niu.c 232 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/list.h>
  25. #include <linux/io.h>
  26. #ifdef CONFIG_SPARC64
  27. #include <linux/of_device.h>
  28. #endif
  29. #include "niu.h"
  30. #define DRV_MODULE_NAME "niu"
  31. #define PFX DRV_MODULE_NAME ": "
  32. #define DRV_MODULE_VERSION "1.0"
  33. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  34. static char version[] __devinitdata =
  35. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  36. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  37. MODULE_DESCRIPTION("NIU ethernet driver");
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_MODULE_VERSION);
  40. #ifndef DMA_44BIT_MASK
  41. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  42. #endif
  43. #ifndef readq
  44. static u64 readq(void __iomem *reg)
  45. {
  46. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int serdes_init_10g_serdes(struct niu *np);
  92. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay)
  94. {
  95. while (--limit >= 0) {
  96. u64 val = nr64_mac(reg);
  97. if (!(val & bits))
  98. break;
  99. udelay(delay);
  100. }
  101. if (limit < 0)
  102. return -ENODEV;
  103. return 0;
  104. }
  105. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  106. u64 bits, int limit, int delay,
  107. const char *reg_name)
  108. {
  109. int err;
  110. nw64_mac(reg, bits);
  111. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  112. if (err)
  113. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  114. "would not clear, val[%llx]\n",
  115. np->dev->name, (unsigned long long) bits, reg_name,
  116. (unsigned long long) nr64_mac(reg));
  117. return err;
  118. }
  119. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  120. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  121. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  122. })
  123. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  124. u64 bits, int limit, int delay)
  125. {
  126. while (--limit >= 0) {
  127. u64 val = nr64_ipp(reg);
  128. if (!(val & bits))
  129. break;
  130. udelay(delay);
  131. }
  132. if (limit < 0)
  133. return -ENODEV;
  134. return 0;
  135. }
  136. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  137. u64 bits, int limit, int delay,
  138. const char *reg_name)
  139. {
  140. int err;
  141. u64 val;
  142. val = nr64_ipp(reg);
  143. val |= bits;
  144. nw64_ipp(reg, val);
  145. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  146. if (err)
  147. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  148. "would not clear, val[%llx]\n",
  149. np->dev->name, (unsigned long long) bits, reg_name,
  150. (unsigned long long) nr64_ipp(reg));
  151. return err;
  152. }
  153. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  154. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  155. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  156. })
  157. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  158. u64 bits, int limit, int delay)
  159. {
  160. while (--limit >= 0) {
  161. u64 val = nr64(reg);
  162. if (!(val & bits))
  163. break;
  164. udelay(delay);
  165. }
  166. if (limit < 0)
  167. return -ENODEV;
  168. return 0;
  169. }
  170. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  171. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  172. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  173. })
  174. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  175. u64 bits, int limit, int delay,
  176. const char *reg_name)
  177. {
  178. int err;
  179. nw64(reg, bits);
  180. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  181. if (err)
  182. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  183. "would not clear, val[%llx]\n",
  184. np->dev->name, (unsigned long long) bits, reg_name,
  185. (unsigned long long) nr64(reg));
  186. return err;
  187. }
  188. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  189. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  190. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  191. })
  192. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  193. {
  194. u64 val = (u64) lp->timer;
  195. if (on)
  196. val |= LDG_IMGMT_ARM;
  197. nw64(LDG_IMGMT(lp->ldg_num), val);
  198. }
  199. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  200. {
  201. unsigned long mask_reg, bits;
  202. u64 val;
  203. if (ldn < 0 || ldn > LDN_MAX)
  204. return -EINVAL;
  205. if (ldn < 64) {
  206. mask_reg = LD_IM0(ldn);
  207. bits = LD_IM0_MASK;
  208. } else {
  209. mask_reg = LD_IM1(ldn - 64);
  210. bits = LD_IM1_MASK;
  211. }
  212. val = nr64(mask_reg);
  213. if (on)
  214. val &= ~bits;
  215. else
  216. val |= bits;
  217. nw64(mask_reg, val);
  218. return 0;
  219. }
  220. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  221. {
  222. struct niu_parent *parent = np->parent;
  223. int i;
  224. for (i = 0; i <= LDN_MAX; i++) {
  225. int err;
  226. if (parent->ldg_map[i] != lp->ldg_num)
  227. continue;
  228. err = niu_ldn_irq_enable(np, i, on);
  229. if (err)
  230. return err;
  231. }
  232. return 0;
  233. }
  234. static int niu_enable_interrupts(struct niu *np, int on)
  235. {
  236. int i;
  237. for (i = 0; i < np->num_ldg; i++) {
  238. struct niu_ldg *lp = &np->ldg[i];
  239. int err;
  240. err = niu_enable_ldn_in_ldg(np, lp, on);
  241. if (err)
  242. return err;
  243. }
  244. for (i = 0; i < np->num_ldg; i++)
  245. niu_ldg_rearm(np, &np->ldg[i], on);
  246. return 0;
  247. }
  248. static u32 phy_encode(u32 type, int port)
  249. {
  250. return (type << (port * 2));
  251. }
  252. static u32 phy_decode(u32 val, int port)
  253. {
  254. return (val >> (port * 2)) & PORT_TYPE_MASK;
  255. }
  256. static int mdio_wait(struct niu *np)
  257. {
  258. int limit = 1000;
  259. u64 val;
  260. while (--limit > 0) {
  261. val = nr64(MIF_FRAME_OUTPUT);
  262. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  263. return val & MIF_FRAME_OUTPUT_DATA;
  264. udelay(10);
  265. }
  266. return -ENODEV;
  267. }
  268. static int mdio_read(struct niu *np, int port, int dev, int reg)
  269. {
  270. int err;
  271. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  272. err = mdio_wait(np);
  273. if (err < 0)
  274. return err;
  275. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  276. return mdio_wait(np);
  277. }
  278. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  279. {
  280. int err;
  281. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  282. err = mdio_wait(np);
  283. if (err < 0)
  284. return err;
  285. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  286. err = mdio_wait(np);
  287. if (err < 0)
  288. return err;
  289. return 0;
  290. }
  291. static int mii_read(struct niu *np, int port, int reg)
  292. {
  293. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  294. return mdio_wait(np);
  295. }
  296. static int mii_write(struct niu *np, int port, int reg, int data)
  297. {
  298. int err;
  299. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  300. err = mdio_wait(np);
  301. if (err < 0)
  302. return err;
  303. return 0;
  304. }
  305. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  306. {
  307. int err;
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_TX_CFG_L(channel),
  310. val & 0xffff);
  311. if (!err)
  312. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  313. ESR2_TI_PLL_TX_CFG_H(channel),
  314. val >> 16);
  315. return err;
  316. }
  317. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  318. {
  319. int err;
  320. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  321. ESR2_TI_PLL_RX_CFG_L(channel),
  322. val & 0xffff);
  323. if (!err)
  324. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_RX_CFG_H(channel),
  326. val >> 16);
  327. return err;
  328. }
  329. /* Mode is always 10G fiber. */
  330. static int serdes_init_niu_10g_fiber(struct niu *np)
  331. {
  332. struct niu_link_config *lp = &np->link_config;
  333. u32 tx_cfg, rx_cfg;
  334. unsigned long i;
  335. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  336. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  337. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  338. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  339. if (lp->loopback_mode == LOOPBACK_PHY) {
  340. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  341. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  342. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  343. tx_cfg |= PLL_TX_CFG_ENTEST;
  344. rx_cfg |= PLL_RX_CFG_ENTEST;
  345. }
  346. /* Initialize all 4 lanes of the SERDES. */
  347. for (i = 0; i < 4; i++) {
  348. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  349. if (err)
  350. return err;
  351. }
  352. for (i = 0; i < 4; i++) {
  353. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  354. if (err)
  355. return err;
  356. }
  357. return 0;
  358. }
  359. static int serdes_init_niu_1g_serdes(struct niu *np)
  360. {
  361. struct niu_link_config *lp = &np->link_config;
  362. u16 pll_cfg, pll_sts;
  363. int max_retry = 100;
  364. u64 uninitialized_var(sig), mask, val;
  365. u32 tx_cfg, rx_cfg;
  366. unsigned long i;
  367. int err;
  368. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  369. PLL_TX_CFG_RATE_HALF);
  370. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  371. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  372. PLL_RX_CFG_RATE_HALF);
  373. if (np->port == 0)
  374. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  375. if (lp->loopback_mode == LOOPBACK_PHY) {
  376. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  377. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  378. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  379. tx_cfg |= PLL_TX_CFG_ENTEST;
  380. rx_cfg |= PLL_RX_CFG_ENTEST;
  381. }
  382. /* Initialize PLL for 1G */
  383. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  384. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  385. ESR2_TI_PLL_CFG_L, pll_cfg);
  386. if (err) {
  387. dev_err(np->device, PFX "NIU Port %d "
  388. "serdes_init_niu_1g_serdes: "
  389. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  390. return err;
  391. }
  392. pll_sts = PLL_CFG_ENPLL;
  393. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  394. ESR2_TI_PLL_STS_L, pll_sts);
  395. if (err) {
  396. dev_err(np->device, PFX "NIU Port %d "
  397. "serdes_init_niu_1g_serdes: "
  398. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  399. return err;
  400. }
  401. udelay(200);
  402. /* Initialize all 4 lanes of the SERDES. */
  403. for (i = 0; i < 4; i++) {
  404. err = esr2_set_tx_cfg(np, i, tx_cfg);
  405. if (err)
  406. return err;
  407. }
  408. for (i = 0; i < 4; i++) {
  409. err = esr2_set_rx_cfg(np, i, rx_cfg);
  410. if (err)
  411. return err;
  412. }
  413. switch (np->port) {
  414. case 0:
  415. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  416. mask = val;
  417. break;
  418. case 1:
  419. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  420. mask = val;
  421. break;
  422. default:
  423. return -EINVAL;
  424. }
  425. while (max_retry--) {
  426. sig = nr64(ESR_INT_SIGNALS);
  427. if ((sig & mask) == val)
  428. break;
  429. mdelay(500);
  430. }
  431. if ((sig & mask) != val) {
  432. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  433. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  434. return -ENODEV;
  435. }
  436. return 0;
  437. }
  438. static int serdes_init_niu_10g_serdes(struct niu *np)
  439. {
  440. struct niu_link_config *lp = &np->link_config;
  441. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  442. int max_retry = 100;
  443. u64 uninitialized_var(sig), mask, val;
  444. unsigned long i;
  445. int err;
  446. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  447. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  448. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  449. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  450. if (lp->loopback_mode == LOOPBACK_PHY) {
  451. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  452. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  453. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  454. tx_cfg |= PLL_TX_CFG_ENTEST;
  455. rx_cfg |= PLL_RX_CFG_ENTEST;
  456. }
  457. /* Initialize PLL for 10G */
  458. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  459. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  460. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  461. if (err) {
  462. dev_err(np->device, PFX "NIU Port %d "
  463. "serdes_init_niu_10g_serdes: "
  464. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  465. return err;
  466. }
  467. pll_sts = PLL_CFG_ENPLL;
  468. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  469. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  470. if (err) {
  471. dev_err(np->device, PFX "NIU Port %d "
  472. "serdes_init_niu_10g_serdes: "
  473. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  474. return err;
  475. }
  476. udelay(200);
  477. /* Initialize all 4 lanes of the SERDES. */
  478. for (i = 0; i < 4; i++) {
  479. err = esr2_set_tx_cfg(np, i, tx_cfg);
  480. if (err)
  481. return err;
  482. }
  483. for (i = 0; i < 4; i++) {
  484. err = esr2_set_rx_cfg(np, i, rx_cfg);
  485. if (err)
  486. return err;
  487. }
  488. /* check if serdes is ready */
  489. switch (np->port) {
  490. case 0:
  491. mask = ESR_INT_SIGNALS_P0_BITS;
  492. val = (ESR_INT_SRDY0_P0 |
  493. ESR_INT_DET0_P0 |
  494. ESR_INT_XSRDY_P0 |
  495. ESR_INT_XDP_P0_CH3 |
  496. ESR_INT_XDP_P0_CH2 |
  497. ESR_INT_XDP_P0_CH1 |
  498. ESR_INT_XDP_P0_CH0);
  499. break;
  500. case 1:
  501. mask = ESR_INT_SIGNALS_P1_BITS;
  502. val = (ESR_INT_SRDY0_P1 |
  503. ESR_INT_DET0_P1 |
  504. ESR_INT_XSRDY_P1 |
  505. ESR_INT_XDP_P1_CH3 |
  506. ESR_INT_XDP_P1_CH2 |
  507. ESR_INT_XDP_P1_CH1 |
  508. ESR_INT_XDP_P1_CH0);
  509. break;
  510. default:
  511. return -EINVAL;
  512. }
  513. while (max_retry--) {
  514. sig = nr64(ESR_INT_SIGNALS);
  515. if ((sig & mask) == val)
  516. break;
  517. mdelay(500);
  518. }
  519. if ((sig & mask) != val) {
  520. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  521. "[%08x] for 10G...trying 1G\n",
  522. np->port, (int) (sig & mask), (int) val);
  523. /* 10G failed, try initializing at 1G */
  524. err = serdes_init_niu_1g_serdes(np);
  525. if (!err) {
  526. np->flags &= ~NIU_FLAGS_10G;
  527. np->mac_xcvr = MAC_XCVR_PCS;
  528. } else {
  529. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  530. "Link Failed \n", np->port);
  531. return -ENODEV;
  532. }
  533. }
  534. return 0;
  535. }
  536. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  537. {
  538. int err;
  539. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  540. if (err >= 0) {
  541. *val = (err & 0xffff);
  542. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  543. ESR_RXTX_CTRL_H(chan));
  544. if (err >= 0)
  545. *val |= ((err & 0xffff) << 16);
  546. err = 0;
  547. }
  548. return err;
  549. }
  550. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  551. {
  552. int err;
  553. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  554. ESR_GLUE_CTRL0_L(chan));
  555. if (err >= 0) {
  556. *val = (err & 0xffff);
  557. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  558. ESR_GLUE_CTRL0_H(chan));
  559. if (err >= 0) {
  560. *val |= ((err & 0xffff) << 16);
  561. err = 0;
  562. }
  563. }
  564. return err;
  565. }
  566. static int esr_read_reset(struct niu *np, u32 *val)
  567. {
  568. int err;
  569. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  570. ESR_RXTX_RESET_CTRL_L);
  571. if (err >= 0) {
  572. *val = (err & 0xffff);
  573. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_RXTX_RESET_CTRL_H);
  575. if (err >= 0) {
  576. *val |= ((err & 0xffff) << 16);
  577. err = 0;
  578. }
  579. }
  580. return err;
  581. }
  582. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  583. {
  584. int err;
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  587. if (!err)
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_CTRL_H(chan), (val >> 16));
  590. return err;
  591. }
  592. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  593. {
  594. int err;
  595. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  596. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  597. if (!err)
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  600. return err;
  601. }
  602. static int esr_reset(struct niu *np)
  603. {
  604. u32 uninitialized_var(reset);
  605. int err;
  606. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  607. ESR_RXTX_RESET_CTRL_L, 0x0000);
  608. if (err)
  609. return err;
  610. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  611. ESR_RXTX_RESET_CTRL_H, 0xffff);
  612. if (err)
  613. return err;
  614. udelay(200);
  615. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  616. ESR_RXTX_RESET_CTRL_L, 0xffff);
  617. if (err)
  618. return err;
  619. udelay(200);
  620. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  621. ESR_RXTX_RESET_CTRL_H, 0x0000);
  622. if (err)
  623. return err;
  624. udelay(200);
  625. err = esr_read_reset(np, &reset);
  626. if (err)
  627. return err;
  628. if (reset != 0) {
  629. dev_err(np->device, PFX "Port %u ESR_RESET "
  630. "did not clear [%08x]\n",
  631. np->port, reset);
  632. return -ENODEV;
  633. }
  634. return 0;
  635. }
  636. static int serdes_init_10g(struct niu *np)
  637. {
  638. struct niu_link_config *lp = &np->link_config;
  639. unsigned long ctrl_reg, test_cfg_reg, i;
  640. u64 ctrl_val, test_cfg_val, sig, mask, val;
  641. int err;
  642. switch (np->port) {
  643. case 0:
  644. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  645. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  646. break;
  647. case 1:
  648. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  649. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  650. break;
  651. default:
  652. return -EINVAL;
  653. }
  654. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  655. ENET_SERDES_CTRL_SDET_1 |
  656. ENET_SERDES_CTRL_SDET_2 |
  657. ENET_SERDES_CTRL_SDET_3 |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  661. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  665. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  666. test_cfg_val = 0;
  667. if (lp->loopback_mode == LOOPBACK_PHY) {
  668. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  669. ENET_SERDES_TEST_MD_0_SHIFT) |
  670. (ENET_TEST_MD_PAD_LOOPBACK <<
  671. ENET_SERDES_TEST_MD_1_SHIFT) |
  672. (ENET_TEST_MD_PAD_LOOPBACK <<
  673. ENET_SERDES_TEST_MD_2_SHIFT) |
  674. (ENET_TEST_MD_PAD_LOOPBACK <<
  675. ENET_SERDES_TEST_MD_3_SHIFT));
  676. }
  677. nw64(ctrl_reg, ctrl_val);
  678. nw64(test_cfg_reg, test_cfg_val);
  679. /* Initialize all 4 lanes of the SERDES. */
  680. for (i = 0; i < 4; i++) {
  681. u32 rxtx_ctrl, glue0;
  682. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  683. if (err)
  684. return err;
  685. err = esr_read_glue0(np, i, &glue0);
  686. if (err)
  687. return err;
  688. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  689. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  690. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  691. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  692. ESR_GLUE_CTRL0_THCNT |
  693. ESR_GLUE_CTRL0_BLTIME);
  694. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  695. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  696. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  697. (BLTIME_300_CYCLES <<
  698. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  699. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  700. if (err)
  701. return err;
  702. err = esr_write_glue0(np, i, glue0);
  703. if (err)
  704. return err;
  705. }
  706. err = esr_reset(np);
  707. if (err)
  708. return err;
  709. sig = nr64(ESR_INT_SIGNALS);
  710. switch (np->port) {
  711. case 0:
  712. mask = ESR_INT_SIGNALS_P0_BITS;
  713. val = (ESR_INT_SRDY0_P0 |
  714. ESR_INT_DET0_P0 |
  715. ESR_INT_XSRDY_P0 |
  716. ESR_INT_XDP_P0_CH3 |
  717. ESR_INT_XDP_P0_CH2 |
  718. ESR_INT_XDP_P0_CH1 |
  719. ESR_INT_XDP_P0_CH0);
  720. break;
  721. case 1:
  722. mask = ESR_INT_SIGNALS_P1_BITS;
  723. val = (ESR_INT_SRDY0_P1 |
  724. ESR_INT_DET0_P1 |
  725. ESR_INT_XSRDY_P1 |
  726. ESR_INT_XDP_P1_CH3 |
  727. ESR_INT_XDP_P1_CH2 |
  728. ESR_INT_XDP_P1_CH1 |
  729. ESR_INT_XDP_P1_CH0);
  730. break;
  731. default:
  732. return -EINVAL;
  733. }
  734. if ((sig & mask) != val) {
  735. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  736. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  737. return 0;
  738. }
  739. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  740. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  741. return -ENODEV;
  742. }
  743. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  744. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  745. return 0;
  746. }
  747. static int serdes_init_1g(struct niu *np)
  748. {
  749. u64 val;
  750. val = nr64(ENET_SERDES_1_PLL_CFG);
  751. val &= ~ENET_SERDES_PLL_FBDIV2;
  752. switch (np->port) {
  753. case 0:
  754. val |= ENET_SERDES_PLL_HRATE0;
  755. break;
  756. case 1:
  757. val |= ENET_SERDES_PLL_HRATE1;
  758. break;
  759. case 2:
  760. val |= ENET_SERDES_PLL_HRATE2;
  761. break;
  762. case 3:
  763. val |= ENET_SERDES_PLL_HRATE3;
  764. break;
  765. default:
  766. return -EINVAL;
  767. }
  768. nw64(ENET_SERDES_1_PLL_CFG, val);
  769. return 0;
  770. }
  771. static int serdes_init_1g_serdes(struct niu *np)
  772. {
  773. struct niu_link_config *lp = &np->link_config;
  774. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  775. u64 ctrl_val, test_cfg_val, sig, mask, val;
  776. int err;
  777. u64 reset_val, val_rd;
  778. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  779. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  780. ENET_SERDES_PLL_FBDIV0;
  781. switch (np->port) {
  782. case 0:
  783. reset_val = ENET_SERDES_RESET_0;
  784. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  785. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  786. pll_cfg = ENET_SERDES_0_PLL_CFG;
  787. break;
  788. case 1:
  789. reset_val = ENET_SERDES_RESET_1;
  790. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  791. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  792. pll_cfg = ENET_SERDES_1_PLL_CFG;
  793. break;
  794. default:
  795. return -EINVAL;
  796. }
  797. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  798. ENET_SERDES_CTRL_SDET_1 |
  799. ENET_SERDES_CTRL_SDET_2 |
  800. ENET_SERDES_CTRL_SDET_3 |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  804. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  808. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  809. test_cfg_val = 0;
  810. if (lp->loopback_mode == LOOPBACK_PHY) {
  811. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  812. ENET_SERDES_TEST_MD_0_SHIFT) |
  813. (ENET_TEST_MD_PAD_LOOPBACK <<
  814. ENET_SERDES_TEST_MD_1_SHIFT) |
  815. (ENET_TEST_MD_PAD_LOOPBACK <<
  816. ENET_SERDES_TEST_MD_2_SHIFT) |
  817. (ENET_TEST_MD_PAD_LOOPBACK <<
  818. ENET_SERDES_TEST_MD_3_SHIFT));
  819. }
  820. nw64(ENET_SERDES_RESET, reset_val);
  821. mdelay(20);
  822. val_rd = nr64(ENET_SERDES_RESET);
  823. val_rd &= ~reset_val;
  824. nw64(pll_cfg, val);
  825. nw64(ctrl_reg, ctrl_val);
  826. nw64(test_cfg_reg, test_cfg_val);
  827. nw64(ENET_SERDES_RESET, val_rd);
  828. mdelay(2000);
  829. /* Initialize all 4 lanes of the SERDES. */
  830. for (i = 0; i < 4; i++) {
  831. u32 rxtx_ctrl, glue0;
  832. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  833. if (err)
  834. return err;
  835. err = esr_read_glue0(np, i, &glue0);
  836. if (err)
  837. return err;
  838. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  839. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  840. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  841. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  842. ESR_GLUE_CTRL0_THCNT |
  843. ESR_GLUE_CTRL0_BLTIME);
  844. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  845. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  846. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  847. (BLTIME_300_CYCLES <<
  848. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  849. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  850. if (err)
  851. return err;
  852. err = esr_write_glue0(np, i, glue0);
  853. if (err)
  854. return err;
  855. }
