->cq_size =
  3194. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3195. rx_ring->lbq_len = 0;
  3196. rx_ring->lbq_size = 0;
  3197. rx_ring->lbq_buf_size = 0;
  3198. rx_ring->sbq_len = 0;
  3199. rx_ring->sbq_size = 0;
  3200. rx_ring->sbq_buf_size = 0;
  3201. rx_ring->type = TX_Q;
  3202. } else { /* Inbound completions (RSS) queues */
  3203. /*
  3204. * Inbound queues handle unicast frames only.
  3205. */
  3206. rx_ring->cq_len = qdev->rx_ring_size;
  3207. rx_ring->cq_size =
  3208. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3209. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3210. rx_ring->lbq_size =
  3211. rx_ring->lbq_len * sizeof(__le64);
  3212. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3213. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3214. rx_ring->sbq_size =
  3215. rx_ring->sbq_len * sizeof(__le64);
  3216. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3217. rx_ring->type = RX_Q;
  3218. }
  3219. }
  3220. return 0;
  3221. }
  3222. static int qlge_open(struct net_device *ndev)
  3223. {
  3224. int err = 0;
  3225. struct ql_adapter *qdev = netdev_priv(ndev);
  3226. err = ql_configure_rings(qdev);
  3227. if (err)
  3228. return err;
  3229. err = ql_get_adapter_resources(qdev);
  3230. if (err)
  3231. goto error_up;
  3232. err = ql_adapter_up(qdev);
  3233. if (err)
  3234. goto error_up;
  3235. return err;
  3236. error_up:
  3237. ql_release_adapter_resources(qdev);
  3238. return err;
  3239. }
  3240. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3241. {
  3242. struct ql_adapter *qdev = netdev_priv(ndev);
  3243. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3244. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3245. queue_delayed_work(qdev->workqueue,
  3246. &qdev->mpi_port_cfg_work, 0);
  3247. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3248. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3249. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3250. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3251. return 0;
  3252. } else
  3253. return -EINVAL;
  3254. ndev->mtu = new_mtu;
  3255. return 0;
  3256. }
  3257. static struct net_device_stats *qlge_get_stats(struct net_device
  3258. *ndev)
  3259. {
  3260. struct ql_adapter *qdev = netdev_priv(ndev);
  3261. return &qdev->stats;
  3262. }
  3263. static void qlge_set_multicast_list(struct net_device *ndev)
  3264. {
  3265. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3266. struct dev_mc_list *mc_ptr;
  3267. int i, status;
  3268. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3269. if (status)
  3270. return;
  3271. spin_lock(&qdev->hw_lock);
  3272. /*
  3273. * Set or clear promiscuous mode if a
  3274. * transition is taking place.
  3275. */
  3276. if (ndev->flags & IFF_PROMISC) {
  3277. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3278. if (ql_set_routing_reg
  3279. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3280. QPRINTK(qdev, HW, ERR,
  3281. "Failed to set promiscous mode.\n");
  3282. } else {
  3283. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3284. }
  3285. }
  3286. } else {
  3287. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3288. if (ql_set_routing_reg
  3289. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3290. QPRINTK(qdev, HW, ERR,
  3291. "Failed to clear promiscous mode.\n");
  3292. } else {
  3293. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3294. }
  3295. }
  3296. }
  3297. /*
  3298. * Set or clear all multicast mode if a
  3299. * transition is taking place.