  856. sig = nr64(ESR_INT_SIGNALS);
  857. switch (np->port) {
  858. case 0:
  859. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  860. mask = val;
  861. break;
  862. case 1:
  863. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  864. mask = val;
  865. break;
  866. default:
  867. return -EINVAL;
  868. }
  869. if ((sig & mask) != val) {
  870. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  871. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  872. return -ENODEV;
  873. }
  874. return 0;
  875. }
  876. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  877. {
  878. struct niu_link_config *lp = &np->link_config;
  879. int link_up;
  880. u64 val;
  881. u16 current_speed;
  882. unsigned long flags;
  883. u8 current_duplex;
  884. link_up = 0;
  885. current_speed = SPEED_INVALID;
  886. current_duplex = DUPLEX_INVALID;
  887. spin_lock_irqsave(&np->lock, flags);
  888. val = nr64_pcs(PCS_MII_STAT);
  889. if (val & PCS_MII_STAT_LINK_STATUS) {
  890. link_up = 1;
  891. current_speed = SPEED_1000;
  892. current_duplex = DUPLEX_FULL;
  893. }
  894. lp->active_speed = current_speed;
  895. lp->active_duplex = current_duplex;
  896. spin_unlock_irqrestore(&np->lock, flags);
  897. *link_up_p = link_up;
  898. return 0;
  899. }
  900. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  901. {
  902. unsigned long flags;
  903. struct niu_link_config *lp = &np->link_config;
  904. int link_up = 0;
  905. int link_ok = 1;
  906. u64 val, val2;
  907. u16 current_speed;
  908. u8 current_duplex;
  909. if (!(np->flags & NIU_FLAGS_10G))
  910. return link_status_1g_serdes(np, link_up_p);
  911. current_speed = SPEED_INVALID;
  912. current_duplex = DUPLEX_INVALID;
  913. spin_lock_irqsave(&np->lock, flags);
  914. val = nr64_xpcs(XPCS_STATUS(0));
  915. val2 = nr64_mac(XMAC_INTER2);
  916. if (val2 & 0x01000000)
  917. link_ok = 0;
  918. if ((val & 0x1000ULL) && link_ok) {
  919. link_up = 1;
  920. current_speed = SPEED_10000;
  921. current_duplex = DUPLEX_FULL;
  922. }
  923. lp->active_speed = current_speed;
  924. lp->active_duplex = current_duplex;
  925. spin_unlock_irqrestore(&np->lock, flags);
  926. *link_up_p = link_up;
  927. return 0;
  928. }
  929. static int link_status_mii(struct niu *np, int *link_up_p)
  930. {
  931. struct niu_link_config *lp = &np->link_config;
  932. int err;
  933. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  934. int supported, advertising, active_speed, active_duplex;
  935. err = mii_read(np, np->phy_addr, MII_BMCR);
  936. if (unlikely(err < 0))
  937. return err;
  938. bmcr = err;
  939. err = mii_read(np, np->phy_addr, MII_BMSR);
  940. if (unlikely(err < 0))
  941. return err;
  942. bmsr = err;
  943. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  944. if (unlikely(err < 0))
  945. return err;
  946. advert = err;
  947. err = mii_read(np, np->phy_addr, MII_LPA);
  948. if (unlikely(err < 0))
  949. return err;
  950. lpa = err;
  951. if (likely(bmsr & BMSR_ESTATEN)) {
  952. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  953. if (unlikely(err < 0))
  954. return err;
  955. estatus = err;
  956. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  957. if (unlikely(err < 0))
  958. return err;
  959. ctrl1000 = err;
  960. err = mii_read(np, np->phy_addr, MII_STAT1000);
  961. if (unlikely(err < 0))
  962. return err;
  963. stat1000 = err;
  964. } else
  965. estatus = ctrl1000 = stat1000 = 0;
  966. supported = 0;
  967. if (bmsr & BMSR_ANEGCAPABLE)
  968. supported |= SUPPORTED_Autoneg;
  969. if (bmsr & BMSR_10HALF)
  970. supported |= SUPPORTED_10baseT_Half;
  971. if (bmsr & BMSR_10FULL)
  972. supported |= SUPPORTED_10baseT_Full;
  973. if (bmsr & BMSR_100HALF)
  974. supported |= SUPPORTED_100baseT_Half;
  975. if (bmsr & BMSR_100FULL)
  976. supported |= SUPPORTED_100baseT_Full;
  977. if (estatus & ESTATUS_1000_THALF)
  978. supported |= SUPPORTED_1000baseT_Half;
  979. if (estatus & ESTATUS_1000_TFULL)
  980. supported |= SUPPORTED_1000baseT_Full;
  981. lp->supported = supported;
  982. advertising = 0;
  983. if (advert & ADVERTISE_10HALF)
  984. advertising |= ADVERTISED_10baseT_Half;
  985. if (advert & ADVERTISE_10FULL)
  986. advertising |= ADVERTISED_10baseT_Full;
  987. if (advert & ADVERTISE_100HALF)
  988. advertising |= ADVERTISED_100baseT_Half;
  989. if (advert & ADVERTISE_100FULL)
  990. advertising |= ADVERTISED_100baseT_Full;
  991. if (ctrl1000 & ADVERTISE_1000HALF)
  992. advertising |= ADVERTISED_1000baseT_Half;
  993. if (ctrl1000 & ADVERTISE_1000FULL)
  994. advertising |= ADVERTISED_1000baseT_Full;
  995. if (bmcr & BMCR_ANENABLE) {
  996. int neg, neg1000;
  997. lp->active_autoneg = 1;
  998. advertising |= ADVERTISED_Autoneg;
  999. neg = advert & lpa;
  1000. neg1000 = (ctrl1000 << 2) & stat1000;
  1001. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  1002. active_speed = SPEED_1000;
  1003. else if (neg & LPA_100)
  1004. active_speed = SPEED_100;
  1005. else if (neg & (LPA_10HALF | LPA_10FULL))
  1006. active_speed = SPEED_10;
  1007. else
  1008. active_speed = SPEED_INVALID;
  1009. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1010. active_duplex = DUPLEX_FULL;
  1011. else if (active_speed != SPEED_INVALID)
  1012. active_duplex = DUPLEX_HALF;
  1013. else
  1014. active_duplex = DUPLEX_INVALID;
  1015. } else {
  1016. lp->active_autoneg = 0;
  1017. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1018. active_speed = SPEED_1000;
  1019. else if (bmcr & BMCR_SPEED100)
  1020. active_speed = SPEED_100;
  1021. else
  1022. active_speed = SPEED_10;
  1023. if (bmcr & BMCR_FULLDPLX)
  1024. active_duplex = DUPLEX_FULL;
  1025. else
  1026. active_duplex = DUPLEX_HALF;
  1027. }
  1028. lp->active_advertising = advertising;
  1029. lp->active_speed = active_speed;
  1030. lp->active_duplex = active_duplex;
  1031. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1032. return 0;
  1033. }
  1034. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1035. {
  1036. struct niu_link_config *lp = &np->link_config;
  1037. u16 current_speed, bmsr;
  1038. unsigned long flags;
  1039. u8 current_duplex;
  1040. int err, link_up;
  1041. link_up = 0;
  1042. current_speed = SPEED_INVALID;
  1043. current_duplex = DUPLEX_INVALID;
  1044. spin_lock_irqsave(&np->lock, flags);
  1045. err = -EINVAL;
  1046. err = mii_read(np, np->phy_addr, MII_BMSR);
  1047. if (err < 0)
  1048. goto out;
  1049. bmsr = err;
  1050. if (bmsr & BMSR_LSTATUS) {
  1051. u16 adv, lpa, common, estat;
  1052. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1053. if (err < 0)
  1054. goto out;
  1055. adv = err;
  1056. err = mii_read(np, np->phy_addr, MII_LPA);
  1057. if (err < 0)
  1058. goto out;
  1059. lpa = err;
  1060. common = adv & lpa;
  1061. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1062. if (err < 0)
  1063. goto out;
  1064. estat = err;
  1065. link_up = 1;
  1066. current_speed = SPEED_1000;
  1067. current_duplex = DUPLEX_FULL;
  1068. }
  1069. lp->active_speed = current_speed;
  1070. lp->active_duplex = current_duplex;
  1071. err = 0;
  1072. out:
  1073. spin_unlock_irqrestore(&np->lock, flags);
  1074. *link_up_p = link_up;
  1075. return err;
  1076. }
  1077. static int link_status_1g(struct niu *np, int *link_up_p)
  1078. {
  1079. struct niu_link_config *lp = &np->link_config;
  1080. unsigned long flags;
  1081. int err;
  1082. spin_lock_irqsave(&np->lock, flags);
  1083. err = link_status_mii(np, link_up_p);
  1084. lp->supported |= SUPPORTED_TP;
  1085. lp->active_advertising |= ADVERTISED_TP;
  1086. spin_unlock_irqrestore(&np->lock, flags);
  1087. return err;
  1088. }
  1089. static int bcm8704_reset(struct niu *np)
  1090. {
  1091. int err, limit;
  1092. err = mdio_read(np, np->phy_addr,
  1093. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1094. if (err < 0 || err == 0xffff)
  1095. return err;
  1096. err |= BMCR_RESET;
  1097. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1098. MII_BMCR, err);
  1099. if (err)
  1100. return err;
  1101. limit = 1000;
  1102. while (--limit >= 0) {
  1103. err = mdio_read(np, np->phy_addr,
  1104. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1105. if (err < 0)
  1106. return err;
  1107. if (!(err & BMCR_RESET))
  1108. break;
  1109. }
  1110. if (limit < 0) {
  1111. dev_err(np->device, PFX "Port %u PHY will not reset "
  1112. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1113. return -ENODEV;
  1114. }
  1115. return 0;
  1116. }
  1117. /* When written, certain PHY registers need to be read back twice
  1118. * in order for the bits to settle properly.
  1119. */
  1120. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1121. {
  1122. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1123. if (err < 0)
  1124. return err;
  1125. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1126. if (err < 0)
  1127. return err;
  1128. return 0;
  1129. }
  1130. static int bcm8706_init_user_dev3(struct niu *np)
  1131. {
  1132. int err;
  1133. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1134. BCM8704_USER_OPT_DIGITAL_CTRL);
  1135. if (err < 0)
  1136. return err;
  1137. err &= ~USER_ODIG_CTRL_GPIOS;
  1138. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1139. err |= USER_ODIG_CTRL_RESV2;
  1140. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1141. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1142. if (err)
  1143. return err;
  1144. mdelay(1000);
  1145. return 0;
  1146. }
  1147. static int bcm8704_init_user_dev3(struct niu *np)
  1148. {
  1149. int err;
  1150. err = mdio_write(np, np->phy_addr,
  1151. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1152. (USER_CONTROL_OPTXRST_LVL |
  1153. USER_CONTROL_OPBIASFLT_LVL |
  1154. USER_CONTROL_OBTMPFLT_LVL |
  1155. USER_CONTROL_OPPRFLT_LVL |
  1156. USER_CONTROL_OPTXFLT_LVL |
  1157. USER_CONTROL_OPRXLOS_LVL |
  1158. USER_CONTROL_OPRXFLT_LVL |
  1159. USER_CONTROL_OPTXON_LVL |
  1160. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1161. if (err)
  1162. return err;
  1163. err = mdio_write(np, np->phy_addr,
  1164. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1165. (USER_PMD_TX_CTL_XFP_CLKEN |
  1166. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1167. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1168. USER_PMD_TX_CTL_TSCK_LPWREN));
  1169. if (err)
  1170. return err;
  1171. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1172. if (err)
  1173. return err;
  1174. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1175. if (err)
  1176. return err;
  1177. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1178. BCM8704_USER_OPT_DIGITAL_CTRL);
  1179. if (err < 0)
  1180. return err;
  1181. err &= ~USER_ODIG_CTRL_GPIOS;
  1182. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1183. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1184. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1185. if (err)
  1186. return err;
  1187. mdelay(1000);
  1188. return 0;
  1189. }
  1190. static int mrvl88x2011_act_led(struct niu *np, int val)
  1191. {
  1192. int err;
  1193. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1194. MRVL88X2011_LED_8_TO_11_CTL);
  1195. if (err < 0)
  1196. return err;
  1197. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1198. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1199. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1200. MRVL88X2011_LED_8_TO_11_CTL, err);
  1201. }
  1202. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1203. {
  1204. int err;
  1205. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1206. MRVL88X2011_LED_BLINK_CTL);
  1207. if (err >= 0) {
  1208. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1209. err |= (rate << 4);
  1210. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1211. MRVL88X2011_LED_BLINK_CTL, err);
  1212. }
  1213. return err;
  1214. }
  1215. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1216. {
  1217. int err;
  1218. /* Set LED functions */
  1219. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1220. if (err)
  1221. return err;
  1222. /* led activity */
  1223. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1224. if (err)
  1225. return err;
  1226. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1227. MRVL88X2011_GENERAL_CTL);
  1228. if (err < 0)
  1229. return err;
  1230. err |= MRVL88X2011_ENA_XFPREFCLK;
  1231. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1232. MRVL88X2011_GENERAL_CTL, err);
  1233. if (err < 0)
  1234. return err;
  1235. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1236. MRVL88X2011_PMA_PMD_CTL_1);
  1237. if (err < 0)
  1238. return err;
  1239. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1240. err |= MRVL88X2011_LOOPBACK;
  1241. else
  1242. err &= ~MRVL88X2011_LOOPBACK;
  1243. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1244. MRVL88X2011_PMA_PMD_CTL_1, err);
  1245. if (err < 0)
  1246. return err;
  1247. /* Enable PMD */
  1248. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1249. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1250. }
  1251. static int xcvr_diag_bcm870x(struct niu *np)
  1252. {
  1253. u16 analog_stat0, tx_alarm_status;
  1254. int err = 0;
  1255. #if 1
  1256. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1257. MII_STAT1000);
  1258. if (err < 0)
  1259. return err;
  1260. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1261. np->port, err);
  1262. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1263. if (err < 0)
  1264. return err;
  1265. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1266. np->port, err);
  1267. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1268. MII_NWAYTEST);
  1269. if (err < 0)
  1270. return err;
  1271. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1272. np->port, err);
  1273. #endif
  1274. /* XXX dig this out it might not be so useful XXX */
  1275. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1276. BCM8704_USER_ANALOG_STATUS0);
  1277. if (err < 0)
  1278. return err;
  1279. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1280. BCM8704_USER_ANALOG_STATUS0);
  1281. if (err < 0)
  1282. return err;
  1283. analog_stat0 = err;
  1284. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1285. BCM8704_USER_TX_ALARM_STATUS);
  1286. if (err < 0)
  1287. return err;
  1288. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1289. BCM8704_USER_TX_ALARM_STATUS);
  1290. if (err < 0)
  1291. return err;
  1292. tx_alarm_status = err;
  1293. if (analog_stat0 != 0x03fc) {
  1294. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1295. pr_info(PFX "Port %u cable not connected "
  1296. "or bad cable.\n", np->port);
  1297. } else if (analog_stat0 == 0x639c) {
  1298. pr_info(PFX "Port %u optical module is bad "
  1299. "or missing.\n", np->port);
  1300. }
  1301. }
  1302. return 0;
  1303. }
  1304. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1305. {
  1306. struct niu_link_config *lp = &np->link_config;
  1307. int err;
  1308. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1309. MII_BMCR);
  1310. if (err < 0)
  1311. return err;
  1312. err &= ~BMCR_LOOPBACK;
  1313. if (lp->loopback_mode == LOOPBACK_MAC)
  1314. err |= BMCR_LOOPBACK;
  1315. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1316. MII_BMCR, err);
  1317. if (err)
  1318. return err;
  1319. return 0;
  1320. }
  1321. static int xcvr_init_10g_bcm8706(struct niu *np)
  1322. {
  1323. int err = 0;
  1324. u64 val;
  1325. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1326. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1327. return err;
  1328. val = nr64_mac(XMAC_CONFIG);
  1329. val &= ~XMAC_CONFIG_LED_POLARITY;
  1330. val |= XMAC_CONFIG_FORCE_LED_ON;
  1331. nw64_mac(XMAC_CONFIG, val);
  1332. val = nr64(MIF_CONFIG);
  1333. val |= MIF_CONFIG_INDIRECT_MODE;
  1334. nw64(MIF_CONFIG, val);
  1335. err = bcm8704_reset(np);
  1336. if (err)
  1337. return err;
  1338. err = xcvr_10g_set_lb_bcm870x(np);
  1339. if (err)
  1340. return err;
  1341. err = bcm8706_init_user_dev3(np);
  1342. if (err)
  1343. return err;
  1344. err = xcvr_diag_bcm870x(np);
  1345. if (err)
  1346. return err;
  1347. return 0;
  1348. }
  1349. static int xcvr_init_10g_bcm8704(struct niu *np)
  1350. {
  1351. int err;
  1352. err = bcm8704_reset(np);
  1353. if (err)
  1354. return err;
  1355. err = bcm8704_init_user_dev3(np);
  1356. if (err)
  1357. return err;
  1358. err = xcvr_10g_set_lb_bcm870x(np);
  1359. if (err)
  1360. return err;
  1361. err = xcvr_diag_bcm870x(np);
  1362. if (err)
  1363. return err;
  1364. return 0;
  1365. }
  1366. static int xcvr_init_10g(struct niu *np)
  1367. {
  1368. int phy_id, err;
  1369. u64 val;
  1370. val = nr64_mac(XMAC_CONFIG);
  1371. val &= ~XMAC_CONFIG_LED_POLARITY;
  1372. val |= XMAC_CONFIG_FORCE_LED_ON;
  1373. nw64_mac(XMAC_CONFIG, val);
  1374. /* XXX shared resource, lock parent XXX */
  1375. val = nr64(MIF_CONFIG);
  1376. val |= MIF_CONFIG_INDIRECT_MODE;
  1377. nw64(MIF_CONFIG, val);
  1378. phy_id = phy_decode(np->parent->port_phy, np->port);
  1379. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1380. /* handle different phy types */
  1381. switch (phy_id & NIU_PHY_ID_MASK) {
  1382. case NIU_PHY_ID_MRVL88X2011:
  1383. err = xcvr_init_10g_mrvl88x2011(np);
  1384. break;
  1385. default: /* bcom 8704 */
  1386. err = xcvr_init_10g_bcm8704(np);
  1387. break;
  1388. }
  1389. return 0;
  1390. }
  1391. static int mii_reset(struct niu *np)
  1392. {
  1393. int limit, err;
  1394. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1395. if (err)
  1396. return err;
  1397. limit = 1000;
  1398. while (--limit >= 0) {
  1399. udelay(500);
  1400. err = mii_read(np, np->phy_addr, MII_BMCR);
  1401. if (err < 0)
  1402. return err;
  1403. if (!(err & BMCR_RESET))
  1404. break;
  1405. }
  1406. if (limit < 0) {
  1407. dev_err(np->device, PFX "Port %u MII would not reset, "
  1408. "bmcr[%04x]\n", np->port, err);
  1409. return -ENODEV;
  1410. }
  1411. return 0;
  1412. }
  1413. static int xcvr_init_1g_rgmii(struct niu *np)
  1414. {
  1415. int err;
  1416. u64 val;
  1417. u16 bmcr, bmsr, estat;
  1418. val = nr64(MIF_CONFIG);
  1419. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1420. nw64(MIF_CONFIG, val);
  1421. err = mii_reset(np);
  1422. if (err)
  1423. return err;
  1424. err = mii_read(np, np->phy_addr, MII_BMSR);
  1425. if (err < 0)
  1426. return err;
  1427. bmsr = err;
  1428. estat = 0;
  1429. if (bmsr & BMSR_ESTATEN) {
  1430. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1431. if (err < 0)
  1432. return err;
  1433. estat = err;
  1434. }
  1435. bmcr = 0;
  1436. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1437. if (err)
  1438. return err;
  1439. if (bmsr & BMSR_ESTATEN) {
  1440. u16 ctrl1000 = 0;
  1441. if (estat & ESTATUS_1000_TFULL)
  1442. ctrl1000 |= ADVERTISE_1000FULL;
  1443. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1444. if (err)
  1445. return err;
  1446. }
  1447. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1448. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1449. if (err)
  1450. return err;
  1451. err = mii_read(np, np->phy_addr, MII_BMCR);
  1452. if (err < 0)
  1453. return err;
  1454. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1455. err = mii_read(np, np->phy_addr, MII_BMSR);
  1456. if (err < 0)
  1457. return err;
  1458. return 0;
  1459. }
  1460. static int mii_init_common(struct niu *np)
  1461. {
  1462. struct niu_link_config *lp = &np->link_config;
  1463. u16 bmcr, bmsr, adv, estat;
  1464. int err;
  1465. err = mii_reset(np);
  1466. if (err)
  1467. return err;
  1468. err = mii_read(np, np->phy_addr, MII_BMSR);
  1469. if (err < 0)
  1470. return err;
  1471. bmsr = err;
  1472. estat = 0;
  1473. if (bmsr & BMSR_ESTATEN) {
  1474. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1475. if (err < 0)
  1476. return err;
  1477. estat = err;
  1478. }
  1479. bmcr = 0;
  1480. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1481. if (err)
  1482. return err;
  1483. if (lp->loopback_mode == LOOPBACK_MAC) {
  1484. bmcr |= BMCR_LOOPBACK;
  1485. if (lp->active_speed == SPEED_1000)
  1486. bmcr |= BMCR_SPEED1000;
  1487. if (lp->active_duplex == DUPLEX_FULL)
  1488. bmcr |= BMCR_FULLDPLX;
  1489. }
  1490. if (lp->loopback_mode == LOOPBACK_PHY) {
  1491. u16 aux;
  1492. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1493. BCM5464R_AUX_CTL_WRITE_1);
  1494. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1495. if (err)
  1496. return err;
  1497. }
  1498. if (lp->autoneg) {
  1499. u16 ctrl1000;
  1500. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1501. if ((bmsr & BMSR_10HALF) &&
  1502. (lp->advertising & ADVERTISED_10baseT_Half))
  1503. adv |= ADVERTISE_10HALF;
  1504. if ((bmsr & BMSR_10FULL) &&
  1505. (lp->advertising & ADVERTISED_10baseT_Full))
  1506. adv |= ADVERTISE_10FULL;
  1507. if ((bmsr & BMSR_100HALF) &&
  1508. (lp->advertising & ADVERTISED_100baseT_Half))
  1509. adv |= ADVERTISE_100HALF;
  1510. if ((bmsr & BMSR_100FULL) &&
  1511. (lp->advertising & ADVERTISED_100baseT_Full))
  1512. adv |= ADVERTISE_100FULL;
  1513. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1514. if (err)
  1515. return err;
  1516. if (likely(bmsr & BMSR_ESTATEN)) {
  1517. ctrl1000 = 0;
  1518. if ((estat & ESTATUS_1000_THALF) &&
  1519. (lp->advertising & ADVERTISED_1000baseT_Half))
  1520. ctrl1000 |= ADVERTISE_1000HALF;
  1521. if ((estat & ESTATUS_1000_TFULL) &&
  1522. (lp->advertising & ADVERTISED_1000baseT_Full))
  1523. ctrl1000 |= ADVERTISE_1000FULL;
  1524. err = mii_write(np, np->phy_addr,
  1525. MII_CTRL1000, ctrl1000);
  1526. if (err)
  1527. return err;
  1528. }
  1529. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1530. } else {
  1531. /* !lp->autoneg */
  1532. int fulldpx;
  1533. if (lp->duplex == DUPLEX_FULL) {
  1534. bmcr |= BMCR_FULLDPLX;
  1535. fulldpx = 1;
  1536. } else if (lp->duplex == DUPLEX_HALF)
  1537. fulldpx = 0;
  1538. else
  1539. return -EINVAL;
  1540. if (lp->speed == SPEED_1000) {
  1541. /* if X-full requested while not supported, or
  1542. X-half requested while not supported... */
  1543. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1544. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1545. return -EINVAL;
  1546. bmcr |= BMCR_SPEED1000;
  1547. } else if (lp->speed == SPEED_100) {
  1548. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1549. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1550. return -EINVAL;
  1551. bmcr |= BMCR_SPEED100;
  1552. } else if (lp->speed == SPEED_10) {
  1553. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1554. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1555. return -EINVAL;
  1556. } else
  1557. return -EINVAL;
  1558. }
  1559. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1560. if (err)
  1561. return err;
  1562. #if 0
  1563. err = mii_read(np, np->phy_addr, MII_BMCR);
  1564. if (err < 0)
  1565. return err;
  1566. bmcr = err;
  1567. err = mii_read(np, np->phy_addr, MII_BMSR);
  1568. if (err < 0)
  1569. return err;
  1570. bmsr = err;
  1571. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1572. np->port, bmcr, bmsr);
  1573. #endif
  1574. return 0;
  1575. }
  1576. static int xcvr_init_1g(struct niu *np)
  1577. {
  1578. u64 val;
  1579. /* XXX shared resource, lock parent XXX */
  1580. val = nr64(MIF_CONFIG);
  1581. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1582. nw64(MIF_CONFIG, val);
  1583. return mii_init_common(np);
  1584. }
  1585. static int niu_xcvr_init(struct niu *np)
  1586. {
  1587. const struct niu_phy_ops *ops = np->phy_ops;
  1588. int err;
  1589. err = 0;
  1590. if (ops->xcvr_init)
  1591. err = ops->xcvr_init(np);
  1592. return err;
  1593. }
  1594. static int niu_serdes_init(struct niu *np)
  1595. {
  1596. const struct niu_phy_ops *ops = np->phy_ops;
  1597. int err;
  1598. err = 0;
  1599. if (ops->serdes_init)
  1600. err = ops->serdes_init(np);
  1601. return err;
  1602. }
  1603. static void niu_init_xif(struct niu *);
  1604. static void niu_handle_led(struct niu *, int status);
  1605. static int niu_link_status_common(struct niu *np, int link_up)
  1606. {
  1607. struct niu_link_config *lp = &np->link_config;
  1608. struct net_device *dev = np->dev;
  1609. unsigned long flags;
  1610. if (!netif_carrier_ok(dev) && link_up) {
  1611. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1612. dev->name,
  1613. (lp->active_speed == SPEED_10000 ?
  1614. "10Gb/sec" :
  1615. (lp->active_speed == SPEED_1000 ?
  1616. "1Gb/sec" :
  1617. (lp->active_speed == SPEED_100 ?
  1618. "100Mbit/sec" : "10Mbit/sec"))),
  1619. (lp->active_duplex == DUPLEX_FULL ?
  1620. "full" : "half"));
  1621. spin_lock_irqsave(&np->lock, flags);
  1622. niu_init_xif(np);
  1623. niu_handle_led(np, 1);
  1624. spin_unlock_irqrestore(&np->lock, flags);
  1625. netif_carrier_on(dev);
  1626. } else if (netif_carrier_ok(dev) && !link_up) {
  1627. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1628. spin_lock_irqsave(&np->lock, flags);
  1629. niu_handle_led(np, 0);
  1630. spin_unlock_irqrestore(&np->lock, flags);
  1631. netif_carrier_off(dev);
  1632. }
  1633. return 0;
  1634. }
  1635. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1636. {
  1637. int err, link_up, pma_status, pcs_status;
  1638. link_up = 0;
  1639. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1640. MRVL88X2011_10G_PMD_STATUS_2);
  1641. if (err < 0)
  1642. goto out;
  1643. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1644. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1645. MRVL88X2011_PMA_PMD_STATUS_1);
  1646. if (err < 0)
  1647. goto out;
  1648. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1649. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1650. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1651. MRVL88X2011_PMA_PMD_STATUS_1);
  1652. if (err < 0)
  1653. goto out;
  1654. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1655. MRVL88X2011_PMA_PMD_STATUS_1);
  1656. if (err < 0)
  1657. goto out;
  1658. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1659. /* Check XGXS Register : 4.0018.[0-3,12] */
  1660. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1661. MRVL88X2011_10G_XGXS_LANE_STAT);
  1662. if (err < 0)
  1663. goto out;
  1664. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1665. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1666. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1667. 0x800))
  1668. link_up = (pma_status && pcs_status) ? 1 : 0;
  1669. np->link_config.active_speed = SPEED_10000;
  1670. np->link_config.active_duplex = DUPLEX_FULL;
  1671. err = 0;
  1672. out:
  1673. mrvl88x2011_act_led(np, (link_up ?
  1674. MRVL88X2011_LED_CTL_PCS_ACT :
  1675. MRVL88X2011_LED_CTL_OFF));
  1676. *link_up_p = link_up;
  1677. return err;
  1678. }
  1679. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1680. {
  1681. int err, link_up;
  1682. link_up = 0;
  1683. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1684. BCM8704_PMD_RCV_SIGDET);
  1685. if (err < 0 || err == 0xffff)
  1686. goto out;
  1687. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1688. err = 0;
  1689. goto out;
  1690. }
  1691. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1692. BCM8704_PCS_10G_R_STATUS);
  1693. if (err < 0)
  1694. goto out;
  1695. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1696. err = 0;
  1697. goto out;
  1698. }
  1699. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1700. BCM8704_PHYXS_XGXS_LANE_STAT);
  1701. if (err < 0)
  1702. goto out;
  1703. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1704. PHYXS_XGXS_LANE_STAT_MAGIC |
  1705. PHYXS_XGXS_LANE_STAT_PATTEST |
  1706. PHYXS_XGXS_LANE_STAT_LANE3 |
  1707. PHYXS_XGXS_LANE_STAT_LANE2 |
  1708. PHYXS_XGXS_LANE_STAT_LANE1 |
  1709. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1710. err = 0;
  1711. np->link_config.active_speed = SPEED_INVALID;
  1712. np->link_config.active_duplex = DUPLEX_INVALID;
  1713. goto out;
  1714. }
  1715. link_up = 1;
  1716. np->link_config.active_speed = SPEED_10000;
  1717. np->link_config.active_duplex = DUPLEX_FULL;
  1718. err = 0;
  1719. out:
  1720. *link_up_p = link_up;
  1721. return err;
  1722. }
  1723. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1724. {
  1725. int err, link_up;
  1726. link_up = 0;
  1727. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1728. BCM8704_PMD_RCV_SIGDET);
  1729. if (err < 0)
  1730. goto out;
  1731. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1732. err = 0;
  1733. goto out;
  1734. }
  1735. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1736. BCM8704_PCS_10G_R_STATUS);
  1737. if (err < 0)
  1738. goto out;
  1739. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1740. err = 0;
  1741. goto out;
  1742. }
  1743. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1744. BCM8704_PHYXS_XGXS_LANE_STAT);
  1745. if (err < 0)
  1746. goto out;
  1747. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1748. PHYXS_XGXS_LANE_STAT_MAGIC |
  1749. PHYXS_XGXS_LANE_STAT_LANE3 |
  1750. PHYXS_XGXS_LANE_STAT_LANE2 |
  1751. PHYXS_XGXS_LANE_STAT_LANE1 |
  1752. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1753. err = 0;
  1754. goto out;
  1755. }
  1756. link_up = 1;
  1757. np->link_config.active_speed = SPEED_10000;
  1758. np->link_config.active_duplex = DUPLEX_FULL;
  1759. err = 0;
  1760. out:
  1761. *link_up_p = link_up;
  1762. return err;
  1763. }
  1764. static int link_status_10g(struct niu *np, int *link_up_p)
  1765. {
  1766. unsigned long flags;
  1767. int err = -EINVAL;
  1768. spin_lock_irqsave(&np->lock, flags);
  1769. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1770. int phy_id;
  1771. phy_id = phy_decode(np->parent->port_phy, np->port);
  1772. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1773. /* handle different phy types */
  1774. switch (phy_id & NIU_PHY_ID_MASK) {
  1775. case NIU_PHY_ID_MRVL88X2011:
  1776. err = link_status_10g_mrvl(np, link_up_p);
  1777. break;
  1778. default: /* bcom 8704 */
  1779. err = link_status_10g_bcom(np, link_up_p);
  1780. break;
  1781. }
  1782. }
  1783. spin_unlock_irqrestore(&np->lock, flags);
  1784. return err;
  1785. }
  1786. static int niu_10g_phy_present(struct niu *np)
  1787. {
  1788. u64 sig, mask, val;
  1789. sig = nr64(ESR_INT_SIGNALS);
  1790. switch (np->port) {
  1791. case 0:
  1792. mask = ESR_INT_SIGNALS_P0_BITS;
  1793. val = (ESR_INT_SRDY0_P0 |
  1794. ESR_INT_DET0_P0 |
  1795. ESR_INT_XSRDY_P0 |
  1796. ESR_INT_XDP_P0_CH3 |
  1797. ESR_INT_XDP_P0_CH2 |
  1798. ESR_INT_XDP_P0_CH1 |
  1799. ESR_INT_XDP_P0_CH0);
  1800. break;
  1801. case 1:
  1802. mask = ESR_INT_SIGNALS_P1_BITS;
  1803. val = (ESR_INT_SRDY0_P1 |
  1804. ESR_INT_DET0_P1 |
  1805. ESR_INT_XSRDY_P1 |
  1806. ESR_INT_XDP_P1_CH3 |
  1807. ESR_INT_XDP_P1_CH2 |
  1808. ESR_INT_XDP_P1_CH1 |
  1809. ESR_INT_XDP_P1_CH0);
  1810. break;
  1811. default:
  1812. return 0;
  1813. }
  1814. if ((sig & mask) != val)
  1815. return 0;
  1816. return 1;
  1817. }
  1818. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1819. {
  1820. unsigned long flags;
  1821. int err = 0;
  1822. int phy_present;
  1823. int phy_present_prev;
  1824. spin_lock_irqsave(&np->lock, flags);
  1825. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1826. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1827. 1 : 0;
  1828. phy_present = niu_10g_phy_present(np);
  1829. if (phy_present != phy_present_prev) {
  1830. /* state change */
  1831. if (phy_present) {
  1832. /* A NEM was just plugged in */
  1833. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1834. if (np->phy_ops->xcvr_init)
  1835. err = np->phy_ops->xcvr_init(np);
  1836. if (err) {
  1837. err = mdio_read(np, np->phy_addr,
  1838. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1839. if (err == 0xffff) {
  1840. /* No mdio, back-to-back XAUI */
  1841. goto out;
  1842. }
  1843. /* debounce */
  1844. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1845. }
  1846. } else {
  1847. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1848. *link_up_p = 0;
  1849. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1850. np->dev->name);
  1851. }
  1852. }
  1853. out:
  1854. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1855. err = link_status_10g_bcm8706(np, link_up_p);
  1856. if (err == 0xffff) {
  1857. /* No mdio, back-to-back XAUI: it is C10NEM */
  1858. *link_up_p = 1;
  1859. np->link_config.active_speed = SPEED_10000;
  1860. np->link_config.active_duplex = DUPLEX_FULL;
  1861. }
  1862. }
  1863. }
  1864. spin_unlock_irqrestore(&np->lock, flags);
  1865. return 0;
  1866. }
  1867. static int niu_link_status(struct niu *np, int *link_up_p)
  1868. {
  1869. const struct niu_phy_ops *ops = np->phy_ops;
  1870. int err;
  1871. err = 0;
  1872. if (ops->link_status)
  1873. err = ops->link_status(np, link_up_p);
  1874. return err;
  1875. }
  1876. static void niu_timer(unsigned long __opaque)
  1877. {
  1878. struct niu *np = (struct niu *) __opaque;
  1879. unsigned long off;
  1880. int err, link_up;
  1881. err = niu_link_status(np, &link_up);
  1882. if (!err)
  1883. niu_link_status_common(np, link_up);
  1884. if (netif_carrier_ok(np->dev))
  1885. off = 5 * HZ;
  1886. else
  1887. off = 1 * HZ;
  1888. np->timer.expires = jiffies + off;
  1889. add_timer(&np->timer);
  1890. }
  1891. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1892. .serdes_init = serdes_init_10g_serdes,
  1893. .link_status = link_status_10g_serdes,
  1894. };
  1895. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1896. .serdes_init = serdes_init_niu_10g_serdes,
  1897. .link_status = link_status_10g_serdes,
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1900. .serdes_init = serdes_init_niu_1g_serdes,
  1901. .link_status = link_status_1g_serdes,
  1902. };
  1903. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1904. .xcvr_init = xcvr_init_1g_rgmii,
  1905. .link_status = link_status_1g_rgmii,
  1906. };
  1907. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1908. .serdes_init = serdes_init_niu_10g_fiber,
  1909. .xcvr_init = xcvr_init_10g,
  1910. .link_status = link_status_10g,
  1911. };
  1912. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1913. .serdes_init = serdes_init_10g,
  1914. .xcvr_init = xcvr_init_10g,
  1915. .link_status = link_status_10g,
  1916. };
  1917. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1918. .serdes_init = serdes_init_10g,
  1919. .xcvr_init = xcvr_init_10g_bcm8706,
  1920. .link_status = link_status_10g_hotplug,
  1921. };
  1922. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1923. .serdes_init = serdes_init_niu_10g_fiber,
  1924. .xcvr_init = xcvr_init_10g_bcm8706,
  1925. .link_status = link_status_10g_hotplug,
  1926. };
  1927. static const struct niu_phy_ops phy_ops_10g_copper = {
  1928. .serdes_init = serdes_init_10g,
  1929. .link_status = link_status_10g, /* XXX */
  1930. };
  1931. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1932. .serdes_init = serdes_init_1g,
  1933. .xcvr_init = xcvr_init_1g,
  1934. .link_status = link_status_1g,
  1935. };
  1936. static const struct niu_phy_ops phy_ops_1g_copper = {
  1937. .xcvr_init = xcvr_init_1g,
  1938. .link_status = link_status_1g,
  1939. };
  1940. struct niu_phy_template {
  1941. const struct niu_phy_ops *ops;
  1942. u32 phy_addr_base;
  1943. };
  1944. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1945. .ops = &phy_ops_10g_fiber_niu,
  1946. .phy_addr_base = 16,
  1947. };
  1948. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1949. .ops = &phy_ops_10g_serdes_niu,
  1950. .phy_addr_base = 0,
  1951. };
  1952. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1953. .ops = &phy_ops_1g_serdes_niu,
  1954. .phy_addr_base = 0,
  1955. };
  1956. static const struct niu_phy_template phy_template_10g_fiber = {
  1957. .ops = &phy_ops_10g_fiber,
  1958. .phy_addr_base = 8,
  1959. };
  1960. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1961. .ops = &phy_ops_10g_fiber_hotplug,
  1962. .phy_addr_base = 8,
  1963. };
  1964. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1965. .ops = &phy_ops_niu_10g_hotplug,
  1966. .phy_addr_base = 8,
  1967. };
  1968. static const struct niu_phy_template phy_template_10g_copper = {
  1969. .ops = &phy_ops_10g_copper,
  1970. .phy_addr_base = 10,
  1971. };
  1972. static const struct niu_phy_template phy_template_1g_fiber = {
  1973. .ops = &phy_ops_1g_fiber,
  1974. .phy_addr_base = 0,
  1975. };
  1976. static const struct niu_phy_template phy_template_1g_copper = {
  1977. .ops = &phy_ops_1g_copper,
  1978. .phy_addr_base = 0,
  1979. };
  1980. static const struct niu_phy_template phy_template_1g_rgmii = {
  1981. .ops = &phy_ops_1g_rgmii,
  1982. .phy_addr_base = 0,
  1983. };
  1984. static const struct niu_phy_template phy_template_10g_serdes = {
  1985. .ops = &phy_ops_10g_serdes,
  1986. .phy_addr_base = 0,
  1987. };
  1988. static int niu_atca_port_num[4] = {
  1989. 0, 0, 11, 10
  1990. };
  1991. static int serdes_init_10g_serdes(struct niu *np)
  1992. {
  1993. struct niu_link_config *lp = &np->link_config;
  1994. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1995. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1996. u64 reset_val;
  1997. switch (np->port) {
  1998. case 0:
  1999. reset_val = ENET_SERDES_RESET_0;
  2000. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  2001. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  2002. pll_cfg = ENET_SERDES_0_PLL_CFG;
  2003. break;
  2004. case 1:
  2005. reset_val = ENET_SERDES_RESET_1;
  2006. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  2007. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  2008. pll_cfg = ENET_SERDES_1_PLL_CFG;
  2009. break;
  2010. default:
  2011. return -EINVAL;
  2012. }
  2013. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  2014. ENET_SERDES_CTRL_SDET_1 |
  2015. ENET_SERDES_CTRL_SDET_2 |
  2016. ENET_SERDES_CTRL_SDET_3 |
  2017. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  2018. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  2019. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  2020. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  2021. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  2022. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2023. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2024. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2025. test_cfg_val = 0;
  2026. if (lp->loopback_mode == LOOPBACK_PHY) {
  2027. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2028. ENET_SERDES_TEST_MD_0_SHIFT) |
  2029. (ENET_TEST_MD_PAD_LOOPBACK <<
  2030. ENET_SERDES_TEST_MD_1_SHIFT) |
  2031. (ENET_TEST_MD_PAD_LOOPBACK <<
  2032. ENET_SERDES_TEST_MD_2_SHIFT) |
  2033. (ENET_TEST_MD_PAD_LOOPBACK <<
  2034. ENET_SERDES_TEST_MD_3_SHIFT));
  2035. }
  2036. esr_reset(np);
  2037. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2038. nw64(ctrl_reg, ctrl_val);
  2039. nw64(test_cfg_reg, test_cfg_val);
  2040. /* Initialize all 4 lanes of the SERDES. */
  2041. for (i = 0; i < 4; i++) {
  2042. u32 rxtx_ctrl, glue0;
  2043. int err;
  2044. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2045. if (err)
  2046. return err;
  2047. err = esr_read_glue0(np, i, &glue0);
  2048. if (err)
  2049. return err;
  2050. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2051. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2052. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2053. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2054. ESR_GLUE_CTRL0_THCNT |
  2055. ESR_GLUE_CTRL0_BLTIME);
  2056. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2057. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2058. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2059. (BLTIME_300_CYCLES <<
  2060. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2061. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2062. if (err)
  2063. return err;
  2064. err = esr_write_glue0(np, i, glue0);
  2065. if (err)
  2066. return err;
  2067. }
  2068. sig = nr64(ESR_INT_SIGNALS);
  2069. switch (np->port) {
  2070. case 0:
  2071. mask = ESR_INT_SIGNALS_P0_BITS;
  2072. val = (ESR_INT_SRDY0_P0 |
  2073. ESR_INT_DET0_P0 |
  2074. ESR_INT_XSRDY_P0 |
  2075. ESR_INT_XDP_P0_CH3 |
  2076. ESR_INT_XDP_P0_CH2 |
  2077. ESR_INT_XDP_P0_CH1 |
  2078. ESR_INT_XDP_P0_CH0);
  2079. break;
  2080. case 1:
  2081. mask = ESR_INT_SIGNALS_P1_BITS;
  2082. val = (ESR_INT_SRDY0_P1 |
  2083. ESR_INT_DET0_P1 |
  2084. ESR_INT_XSRDY_P1 |
  2085. ESR_INT_XDP_P1_CH3 |
  2086. ESR_INT_XDP_P1_CH2 |
  2087. ESR_INT_XDP_P1_CH1 |
  2088. ESR_INT_XDP_P1_CH0);
  2089. break;
  2090. default:
  2091. return -EINVAL;
  2092. }
  2093. if ((sig & mask) != val) {
  2094. int err;
  2095. err = serdes_init_1g_serdes(np);
  2096. if (!err) {
  2097. np->flags &= ~NIU_FLAGS_10G;
  2098. np->mac_xcvr = MAC_XCVR_PCS;
  2099. } else {
  2100. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2101. np->port);
  2102. return -ENODEV;
  2103. }
  2104. }
  2105. return 0;
  2106. }
  2107. static int niu_determine_phy_disposition(struct niu *np)
  2108. {
  2109. struct niu_parent *parent = np->parent;
  2110. u8 plat_type = parent->plat_type;
  2111. const struct niu_phy_template *tp;
  2112. u32 phy_addr_off = 0;
  2113. if (plat_type == PLAT_TYPE_NIU) {
  2114. switch (np->flags &
  2115. (NIU_FLAGS_10G |
  2116. NIU_FLAGS_FIBER |
  2117. NIU_FLAGS_XCVR_SERDES)) {
  2118. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2119. /* 10G Serdes */
  2120. tp = &phy_template_niu_10g_serdes;
  2121. break;
  2122. case NIU_FLAGS_XCVR_SERDES:
  2123. /* 1G Serdes */
  2124. tp = &phy_template_niu_1g_serdes;
  2125. break;
  2126. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2127. /* 10G Fiber */
  2128. default:
  2129. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2130. tp = &phy_template_niu_10g_hotplug;
  2131. if (np->port == 0)
  2132. phy_addr_off = 8;
  2133. if (np->port == 1)
  2134. phy_addr_off = 12;
  2135. } else {
  2136. tp = &phy_template_niu_10g_fiber;
  2137. phy_addr_off += np->port;
  2138. }
  2139. break;
  2140. }
  2141. } else {
  2142. switch (np->flags &
  2143. (NIU_FLAGS_10G |
  2144. NIU_FLAGS_FIBER |
  2145. NIU_FLAGS_XCVR_SERDES)) {
  2146. case 0:
  2147. /* 1G copper */
  2148. tp = &phy_template_1g_copper;
  2149. if (plat_type == PLAT_TYPE_VF_P0)
  2150. phy_addr_off = 10;
  2151. else if (plat_type == PLAT_TYPE_VF_P1)
  2152. phy_addr_off = 26;
  2153. phy_addr_off += (np->port ^ 0x3);
  2154. break;
  2155. case NIU_FLAGS_10G:
  2156. /* 10G copper */
  2157. tp = &phy_template_10g_copper;
  2158. break;
  2159. case NIU_FLAGS_FIBER:
  2160. /* 1G fiber */
  2161. tp = &phy_template_1g_fiber;
  2162. break;
  2163. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2164. /* 10G fiber */
  2165. tp = &phy_template_10g_fiber;
  2166. if (plat_type == PLAT_TYPE_VF_P0 ||
  2167. plat_type == PLAT_TYPE_VF_P1)
  2168. phy_addr_off = 8;
  2169. phy_addr_off += np->port;
  2170. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2171. tp = &phy_template_10g_fiber_hotplug;
  2172. if (np->port == 0)
  2173. phy_addr_off = 8;
  2174. if (np->port == 1)
  2175. phy_addr_off = 12;
  2176. }
  2177. break;
  2178. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2179. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2180. case NIU_FLAGS_XCVR_SERDES:
  2181. switch(np->port) {
  2182. case 0:
  2183. case 1:
  2184. tp = &phy_template_10g_serdes;
  2185. break;
  2186. case 2:
  2187. case 3:
  2188. tp = &phy_template_1g_rgmii;
  2189. break;
  2190. default:
  2191. return -EINVAL;
  2192. break;
  2193. }
  2194. phy_addr_off = niu_atca_port_num[np->port];
  2195. break;
  2196. default:
  2197. return -EINVAL;
  2198. }
  2199. }
  2200. np->phy_ops = tp->ops;
  2201. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2202. return 0;
  2203. }
  2204. static int niu_init_link(struct niu *np)
  2205. {
  2206. struct niu_parent *parent = np->parent;
  2207. int err, ignore;
  2208. if (parent->plat_type == PLAT_TYPE_NIU) {
  2209. err = niu_xcvr_init(np);
  2210. if (err)
  2211. return err;
  2212. msleep(200);
  2213. }
  2214. err = niu_serdes_init(np);
  2215. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2216. return err;
  2217. msleep(200);
  2218. err = niu_xcvr_init(np);
  2219. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2220. niu_link_status(np, &ignore);
  2221. return 0;
  2222. }
  2223. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2224. {
  2225. u16 reg0 = addr[4] << 8 | addr[5];
  2226. u16 reg1 = addr[2] << 8 | addr[3];
  2227. u16 reg2 = addr[0] << 8 | addr[1];
  2228. if (np->flags & NIU_FLAGS_XMAC) {
  2229. nw64_mac(XMAC_ADDR0, reg0);
  2230. nw64_mac(XMAC_ADDR1, reg1);
  2231. nw64_mac(XMAC_ADDR2, reg2);
  2232. } else {
  2233. nw64_mac(BMAC_ADDR0, reg0);
  2234. nw64_mac(BMAC_ADDR1, reg1);
  2235. nw64_mac(BMAC_ADDR2, reg2);
  2236. }
  2237. }
  2238. static int niu_num_alt_addr(struct niu *np)
  2239. {
  2240. if (np->flags & NIU_FLAGS_XMAC)
  2241. return XMAC_NUM_ALT_ADDR;
  2242. else
  2243. return BMAC_NUM_ALT_ADDR;
  2244. }
  2245. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2246. {
  2247. u16 reg0 = addr[4] << 8 | addr[5];
  2248. u16 reg1 = addr[2] << 8 | addr[3];
  2249. u16 reg2 = addr[0] << 8 | addr[1];
  2250. if (index >= niu_num_alt_addr(np))
  2251. return -EINVAL;
  2252. if (np->flags & NIU_FLAGS_XMAC) {
  2253. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2254. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2255. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2256. } else {
  2257. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2258. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2259. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2260. }
  2261. return 0;
  2262. }
  2263. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2264. {
  2265. unsigned long reg;
  2266. u64 val, mask;
  2267. if (index >= niu_num_alt_addr(np))
  2268. return -EINVAL;
  2269. if (np->flags & NIU_FLAGS_XMAC) {
  2270. reg = XMAC_ADDR_CMPEN;
  2271. mask = 1 << index;
  2272. } else {
  2273. reg = BMAC_ADDR_CMPEN;
  2274. mask = 1 << (index + 1);
  2275. }
  2276. val = nr64_mac(reg);
  2277. if (on)
  2278. val |= mask;
  2279. else
  2280. val &= ~mask;
  2281. nw64_mac(reg, val);
  2282. return 0;
  2283. }
  2284. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2285. int num, int mac_pref)
  2286. {
  2287. u64 val = nr64_mac(reg);
  2288. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2289. val |= num;
  2290. if (mac_pref)
  2291. val |= HOST_INFO_MPR;
  2292. nw64_mac(reg, val);
  2293. }
  2294. static int __set_rdc_table_num(struct niu *np,
  2295. int xmac_index, int bmac_index,
  2296. int rdc_table_num, int mac_pref)
  2297. {
  2298. unsigned long reg;
  2299. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2300. return -EINVAL;
  2301. if (np->flags & NIU_FLAGS_XMAC)
  2302. reg = XMAC_HOST_INFO(xmac_index);
  2303. else
  2304. reg = BMAC_HOST_INFO(bmac_index);
  2305. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2306. return 0;
  2307. }
  2308. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2309. int mac_pref)
  2310. {
  2311. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2312. }
  2313. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2314. int mac_pref)
  2315. {
  2316. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2317. }
  2318. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2319. int table_num, int mac_pref)
  2320. {
  2321. if (idx >= niu_num_alt_addr(np))
  2322. return -EINVAL;
  2323. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2324. }
  2325. static u64 vlan_entry_set_parity(u64 reg_val)
  2326. {
  2327. u64 port01_mask;
  2328. u64 port23_mask;
  2329. port01_mask = 0x00ff;
  2330. port23_mask = 0xff00;
  2331. if (hweight64(reg_val & port01_mask) & 1)
  2332. reg_val |= ENET_VLAN_TBL_PARITY0;
  2333. else
  2334. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2335. if (hweight64(reg_val & port23_mask) & 1)