  3300. */
  3301. if ((ndev->flags & IFF_ALLMULTI) ||
  3302. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3303. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3304. if (ql_set_routing_reg
  3305. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3306. QPRINTK(qdev, HW, ERR,
  3307. "Failed to set all-multi mode.\n");
  3308. } else {
  3309. set_bit(QL_ALLMULTI, &qdev->flags);
  3310. }
  3311. }
  3312. } else {
  3313. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3314. if (ql_set_routing_reg
  3315. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3316. QPRINTK(qdev, HW, ERR,
  3317. "Failed to clear all-multi mode.\n");
  3318. } else {
  3319. clear_bit(QL_ALLMULTI, &qdev->flags);
  3320. }
  3321. }
  3322. }
  3323. if (ndev->mc_count) {
  3324. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3325. if (status)
  3326. goto exit;
  3327. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3328. i++, mc_ptr = mc_ptr->next)
  3329. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3330. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3331. QPRINTK(qdev, HW, ERR,
  3332. "Failed to loadmulticast address.\n");
  3333. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3334. goto exit;
  3335. }
  3336. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3337. if (ql_set_routing_reg
  3338. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3339. QPRINTK(qdev, HW, ERR,
  3340. "Failed to set multicast match mode.\n");
  3341. } else {
  3342. set_bit(QL_ALLMULTI, &qdev->flags);
  3343. }
  3344. }
  3345. exit:
  3346. spin_unlock(&qdev->hw_lock);
  3347. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3348. }
  3349. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3350. {
  3351. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3352. struct sockaddr *addr = p;
  3353. int status;
  3354. if (netif_running(ndev))
  3355. return -EBUSY;
  3356. if (!is_valid_ether_addr(addr->sa_data))
  3357. return -EADDRNOTAVAIL;
  3358. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3359. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3360. if (status)
  3361. return status;
  3362. spin_lock(&qdev->hw_lock);
  3363. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3364. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3365. spin_unlock(&qdev->hw_lock);
  3366. if (status)
  3367. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3368. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3369. return status;
  3370. }
  3371. static void qlge_tx_timeout(struct net_device *ndev)
  3372. {
  3373. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3374. ql_queue_asic_error(qdev);
  3375. }
  3376. static void ql_asic_reset_work(struct work_struct *work)
  3377. {
  3378. struct ql_adapter *qdev =
  3379. container_of(work, struct ql_adapter, asic_reset_work.work);
  3380. int status;
  3381. status = ql_adapter_down(qdev);
  3382. if (status)
  3383. goto error;
  3384. status = ql_adapter_up(qdev);
  3385. if (status)
  3386. goto error;
  3387. return;
  3388. error:
  3389. QPRINTK(qdev, IFUP, ALERT,
  3390. "Driver up/down cycle failed, closing device\n");
  3391. rtnl_lock();
  3392. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3393. dev_close(qdev->ndev);
  3394. rtnl_unlock();
  3395. }
  3396. static struct nic_operations qla8012_nic_ops = {
  3397. .get_flash = ql_get_8012_flash_params,
  3398. .port_initialize = ql_8012_port_initialize,
  3399. };
  3400. static struct nic_operations qla8000_nic_ops = {
  3401. .get_flash = ql_get_8000_flash_params,
  3402. .port_initialize = ql_8000_port_initialize,
  3403. };
  3404. /* Find the pcie function number for the other NIC
  3405. * on this chip. Since both NIC functions share a
  3406. * common firmware we have the lowest enabled function
  3407. * do any common work. Examples would be resetting
  3408. * after a fatal firmware error, or doing a firmware
  3409. * coredump.
  3410. */
  3411. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3412. {
  3413. int status = 0;
  3414. u32 temp;
  3415. u32 nic_func1, nic_func2;
  3416. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3417. &temp);
  3418. if (status)
  3419. return status;
  3420. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3421. MPI_TEST_NIC_FUNC_MASK);
  3422. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3423. MPI_TEST_NIC_FUNC_MASK);
  3424. if (qdev->func == nic_func1)
  3425. qdev->alt_func = nic_func2;
  3426. else if (qdev->func == nic_func2)
  3427. qdev->alt_func = nic_func1;
  3428. else
  3429. status = -EIO;
  3430. return status;
  3431. }
  3432. static int ql_get_board_info(struct ql_adapter *qdev)
  3433. {
  3434. int status;
  3435. qdev->func =
  3436. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3437. if (qdev->func > 3)
  3438. return -EIO;
  3439. status = ql_get_alt_pcie_func(qdev);