  2336. reg_val |= ENET_VLAN_TBL_PARITY1;
  2337. else
  2338. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2339. return reg_val;
  2340. }
  2341. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2342. int port, int vpr, int rdc_table)
  2343. {
  2344. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2345. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2346. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2347. ENET_VLAN_TBL_SHIFT(port));
  2348. if (vpr)
  2349. reg_val |= (ENET_VLAN_TBL_VPR <<
  2350. ENET_VLAN_TBL_SHIFT(port));
  2351. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2352. reg_val = vlan_entry_set_parity(reg_val);
  2353. nw64(ENET_VLAN_TBL(index), reg_val);
  2354. }
  2355. static void vlan_tbl_clear(struct niu *np)
  2356. {
  2357. int i;
  2358. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2359. nw64(ENET_VLAN_TBL(i), 0);
  2360. }
  2361. static int tcam_wait_bit(struct niu *np, u64 bit)
  2362. {
  2363. int limit = 1000;
  2364. while (--limit > 0) {
  2365. if (nr64(TCAM_CTL) & bit)
  2366. break;
  2367. udelay(1);
  2368. }
  2369. if (limit < 0)
  2370. return -ENODEV;
  2371. return 0;
  2372. }
  2373. static int tcam_flush(struct niu *np, int index)
  2374. {
  2375. nw64(TCAM_KEY_0, 0x00);
  2376. nw64(TCAM_KEY_MASK_0, 0xff);
  2377. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2378. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2379. }
  2380. #if 0
  2381. static int tcam_read(struct niu *np, int index,
  2382. u64 *key, u64 *mask)
  2383. {
  2384. int err;
  2385. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2386. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2387. if (!err) {
  2388. key[0] = nr64(TCAM_KEY_0);
  2389. key[1] = nr64(TCAM_KEY_1);
  2390. key[2] = nr64(TCAM_KEY_2);
  2391. key[3] = nr64(TCAM_KEY_3);
  2392. mask[0] = nr64(TCAM_KEY_MASK_0);
  2393. mask[1] = nr64(TCAM_KEY_MASK_1);
  2394. mask[2] = nr64(TCAM_KEY_MASK_2);
  2395. mask[3] = nr64(TCAM_KEY_MASK_3);
  2396. }
  2397. return err;
  2398. }
  2399. #endif
  2400. static int tcam_write(struct niu *np, int index,
  2401. u64 *key, u64 *mask)
  2402. {
  2403. nw64(TCAM_KEY_0, key[0]);
  2404. nw64(TCAM_KEY_1, key[1]);
  2405. nw64(TCAM_KEY_2, key[2]);
  2406. nw64(TCAM_KEY_3, key[3]);
  2407. nw64(TCAM_KEY_MASK_0, mask[0]);
  2408. nw64(TCAM_KEY_MASK_1, mask[1]);
  2409. nw64(TCAM_KEY_MASK_2, mask[2]);
  2410. nw64(TCAM_KEY_MASK_3, mask[3]);
  2411. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2412. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2413. }
  2414. #if 0
  2415. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2416. {
  2417. int err;
  2418. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2419. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2420. if (!err)
  2421. *data = nr64(TCAM_KEY_1);
  2422. return err;
  2423. }
  2424. #endif
  2425. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2426. {
  2427. nw64(TCAM_KEY_1, assoc_data);
  2428. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2429. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2430. }
  2431. static void tcam_enable(struct niu *np, int on)
  2432. {
  2433. u64 val = nr64(FFLP_CFG_1);
  2434. if (on)
  2435. val &= ~FFLP_CFG_1_TCAM_DIS;
  2436. else
  2437. val |= FFLP_CFG_1_TCAM_DIS;
  2438. nw64(FFLP_CFG_1, val);
  2439. }
  2440. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2441. {
  2442. u64 val = nr64(FFLP_CFG_1);
  2443. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2444. FFLP_CFG_1_CAMLAT |
  2445. FFLP_CFG_1_CAMRATIO);
  2446. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2447. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2448. nw64(FFLP_CFG_1, val);
  2449. val = nr64(FFLP_CFG_1);
  2450. val |= FFLP_CFG_1_FFLPINITDONE;
  2451. nw64(FFLP_CFG_1, val);
  2452. }
  2453. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2454. int on)
  2455. {
  2456. unsigned long reg;
  2457. u64 val;
  2458. if (class < CLASS_CODE_ETHERTYPE1 ||
  2459. class > CLASS_CODE_ETHERTYPE2)
  2460. return -EINVAL;
  2461. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2462. val = nr64(reg);
  2463. if (on)
  2464. val |= L2_CLS_VLD;
  2465. else
  2466. val &= ~L2_CLS_VLD;
  2467. nw64(reg, val);
  2468. return 0;
  2469. }
  2470. #if 0
  2471. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2472. u64 ether_type)
  2473. {
  2474. unsigned long reg;
  2475. u64 val;
  2476. if (class < CLASS_CODE_ETHERTYPE1 ||
  2477. class > CLASS_CODE_ETHERTYPE2 ||
  2478. (ether_type & ~(u64)0xffff) != 0)
  2479. return -EINVAL;
  2480. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2481. val = nr64(reg);
  2482. val &= ~L2_CLS_ETYPE;
  2483. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2484. nw64(reg, val);
  2485. return 0;
  2486. }
  2487. #endif
  2488. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2489. int on)
  2490. {
  2491. unsigned long reg;
  2492. u64 val;
  2493. if (class < CLASS_CODE_USER_PROG1 ||
  2494. class > CLASS_CODE_USER_PROG4)
  2495. return -EINVAL;
  2496. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2497. val = nr64(reg);
  2498. if (on)
  2499. val |= L3_CLS_VALID;
  2500. else
  2501. val &= ~L3_CLS_VALID;
  2502. nw64(reg, val);
  2503. return 0;
  2504. }
  2505. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2506. int ipv6, u64 protocol_id,
  2507. u64 tos_mask, u64 tos_val)
  2508. {
  2509. unsigned long reg;
  2510. u64 val;
  2511. if (class < CLASS_CODE_USER_PROG1 ||
  2512. class > CLASS_CODE_USER_PROG4 ||
  2513. (protocol_id & ~(u64)0xff) != 0 ||
  2514. (tos_mask & ~(u64)0xff) != 0 ||
  2515. (tos_val & ~(u64)0xff) != 0)
  2516. return -EINVAL;
  2517. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2518. val = nr64(reg);
  2519. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2520. L3_CLS_TOSMASK | L3_CLS_TOS);
  2521. if (ipv6)
  2522. val |= L3_CLS_IPVER;
  2523. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2524. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2525. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2526. nw64(reg, val);
  2527. return 0;
  2528. }
  2529. static int tcam_early_init(struct niu *np)
  2530. {
  2531. unsigned long i;
  2532. int err;
  2533. tcam_enable(np, 0);
  2534. tcam_set_lat_and_ratio(np,
  2535. DEFAULT_TCAM_LATENCY,
  2536. DEFAULT_TCAM_ACCESS_RATIO);
  2537. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2538. err = tcam_user_eth_class_enable(np, i, 0);
  2539. if (err)
  2540. return err;
  2541. }
  2542. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2543. err = tcam_user_ip_class_enable(np, i, 0);
  2544. if (err)
  2545. return err;
  2546. }
  2547. return 0;
  2548. }
  2549. static int tcam_flush_all(struct niu *np)
  2550. {
  2551. unsigned long i;
  2552. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2553. int err = tcam_flush(np, i);
  2554. if (err)
  2555. return err;
  2556. }
  2557. return 0;
  2558. }
  2559. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2560. {
  2561. return ((u64)index | (num_entries == 1 ?
  2562. HASH_TBL_ADDR_AUTOINC : 0));
  2563. }
  2564. #if 0
  2565. static int hash_read(struct niu *np, unsigned long partition,
  2566. unsigned long index, unsigned long num_entries,
  2567. u64 *data)
  2568. {
  2569. u64 val = hash_addr_regval(index, num_entries);
  2570. unsigned long i;
  2571. if (partition >= FCRAM_NUM_PARTITIONS ||
  2572. index + num_entries > FCRAM_SIZE)
  2573. return -EINVAL;
  2574. nw64(HASH_TBL_ADDR(partition), val);
  2575. for (i = 0; i < num_entries; i++)
  2576. data[i] = nr64(HASH_TBL_DATA(partition));
  2577. return 0;
  2578. }
  2579. #endif
  2580. static int hash_write(struct niu *np, unsigned long partition,
  2581. unsigned long index, unsigned long num_entries,
  2582. u64 *data)
  2583. {
  2584. u64 val = hash_addr_regval(index, num_entries);
  2585. unsigned long i;
  2586. if (partition >= FCRAM_NUM_PARTITIONS ||
  2587. index + (num_entries * 8) > FCRAM_SIZE)
  2588. return -EINVAL;
  2589. nw64(HASH_TBL_ADDR(partition), val);
  2590. for (i = 0; i < num_entries; i++)
  2591. nw64(HASH_TBL_DATA(partition), data[i]);
  2592. return 0;
  2593. }
  2594. static void fflp_reset(struct niu *np)
  2595. {
  2596. u64 val;
  2597. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2598. udelay(10);
  2599. nw64(FFLP_CFG_1, 0);
  2600. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2601. nw64(FFLP_CFG_1, val);
  2602. }
  2603. static void fflp_set_timings(struct niu *np)
  2604. {
  2605. u64 val = nr64(FFLP_CFG_1);
  2606. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2607. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2608. nw64(FFLP_CFG_1, val);
  2609. val = nr64(FFLP_CFG_1);
  2610. val |= FFLP_CFG_1_FFLPINITDONE;
  2611. nw64(FFLP_CFG_1, val);
  2612. val = nr64(FCRAM_REF_TMR);
  2613. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2614. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2615. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2616. nw64(FCRAM_REF_TMR, val);
  2617. }
  2618. static int fflp_set_partition(struct niu *np, u64 partition,
  2619. u64 mask, u64 base, int enable)
  2620. {
  2621. unsigned long reg;
  2622. u64 val;
  2623. if (partition >= FCRAM_NUM_PARTITIONS ||
  2624. (mask & ~(u64)0x1f) != 0 ||
  2625. (base & ~(u64)0x1f) != 0)
  2626. return -EINVAL;
  2627. reg = FLW_PRT_SEL(partition);
  2628. val = nr64(reg);
  2629. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2630. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2631. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2632. if (enable)
  2633. val |= FLW_PRT_SEL_EXT;
  2634. nw64(reg, val);
  2635. return 0;
  2636. }
  2637. static int fflp_disable_all_partitions(struct niu *np)
  2638. {
  2639. unsigned long i;
  2640. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2641. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2642. if (err)
  2643. return err;
  2644. }
  2645. return 0;
  2646. }
  2647. static void fflp_llcsnap_enable(struct niu *np, int on)
  2648. {
  2649. u64 val = nr64(FFLP_CFG_1);
  2650. if (on)
  2651. val |= FFLP_CFG_1_LLCSNAP;
  2652. else
  2653. val &= ~FFLP_CFG_1_LLCSNAP;
  2654. nw64(FFLP_CFG_1, val);
  2655. }
  2656. static void fflp_errors_enable(struct niu *np, int on)
  2657. {
  2658. u64 val = nr64(FFLP_CFG_1);
  2659. if (on)
  2660. val &= ~FFLP_CFG_1_ERRORDIS;
  2661. else
  2662. val |= FFLP_CFG_1_ERRORDIS;
  2663. nw64(FFLP_CFG_1, val);
  2664. }
  2665. static int fflp_hash_clear(struct niu *np)
  2666. {
  2667. struct fcram_hash_ipv4 ent;
  2668. unsigned long i;
  2669. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2670. memset(&ent, 0, sizeof(ent));
  2671. ent.header = HASH_HEADER_EXT;
  2672. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2673. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2674. if (err)
  2675. return err;
  2676. }
  2677. return 0;
  2678. }
  2679. static int fflp_early_init(struct niu *np)
  2680. {
  2681. struct niu_parent *parent;
  2682. unsigned long flags;
  2683. int err;
  2684. niu_lock_parent(np, flags);
  2685. parent = np->parent;
  2686. err = 0;
  2687. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2688. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2689. np->port);
  2690. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2691. fflp_reset(np);
  2692. fflp_set_timings(np);
  2693. err = fflp_disable_all_partitions(np);
  2694. if (err) {
  2695. niudbg(PROBE, "fflp_disable_all_partitions "
  2696. "failed, err=%d\n", err);
  2697. goto out;
  2698. }
  2699. }
  2700. err = tcam_early_init(np);
  2701. if (err) {
  2702. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2703. err);
  2704. goto out;
  2705. }
  2706. fflp_llcsnap_enable(np, 1);
  2707. fflp_errors_enable(np, 0);
  2708. nw64(H1POLY, 0);
  2709. nw64(H2POLY, 0);
  2710. err = tcam_flush_all(np);
  2711. if (err) {
  2712. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2713. err);
  2714. goto out;
  2715. }
  2716. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2717. err = fflp_hash_clear(np);
  2718. if (err) {
  2719. niudbg(PROBE, "fflp_hash_clear failed, "
  2720. "err=%d\n", err);
  2721. goto out;
  2722. }
  2723. }
  2724. vlan_tbl_clear(np);
  2725. niudbg(PROBE, "fflp_early_init: Success\n");
  2726. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2727. }
  2728. out:
  2729. niu_unlock_parent(np, flags);
  2730. return err;
  2731. }
  2732. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2733. {
  2734. if (class_code < CLASS_CODE_USER_PROG1 ||
  2735. class_code > CLASS_CODE_SCTP_IPV6)
  2736. return -EINVAL;
  2737. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2738. return 0;
  2739. }
  2740. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2741. {
  2742. if (class_code < CLASS_CODE_USER_PROG1 ||
  2743. class_code > CLASS_CODE_SCTP_IPV6)
  2744. return -EINVAL;
  2745. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2746. return 0;
  2747. }
  2748. /* Entries for the ports are interleaved in the TCAM */
  2749. static u16 tcam_get_index(struct niu *np, u16 idx)
  2750. {
  2751. /* One entry reserved for IP fragment rule */
  2752. if (idx >= (np->clas.tcam_sz - 1))
  2753. idx = 0;
  2754. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2755. }
  2756. static u16 tcam_get_size(struct niu *np)
  2757. {
  2758. /* One entry reserved for IP fragment rule */
  2759. return np->clas.tcam_sz - 1;
  2760. }
  2761. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2762. {
  2763. /* One entry reserved for IP fragment rule */
  2764. return np->clas.tcam_valid_entries - 1;
  2765. }
  2766. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2767. u32 offset, u32 size)
  2768. {
  2769. int i = skb_shinfo(skb)->nr_frags;
  2770. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2771. frag->page = page;
  2772. frag->page_offset = offset;
  2773. frag->size = size;
  2774. skb->len += size;
  2775. skb->data_len += size;
  2776. skb->truesize += size;
  2777. skb_shinfo(skb)->nr_frags = i + 1;
  2778. }
  2779. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2780. {
  2781. a >>= PAGE_SHIFT;
  2782. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2783. return (a & (MAX_RBR_RING_SIZE - 1));
  2784. }
  2785. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2786. struct page ***link)
  2787. {
  2788. unsigned int h = niu_hash_rxaddr(rp, addr);
  2789. struct page *p, **pp;
  2790. addr &= PAGE_MASK;
  2791. pp = &rp->rxhash[h];
  2792. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2793. if (p->index == addr) {
  2794. *link = pp;
  2795. break;
  2796. }
  2797. }
  2798. return p;
  2799. }
  2800. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2801. {
  2802. unsigned int h = niu_hash_rxaddr(rp, base);
  2803. page->index = base;
  2804. page->mapping = (struct address_space *) rp->rxhash[h];
  2805. rp->rxhash[h] = page;
  2806. }
  2807. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2808. gfp_t mask, int start_index)
  2809. {
  2810. struct page *page;
  2811. u64 addr;
  2812. int i;
  2813. page = alloc_page(mask);
  2814. if (!page)
  2815. return -ENOMEM;
  2816. addr = np->ops->map_page(np->device, page, 0,
  2817. PAGE_SIZE, DMA_FROM_DEVICE);
  2818. niu_hash_page(rp, page, addr);
  2819. if (rp->rbr_blocks_per_page > 1)
  2820. atomic_add(rp->rbr_blocks_per_page - 1,
  2821. &compound_head(page)->_count);
  2822. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2823. __le32 *rbr = &rp->rbr[start_index + i];
  2824. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2825. addr += rp->rbr_block_size;
  2826. }
  2827. return 0;
  2828. }
  2829. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2830. {
  2831. int index = rp->rbr_index;
  2832. rp->rbr_pending++;
  2833. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2834. int err = niu_rbr_add_page(np, rp, mask, index);
  2835. if (unlikely(err)) {
  2836. rp->rbr_pending--;
  2837. return;
  2838. }
  2839. rp->rbr_index += rp->rbr_blocks_per_page;
  2840. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2841. if (rp->rbr_index == rp->rbr_table_size)
  2842. rp->rbr_index = 0;
  2843. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2844. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2845. rp->rbr_pending = 0;
  2846. }
  2847. }
  2848. }
  2849. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2850. {
  2851. unsigned int index = rp->rcr_index;
  2852. int num_rcr = 0;
  2853. rp->rx_dropped++;
  2854. while (1) {
  2855. struct page *page, **link;
  2856. u64 addr, val;
  2857. u32 rcr_size;
  2858. num_rcr++;
  2859. val = le64_to_cpup(&rp->rcr[index]);
  2860. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2861. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2862. page = niu_find_rxpage(rp, addr, &link);
  2863. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2864. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2865. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2866. *link = (struct page *) page->mapping;
  2867. np->ops->unmap_page(np->device, page->index,
  2868. PAGE_SIZE, DMA_FROM_DEVICE);
  2869. page->index = 0;
  2870. page->mapping = NULL;
  2871. __free_page(page);
  2872. rp->rbr_refill_pending++;
  2873. }
  2874. index = NEXT_RCR(rp, index);
  2875. if (!(val & RCR_ENTRY_MULTI))
  2876. break;
  2877. }
  2878. rp->rcr_index = index;
  2879. return num_rcr;
  2880. }
  2881. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2882. struct rx_ring_info *rp)
  2883. {
  2884. unsigned int index = rp->rcr_index;
  2885. struct sk_buff *skb;
  2886. int len, num_rcr;
  2887. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2888. if (unlikely(!skb))
  2889. return niu_rx_pkt_ignore(np, rp);
  2890. num_rcr = 0;
  2891. while (1) {
  2892. struct page *page, **link;
  2893. u32 rcr_size, append_size;
  2894. u64 addr, val, off;
  2895. num_rcr++;
  2896. val = le64_to_cpup(&rp->rcr[index]);
  2897. len = (val & RCR_ENTRY_L2_LEN) >>
  2898. RCR_ENTRY_L2_LEN_SHIFT;
  2899. len -= ETH_FCS_LEN;
  2900. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2901. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2902. page = niu_find_rxpage(rp, addr, &link);
  2903. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2904. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2905. off = addr & ~PAGE_MASK;
  2906. append_size = rcr_size;
  2907. if (num_rcr == 1) {
  2908. int ptype;
  2909. off += 2;
  2910. append_size -= 2;
  2911. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2912. if ((ptype == RCR_PKT_TYPE_TCP ||
  2913. ptype == RCR_PKT_TYPE_UDP) &&
  2914. !(val & (RCR_ENTRY_NOPORT |
  2915. RCR_ENTRY_ERROR)))
  2916. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2917. else
  2918. skb->ip_summed = CHECKSUM_NONE;
  2919. }
  2920. if (!(val & RCR_ENTRY_MULTI))
  2921. append_size = len - skb->len;
  2922. niu_rx_skb_append(skb, page, off, append_size);
  2923. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2924. *link = (struct page *) page->mapping;
  2925. np->ops->unmap_page(np->device, page->index,
  2926. PAGE_SIZE, DMA_FROM_DEVICE);
  2927. page->index = 0;
  2928. page->mapping = NULL;
  2929. rp->rbr_refill_pending++;
  2930. } else
  2931. get_page(page);
  2932. index = NEXT_RCR(rp, index);
  2933. if (!(val & RCR_ENTRY_MULTI))
  2934. break;
  2935. }
  2936. rp->rcr_index = index;
  2937. skb_reserve(skb, NET_IP_ALIGN);
  2938. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2939. rp->rx_packets++;
  2940. rp->rx_bytes += skb->len;
  2941. skb->protocol = eth_type_trans(skb, np->dev);
  2942. skb_record_rx_queue(skb, rp->rx_channel);
  2943. napi_gro_receive(napi, skb);
  2944. return num_rcr;
  2945. }
  2946. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2947. {
  2948. int blocks_per_page = rp->rbr_blocks_per_page;
  2949. int err, index = rp->rbr_index;
  2950. err = 0;
  2951. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2952. err = niu_rbr_add_page(np, rp, mask, index);
  2953. if (err)
  2954. break;
  2955. index += blocks_per_page;
  2956. }
  2957. rp->rbr_index = index;
  2958. return err;
  2959. }
  2960. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2961. {
  2962. int i;
  2963. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2964. struct page *page;
  2965. page = rp->rxhash[i];
  2966. while (page) {
  2967. struct page *next = (struct page *) page->mapping;
  2968. u64 base = page->index;
  2969. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2970. DMA_FROM_DEVICE);
  2971. page->index = 0;
  2972. page->mapping = NULL;
  2973. __free_page(page);
  2974. page = next;
  2975. }
  2976. }
  2977. for (i = 0; i < rp->rbr_table_size; i++)
  2978. rp->rbr[i] = cpu_to_le32(0);
  2979. rp->rbr_index = 0;
  2980. }
  2981. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2982. {
  2983. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2984. struct sk_buff *skb = tb->skb;
  2985. struct tx_pkt_hdr *tp;
  2986. u64 tx_flags;
  2987. int i, len;
  2988. tp = (struct tx_pkt_hdr *) skb->data;
  2989. tx_flags = le64_to_cpup(&tp->flags);
  2990. rp->tx_packets++;
  2991. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2992. ((tx_flags & TXHDR_PAD) / 2));
  2993. len = skb_headlen(skb);
  2994. np->ops->unmap_single(np->device, tb->mapping,
  2995. len, DMA_TO_DEVICE);
  2996. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2997. rp->mark_pending--;
  2998. tb->skb = NULL;
  2999. do {
  3000. idx = NEXT_TX(rp, idx);
  3001. len -= MAX_TX_DESC_LEN;
  3002. } while (len > 0);
  3003. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  3004. tb = &rp->tx_buffs[idx];
  3005. BUG_ON(tb->skb != NULL);
  3006. np->ops->unmap_page(np->device, tb->mapping,
  3007. skb_shinfo(skb)->frags[i].size,
  3008. DMA_TO_DEVICE);
  3009. idx = NEXT_TX(rp, idx);
  3010. }
  3011. dev_kfree_skb(skb);
  3012. return idx;
  3013. }
  3014. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  3015. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  3016. {
  3017. struct netdev_queue *txq;
  3018. u16 pkt_cnt, tmp;
  3019. int cons, index;
  3020. u64 cs;
  3021. index = (rp - np->tx_rings);
  3022. txq = netdev_get_tx_queue(np->dev, index);
  3023. cs = rp->tx_cs;
  3024. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  3025. goto out;
  3026. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3027. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3028. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3029. rp->last_pkt_cnt = tmp;
  3030. cons = rp->cons;
  3031. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3032. np->dev->name, pkt_cnt, cons);
  3033. while (pkt_cnt--)
  3034. cons = release_tx_packet(np, rp, cons);
  3035. rp->cons = cons;
  3036. smp_mb();
  3037. out:
  3038. if (unlikely(netif_tx_queue_stopped(txq) &&
  3039. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3040. __netif_tx_lock(txq, smp_processor_id());
  3041. if (netif_tx_queue_stopped(txq) &&
  3042. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3043. netif_tx_wake_queue(txq);
  3044. __netif_tx_unlock(txq);
  3045. }
  3046. }
  3047. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3048. struct rx_ring_info *rp,
  3049. const int limit)
  3050. {
  3051. /* This elaborate scheme is needed for reading the RX discard
  3052. * counters, as they are only 16-bit and can overflow quickly,
  3053. * and because the overflow indication bit is not usable as
  3054. * the counter value does not wrap, but remains at max value
  3055. * 0xFFFF.