  3440. if (status)
  3441. return status;
  3442. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3443. if (qdev->port) {
  3444. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3445. qdev->port_link_up = STS_PL1;
  3446. qdev->port_init = STS_PI1;
  3447. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3448. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3449. } else {
  3450. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3451. qdev->port_link_up = STS_PL0;
  3452. qdev->port_init = STS_PI0;
  3453. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3454. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3455. }
  3456. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3457. qdev->device_id = qdev->pdev->device;
  3458. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3459. qdev->nic_ops = &qla8012_nic_ops;
  3460. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3461. qdev->nic_ops = &qla8000_nic_ops;
  3462. return status;
  3463. }
  3464. static void ql_release_all(struct pci_dev *pdev)
  3465. {
  3466. struct net_device *ndev = pci_get_drvdata(pdev);
  3467. struct ql_adapter *qdev = netdev_priv(ndev);
  3468. if (qdev->workqueue) {
  3469. destroy_workqueue(qdev->workqueue);
  3470. qdev->workqueue = NULL;
  3471. }
  3472. if (qdev->q_workqueue) {
  3473. destroy_workqueue(qdev->q_workqueue);
  3474. qdev->q_workqueue = NULL;
  3475. }
  3476. if (qdev->reg_base)
  3477. iounmap(qdev->reg_base);
  3478. if (qdev->doorbell_area)
  3479. iounmap(qdev->doorbell_area);
  3480. pci_release_regions(pdev);
  3481. pci_set_drvdata(pdev, NULL);
  3482. }
  3483. static int __devinit ql_init_device(struct pci_dev *pdev,
  3484. struct net_device *ndev, int cards_found)
  3485. {
  3486. struct ql_adapter *qdev = netdev_priv(ndev);
  3487. int pos, err = 0;
  3488. u16 val16;
  3489. memset((void *)qdev, 0, sizeof(*qdev));
  3490. err = pci_enable_device(pdev);
  3491. if (err) {
  3492. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3493. return err;
  3494. }
  3495. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3496. if (pos <= 0) {
  3497. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3498. "aborting.\n");
  3499. goto err_out;
  3500. } else {
  3501. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3502. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3503. val16 |= (PCI_EXP_DEVCTL_CERE |
  3504. PCI_EXP_DEVCTL_NFERE |
  3505. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3506. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3507. }
  3508. err = pci_request_regions(pdev, DRV_NAME);
  3509. if (err) {
  3510. dev_err(&pdev->dev, "PCI region request failed.\n");
  3511. goto err_out;
  3512. }
  3513. pci_set_master(pdev);
  3514. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3515. set_bit(QL_DMA64, &qdev->flags);
  3516. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3517. } else {
  3518. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3519. if (!err)
  3520. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3521. }
  3522. if (err) {
  3523. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3524. goto err_out;
  3525. }
  3526. pci_set_drvdata(pdev, ndev);
  3527. qdev->reg_base =
  3528. ioremap_nocache(pci_resource_start(pdev, 1),
  3529. pci_resource_len(pdev, 1));
  3530. if (!qdev->reg_base) {
  3531. dev_err(&pdev->dev, "Register mapping failed.\n");
  3532. err = -ENOMEM;
  3533. goto err_out;
  3534. }
  3535. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3536. qdev->doorbell_area =
  3537. ioremap_nocache(pci_resource_start(pdev, 3),
  3538. pci_resource_len(pdev, 3));
  3539. if (!qdev->doorbell_area) {
  3540. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3541. err = -ENOMEM;
  3542. goto err_out;
  3543. }
  3544. qdev->ndev = ndev;
  3545. qdev->pdev = pdev;
  3546. err = ql_get_board_info(qdev);
  3547. if (err) {
  3548. dev_err(&pdev->dev, "Register access failed.\n");
  3549. err = -EIO;
  3550. goto err_out;
  3551. }
  3552. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3553. spin_lock_init(&qdev->hw_lock);
  3554. spin_lock_init(&qdev->stats_lock);
  3555. /* make sure the EEPROM is good */
  3556. err = qdev->nic_ops->get_flash(qdev);
  3557. if (err) {
  3558. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3559. goto err_out;
  3560. }
  3561. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3562. /* Set up the default ring sizes. */
  3563. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3564. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3565. /* Set up the coalescing parameters. */
  3566. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3567. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3568. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3569. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3570. /*
  3571. * Set up the operating parameters.