  3056. *
  3057. * In theory and in practice counters can be lost in between
  3058. * reading nr64() and clearing the counter nw64(). For this
  3059. * reason, the number of counter clearings nw64() is
  3060. * limited/reduced though the limit parameter.
  3061. */
  3062. int rx_channel = rp->rx_channel;
  3063. u32 misc, wred;
  3064. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3065. * following discard events: IPP (Input Port Process),
  3066. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3067. * Block Ring) prefetch buffer is empty.
  3068. */
  3069. misc = nr64(RXMISC(rx_channel));
  3070. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3071. nw64(RXMISC(rx_channel), 0);
  3072. rp->rx_errors += misc & RXMISC_COUNT;
  3073. if (unlikely(misc & RXMISC_OFLOW))
  3074. dev_err(np->device, "rx-%d: Counter overflow "
  3075. "RXMISC discard\n", rx_channel);
  3076. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3077. np->dev->name, rx_channel, misc, misc-limit);
  3078. }
  3079. /* WRED (Weighted Random Early Discard) by hardware */
  3080. wred = nr64(RED_DIS_CNT(rx_channel));
  3081. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3082. nw64(RED_DIS_CNT(rx_channel), 0);
  3083. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3084. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3085. dev_err(np->device, "rx-%d: Counter overflow "
  3086. "WRED discard\n", rx_channel);
  3087. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3088. np->dev->name, rx_channel, wred, wred-limit);
  3089. }
  3090. }
  3091. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3092. struct rx_ring_info *rp, int budget)
  3093. {
  3094. int qlen, rcr_done = 0, work_done = 0;
  3095. struct rxdma_mailbox *mbox = rp->mbox;
  3096. u64 stat;
  3097. #if 1
  3098. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3099. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3100. #else
  3101. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3102. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3103. #endif
  3104. mbox->rx_dma_ctl_stat = 0;
  3105. mbox->rcrstat_a = 0;
  3106. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3107. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3108. rcr_done = work_done = 0;
  3109. qlen = min(qlen, budget);
  3110. while (work_done < qlen) {
  3111. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3112. work_done++;
  3113. }
  3114. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3115. unsigned int i;
  3116. for (i = 0; i < rp->rbr_refill_pending; i++)
  3117. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3118. rp->rbr_refill_pending = 0;
  3119. }
  3120. stat = (RX_DMA_CTL_STAT_MEX |
  3121. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3122. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3123. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3124. /* Only sync discards stats when qlen indicate potential for drops */
  3125. if (qlen > 10)
  3126. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3127. return work_done;
  3128. }
  3129. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3130. {
  3131. u64 v0 = lp->v0;
  3132. u32 tx_vec = (v0 >> 32);
  3133. u32 rx_vec = (v0 & 0xffffffff);
  3134. int i, work_done = 0;
  3135. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3136. np->dev->name, (unsigned long long) v0);
  3137. for (i = 0; i < np->num_tx_rings; i++) {
  3138. struct tx_ring_info *rp = &np->tx_rings[i];
  3139. if (tx_vec & (1 << rp->tx_channel))
  3140. niu_tx_work(np, rp);
  3141. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3142. }
  3143. for (i = 0; i < np->num_rx_rings; i++) {
  3144. struct rx_ring_info *rp = &np->rx_rings[i];
  3145. if (rx_vec & (1 << rp->rx_channel)) {
  3146. int this_work_done;
  3147. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3148. budget);
  3149. budget -= this_work_done;
  3150. work_done += this_work_done;
  3151. }
  3152. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3153. }
  3154. return work_done;
  3155. }
  3156. static int niu_poll(struct napi_struct *napi, int budget)
  3157. {
  3158. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3159. struct niu *np = lp->np;
  3160. int work_done;
  3161. work_done = niu_poll_core(np, lp, budget);
  3162. if (work_done < budget) {
  3163. napi_complete(napi);
  3164. niu_ldg_rearm(np, lp, 1);
  3165. }
  3166. return work_done;
  3167. }
  3168. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3169. u64 stat)
  3170. {
  3171. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3172. np->dev->name, rp->rx_channel);
  3173. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3174. printk("RBR_TMOUT ");
  3175. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3176. printk("RSP_CNT ");
  3177. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3178. printk("BYTE_EN_BUS ");
  3179. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3180. printk("RSP_DAT ");
  3181. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3182. printk("RCR_ACK ");
  3183. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3184. printk("RCR_SHA_PAR ");
  3185. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3186. printk("RBR_PRE_PAR ");
  3187. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3188. printk("CONFIG ");
  3189. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3190. printk("RCRINCON ");
  3191. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3192. printk("RCRFULL ");
  3193. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3194. printk("RBRFULL ");
  3195. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3196. printk("RBRLOGPAGE ");
  3197. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3198. printk("CFIGLOGPAGE ");
  3199. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3200. printk("DC_FIDO ");
  3201. printk(")\n");
  3202. }
  3203. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3204. {
  3205. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3206. int err = 0;
  3207. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3208. RX_DMA_CTL_STAT_PORT_FATAL))
  3209. err = -EINVAL;
  3210. if (err) {
  3211. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3212. np->dev->name, rp->rx_channel,
  3213. (unsigned long long) stat);
  3214. niu_log_rxchan_errors(np, rp, stat);
  3215. }
  3216. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3217. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3218. return err;
  3219. }
  3220. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3221. u64 cs)
  3222. {
  3223. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3224. np->dev->name, rp->tx_channel);
  3225. if (cs & TX_CS_MBOX_ERR)
  3226. printk("MBOX ");
  3227. if (cs & TX_CS_PKT_SIZE_ERR)
  3228. printk("PKT_SIZE ");
  3229. if (cs & TX_CS_TX_RING_OFLOW)
  3230. printk("TX_RING_OFLOW ");
  3231. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3232. printk("PREF_BUF_PAR ");
  3233. if (cs & TX_CS_NACK_PREF)
  3234. printk("NACK_PREF ");
  3235. if (cs & TX_CS_NACK_PKT_RD)
  3236. printk("NACK_PKT_RD ");
  3237. if (cs & TX_CS_CONF_PART_ERR)
  3238. printk("CONF_PART ");
  3239. if (cs & TX_CS_PKT_PRT_ERR)
  3240. printk("PKT_PTR ");
  3241. printk(")\n");
  3242. }
  3243. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3244. {
  3245. u64 cs, logh, logl;
  3246. cs = nr64(TX_CS(rp->tx_channel));
  3247. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3248. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3249. dev_err(np->device, PFX "%s: TX channel %u error, "
  3250. "cs[%llx] logh[%llx] logl[%llx]\n",
  3251. np->dev->name, rp->tx_channel,
  3252. (unsigned long long) cs,
  3253. (unsigned long long) logh,
  3254. (unsigned long long) logl);
  3255. niu_log_txchan_errors(np, rp, cs);
  3256. return -ENODEV;
  3257. }
  3258. static int niu_mif_interrupt(struct niu *np)
  3259. {
  3260. u64 mif_status = nr64(MIF_STATUS);
  3261. int phy_mdint = 0;
  3262. if (np->flags & NIU_FLAGS_XMAC) {
  3263. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3264. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3265. phy_mdint = 1;
  3266. }
  3267. dev_err(np->device, PFX "%s: MIF interrupt, "
  3268. "stat[%llx] phy_mdint(%d)\n",
  3269. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3270. return -ENODEV;
  3271. }
  3272. static void niu_xmac_interrupt(struct niu *np)
  3273. {
  3274. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3275. u64 val;
  3276. val = nr64_mac(XTXMAC_STATUS);
  3277. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3278. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3279. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3280. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3281. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3282. mp->tx_fifo_errors++;
  3283. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3284. mp->tx_overflow_errors++;
  3285. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3286. mp->tx_max_pkt_size_errors++;
  3287. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3288. mp->tx_underflow_errors++;
  3289. val = nr64_mac(XRXMAC_STATUS);
  3290. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3291. mp->rx_local_faults++;
  3292. if (val & XRXMAC_STATUS_RFLT_DET)
  3293. mp->rx_remote_faults++;
  3294. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3295. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3296. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3297. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3298. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3299. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3300. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3301. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3302. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3303. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3304. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3305. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3306. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3307. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3308. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3309. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3310. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3311. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3312. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3313. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3314. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3315. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3316. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3317. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3318. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3319. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3320. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3321. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3322. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3323. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3324. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3325. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3326. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3327. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3328. if (val & XRXMAC_STATUS_RXUFLOW)
  3329. mp->rx_underflows++;
  3330. if (val & XRXMAC_STATUS_RXOFLOW)
  3331. mp->rx_overflows++;
  3332. val = nr64_mac(XMAC_FC_STAT);
  3333. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3334. mp->pause_off_state++;
  3335. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3336. mp->pause_on_state++;
  3337. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3338. mp->pause_received++;
  3339. }
  3340. static void niu_bmac_interrupt(struct niu *np)
  3341. {
  3342. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3343. u64 val;
  3344. val = nr64_mac(BTXMAC_STATUS);
  3345. if (val & BTXMAC_STATUS_UNDERRUN)
  3346. mp->tx_underflow_errors++;
  3347. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3348. mp->tx_max_pkt_size_errors++;
  3349. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3350. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3351. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3352. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3353. val = nr64_mac(BRXMAC_STATUS);
  3354. if (val & BRXMAC_STATUS_OVERFLOW)
  3355. mp->rx_overflows++;
  3356. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3357. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3358. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3359. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3360. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3361. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3362. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3363. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3364. val = nr64_mac(BMAC_CTRL_STATUS);
  3365. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3366. mp->pause_off_state++;
  3367. if (val & BMAC_CTRL_STATUS_PAUSE)
  3368. mp->pause_on_state++;
  3369. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3370. mp->pause_received++;
  3371. }
  3372. static int niu_mac_interrupt(struct niu *np)
  3373. {
  3374. if (np->flags & NIU_FLAGS_XMAC)
  3375. niu_xmac_interrupt(np);
  3376. else
  3377. niu_bmac_interrupt(np);
  3378. return 0;
  3379. }
  3380. static void niu_log_device_error(struct niu *np, u64 stat)
  3381. {
  3382. dev_err(np->device, PFX "%s: Core device errors ( ",
  3383. np->dev->name);
  3384. if (stat & SYS_ERR_MASK_META2)
  3385. printk("META2 ");
  3386. if (stat & SYS_ERR_MASK_META1)
  3387. printk("META1 ");
  3388. if (stat & SYS_ERR_MASK_PEU)
  3389. printk("PEU ");
  3390. if (stat & SYS_ERR_MASK_TXC)
  3391. printk("TXC ");
  3392. if (stat & SYS_ERR_MASK_RDMC)
  3393. printk("RDMC ");
  3394. if (stat & SYS_ERR_MASK_TDMC)
  3395. printk("TDMC ");
  3396. if (stat & SYS_ERR_MASK_ZCP)
  3397. printk("ZCP ");
  3398. if (stat & SYS_ERR_MASK_FFLP)
  3399. printk("FFLP ");
  3400. if (stat & SYS_ERR_MASK_IPP)
  3401. printk("IPP ");
  3402. if (stat & SYS_ERR_MASK_MAC)
  3403. printk("MAC ");
  3404. if (stat & SYS_ERR_MASK_SMX)
  3405. printk("SMX ");
  3406. printk(")\n");
  3407. }
  3408. static int niu_device_error(struct niu *np)
  3409. {
  3410. u64 stat = nr64(SYS_ERR_STAT);
  3411. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3412. np->dev->name, (unsigned long long) stat);
  3413. niu_log_device_error(np, stat);
  3414. return -ENODEV;
  3415. }
  3416. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3417. u64 v0, u64 v1, u64 v2)
  3418. {
  3419. int i, err = 0;
  3420. lp->v0 = v0;
  3421. lp->v1 = v1;
  3422. lp->v2 = v2;
  3423. if (v1 & 0x00000000ffffffffULL) {
  3424. u32 rx_vec = (v1 & 0xffffffff);
  3425. for (i = 0; i < np->num_rx_rings; i++) {
  3426. struct rx_ring_info *rp = &np->rx_rings[i];
  3427. if (rx_vec & (1 << rp->rx_channel)) {
  3428. int r = niu_rx_error(np, rp);
  3429. if (r) {
  3430. err = r;
  3431. } else {
  3432. if (!v0)
  3433. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3434. RX_DMA_CTL_STAT_MEX);
  3435. }
  3436. }
  3437. }
  3438. }
  3439. if (v1 & 0x7fffffff00000000ULL) {
  3440. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3441. for (i = 0; i < np->num_tx_rings; i++) {
  3442. struct tx_ring_info *rp = &np->tx_rings[i];
  3443. if (tx_vec & (1 << rp->tx_channel)) {
  3444. int r = niu_tx_error(np, rp);
  3445. if (r)
  3446. err = r;
  3447. }
  3448. }
  3449. }
  3450. if ((v0 | v1) & 0x8000000000000000ULL) {
  3451. int r = niu_mif_interrupt(np);
  3452. if (r)
  3453. err = r;
  3454. }
  3455. if (v2) {
  3456. if (v2 & 0x01ef) {
  3457. int r = niu_mac_interrupt(np);
  3458. if (r)
  3459. err = r;
  3460. }
  3461. if (v2 & 0x0210) {
  3462. int r = niu_device_error(np);
  3463. if (r)
  3464. err = r;
  3465. }
  3466. }
  3467. if (err)
  3468. niu_enable_interrupts(np, 0);
  3469. return err;
  3470. }
  3471. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3472. int ldn)
  3473. {
  3474. struct rxdma_mailbox *mbox = rp->mbox;
  3475. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3476. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3477. RX_DMA_CTL_STAT_RCRTO);
  3478. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3479. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3480. np->dev->name, (unsigned long long) stat);
  3481. }
  3482. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3483. int ldn)
  3484. {
  3485. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3486. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3487. np->dev->name, (unsigned long long) rp->tx_cs);
  3488. }
  3489. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3490. {
  3491. struct niu_parent *parent = np->parent;
  3492. u32 rx_vec, tx_vec;
  3493. int i;
  3494. tx_vec = (v0 >> 32);
  3495. rx_vec = (v0 & 0xffffffff);
  3496. for (i = 0; i < np->num_rx_rings; i++) {
  3497. struct rx_ring_info *rp = &np->rx_rings[i];
  3498. int ldn = LDN_RXDMA(rp->rx_channel);
  3499. if (parent->ldg_map[ldn] != ldg)
  3500. continue;
  3501. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3502. if (rx_vec & (1 << rp->rx_channel))
  3503. niu_rxchan_intr(np, rp, ldn);
  3504. }
  3505. for (i = 0; i < np->num_tx_rings; i++) {
  3506. struct tx_ring_info *rp = &np->tx_rings[i];
  3507. int ldn = LDN_TXDMA(rp->tx_channel);
  3508. if (parent->ldg_map[ldn] != ldg)
  3509. continue;
  3510. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3511. if (tx_vec & (1 << rp->tx_channel))
  3512. niu_txchan_intr(np, rp, ldn);
  3513. }
  3514. }
  3515. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3516. u64 v0, u64 v1, u64 v2)
  3517. {
  3518. if (likely(napi_schedule_prep(&lp->napi))) {
  3519. lp->v0 = v0;
  3520. lp->v1 = v1;
  3521. lp->v2 = v2;
  3522. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3523. __napi_schedule(&lp->napi);
  3524. }
  3525. }
  3526. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3527. {
  3528. struct niu_ldg *lp = dev_id;
  3529. struct niu *np = lp->np;
  3530. int ldg = lp->ldg_num;
  3531. unsigned long flags;
  3532. u64 v0, v1, v2;
  3533. if (netif_msg_intr(np))
  3534. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3535. lp, ldg);
  3536. spin_lock_irqsave(&np->lock, flags);
  3537. v0 = nr64(LDSV0(ldg));
  3538. v1 = nr64(LDSV1(ldg));
  3539. v2 = nr64(LDSV2(ldg));
  3540. if (netif_msg_intr(np))
  3541. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3542. (unsigned long long) v0,
  3543. (unsigned long long) v1,
  3544. (unsigned long long) v2);
  3545. if (unlikely(!v0 && !v1 && !v2)) {
  3546. spin_unlock_irqrestore(&np->lock, flags);
  3547. return IRQ_NONE;
  3548. }
  3549. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3550. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3551. if (err)
  3552. goto out;
  3553. }
  3554. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3555. niu_schedule_napi(np, lp, v0, v1, v2);
  3556. else
  3557. niu_ldg_rearm(np, lp, 1);
  3558. out:
  3559. spin_unlock_irqrestore(&np->lock, flags);
  3560. return IRQ_HANDLED;
  3561. }
  3562. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3563. {
  3564. if (rp->mbox) {
  3565. np->ops->free_coherent(np->device,
  3566. sizeof(struct rxdma_mailbox),
  3567. rp->mbox, rp->mbox_dma);
  3568. rp->mbox = NULL;
  3569. }
  3570. if (rp->rcr) {
  3571. np->ops->free_coherent(np->device,
  3572. MAX_RCR_RING_SIZE * sizeof(__le64),
  3573. rp->rcr, rp->rcr_dma);
  3574. rp->rcr = NULL;
  3575. rp->rcr_table_size = 0;
  3576. rp->rcr_index = 0;
  3577. }
  3578. if (rp->rbr) {
  3579. niu_rbr_free(np, rp);
  3580. np->ops->free_coherent(np->device,
  3581. MAX_RBR_RING_SIZE * sizeof(__le32),
  3582. rp->rbr, rp->rbr_dma);
  3583. rp->rbr = NULL;
  3584. rp->rbr_table_size = 0;
  3585. rp->rbr_index = 0;
  3586. }
  3587. kfree(rp->rxhash);
  3588. rp->rxhash = NULL;
  3589. }
  3590. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3591. {
  3592. if (rp->mbox) {
  3593. np->ops->free_coherent(np->device,
  3594. sizeof(struct txdma_mailbox),
  3595. rp->mbox, rp->mbox_dma);
  3596. rp->mbox = NULL;
  3597. }
  3598. if (rp->descr) {
  3599. int i;
  3600. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3601. if (rp->tx_buffs[i].skb)
  3602. (void) release_tx_packet(np, rp, i);
  3603. }
  3604. np->ops->free_coherent(np->device,
  3605. MAX_TX_RING_SIZE * sizeof(__le64),
  3606. rp->descr, rp->descr_dma);
  3607. rp->descr = NULL;
  3608. rp->pending = 0;
  3609. rp->prod = 0;
  3610. rp->cons = 0;
  3611. rp->wrap_bit = 0;
  3612. }
  3613. }
  3614. static void niu_free_channels(struct niu *np)
  3615. {
  3616. int i;
  3617. if (np->rx_rings) {
  3618. for (i = 0; i < np->num_rx_rings; i++) {
  3619. struct rx_ring_info *rp = &np->rx_rings[i];
  3620. niu_free_rx_ring_info(np, rp);
  3621. }
  3622. kfree(np->rx_rings);
  3623. np->rx_rings = NULL;
  3624. np->num_rx_rings = 0;
  3625. }
  3626. if (np->tx_rings) {
  3627. for (i = 0; i < np->num_tx_rings; i++) {
  3628. struct tx_ring_info *rp = &np->tx_rings[i];
  3629. niu_free_tx_ring_info(np, rp);
  3630. }
  3631. kfree(np->tx_rings);
  3632. np->tx_rings = NULL;
  3633. np->num_tx_rings = 0;
  3634. }
  3635. }
  3636. static int niu_alloc_rx_ring_info(struct niu *np,
  3637. struct rx_ring_info *rp)
  3638. {
  3639. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3640. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3641. GFP_KERNEL);
  3642. if (!rp->rxhash)
  3643. return -ENOMEM;
  3644. rp->mbox = np->ops->alloc_coherent(np->device,
  3645. sizeof(struct rxdma_mailbox),
  3646. &rp->mbox_dma, GFP_KERNEL);
  3647. if (!rp->mbox)
  3648. return -ENOMEM;
  3649. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3650. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3651. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3652. return -EINVAL;
  3653. }
  3654. rp->rcr = np->ops->alloc_coherent(np->device,
  3655. MAX_RCR_RING_SIZE * sizeof(__le64),
  3656. &rp->rcr_dma, GFP_KERNEL);
  3657. if (!rp->rcr)
  3658. return -ENOMEM;
  3659. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3660. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3661. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3662. return -EINVAL;
  3663. }
  3664. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3665. rp->rcr_index = 0;
  3666. rp->rbr = np->ops->alloc_coherent(np->device,
  3667. MAX_RBR_RING_SIZE * sizeof(__le32),
  3668. &rp->rbr_dma, GFP_KERNEL);
  3669. if (!rp->rbr)
  3670. return -ENOMEM;
  3671. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3672. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3673. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3674. return -EINVAL;
  3675. }
  3676. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3677. rp->rbr_index = 0;
  3678. rp->rbr_pending = 0;
  3679. return 0;
  3680. }
  3681. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3682. {
  3683. int mtu = np->dev->mtu;
  3684. /* These values are recommended by the HW designers for fair
  3685. * utilization of DRR amongst the rings.
  3686. */
  3687. rp->max_burst = mtu + 32;
  3688. if (rp->max_burst > 4096)
  3689. rp->max_burst = 4096;
  3690. }
  3691. static int niu_alloc_tx_ring_info(struct niu *np,
  3692. struct tx_ring_info *rp)
  3693. {
  3694. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3695. rp->mbox = np->ops->alloc_coherent(np->device,
  3696. sizeof(struct txdma_mailbox),
  3697. &rp->mbox_dma, GFP_KERNEL);
  3698. if (!rp->mbox)
  3699. return -ENOMEM;
  3700. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3701. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3702. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3703. return -EINVAL;
  3704. }
  3705. rp->descr = np->ops->alloc_coherent(np->device,
  3706. MAX_TX_RING_SIZE * sizeof(__le64),
  3707. &rp->descr_dma, GFP_KERNEL);
  3708. if (!rp->descr)
  3709. return -ENOMEM;
  3710. if ((unsigned long)rp->descr & (64UL - 1)) {
  3711. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3712. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3713. return -EINVAL;
  3714. }
  3715. rp->pending = MAX_TX_RING_SIZE;
  3716. rp->prod = 0;
  3717. rp->cons = 0;
  3718. rp->wrap_bit = 0;
  3719. /* XXX make these configurable... XXX */
  3720. rp->mark_freq = rp->pending / 4;
  3721. niu_set_max_burst(np, rp);
  3722. return 0;
  3723. }
  3724. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3725. {
  3726. u16 bss;
  3727. bss = min(PAGE_SHIFT, 15);
  3728. rp->rbr_block_size = 1 << bss;
  3729. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3730. rp->rbr_sizes[0] = 256;
  3731. rp->rbr_sizes[1] = 1024;
  3732. if (np->dev->mtu > ETH_DATA_LEN) {
  3733. switch (PAGE_SIZE) {
  3734. case 4 * 1024:
  3735. rp->rbr_sizes[2] = 4096;
  3736. break;
  3737. default:
  3738. rp->rbr_sizes[2] = 8192;
  3739. break;
  3740. }
  3741. } else {
  3742. rp->rbr_sizes[2] = 2048;
  3743. }
  3744. rp->rbr_sizes[3] = rp->rbr_block_size;
  3745. }
  3746. static int niu_alloc_channels(struct niu *np)
  3747. {
  3748. struct niu_parent *parent = np->parent;
  3749. int first_rx_channel, first_tx_channel;
  3750. int i, port, err;
  3751. port = np->port;
  3752. first_rx_channel = first_tx_channel = 0;
  3753. for (i = 0; i < port; i++) {
  3754. first_rx_channel += parent->rxchan_per_port[i];
  3755. first_tx_channel += parent->txchan_per_port[i];
  3756. }
  3757. np->num_rx_rings = parent->rxchan_per_port[port];
  3758. np->num_tx_rings = parent->txchan_per_port[port];
  3759. np->dev->real_num_tx_queues = np->num_tx_rings;
  3760. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3761. GFP_KERNEL);
  3762. err = -ENOMEM;
  3763. if (!np->rx_rings)
  3764. goto out_err;
  3765. for (i = 0; i < np->num_rx_rings; i++) {
  3766. struct rx_ring_info *rp = &np->rx_rings[i];
  3767. rp->np = np;
  3768. rp->rx_channel = first_rx_channel + i;
  3769. err = niu_alloc_rx_ring_info(np, rp);
  3770. if (err)
  3771. goto out_err;
  3772. niu_size_rbr(np, rp);
  3773. /* XXX better defaults, configurable, etc... XXX */
  3774. rp->nonsyn_window = 64;
  3775. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3776. rp->syn_window = 64;
  3777. rp->syn_threshold = rp->rcr_table_size - 64;
  3778. rp->rcr_pkt_threshold = 16;
  3779. rp->rcr_timeout = 8;
  3780. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3781. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3782. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3783. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3784. if (err)
  3785. return err;
  3786. }
  3787. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3788. GFP_KERNEL);
  3789. err = -ENOMEM;
  3790. if (!np->tx_rings)
  3791. goto out_err;
  3792. for (i = 0; i < np->num_tx_rings; i++) {
  3793. struct tx_ring_info *rp = &np->tx_rings[i];
  3794. rp->np = np;
  3795. rp->tx_channel = first_tx_channel + i;
  3796. err = niu_alloc_tx_ring_info(np, rp);
  3797. if (err)
  3798. goto out_err;
  3799. }
  3800. return 0;
  3801. out_err:
  3802. niu_free_channels(np);
  3803. return err;
  3804. }
  3805. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3806. {
  3807. int limit = 1000;
  3808. while (--limit > 0) {
  3809. u64 val = nr64(TX_CS(channel));
  3810. if (val & TX_CS_SNG_STATE)
  3811. return 0;
  3812. }
  3813. return -ENODEV;
  3814. }
  3815. static int niu_tx_channel_stop(struct niu *np, int channel)
  3816. {
  3817. u64 val = nr64(TX_CS(channel));
  3818. val |= TX_CS_STOP_N_GO;
  3819. nw64(TX_CS(channel), val);
  3820. return niu_tx_cs_sng_poll(np, channel);
  3821. }
  3822. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3823. {
  3824. int limit = 1000;
  3825. while (--limit > 0) {
  3826. u64 val = nr64(TX_CS(channel));
  3827. if (!(val & TX_CS_RST))
  3828. return 0;
  3829. }
  3830. return -ENODEV;
  3831. }
  3832. static int niu_tx_channel_reset(struct niu *np, int channel)
  3833. {
  3834. u64 val = nr64(TX_CS(channel));
  3835. int err;
  3836. val |= TX_CS_RST;
  3837. nw64(TX_CS(channel), val);
  3838. err = niu_tx_cs_reset_poll(np, channel);
  3839. if (!err)
  3840. nw64(TX_RING_KICK(channel), 0);
  3841. return err;
  3842. }
  3843. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3844. {
  3845. u64 val;
  3846. nw64(TX_LOG_MASK1(channel), 0);
  3847. nw64(TX_LOG_VAL1(channel), 0);
  3848. nw64(TX_LOG_MASK2(channel), 0);
  3849. nw64(TX_LOG_VAL2(channel), 0);
  3850. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3851. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3852. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3853. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3854. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3855. nw64(TX_LOG_PAGE_VLD(channel), val);
  3856. /* XXX TXDMA 32bit mode? XXX */
  3857. return 0;
  3858. }
  3859. static void niu_txc_enable_port(struct niu *np, int on)
  3860. {
  3861. unsigned long flags;
  3862. u64 val, mask;
  3863. niu_lock_parent(np, flags);
  3864. val = nr64(TXC_CONTROL);
  3865. mask = (u64)1 << np->port;
  3866. if (on) {
  3867. val |= TXC_CONTROL_ENABLE | mask;
  3868. } else {
  3869. val &= ~mask;
  3870. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3871. val &= ~TXC_CONTROL_ENABLE;
  3872. }
  3873. nw64(TXC_CONTROL, val);
  3874. niu_unlock_parent(np, flags);
  3875. }
  3876. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3877. {
  3878. unsigned long flags;
  3879. u64 val;
  3880. niu_lock_parent(np, flags);
  3881. val = nr64(TXC_INT_MASK);
  3882. val &= ~TXC_INT_MASK_VAL(np->port);
  3883. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3884. niu_unlock_parent(np, flags);
  3885. }
  3886. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3887. {
  3888. u64 val = 0;
  3889. if (on) {
  3890. int i;
  3891. for (i = 0; i < np->num_tx_rings; i++)
  3892. val |= (1 << np->tx_rings[i].tx_channel);
  3893. }
  3894. nw64(TXC_PORT_DMA(np->port), val);
  3895. }
  3896. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3897. {
  3898. int err, channel = rp->tx_channel;
  3899. u64 val, ring_len;
  3900. err = niu_tx_channel_stop(np, channel);
  3901. if (err)
  3902. return err;
  3903. err = niu_tx_channel_reset(np, channel);
  3904. if (err)
  3905. return err;
  3906. err = niu_tx_channel_lpage_init(np, channel);
  3907. if (err)
  3908. return err;
  3909. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3910. nw64(TX_ENT_MSK(channel), 0);
  3911. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3912. TX_RNG_CFIG_STADDR)) {
  3913. dev_err(np->device, PFX "%s: TX ring channel %d "
  3914. "DMA addr (%llx) is not aligned.\n",
  3915. np->dev->name, channel,
  3916. (unsigned long long) rp->descr_dma);
  3917. return -EINVAL;
  3918. }
  3919. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3920. * blocks. rp->pending is the number of TX descriptors in
  3921. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3922. * to get the proper value the chip wants.
  3923. */
  3924. ring_len = (rp->pending / 8);
  3925. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3926. rp->descr_dma);
  3927. nw64(TX_RNG_CFIG(channel), val);
  3928. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3929. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3930. dev_err(np->device, PFX "%s: TX ring channel %d "
  3931. "MBOX addr (%llx) is has illegal bits.\n",
  3932. np->dev->name, channel,
  3933. (unsigned long long) rp->mbox_dma);
  3934. return -EINVAL;
  3935. }
  3936. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3937. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3938. nw64(TX_CS(channel), 0);
  3939. rp->last_pkt_cnt = 0;
  3940. return 0;
  3941. }
  3942. static void niu_init_rdc_groups(struct niu *np)
  3943. {
  3944. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3945. int i, first_table_num = tp->first_table_num;
  3946. for (i = 0; i < tp->num_tables; i++) {
  3947. struct rdc_table *tbl = &tp->tables[i];
  3948. int this_table = first_table_num + i;
  3949. int slot;
  3950. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3951. nw64(RDC_TBL(this_table, slot),
  3952. tbl->rxdma_channel[slot]);
  3953. }
  3954. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3955. }
  3956. static void niu_init_drr_weight(struct niu *np)
  3957. {
  3958. int type = phy_decode(np->parent->port_phy, np->port);
  3959. u64 val;
  3960. switch (type) {
  3961. case PORT_TYPE_10G:
  3962. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3963. break;
  3964. case PORT_TYPE_1G:
  3965. default:
  3966. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3967. break;
  3968. }
  3969. nw64(PT_DRR_WT(np->port), val);
  3970. }
  3971. static int niu_init_hostinfo(struct niu *np)
  3972. {
  3973. struct niu_parent *parent = np->parent;
  3974. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3975. int i, err, num_alt = niu_num_alt_addr(np);
  3976. int first_rdc_table = tp->first_table_num;
  3977. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3978. if (err)
  3979. return err;
  3980. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3981. if (err)
  3982. return err;
  3983. for (i = 0; i < num_alt; i++) {
  3984. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3985. if (err)
  3986. return err;
  3987. }
  3988. return 0;
  3989. }
  3990. static int niu_rx_channel_reset(struct niu *np, int channel)
  3991. {
  3992. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3993. RXDMA_CFIG1_RST, 1000, 10,
  3994. "RXDMA_CFIG1");
  3995. }
  3996. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3997. {
  3998. u64 val;
  3999. nw64(RX_LOG_MASK1(channel), 0);
  4000. nw64(RX_LOG_VAL1(channel), 0);
  4001. nw64(RX_LOG_MASK2(channel), 0);
  4002. nw64(RX_LOG_VAL2(channel), 0);
  4003. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  4004. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  4005. nw64(RX_LOG_PAGE_HDL(channel), 0);
  4006. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  4007. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  4008. nw64(RX_LOG_PAGE_VLD(channel), val);
  4009. return 0;
  4010. }
  4011. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  4012. {
  4013. u64 val;
  4014. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  4015. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  4016. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  4017. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  4018. nw64(RDC_RED_PARA(rp->rx_channel), val);
  4019. }
  4020. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  4021. {
  4022. u64 val = 0;
  4023. *ret = 0;
  4024. switch (rp->rbr_block_size) {
  4025. case 4 * 1024:
  4026. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4027. break;
  4028. case 8 * 1024:
  4029. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4030. break;
  4031. case 16 * 1024:
  4032. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4033. break;
  4034. case 32 * 1024:
  4035. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4036. break;
  4037. default:
  4038. return -EINVAL;
  4039. }
  4040. val |= RBR_CFIG_B_VLD2;
  4041. switch (rp->rbr_sizes[2]) {
  4042. case 2 * 1024:
  4043. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4044. break;
  4045. case 4 * 1024:
  4046. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4047. break;
  4048. case 8 * 1024:
  4049. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4050. break;
  4051. case 16 * 1024:
  4052. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4053. break;
  4054. default:
  4055. return -EINVAL;
  4056. }
  4057. val |= RBR_CFIG_B_VLD1;
  4058. switch (rp->rbr_sizes[1]) {
  4059. case 1 * 1024:
  4060. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4061. break;
  4062. case 2 * 1024:
  4063. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4064. break;
  4065. case 4 * 1024:
  4066. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4067. break;
  4068. case 8 * 1024:
  4069. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4070. break;
  4071. default:
  4072. return -EINVAL;
  4073. }
  4074. val |= RBR_CFIG_B_VLD0;
  4075. switch (rp->rbr_sizes[0]) {
  4076. case 256:
  4077. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4078. break;
  4079. case 512:
  4080. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4081. break;
  4082. case 1 * 1024:
  4083. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4084. break;
  4085. case 2 * 1024:
  4086. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4087. break;
  4088. default:
  4089. return -EINVAL;
  4090. }
  4091. *ret = val;
  4092. return 0;
  4093. }
  4094. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4095. {
  4096. u64 val = nr64(RXDMA_CFIG1(channel));
  4097. int limit;
  4098. if (on)
  4099. val |= RXDMA_CFIG1_EN;
  4100. else
  4101. val &= ~RXDMA_CFIG1_EN;
  4102. nw64(RXDMA_CFIG1(channel), val);
  4103. limit = 1000;
  4104. while (--limit > 0) {
  4105. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4106. break;
  4107. udelay(10);
  4108. }
  4109. if (limit <= 0)
  4110. return -ENODEV;
  4111. return 0;
  4112. }
  4113. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4114. {
  4115. int err, channel = rp->rx_channel;
  4116. u64 val;
  4117. err = niu_rx_channel_reset(np, channel);
  4118. if (err)
  4119. return err;
  4120. err = niu_rx_channel_lpage_init(np, channel);
  4121. if (err)
  4122. return err;
  4123. niu_rx_channel_wred_init(np, rp);
  4124. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4125. nw64(RX_DMA_CTL_STAT(channel),
  4126. (RX_DMA_CTL_STAT_MEX |
  4127. RX_DMA_CTL_STAT_RCRTHRES |
  4128. RX_DMA_CTL_STAT_RCRTO |
  4129. RX_DMA_CTL_STAT_RBR_EMPTY));
  4130. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4131. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4132. nw64(RBR_CFIG_A(channel),
  4133. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4134. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4135. err = niu_compute_rbr_cfig_b(rp, &val);
  4136. if (err)
  4137. return err;
  4138. nw64(RBR_CFIG_B(channel), val);
  4139. nw64(RCRCFIG_A(channel),
  4140. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4141. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4142. nw64(RCRCFIG_B(channel),
  4143. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4144. RCRCFIG_B_ENTOUT |
  4145. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4146. err = niu_enable_rx_channel(np, channel, 1);
  4147. if (err)
  4148. return err;
  4149. nw64(RBR_KICK(channel), rp->rbr_index);
  4150. val = nr64(RX_DMA_CTL_STAT(channel));
  4151. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4152. nw64(RX_DMA_CTL_STAT(channel), val);
  4153. return 0;
  4154. }
  4155. static int niu_init_rx_channels(struct niu *np)
  4156. {
  4157. unsigned long flags;
  4158. u64 seed = jiffies_64;
  4159. int err, i;
  4160. niu_lock_parent(np, flags);
  4161. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4162. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4163. niu_unlock_parent(np, flags);
  4164. /* XXX RXDMA 32bit mode? XXX */
  4165. niu_init_rdc_groups(np);
  4166. niu_init_drr_weight(np);
  4167. err = niu_init_hostinfo(np);
  4168. if (err)
  4169. return err;
  4170. for (i = 0; i < np->num_rx_rings; i++) {
  4171. struct rx_ring_info *rp = &np->rx_rings[i];
  4172. err = niu_init_one_rx_channel(np, rp);
  4173. if (err)
  4174. return err;
  4175. }
  4176. return 0;
  4177. }
  4178. static int niu_set_ip_frag_rule(struct niu *np)
  4179. {
  4180. struct niu_parent *parent = np->parent;
  4181. struct niu_classifier *cp = &np->clas;
  4182. struct niu_tcam_entry *tp;
  4183. int index, err;
  4184. index = cp->tcam_top;
  4185. tp = &parent->tcam[index];
  4186. /* Note that the noport bit is the same in both ipv4 and
  4187. * ipv6 format TCAM entries.
  4188. */
  4189. memset(tp, 0, sizeof(*tp));
  4190. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4191. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4192. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4193. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4194. err = tcam_write(np, index, tp->key, tp->key_mask);
  4195. if (err)
  4196. return err;
  4197. err = tcam_assoc_write(np, index, tp->assoc_data);
  4198. if (err)
  4199. return err;
  4200. tp->valid = 1;
  4201. cp->tcam_valid_entries++;
  4202. return 0;
  4203. }
  4204. static int niu_init_classifier_hw(struct niu *np)
  4205. {
  4206. struct niu_parent *parent = np->parent;
  4207. struct niu_classifier *cp = &np->clas;
  4208. int i, err;
  4209. nw64(H1POLY, cp->h1_init);
  4210. nw64(H2POLY, cp->h2_init);
  4211. err = niu_init_hostinfo(np);
  4212. if (err)
  4213. return err;
  4214. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4215. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4216. vlan_tbl_write(np, i, np->port,
  4217. vp->vlan_pref, vp->rdc_num);
  4218. }
  4219. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4220. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4221. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4222. ap->rdc_num, ap->mac_pref);
  4223. if (err)
  4224. return err;
  4225. }
  4226. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4227. int index = i - CLASS_CODE_USER_PROG1;
  4228. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4229. if (err)
  4230. return err;
  4231. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4232. if (err)
  4233. return err;
  4234. }
  4235. err = niu_set_ip_frag_rule(np);
  4236. if (err)
  4237. return err;
  4238. tcam_enable(np, 1);
  4239. return 0;
  4240. }
  4241. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4242. {
  4243. nw64(ZCP_RAM_DATA0, data[0]);
  4244. nw64(ZCP_RAM_DATA1, data[1]);
  4245. nw64(ZCP_RAM_DATA2, data[2]);
  4246. nw64(ZCP_RAM_DATA3, data[3]);
  4247. nw64(ZCP_RAM_DATA4, data[4]);
  4248. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4249. nw64(ZCP_RAM_ACC,
  4250. (ZCP_RAM_ACC_WRITE |
  4251. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4252. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4253. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4254. 1000, 100);
  4255. }
  4256. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4257. {
  4258. int err;
  4259. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4260. 1000, 100);
  4261. if (err) {
  4262. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4263. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4264. (unsigned long long) nr64(ZCP_RAM_ACC));
  4265. return err;
  4266. }
  4267. nw64(ZCP_RAM_ACC,
  4268. (ZCP_RAM_ACC_READ |
  4269. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4270. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4271. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4272. 1000, 100);
  4273. if (err) {
  4274. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4275. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4276. (unsigned long long) nr64(ZCP_RAM_ACC));
  4277. return err;
  4278. }
  4279. data[0] = nr64(ZCP_RAM_DATA0);
  4280. data[1] = nr64(ZCP_RAM_DATA1);
  4281. data[2] = nr64(ZCP_RAM_DATA2);
  4282. data[3] = nr64(ZCP_RAM_DATA3);
  4283. data[4] = nr64(ZCP_RAM_DATA4);
  4284. return 0;
  4285. }
  4286. static void niu_zcp_cfifo_reset(struct niu *np)
  4287. {
  4288. u64 val = nr64(RESET_CFIFO);
  4289. val |= RESET_CFIFO_RST(np->port);
  4290. nw64(RESET_CFIFO, val);
  4291. udelay(10);
  4292. val &= ~RESET_CFIFO_RST(np->port);
  4293. nw64(RESET_CFIFO, val);
  4294. }
  4295. static int niu_init_zcp(struct niu *np)
  4296. {
  4297. u64 data[5], rbuf[5];
  4298. int i, max, err;
  4299. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4300. if (np->port == 0 || np->port == 1)
  4301. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4302. else
  4303. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4304. } else
  4305. max = NIU_CFIFO_ENTRIES;
  4306. data[0] = 0;
  4307. data[1] = 0;
  4308. data[2] = 0;
  4309. data[3] = 0;
  4310. data[4] = 0;
  4311. for (i = 0; i < max; i++) {
  4312. err = niu_zcp_write(np, i, data);
  4313. if (err)
  4314. return err;
  4315. err = niu_zcp_read(np, i, rbuf);
  4316. if (err)
  4317. return err;
  4318. }
  4319. niu_zcp_cfifo_reset(np);
  4320. nw64(CFIFO_ECC(np->port), 0);
  4321. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4322. (void) nr64(ZCP_INT_STAT);
  4323. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4324. return 0;
  4325. }
  4326. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4327. {
  4328. u64 val = nr64_ipp(IPP_CFIG);
  4329. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4330. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4331. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4332. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4333. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4334. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4335. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4336. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4337. }
  4338. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4339. {
  4340. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4341. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4342. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4343. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4344. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4345. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4346. }
  4347. static int niu_ipp_reset(struct niu *np)
  4348. {
  4349. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4350. 1000, 100, "IPP_CFIG");
  4351. }
  4352. static int niu_init_ipp(struct niu *np)
  4353. {
  4354. u64 data[5], rbuf[5], val;
  4355. int i, max, err;
  4356. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4357. if (np->port == 0 || np->port == 1)
  4358. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4359. else
  4360. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4361. } else
  4362. max = NIU_DFIFO_ENTRIES;
  4363. data[0] = 0;
  4364. data[1] = 0;
  4365. data[2] = 0;
  4366. data[3] = 0;
  4367. data[4] = 0;
  4368. for (i = 0; i < max; i++) {
  4369. niu_ipp_write(np, i, data);
  4370. niu_ipp_read(np, i, rbuf);
  4371. }
  4372. (void) nr64_ipp(IPP_INT_STAT);
  4373. (void) nr64_ipp(IPP_INT_STAT);
  4374. err = niu_ipp_reset(np);
  4375. if (err)
  4376. return err;
  4377. (void) nr64_ipp(IPP_PKT_DIS);
  4378. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4379. (void) nr64_ipp(IPP_ECC);
  4380. (void) nr64_ipp(IPP_INT_STAT);
  4381. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4382. val = nr64_ipp(IPP_CFIG);
  4383. val &= ~IPP_CFIG_IP_MAX_PKT;
  4384. val |= (IPP_CFIG_IPP_ENABLE |
  4385. IPP_CFIG_DFIFO_ECC_EN |
  4386. IPP_CFIG_DROP_BAD_CRC |
  4387. IPP_CFIG_CKSUM_EN |
  4388. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4389. nw64_ipp(IPP_CFIG, val);
  4390. return 0;
  4391. }
  4392. static void niu_handle_led(struct niu *np, int status)
  4393. {
  4394. u64 val;
  4395. val = nr64_mac(XMAC_CONFIG);
  4396. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4397. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4398. if (status) {
  4399. val |= XMAC_CONFIG_LED_POLARITY;
  4400. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4401. } else {
  4402. val |= XMAC_CONFIG_FORCE_LED_ON;
  4403. val &= ~XMAC_CONFIG_LED_POLARITY;
  4404. }
  4405. }
  4406. nw64_mac(XMAC_CONFIG, val);
  4407. }
  4408. static void niu_init_xif_xmac(struct niu *np)
  4409. {
  4410. struct niu_link_config *lp = &np->link_config;
  4411. u64 val;
  4412. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4413. val = nr64(MIF_CONFIG);
  4414. val |= MIF_CONFIG_ATCA_GE;
  4415. nw64(MIF_CONFIG, val);
  4416. }
  4417. val = nr64_mac(XMAC_CONFIG);
  4418. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4419. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4420. if (lp->loopback_mode == LOOPBACK_MAC) {
  4421. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4422. val |= XMAC_CONFIG_LOOPBACK;
  4423. } else {
  4424. val &= ~XMAC_CONFIG_LOOPBACK;
  4425. }
  4426. if (np->flags & NIU_FLAGS_10G) {
  4427. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4428. } else {
  4429. val |= XMAC_CONFIG_LFS_DISABLE;
  4430. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4431. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4432. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4433. else
  4434. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4435. }
  4436. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4437. if (lp->active_speed == SPEED_100)
  4438. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4439. else
  4440. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4441. nw64_mac(XMAC_CONFIG, val);
  4442. val = nr64_mac(XMAC_CONFIG);
  4443. val &= ~XMAC_CONFIG_MODE_MASK;
  4444. if (np->flags & NIU_FLAGS_10G) {
  4445. val |= XMAC_CONFIG_MODE_XGMII;
  4446. } else {
  4447. if (lp->active_speed == SPEED_1000)
  4448. val |= XMAC_CONFIG_MODE_GMII;
  4449. else
  4450. val |= XMAC_CONFIG_MODE_MII;
  4451. }
  4452. nw64_mac(XMAC_CONFIG, val);
  4453. }
  4454. static void niu_init_xif_bmac(struct niu *np)
  4455. {
  4456. struct niu_link_config *lp = &np->link_config;
  4457. u64 val;
  4458. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4459. if (lp->loopback_mode == LOOPBACK_MAC)
  4460. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4461. else
  4462. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4463. if (lp->active_speed == SPEED_1000)
  4464. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4465. else
  4466. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4467. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4468. BMAC_XIF_CONFIG_LED_POLARITY);
  4469. if (!(np->flags & NIU_FLAGS_10G) &&
  4470. !(np->flags & NIU_FLAGS_FIBER) &&
  4471. lp->active_speed == SPEED_100)
  4472. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4473. else
  4474. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4475. nw64_mac(BMAC_XIF_CONFIG, val);
  4476. }
  4477. static void niu_init_xif(struct niu *np)
  4478. {
  4479. if (np->flags & NIU_FLAGS_XMAC)
  4480. niu_init_xif_xmac(np);
  4481. else
  4482. niu_init_xif_bmac(np);
  4483. }
  4484. static void niu_pcs_mii_reset(struct niu *np)
  4485. {
  4486. int limit = 1000;
  4487. u64 val = nr64_pcs(PCS_MII_CTL);
  4488. val |= PCS_MII_CTL_RST;
  4489. nw64_pcs(PCS_MII_CTL, val);
  4490. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4491. udelay(100);
  4492. val = nr64_pcs(PCS_MII_CTL);
  4493. }
  4494. }
  4495. static void niu_xpcs_reset(struct niu *np)
  4496. {
  4497. int limit = 1000;
  4498. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4499. val |= XPCS_CONTROL1_RESET;
  4500. nw64_xpcs(XPCS_CONTROL1, val);
  4501. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4502. udelay(100);
  4503. val = nr64_xpcs(XPCS_CONTROL1);
  4504. }
  4505. }
  4506. static int niu_init_pcs(struct niu *np)
  4507. {
  4508. struct niu_link_config *lp = &np->link_config;
  4509. u64 val;
  4510. switch (np->flags & (NIU_FLAGS_10G |
  4511. NIU_FLAGS_FIBER |
  4512. NIU_FLAGS_XCVR_SERDES)) {
  4513. case NIU_FLAGS_FIBER:
  4514. /* 1G fiber */
  4515. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4516. nw64_pcs(PCS_DPATH_MODE, 0);
  4517. niu_pcs_mii_reset(np);
  4518. break;
  4519. case NIU_FLAGS_10G:
  4520. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4521. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4522. /* 10G SERDES */
  4523. if (!(np->flags & NIU_FLAGS_XMAC))
  4524. return -EINVAL;
  4525. /* 10G copper or fiber */
  4526. val = nr64_mac(XMAC_CONFIG);
  4527. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4528. nw64_mac(XMAC_CONFIG, val);
  4529. niu_xpcs_reset(np);
  4530. val = nr64_xpcs(XPCS_CONTROL1);
  4531. if (lp->loopback_mode == LOOPBACK_PHY)
  4532. val |= XPCS_CONTROL1_LOOPBACK;
  4533. else
  4534. val &= ~XPCS_CONTROL1_LOOPBACK;
  4535. nw64_xpcs(XPCS_CONTROL1, val);
  4536. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4537. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4538. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4539. break;
  4540. case NIU_FLAGS_XCVR_SERDES:
  4541. /* 1G SERDES */
  4542. niu_pcs_mii_reset(np);
  4543. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4544. nw64_pcs(PCS_DPATH_MODE, 0);
  4545. break;
  4546. case 0:
  4547. /* 1G copper */
  4548. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4549. /* 1G RGMII FIBER */
  4550. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4551. niu_pcs_mii_reset(np);
  4552. break;
  4553. default:
  4554. return -EINVAL;
  4555. }
  4556. return 0;
  4557. }
  4558. static int niu_reset_tx_xmac(struct niu *np)
  4559. {
  4560. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4561. (XTXMAC_SW_RST_REG_RS |
  4562. XTXMAC_SW_RST_SOFT_RST),
  4563. 1000, 100, "XTXMAC_SW_RST");
  4564. }
  4565. static int niu_reset_tx_bmac(struct niu *np)
  4566. {
  4567. int limit;
  4568. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4569. limit = 1000;
  4570. while (--limit >= 0) {
  4571. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4572. break;
  4573. udelay(100);
  4574. }
  4575. if (limit < 0) {
  4576. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4577. "BTXMAC_SW_RST[%llx]\n",
  4578. np->port,
  4579. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4580. return -ENODEV;
  4581. }
  4582. return 0;
  4583. }
  4584. static int niu_reset_tx_mac(struct niu *np)
  4585. {
  4586. if (np->flags & NIU_FLAGS_XMAC)
  4587. return niu_reset_tx_xmac(np);
  4588. else
  4589. return niu_reset_tx_bmac(np);
  4590. }
  4591. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4592. {
  4593. u64 val;
  4594. val = nr64_mac(XMAC_MIN);
  4595. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4596. XMAC_MIN_RX_MIN_PKT_SIZE);
  4597. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4598. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4599. nw64_mac(XMAC_MIN, val);
  4600. nw64_mac(XMAC_MAX, max);
  4601. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4602. val = nr64_mac(XMAC_IPG);
  4603. if (np->flags & NIU_FLAGS_10G) {
  4604. val &= ~XMAC_IPG_IPG_XGMII;
  4605. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4606. } else {
  4607. val &= ~XMAC_IPG_IPG_MII_GMII;
  4608. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4609. }
  4610. nw64_mac(XMAC_IPG, val);
  4611. val = nr64_mac(XMAC_CONFIG);
  4612. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4613. XMAC_CONFIG_STRETCH_MODE |
  4614. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4615. XMAC_CONFIG_TX_ENABLE);
  4616. nw64_mac(XMAC_CONFIG, val);
  4617. nw64_mac(TXMAC_FRM_CNT, 0);
  4618. nw64_mac(TXMAC_BYTE_CNT, 0);
  4619. }
  4620. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4621. {
  4622. u64 val;
  4623. nw64_mac(BMAC_MIN_FRAME, min);
  4624. nw64_mac(BMAC_MAX_FRAME, max);
  4625. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4626. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4627. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4628. val = nr64_mac(BTXMAC_CONFIG);
  4629. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4630. BTXMAC_CONFIG_ENABLE);
  4631. nw64_mac(BTXMAC_CONFIG, val);
  4632. }
  4633. static void niu_init_tx_mac(struct niu *np)
  4634. {
  4635. u64 min, max;
  4636. min = 64;
  4637. if (np->dev->mtu > ETH_DATA_LEN)
  4638. max = 9216;
  4639. else
  4640. max = 1522;
  4641. /* The XMAC_MIN register only accepts values for TX min which
  4642. * have the low 3 bits cleared.