  3572. */
  3573. qdev->rx_csum = 1;
  3574. qdev->q_workqueue = create_workqueue(ndev->name);
  3575. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3576. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3577. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3578. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3579. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3580. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3581. mutex_init(&qdev->mpi_mutex);
  3582. init_completion(&qdev->ide_completion);
  3583. if (!cards_found) {
  3584. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3585. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3586. DRV_NAME, DRV_VERSION);
  3587. }
  3588. return 0;
  3589. err_out:
  3590. ql_release_all(pdev);
  3591. pci_disable_device(pdev);
  3592. return err;
  3593. }
  3594. static const struct net_device_ops qlge_netdev_ops = {
  3595. .ndo_open = qlge_open,
  3596. .ndo_stop = qlge_close,
  3597. .ndo_start_xmit = qlge_send,
  3598. .ndo_change_mtu = qlge_change_mtu,
  3599. .ndo_get_stats = qlge_get_stats,
  3600. .ndo_set_multicast_list = qlge_set_multicast_list,
  3601. .ndo_set_mac_address = qlge_set_mac_address,
  3602. .ndo_validate_addr = eth_validate_addr,
  3603. .ndo_tx_timeout = qlge_tx_timeout,
  3604. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3605. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3606. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3607. };
  3608. static int __devinit qlge_probe(struct pci_dev *pdev,
  3609. const struct pci_device_id *pci_entry)
  3610. {
  3611. struct net_device *ndev = NULL;
  3612. struct ql_adapter *qdev = NULL;
  3613. static int cards_found = 0;
  3614. int err = 0;
  3615. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3616. min(MAX_CPUS, (int)num_online_cpus()));
  3617. if (!ndev)
  3618. return -ENOMEM;
  3619. err = ql_init_device(pdev, ndev, cards_found);
  3620. if (err < 0) {
  3621. free_netdev(ndev);
  3622. return err;
  3623. }
  3624. qdev = netdev_priv(ndev);
  3625. SET_NETDEV_DEV(ndev, &pdev->dev);
  3626. ndev->features = (0
  3627. | NETIF_F_IP_CSUM
  3628. | NETIF_F_SG
  3629. | NETIF_F_TSO
  3630. | NETIF_F_TSO6
  3631. | NETIF_F_TSO_ECN
  3632. | NETIF_F_HW_VLAN_TX
  3633. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3634. ndev->features |= NETIF_F_GRO;
  3635. if (test_bit(QL_DMA64, &qdev->flags))
  3636. ndev->features |= NETIF_F_HIGHDMA;
  3637. /*
  3638. * Set up net_device structure.
  3639. */
  3640. ndev->tx_queue_len = qdev->tx_ring_size;
  3641. ndev->irq = pdev->irq;
  3642. ndev->netdev_ops = &qlge_netdev_ops;
  3643. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3644. ndev->watchdog_timeo = 10 * HZ;
  3645. err = register_netdev(ndev);
  3646. if (err) {
  3647. dev_err(&pdev->dev, "net device registration failed.\n");
  3648. ql_release_all(pdev);
  3649. pci_disable_device(pdev);
  3650. return err;
  3651. }
  3652. ql_link_off(qdev);
  3653. ql_display_dev_info(ndev);
  3654. cards_found++;
  3655. return 0;
  3656. }
  3657. static void __devexit qlge_remove(struct pci_dev *pdev)
  3658. {
  3659. struct net_device *ndev = pci_get_drvdata(pdev);
  3660. unregister_netdev(ndev);
  3661. ql_release_all(pdev);
  3662. pci_disable_device(pdev);
  3663. free_netdev(ndev);
  3664. }
  3665. /*
  3666. * This callback is called by the PCI subsystem whenever
  3667. * a PCI bus error is detected.
  3668. */
  3669. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3670. enum pci_channel_state state)
  3671. {
  3672. struct net_device *ndev = pci_get_drvdata(pdev);
  3673. struct ql_adapter *qdev = netdev_priv(ndev);
  3674. if (netif_running(ndev))
  3675. ql_adapter_down(qdev);
  3676. pci_disable_device(pdev);
  3677. /* Request a slot reset. */
  3678. return PCI_ERS_RESULT_NEED_RESET;
  3679. }
  3680. /*
  3681. * This callback is called after the PCI buss has been reset.
  3682. * Basically, this tries to restart the card from scratch.
  3683. * This is a shortened version of the device probe/discovery code,
  3684. * it resembles the first-half of the () routine.