  4643. */
  4644. BUILD_BUG_ON(min & 0x7);
  4645. if (np->flags & NIU_FLAGS_XMAC)
  4646. niu_init_tx_xmac(np, min, max);
  4647. else
  4648. niu_init_tx_bmac(np, min, max);
  4649. }
  4650. static int niu_reset_rx_xmac(struct niu *np)
  4651. {
  4652. int limit;
  4653. nw64_mac(XRXMAC_SW_RST,
  4654. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4655. limit = 1000;
  4656. while (--limit >= 0) {
  4657. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4658. XRXMAC_SW_RST_SOFT_RST)))
  4659. break;
  4660. udelay(100);
  4661. }
  4662. if (limit < 0) {
  4663. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4664. "XRXMAC_SW_RST[%llx]\n",
  4665. np->port,
  4666. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4667. return -ENODEV;
  4668. }
  4669. return 0;
  4670. }
  4671. static int niu_reset_rx_bmac(struct niu *np)
  4672. {
  4673. int limit;
  4674. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4675. limit = 1000;
  4676. while (--limit >= 0) {
  4677. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4678. break;
  4679. udelay(100);
  4680. }
  4681. if (limit < 0) {
  4682. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4683. "BRXMAC_SW_RST[%llx]\n",
  4684. np->port,
  4685. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4686. return -ENODEV;
  4687. }
  4688. return 0;
  4689. }
  4690. static int niu_reset_rx_mac(struct niu *np)
  4691. {
  4692. if (np->flags & NIU_FLAGS_XMAC)
  4693. return niu_reset_rx_xmac(np);
  4694. else
  4695. return niu_reset_rx_bmac(np);
  4696. }
  4697. static void niu_init_rx_xmac(struct niu *np)
  4698. {
  4699. struct niu_parent *parent = np->parent;
  4700. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4701. int first_rdc_table = tp->first_table_num;
  4702. unsigned long i;
  4703. u64 val;
  4704. nw64_mac(XMAC_ADD_FILT0, 0);
  4705. nw64_mac(XMAC_ADD_FILT1, 0);
  4706. nw64_mac(XMAC_ADD_FILT2, 0);
  4707. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4708. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4709. for (i = 0; i < MAC_NUM_HASH; i++)
  4710. nw64_mac(XMAC_HASH_TBL(i), 0);
  4711. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4712. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4713. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4714. val = nr64_mac(XMAC_CONFIG);
  4715. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4716. XMAC_CONFIG_PROMISCUOUS |
  4717. XMAC_CONFIG_PROMISC_GROUP |
  4718. XMAC_CONFIG_ERR_CHK_DIS |
  4719. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4720. XMAC_CONFIG_RESERVED_MULTICAST |
  4721. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4722. XMAC_CONFIG_ADDR_FILTER_EN |
  4723. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4724. XMAC_CONFIG_STRIP_CRC |
  4725. XMAC_CONFIG_PASS_FLOW_CTRL |
  4726. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4727. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4728. nw64_mac(XMAC_CONFIG, val);
  4729. nw64_mac(RXMAC_BT_CNT, 0);
  4730. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4731. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4732. nw64_mac(RXMAC_FRAG_CNT, 0);
  4733. nw64_mac(RXMAC_HIST_CNT1, 0);
  4734. nw64_mac(RXMAC_HIST_CNT2, 0);
  4735. nw64_mac(RXMAC_HIST_CNT3, 0);
  4736. nw64_mac(RXMAC_HIST_CNT4, 0);
  4737. nw64_mac(RXMAC_HIST_CNT5, 0);
  4738. nw64_mac(RXMAC_HIST_CNT6, 0);
  4739. nw64_mac(RXMAC_HIST_CNT7, 0);
  4740. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4741. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4742. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4743. nw64_mac(LINK_FAULT_CNT, 0);
  4744. }
  4745. static void niu_init_rx_bmac(struct niu *np)
  4746. {
  4747. struct niu_parent *parent = np->parent;
  4748. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4749. int first_rdc_table = tp->first_table_num;
  4750. unsigned long i;
  4751. u64 val;
  4752. nw64_mac(BMAC_ADD_FILT0, 0);
  4753. nw64_mac(BMAC_ADD_FILT1, 0);
  4754. nw64_mac(BMAC_ADD_FILT2, 0);
  4755. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4756. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4757. for (i = 0; i < MAC_NUM_HASH; i++)
  4758. nw64_mac(BMAC_HASH_TBL(i), 0);
  4759. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4760. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4761. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4762. val = nr64_mac(BRXMAC_CONFIG);
  4763. val &= ~(BRXMAC_CONFIG_ENABLE |
  4764. BRXMAC_CONFIG_STRIP_PAD |
  4765. BRXMAC_CONFIG_STRIP_FCS |
  4766. BRXMAC_CONFIG_PROMISC |
  4767. BRXMAC_CONFIG_PROMISC_GRP |
  4768. BRXMAC_CONFIG_ADDR_FILT_EN |
  4769. BRXMAC_CONFIG_DISCARD_DIS);
  4770. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4771. nw64_mac(BRXMAC_CONFIG, val);
  4772. val = nr64_mac(BMAC_ADDR_CMPEN);
  4773. val |= BMAC_ADDR_CMPEN_EN0;
  4774. nw64_mac(BMAC_ADDR_CMPEN, val);
  4775. }
  4776. static void niu_init_rx_mac(struct niu *np)
  4777. {
  4778. niu_set_primary_mac(np, np->dev->dev_addr);
  4779. if (np->flags & NIU_FLAGS_XMAC)
  4780. niu_init_rx_xmac(np);
  4781. else
  4782. niu_init_rx_bmac(np);
  4783. }
  4784. static void niu_enable_tx_xmac(struct niu *np, int on)
  4785. {
  4786. u64 val = nr64_mac(XMAC_CONFIG);
  4787. if (on)
  4788. val |= XMAC_CONFIG_TX_ENABLE;
  4789. else
  4790. val &= ~XMAC_CONFIG_TX_ENABLE;
  4791. nw64_mac(XMAC_CONFIG, val);
  4792. }
  4793. static void niu_enable_tx_bmac(struct niu *np, int on)
  4794. {
  4795. u64 val = nr64_mac(BTXMAC_CONFIG);
  4796. if (on)
  4797. val |= BTXMAC_CONFIG_ENABLE;
  4798. else
  4799. val &= ~BTXMAC_CONFIG_ENABLE;
  4800. nw64_mac(BTXMAC_CONFIG, val);
  4801. }
  4802. static void niu_enable_tx_mac(struct niu *np, int on)
  4803. {
  4804. if (np->flags & NIU_FLAGS_XMAC)
  4805. niu_enable_tx_xmac(np, on);
  4806. else
  4807. niu_enable_tx_bmac(np, on);
  4808. }
  4809. static void niu_enable_rx_xmac(struct niu *np, int on)
  4810. {
  4811. u64 val = nr64_mac(XMAC_CONFIG);
  4812. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4813. XMAC_CONFIG_PROMISCUOUS);
  4814. if (np->flags & NIU_FLAGS_MCAST)
  4815. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4816. if (np->flags & NIU_FLAGS_PROMISC)
  4817. val |= XMAC_CONFIG_PROMISCUOUS;
  4818. if (on)
  4819. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4820. else
  4821. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4822. nw64_mac(XMAC_CONFIG, val);
  4823. }
  4824. static void niu_enable_rx_bmac(struct niu *np, int on)
  4825. {
  4826. u64 val = nr64_mac(BRXMAC_CONFIG);
  4827. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4828. BRXMAC_CONFIG_PROMISC);
  4829. if (np->flags & NIU_FLAGS_MCAST)
  4830. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4831. if (np->flags & NIU_FLAGS_PROMISC)
  4832. val |= BRXMAC_CONFIG_PROMISC;
  4833. if (on)
  4834. val |= BRXMAC_CONFIG_ENABLE;
  4835. else
  4836. val &= ~BRXMAC_CONFIG_ENABLE;
  4837. nw64_mac(BRXMAC_CONFIG, val);
  4838. }
  4839. static void niu_enable_rx_mac(struct niu *np, int on)
  4840. {
  4841. if (np->flags & NIU_FLAGS_XMAC)
  4842. niu_enable_rx_xmac(np, on);
  4843. else
  4844. niu_enable_rx_bmac(np, on);
  4845. }
  4846. static int niu_init_mac(struct niu *np)
  4847. {
  4848. int err;
  4849. niu_init_xif(np);
  4850. err = niu_init_pcs(np);
  4851. if (err)
  4852. return err;
  4853. err = niu_reset_tx_mac(np);
  4854. if (err)
  4855. return err;
  4856. niu_init_tx_mac(np);
  4857. err = niu_reset_rx_mac(np);
  4858. if (err)
  4859. return err;
  4860. niu_init_rx_mac(np);
  4861. /* This looks hookey but the RX MAC reset we just did will
  4862. * undo some of the state we setup in niu_init_tx_mac() so we
  4863. * have to call it again. In particular, the RX MAC reset will
  4864. * set the XMAC_MAX register back to it's default value.
  4865. */
  4866. niu_init_tx_mac(np);
  4867. niu_enable_tx_mac(np, 1);
  4868. niu_enable_rx_mac(np, 1);
  4869. return 0;
  4870. }
  4871. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4872. {
  4873. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4874. }
  4875. static void niu_stop_tx_channels(struct niu *np)
  4876. {
  4877. int i;
  4878. for (i = 0; i < np->num_tx_rings; i++) {
  4879. struct tx_ring_info *rp = &np->tx_rings[i];
  4880. niu_stop_one_tx_channel(np, rp);
  4881. }
  4882. }
  4883. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4884. {
  4885. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4886. }
  4887. static void niu_reset_tx_channels(struct niu *np)
  4888. {
  4889. int i;
  4890. for (i = 0; i < np->num_tx_rings; i++) {
  4891. struct tx_ring_info *rp = &np->tx_rings[i];
  4892. niu_reset_one_tx_channel(np, rp);
  4893. }
  4894. }
  4895. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4896. {
  4897. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4898. }
  4899. static void niu_stop_rx_channels(struct niu *np)
  4900. {
  4901. int i;
  4902. for (i = 0; i < np->num_rx_rings; i++) {
  4903. struct rx_ring_info *rp = &np->rx_rings[i];
  4904. niu_stop_one_rx_channel(np, rp);
  4905. }
  4906. }
  4907. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4908. {
  4909. int channel = rp->rx_channel;
  4910. (void) niu_rx_channel_reset(np, channel);
  4911. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4912. nw64(RX_DMA_CTL_STAT(channel), 0);
  4913. (void) niu_enable_rx_channel(np, channel, 0);
  4914. }
  4915. static void niu_reset_rx_channels(struct niu *np)
  4916. {
  4917. int i;
  4918. for (i = 0; i < np->num_rx_rings; i++) {
  4919. struct rx_ring_info *rp = &np->rx_rings[i];
  4920. niu_reset_one_rx_channel(np, rp);
  4921. }
  4922. }
  4923. static void niu_disable_ipp(struct niu *np)
  4924. {
  4925. u64 rd, wr, val;
  4926. int limit;
  4927. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4928. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4929. limit = 100;
  4930. while (--limit >= 0 && (rd != wr)) {
  4931. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4932. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4933. }
  4934. if (limit < 0 &&
  4935. (rd != 0 && wr != 1)) {
  4936. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4937. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4938. np->dev->name,
  4939. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4940. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4941. }
  4942. val = nr64_ipp(IPP_CFIG);
  4943. val &= ~(IPP_CFIG_IPP_ENABLE |
  4944. IPP_CFIG_DFIFO_ECC_EN |
  4945. IPP_CFIG_DROP_BAD_CRC |
  4946. IPP_CFIG_CKSUM_EN);
  4947. nw64_ipp(IPP_CFIG, val);
  4948. (void) niu_ipp_reset(np);
  4949. }
  4950. static int niu_init_hw(struct niu *np)
  4951. {
  4952. int i, err;
  4953. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4954. niu_txc_enable_port(np, 1);
  4955. niu_txc_port_dma_enable(np, 1);
  4956. niu_txc_set_imask(np, 0);
  4957. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4958. for (i = 0; i < np->num_tx_rings; i++) {
  4959. struct tx_ring_info *rp = &np->tx_rings[i];
  4960. err = niu_init_one_tx_channel(np, rp);
  4961. if (err)
  4962. return err;
  4963. }
  4964. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4965. err = niu_init_rx_channels(np);
  4966. if (err)
  4967. goto out_uninit_tx_channels;
  4968. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4969. err = niu_init_classifier_hw(np);
  4970. if (err)
  4971. goto out_uninit_rx_channels;
  4972. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4973. err = niu_init_zcp(np);
  4974. if (err)
  4975. goto out_uninit_rx_channels;
  4976. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4977. err = niu_init_ipp(np);
  4978. if (err)
  4979. goto out_uninit_rx_channels;
  4980. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4981. err = niu_init_mac(np);
  4982. if (err)
  4983. goto out_uninit_ipp;
  4984. return 0;
  4985. out_uninit_ipp:
  4986. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4987. niu_disable_ipp(np);
  4988. out_uninit_rx_channels:
  4989. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4990. niu_stop_rx_channels(np);
  4991. niu_reset_rx_channels(np);
  4992. out_uninit_tx_channels:
  4993. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4994. niu_stop_tx_channels(np);
  4995. niu_reset_tx_channels(np);
  4996. return err;
  4997. }
  4998. static void niu_stop_hw(struct niu *np)
  4999. {
  5000. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  5001. niu_enable_interrupts(np, 0);
  5002. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  5003. niu_enable_rx_mac(np, 0);
  5004. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  5005. niu_disable_ipp(np);
  5006. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  5007. niu_stop_tx_channels(np);
  5008. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  5009. niu_stop_rx_channels(np);
  5010. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  5011. niu_reset_tx_channels(np);
  5012. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  5013. niu_reset_rx_channels(np);
  5014. }
  5015. static void niu_set_irq_name(struct niu *np)
  5016. {
  5017. int port = np->port;
  5018. int i, j = 1;
  5019. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  5020. if (port == 0) {
  5021. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  5022. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  5023. j = 3;
  5024. }
  5025. for (i = 0; i < np->num_ldg - j; i++) {
  5026. if (i < np->num_rx_rings)
  5027. sprintf(np->irq_name[i+j], "%s-rx-%d",
  5028. np->dev->name, i);
  5029. else if (i < np->num_tx_rings + np->num_rx_rings)
  5030. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5031. i - np->num_rx_rings);
  5032. }
  5033. }
  5034. static int niu_request_irq(struct niu *np)
  5035. {
  5036. int i, j, err;
  5037. niu_set_irq_name(np);
  5038. err = 0;
  5039. for (i = 0; i < np->num_ldg; i++) {
  5040. struct niu_ldg *lp = &np->ldg[i];
  5041. err = request_irq(lp->irq, niu_interrupt,
  5042. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5043. np->irq_name[i], lp);
  5044. if (err)
  5045. goto out_free_irqs;
  5046. }
  5047. return 0;
  5048. out_free_irqs:
  5049. for (j = 0; j < i; j++) {
  5050. struct niu_ldg *lp = &np->ldg[j];
  5051. free_irq(lp->irq, lp);
  5052. }
  5053. return err;
  5054. }
  5055. static void niu_free_irq(struct niu *np)
  5056. {
  5057. int i;
  5058. for (i = 0; i < np->num_ldg; i++) {
  5059. struct niu_ldg *lp = &np->ldg[i];
  5060. free_irq(lp->irq, lp);
  5061. }
  5062. }
  5063. static void niu_enable_napi(struct niu *np)
  5064. {
  5065. int i;
  5066. for (i = 0; i < np->num_ldg; i++)
  5067. napi_enable(&np->ldg[i].napi);
  5068. }
  5069. static void niu_disable_napi(struct niu *np)
  5070. {
  5071. int i;
  5072. for (i = 0; i < np->num_ldg; i++)
  5073. napi_disable(&np->ldg[i].napi);
  5074. }
  5075. static int niu_open(struct net_device *dev)
  5076. {
  5077. struct niu *np = netdev_priv(dev);
  5078. int err;
  5079. netif_carrier_off(dev);
  5080. err = niu_alloc_channels(np);
  5081. if (err)
  5082. goto out_err;
  5083. err = niu_enable_interrupts(np, 0);
  5084. if (err)
  5085. goto out_free_channels;
  5086. err = niu_request_irq(np);
  5087. if (err)
  5088. goto out_free_channels;
  5089. niu_enable_napi(np);
  5090. spin_lock_irq(&np->lock);
  5091. err = niu_init_hw(np);
  5092. if (!err) {
  5093. init_timer(&np->timer);
  5094. np->timer.expires = jiffies + HZ;
  5095. np->timer.data = (unsigned long) np;
  5096. np->timer.function = niu_timer;
  5097. err = niu_enable_interrupts(np, 1);
  5098. if (err)
  5099. niu_stop_hw(np);
  5100. }
  5101. spin_unlock_irq(&np->lock);
  5102. if (err) {
  5103. niu_disable_napi(np);
  5104. goto out_free_irq;
  5105. }
  5106. netif_tx_start_all_queues(dev);
  5107. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5108. netif_carrier_on(dev);
  5109. add_timer(&np->timer);
  5110. return 0;
  5111. out_free_irq:
  5112. niu_free_irq(np);
  5113. out_free_channels:
  5114. niu_free_channels(np);
  5115. out_err:
  5116. return err;
  5117. }
  5118. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5119. {
  5120. cancel_work_sync(&np->reset_task);
  5121. niu_disable_napi(np);
  5122. netif_tx_stop_all_queues(dev);
  5123. del_timer_sync(&np->timer);
  5124. spin_lock_irq(&np->lock);
  5125. niu_stop_hw(np);
  5126. spin_unlock_irq(&np->lock);
  5127. }
  5128. static int niu_close(struct net_device *dev)
  5129. {
  5130. struct niu *np = netdev_priv(dev);
  5131. niu_full_shutdown(np, dev);
  5132. niu_free_irq(np);
  5133. niu_free_channels(np);
  5134. niu_handle_led(np, 0);
  5135. return 0;
  5136. }
  5137. static void niu_sync_xmac_stats(struct niu *np)
  5138. {
  5139. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5140. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5141. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5142. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5143. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5144. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5145. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5146. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5147. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5148. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5149. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5150. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5151. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5152. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5153. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5154. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5155. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5156. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5157. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5158. }
  5159. static void niu_sync_bmac_stats(struct niu *np)
  5160. {
  5161. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5162. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5163. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5164. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5165. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5166. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5167. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5168. }
  5169. static void niu_sync_mac_stats(struct niu *np)
  5170. {
  5171. if (np->flags & NIU_FLAGS_XMAC)
  5172. niu_sync_xmac_stats(np);
  5173. else
  5174. niu_sync_bmac_stats(np);
  5175. }
  5176. static void niu_get_rx_stats(struct niu *np)
  5177. {
  5178. unsigned long pkts, dropped, errors, bytes;
  5179. int i;
  5180. pkts = dropped = errors = bytes = 0;
  5181. for (i = 0; i < np->num_rx_rings; i++) {
  5182. struct rx_ring_info *rp = &np->rx_rings[i];
  5183. niu_sync_rx_discard_stats(np, rp, 0);
  5184. pkts += rp->rx_packets;
  5185. bytes += rp->rx_bytes;
  5186. dropped += rp->rx_dropped;
  5187. errors += rp->rx_errors;
  5188. }
  5189. np->dev->stats.rx_packets = pkts;
  5190. np->dev->stats.rx_bytes = bytes;
  5191. np->dev->stats.rx_dropped = dropped;
  5192. np->dev->stats.rx_errors = errors;
  5193. }
  5194. static void niu_get_tx_stats(struct niu *np)
  5195. {
  5196. unsigned long pkts, errors, bytes;
  5197. int i;
  5198. pkts = errors = bytes = 0;
  5199. for (i = 0; i < np->num_tx_rings; i++) {
  5200. struct tx_ring_info *rp = &np->tx_rings[i];
  5201. pkts += rp->tx_packets;
  5202. bytes += rp->tx_bytes;
  5203. errors += rp->tx_errors;
  5204. }
  5205. np->dev->stats.tx_packets = pkts;
  5206. np->dev->stats.tx_bytes = bytes;
  5207. np->dev->stats.tx_errors = errors;
  5208. }
  5209. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5210. {
  5211. struct niu *np = netdev_priv(dev);
  5212. niu_get_rx_stats(np);
  5213. niu_get_tx_stats(np);
  5214. return &dev->stats;
  5215. }
  5216. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5217. {
  5218. int i;
  5219. for (i = 0; i < 16; i++)
  5220. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5221. }
  5222. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5223. {
  5224. int i;
  5225. for (i = 0; i < 16; i++)
  5226. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5227. }
  5228. static void niu_load_hash(struct niu *np, u16 *hash)
  5229. {
  5230. if (np->flags & NIU_FLAGS_XMAC)
  5231. niu_load_hash_xmac(np, hash);
  5232. else
  5233. niu_load_hash_bmac(np, hash);
  5234. }
  5235. static void niu_set_rx_mode(struct net_device *dev)
  5236. {
  5237. struct niu *np = netdev_priv(dev);
  5238. int i, alt_cnt, err;
  5239. struct dev_addr_list *addr;
  5240. struct netdev_hw_addr *ha;
  5241. unsigned long flags;
  5242. u16 hash[16] = { 0, };
  5243. spin_lock_irqsave(&np->lock, flags);
  5244. niu_enable_rx_mac(np, 0);
  5245. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5246. if (dev->flags & IFF_PROMISC)
  5247. np->flags |= NIU_FLAGS_PROMISC;
  5248. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5249. np->flags |= NIU_FLAGS_MCAST;
  5250. alt_cnt = dev->uc.count;
  5251. if (alt_cnt > niu_num_alt_addr(np)) {
  5252. alt_cnt = 0;
  5253. np->flags |= NIU_FLAGS_PROMISC;
  5254. }
  5255. if (alt_cnt) {
  5256. int index = 0;
  5257. list_for_each_entry(ha, &dev->uc.list, list) {
  5258. err = niu_set_alt_mac(np, index, ha->addr);
  5259. if (err)
  5260. printk(KERN_WARNING PFX "%s: Error %d "
  5261. "adding alt mac %d\n",
  5262. dev->name, err, index);
  5263. err = niu_enable_alt_mac(np, index, 1);
  5264. if (err)
  5265. printk(KERN_WARNING PFX "%s: Error %d "
  5266. "enabling alt mac %d\n",
  5267. dev->name, err, index);
  5268. index++;
  5269. }
  5270. } else {
  5271. int alt_start;
  5272. if (np->flags & NIU_FLAGS_XMAC)
  5273. alt_start = 0;
  5274. else
  5275. alt_start = 1;
  5276. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5277. err = niu_enable_alt_mac(np, i, 0);
  5278. if (err)
  5279. printk(KERN_WARNING PFX "%s: Error %d "
  5280. "disabling alt mac %d\n",
  5281. dev->name, err, i);
  5282. }
  5283. }
  5284. if (dev->flags & IFF_ALLMULTI) {
  5285. for (i = 0; i < 16; i++)
  5286. hash[i] = 0xffff;
  5287. } else if (dev->mc_count > 0) {
  5288. for (addr = dev->mc_list; addr; addr = addr->next) {
  5289. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5290. crc >>= 24;
  5291. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5292. }
  5293. }
  5294. if (np->flags & NIU_FLAGS_MCAST)
  5295. niu_load_hash(np, hash);
  5296. niu_enable_rx_mac(np, 1);
  5297. spin_unlock_irqrestore(&np->lock, flags);
  5298. }
  5299. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5300. {
  5301. struct niu *np = netdev_priv(dev);
  5302. struct sockaddr *addr = p;
  5303. unsigned long flags;
  5304. if (!is_valid_ether_addr(addr->sa_data))
  5305. return -EINVAL;
  5306. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5307. if (!netif_running(dev))
  5308. return 0;
  5309. spin_lock_irqsave(&np->lock, flags);
  5310. niu_enable_rx_mac(np, 0);
  5311. niu_set_primary_mac(np, dev->dev_addr);
  5312. niu_enable_rx_mac(np, 1);
  5313. spin_unlock_irqrestore(&np->lock, flags);
  5314. return 0;
  5315. }
  5316. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5317. {
  5318. return -EOPNOTSUPP;
  5319. }
  5320. static void niu_netif_stop(struct niu *np)
  5321. {
  5322. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5323. niu_disable_napi(np);
  5324. netif_tx_disable(np->dev);
  5325. }
  5326. static void niu_netif_start(struct niu *np)
  5327. {
  5328. /* NOTE: unconditional netif_wake_queue is only appropriate
  5329. * so long as all callers are assured to have free tx slots
  5330. * (such as after niu_init_hw).