  3685. */
  3686. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3687. {
  3688. struct net_device *ndev = pci_get_drvdata(pdev);
  3689. struct ql_adapter *qdev = netdev_priv(ndev);
  3690. if (pci_enable_device(pdev)) {
  3691. QPRINTK(qdev, IFUP, ERR,
  3692. "Cannot re-enable PCI device after reset.\n");
  3693. return PCI_ERS_RESULT_DISCONNECT;
  3694. }
  3695. pci_set_master(pdev);
  3696. netif_carrier_off(ndev);
  3697. ql_adapter_reset(qdev);
  3698. /* Make sure the EEPROM is good */
  3699. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3700. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3701. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3702. return PCI_ERS_RESULT_DISCONNECT;
  3703. }
  3704. return PCI_ERS_RESULT_RECOVERED;
  3705. }
  3706. static void qlge_io_resume(struct pci_dev *pdev)
  3707. {
  3708. struct net_device *ndev = pci_get_drvdata(pdev);
  3709. struct ql_adapter *qdev = netdev_priv(ndev);
  3710. pci_set_master(pdev);
  3711. if (netif_running(ndev)) {
  3712. if (ql_adapter_up(qdev)) {
  3713. QPRINTK(qdev, IFUP, ERR,
  3714. "Device initialization failed after reset.\n");
  3715. return;
  3716. }
  3717. }
  3718. netif_device_attach(ndev);
  3719. }
  3720. static struct pci_error_handlers qlge_err_handler = {
  3721. .error_detected = qlge_io_error_detected,
  3722. .slot_reset = qlge_io_slot_reset,
  3723. .resume = qlge_io_resume,
  3724. };
  3725. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3726. {
  3727. struct net_device *ndev = pci_get_drvdata(pdev);
  3728. struct ql_adapter *qdev = netdev_priv(ndev);
  3729. int err;
  3730. netif_device_detach(ndev);
  3731. if (netif_running(ndev)) {
  3732. err = ql_adapter_down(qdev);
  3733. if (!err)
  3734. return err;
  3735. }
  3736. err = pci_save_state(pdev);
  3737. if (err)
  3738. return err;
  3739. pci_disable_device(pdev);
  3740. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3741. return 0;
  3742. }
  3743. #ifdef CONFIG_PM
  3744. static int qlge_resume(struct pci_dev *pdev)
  3745. {
  3746. struct net_device *ndev = pci_get_drvdata(pdev);
  3747. struct ql_adapter *qdev = netdev_priv(ndev);
  3748. int err;
  3749. pci_set_power_state(pdev, PCI_D0);
  3750. pci_restore_state(pdev);
  3751. err = pci_enable_device(pdev);
  3752. if (err) {
  3753. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3754. return err;
  3755. }
  3756. pci_set_master(pdev);
  3757. pci_enable_wake(pdev, PCI_D3hot, 0);
  3758. pci_enable_wake(pdev, PCI_D3cold, 0);
  3759. if (netif_running(ndev)) {
  3760. err = ql_adapter_up(qdev);
  3761. if (err)
  3762. return err;
  3763. }
  3764. netif_device_attach(ndev);
  3765. return 0;
  3766. }
  3767. #endif /* CONFIG_PM */
  3768. static void qlge_shutdown(struct pci_dev *pdev)
  3769. {
  3770. qlge_suspend(pdev, PMSG_SUSPEND);
  3771. }
  3772. static struct pci_driver qlge_driver = {
  3773. .name = DRV_NAME,
  3774. .id_table = qlge_pci_tbl,
  3775. .probe = qlge_probe,
  3776. .remove = __devexit_p(qlge_remove),
  3777. #ifdef CONFIG_PM
  3778. .suspend = qlge_suspend,
  3779. .resume = qlge_resume,
  3780. #endif
  3781. .shutdown = qlge_shutdown,
  3782. .err_handler = &qlge_err_handler
  3783. };
  3784. static int __init qlge_init_module(void)
  3785. {
  3786. return pci_register_driver(&qlge_driver);
  3787. }
  3788. static void __exit qlge_exit(void)
  3789. {
  3790. pci_unregister_driver(&qlge_driver);
  3791. }
  3792. module_init(qlge_init_module);
  3793. module_exit(qlge_exit);