  5331. */
  5332. netif_tx_wake_all_queues(np->dev);
  5333. niu_enable_napi(np);
  5334. niu_enable_interrupts(np, 1);
  5335. }
  5336. static void niu_reset_buffers(struct niu *np)
  5337. {
  5338. int i, j, k, err;
  5339. if (np->rx_rings) {
  5340. for (i = 0; i < np->num_rx_rings; i++) {
  5341. struct rx_ring_info *rp = &np->rx_rings[i];
  5342. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5343. struct page *page;
  5344. page = rp->rxhash[j];
  5345. while (page) {
  5346. struct page *next =
  5347. (struct page *) page->mapping;
  5348. u64 base = page->index;
  5349. base = base >> RBR_DESCR_ADDR_SHIFT;
  5350. rp->rbr[k++] = cpu_to_le32(base);
  5351. page = next;
  5352. }
  5353. }
  5354. for (; k < MAX_RBR_RING_SIZE; k++) {
  5355. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5356. if (unlikely(err))
  5357. break;
  5358. }
  5359. rp->rbr_index = rp->rbr_table_size - 1;
  5360. rp->rcr_index = 0;
  5361. rp->rbr_pending = 0;
  5362. rp->rbr_refill_pending = 0;
  5363. }
  5364. }
  5365. if (np->tx_rings) {
  5366. for (i = 0; i < np->num_tx_rings; i++) {
  5367. struct tx_ring_info *rp = &np->tx_rings[i];
  5368. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5369. if (rp->tx_buffs[j].skb)
  5370. (void) release_tx_packet(np, rp, j);
  5371. }
  5372. rp->pending = MAX_TX_RING_SIZE;
  5373. rp->prod = 0;
  5374. rp->cons = 0;
  5375. rp->wrap_bit = 0;
  5376. }
  5377. }
  5378. }
  5379. static void niu_reset_task(struct work_struct *work)
  5380. {
  5381. struct niu *np = container_of(work, struct niu, reset_task);
  5382. unsigned long flags;
  5383. int err;
  5384. spin_lock_irqsave(&np->lock, flags);
  5385. if (!netif_running(np->dev)) {
  5386. spin_unlock_irqrestore(&np->lock, flags);
  5387. return;
  5388. }
  5389. spin_unlock_irqrestore(&np->lock, flags);
  5390. del_timer_sync(&np->timer);
  5391. niu_netif_stop(np);
  5392. spin_lock_irqsave(&np->lock, flags);
  5393. niu_stop_hw(np);
  5394. spin_unlock_irqrestore(&np->lock, flags);
  5395. niu_reset_buffers(np);
  5396. spin_lock_irqsave(&np->lock, flags);
  5397. err = niu_init_hw(np);
  5398. if (!err) {
  5399. np->timer.expires = jiffies + HZ;
  5400. add_timer(&np->timer);
  5401. niu_netif_start(np);
  5402. }
  5403. spin_unlock_irqrestore(&np->lock, flags);
  5404. }
  5405. static void niu_tx_timeout(struct net_device *dev)
  5406. {
  5407. struct niu *np = netdev_priv(dev);
  5408. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5409. dev->name);
  5410. schedule_work(&np->reset_task);
  5411. }
  5412. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5413. u64 mapping, u64 len, u64 mark,
  5414. u64 n_frags)
  5415. {
  5416. __le64 *desc = &rp->descr[index];
  5417. *desc = cpu_to_le64(mark |
  5418. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5419. (len << TX_DESC_TR_LEN_SHIFT) |
  5420. (mapping & TX_DESC_SAD));
  5421. }
  5422. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5423. u64 pad_bytes, u64 len)
  5424. {
  5425. u16 eth_proto, eth_proto_inner;
  5426. u64 csum_bits, l3off, ihl, ret;
  5427. u8 ip_proto;
  5428. int ipv6;
  5429. eth_proto = be16_to_cpu(ehdr->h_proto);
  5430. eth_proto_inner = eth_proto;
  5431. if (eth_proto == ETH_P_8021Q) {
  5432. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5433. __be16 val = vp->h_vlan_encapsulated_proto;
  5434. eth_proto_inner = be16_to_cpu(val);
  5435. }
  5436. ipv6 = ihl = 0;
  5437. switch (skb->protocol) {
  5438. case cpu_to_be16(ETH_P_IP):
  5439. ip_proto = ip_hdr(skb)->protocol;
  5440. ihl = ip_hdr(skb)->ihl;
  5441. break;
  5442. case cpu_to_be16(ETH_P_IPV6):
  5443. ip_proto = ipv6_hdr(skb)->nexthdr;
  5444. ihl = (40 >> 2);
  5445. ipv6 = 1;
  5446. break;
  5447. default:
  5448. ip_proto = ihl = 0;
  5449. break;
  5450. }
  5451. csum_bits = TXHDR_CSUM_NONE;
  5452. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5453. u64 start, stuff;
  5454. csum_bits = (ip_proto == IPPROTO_TCP ?
  5455. TXHDR_CSUM_TCP :
  5456. (ip_proto == IPPROTO_UDP ?
  5457. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5458. start = skb_transport_offset(skb) -
  5459. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5460. stuff = start + skb->csum_offset;
  5461. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5462. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5463. }
  5464. l3off = skb_network_offset(skb) -
  5465. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5466. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5467. (len << TXHDR_LEN_SHIFT) |
  5468. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5469. (ihl << TXHDR_IHL_SHIFT) |
  5470. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5471. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5472. (ipv6 ? TXHDR_IP_VER : 0) |
  5473. csum_bits);
  5474. return ret;
  5475. }
  5476. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5477. {
  5478. struct niu *np = netdev_priv(dev);
  5479. unsigned long align, headroom;
  5480. struct netdev_queue *txq;
  5481. struct tx_ring_info *rp;
  5482. struct tx_pkt_hdr *tp;
  5483. unsigned int len, nfg;
  5484. struct ethhdr *ehdr;
  5485. int prod, i, tlen;
  5486. u64 mapping, mrk;
  5487. i = skb_get_queue_mapping(skb);
  5488. rp = &np->tx_rings[i];
  5489. txq = netdev_get_tx_queue(dev, i);
  5490. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5491. netif_tx_stop_queue(txq);
  5492. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5493. "queue awake!\n", dev->name);
  5494. rp->tx_errors++;
  5495. return NETDEV_TX_BUSY;
  5496. }
  5497. if (skb->len < ETH_ZLEN) {
  5498. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5499. if (skb_pad(skb, pad_bytes))
  5500. goto out;
  5501. skb_put(skb, pad_bytes);
  5502. }
  5503. len = sizeof(struct tx_pkt_hdr) + 15;
  5504. if (skb_headroom(skb) < len) {
  5505. struct sk_buff *skb_new;
  5506. skb_new = skb_realloc_headroom(skb, len);
  5507. if (!skb_new) {
  5508. rp->tx_errors++;
  5509. goto out_drop;
  5510. }
  5511. kfree_skb(skb);
  5512. skb = skb_new;
  5513. } else
  5514. skb_orphan(skb);
  5515. align = ((unsigned long) skb->data & (16 - 1));
  5516. headroom = align + sizeof(struct tx_pkt_hdr);
  5517. ehdr = (struct ethhdr *) skb->data;
  5518. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5519. len = skb->len - sizeof(struct tx_pkt_hdr);
  5520. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5521. tp->resv = 0;
  5522. len = skb_headlen(skb);
  5523. mapping = np->ops->map_single(np->device, skb->data,
  5524. len, DMA_TO_DEVICE);
  5525. prod = rp->prod;
  5526. rp->tx_buffs[prod].skb = skb;
  5527. rp->tx_buffs[prod].mapping = mapping;
  5528. mrk = TX_DESC_SOP;
  5529. if (++rp->mark_counter == rp->mark_freq) {
  5530. rp->mark_counter = 0;
  5531. mrk |= TX_DESC_MARK;
  5532. rp->mark_pending++;
  5533. }
  5534. tlen = len;
  5535. nfg = skb_shinfo(skb)->nr_frags;
  5536. while (tlen > 0) {
  5537. tlen -= MAX_TX_DESC_LEN;
  5538. nfg++;
  5539. }
  5540. while (len > 0) {
  5541. unsigned int this_len = len;
  5542. if (this_len > MAX_TX_DESC_LEN)
  5543. this_len = MAX_TX_DESC_LEN;
  5544. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5545. mrk = nfg = 0;
  5546. prod = NEXT_TX(rp, prod);
  5547. mapping += this_len;
  5548. len -= this_len;
  5549. }
  5550. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5551. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5552. len = frag->size;
  5553. mapping = np->ops->map_page(np->device, frag->page,
  5554. frag->page_offset, len,
  5555. DMA_TO_DEVICE);
  5556. rp->tx_buffs[prod].skb = NULL;
  5557. rp->tx_buffs[prod].mapping = mapping;
  5558. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5559. prod = NEXT_TX(rp, prod);
  5560. }
  5561. if (prod < rp->prod)
  5562. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5563. rp->prod = prod;
  5564. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5565. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5566. netif_tx_stop_queue(txq);
  5567. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5568. netif_tx_wake_queue(txq);
  5569. }
  5570. out:
  5571. return NETDEV_TX_OK;
  5572. out_drop:
  5573. rp->tx_errors++;
  5574. kfree_skb(skb);
  5575. goto out;
  5576. }
  5577. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5578. {
  5579. struct niu *np = netdev_priv(dev);
  5580. int err, orig_jumbo, new_jumbo;
  5581. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5582. return -EINVAL;
  5583. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5584. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5585. dev->mtu = new_mtu;
  5586. if (!netif_running(dev) ||
  5587. (orig_jumbo == new_jumbo))
  5588. return 0;
  5589. niu_full_shutdown(np, dev);
  5590. niu_free_channels(np);
  5591. niu_enable_napi(np);
  5592. err = niu_alloc_channels(np);
  5593. if (err)
  5594. return err;
  5595. spin_lock_irq(&np->lock);
  5596. err = niu_init_hw(np);
  5597. if (!err) {
  5598. init_timer(&np->timer);
  5599. np->timer.expires = jiffies + HZ;
  5600. np->timer.data = (unsigned long) np;
  5601. np->timer.function = niu_timer;
  5602. err = niu_enable_interrupts(np, 1);
  5603. if (err)
  5604. niu_stop_hw(np);
  5605. }
  5606. spin_unlock_irq(&np->lock);
  5607. if (!err) {
  5608. netif_tx_start_all_queues(dev);
  5609. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5610. netif_carrier_on(dev);
  5611. add_timer(&np->timer);
  5612. }
  5613. return err;
  5614. }
  5615. static void niu_get_drvinfo(struct net_device *dev,
  5616. struct ethtool_drvinfo *info)
  5617. {
  5618. struct niu *np = netdev_priv(dev);
  5619. struct niu_vpd *vpd = &np->vpd;
  5620. strcpy(info->driver, DRV_MODULE_NAME);
  5621. strcpy(info->version, DRV_MODULE_VERSION);
  5622. sprintf(info->fw_version, "%d.%d",
  5623. vpd->fcode_major, vpd->fcode_minor);
  5624. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5625. strcpy(info->bus_info, pci_name(np->pdev));
  5626. }
  5627. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5628. {
  5629. struct niu *np = netdev_priv(dev);
  5630. struct niu_link_config *lp;
  5631. lp = &np->link_config;
  5632. memset(cmd, 0, sizeof(*cmd));
  5633. cmd->phy_address = np->phy_addr;
  5634. cmd->supported = lp->supported;
  5635. cmd->advertising = lp->active_advertising;
  5636. cmd->autoneg = lp->active_autoneg;
  5637. cmd->speed = lp->active_speed;
  5638. cmd->duplex = lp->active_duplex;
  5639. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5640. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5641. XCVR_EXTERNAL : XCVR_INTERNAL;
  5642. return 0;
  5643. }
  5644. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5645. {
  5646. struct niu *np = netdev_priv(dev);
  5647. struct niu_link_config *lp = &np->link_config;
  5648. lp->advertising = cmd->advertising;
  5649. lp->speed = cmd->speed;
  5650. lp->duplex = cmd->duplex;
  5651. lp->autoneg = cmd->autoneg;
  5652. return niu_init_link(np);
  5653. }
  5654. static u32 niu_get_msglevel(struct net_device *dev)
  5655. {
  5656. struct niu *np = netdev_priv(dev);
  5657. return np->msg_enable;
  5658. }
  5659. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5660. {
  5661. struct niu *np = netdev_priv(dev);
  5662. np->msg_enable = value;
  5663. }
  5664. static int niu_nway_reset(struct net_device *dev)
  5665. {
  5666. struct niu *np = netdev_priv(dev);
  5667. if (np->link_config.autoneg)
  5668. return niu_init_link(np);
  5669. return 0;
  5670. }
  5671. static int niu_get_eeprom_len(struct net_device *dev)
  5672. {
  5673. struct niu *np = netdev_priv(dev);
  5674. return np->eeprom_len;
  5675. }
  5676. static int niu_get_eeprom(struct net_device *dev,
  5677. struct ethtool_eeprom *eeprom, u8 *data)
  5678. {
  5679. struct niu *np = netdev_priv(dev);
  5680. u32 offset, len, val;
  5681. offset = eeprom->offset;
  5682. len = eeprom->len;
  5683. if (offset + len < offset)
  5684. return -EINVAL;
  5685. if (offset >= np->eeprom_len)
  5686. return -EINVAL;
  5687. if (offset + len > np->eeprom_len)
  5688. len = eeprom->len = np->eeprom_len - offset;
  5689. if (offset & 3) {
  5690. u32 b_offset, b_count;
  5691. b_offset = offset & 3;
  5692. b_count = 4 - b_offset;
  5693. if (b_count > len)
  5694. b_count = len;
  5695. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5696. memcpy(data, ((char *)&val) + b_offset, b_count);
  5697. data += b_count;
  5698. len -= b_count;
  5699. offset += b_count;
  5700. }
  5701. while (len >= 4) {
  5702. val = nr64(ESPC_NCR(offset / 4));
  5703. memcpy(data, &val, 4);
  5704. data += 4;
  5705. len -= 4;
  5706. offset += 4;
  5707. }
  5708. if (len) {
  5709. val = nr64(ESPC_NCR(offset / 4));
  5710. memcpy(data, &val, len);
  5711. }
  5712. return 0;
  5713. }
  5714. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5715. {
  5716. switch (flow_type) {
  5717. case TCP_V4_FLOW:
  5718. case TCP_V6_FLOW:
  5719. *pid = IPPROTO_TCP;
  5720. break;
  5721. case UDP_V4_FLOW:
  5722. case UDP_V6_FLOW:
  5723. *pid = IPPROTO_UDP;
  5724. break;
  5725. case SCTP_V4_FLOW:
  5726. case SCTP_V6_FLOW:
  5727. *pid = IPPROTO_SCTP;
  5728. break;
  5729. case AH_V4_FLOW:
  5730. case AH_V6_FLOW:
  5731. *pid = IPPROTO_AH;
  5732. break;
  5733. case ESP_V4_FLOW:
  5734. case ESP_V6_FLOW:
  5735. *pid = IPPROTO_ESP;
  5736. break;
  5737. default:
  5738. *pid = 0;
  5739. break;
  5740. }
  5741. }
  5742. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5743. {
  5744. switch (class) {
  5745. case CLASS_CODE_TCP_IPV4:
  5746. *flow_type = TCP_V4_FLOW;
  5747. break;
  5748. case CLASS_CODE_UDP_IPV4:
  5749. *flow_type = UDP_V4_FLOW;
  5750. break;
  5751. case CLASS_CODE_AH_ESP_IPV4:
  5752. *flow_type = AH_V4_FLOW;
  5753. break;
  5754. case CLASS_CODE_SCTP_IPV4:
  5755. *flow_type = SCTP_V4_FLOW;
  5756. break;
  5757. case CLASS_CODE_TCP_IPV6:
  5758. *flow_type = TCP_V6_FLOW;
  5759. break;
  5760. case CLASS_CODE_UDP_IPV6:
  5761. *flow_type = UDP_V6_FLOW;
  5762. break;
  5763. case CLASS_CODE_AH_ESP_IPV6:
  5764. *flow_type = AH_V6_FLOW;
  5765. break;
  5766. case CLASS_CODE_SCTP_IPV6:
  5767. *flow_type = SCTP_V6_FLOW;
  5768. break;
  5769. case CLASS_CODE_USER_PROG1:
  5770. case CLASS_CODE_USER_PROG2:
  5771. case CLASS_CODE_USER_PROG3:
  5772. case CLASS_CODE_USER_PROG4:
  5773. *flow_type = IP_USER_FLOW;
  5774. break;
  5775. default:
  5776. return 0;
  5777. }
  5778. return 1;
  5779. }
  5780. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5781. {
  5782. switch (flow_type) {
  5783. case TCP_V4_FLOW:
  5784. *class = CLASS_CODE_TCP_IPV4;
  5785. break;
  5786. case UDP_V4_FLOW:
  5787. *class = CLASS_CODE_UDP_IPV4;
  5788. break;
  5789. case AH_V4_FLOW:
  5790. case ESP_V4_FLOW:
  5791. *class = CLASS_CODE_AH_ESP_IPV4;
  5792. break;
  5793. case SCTP_V4_FLOW:
  5794. *class = CLASS_CODE_SCTP_IPV4;
  5795. break;
  5796. case TCP_V6_FLOW:
  5797. *class = CLASS_CODE_TCP_IPV6;
  5798. break;
  5799. case UDP_V6_FLOW:
  5800. *class = CLASS_CODE_UDP_IPV6;
  5801. break;
  5802. case AH_V6_FLOW:
  5803. case ESP_V6_FLOW:
  5804. *class = CLASS_CODE_AH_ESP_IPV6;
  5805. break;
  5806. case SCTP_V6_FLOW:
  5807. *class = CLASS_CODE_SCTP_IPV6;
  5808. break;
  5809. default:
  5810. return 0;
  5811. }
  5812. return 1;
  5813. }
  5814. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5815. {
  5816. u64 ethflow = 0;
  5817. if (flow_key & FLOW_KEY_L2DA)
  5818. ethflow |= RXH_L2DA;
  5819. if (flow_key & FLOW_KEY_VLAN)
  5820. ethflow |= RXH_VLAN;
  5821. if (flow_key & FLOW_KEY_IPSA)
  5822. ethflow |= RXH_IP_SRC;
  5823. if (flow_key & FLOW_KEY_IPDA)
  5824. ethflow |= RXH_IP_DST;
  5825. if (flow_key & FLOW_KEY_PROTO)
  5826. ethflow |= RXH_L3_PROTO;
  5827. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5828. ethflow |= RXH_L4_B_0_1;
  5829. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5830. ethflow |= RXH_L4_B_2_3;
  5831. return ethflow;
  5832. }
  5833. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5834. {
  5835. u64 key = 0;
  5836. if (ethflow & RXH_L2DA)
  5837. key |= FLOW_KEY_L2DA;
  5838. if (ethflow & RXH_VLAN)
  5839. key |= FLOW_KEY_VLAN;
  5840. if (ethflow & RXH_IP_SRC)
  5841. key |= FLOW_KEY_IPSA;
  5842. if (ethflow & RXH_IP_DST)
  5843. key |= FLOW_KEY_IPDA;
  5844. if (ethflow & RXH_L3_PROTO)
  5845. key |= FLOW_KEY_PROTO;
  5846. if (ethflow & RXH_L4_B_0_1)
  5847. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5848. if (ethflow & RXH_L4_B_2_3)
  5849. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5850. *flow_key = key;
  5851. return 1;
  5852. }
  5853. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5854. {
  5855. u64 class;
  5856. nfc->data = 0;
  5857. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5858. return -EINVAL;
  5859. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5860. TCAM_KEY_DISC)
  5861. nfc->data = RXH_DISCARD;
  5862. else
  5863. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5864. CLASS_CODE_USER_PROG1]);
  5865. return 0;
  5866. }
  5867. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5868. struct ethtool_rx_flow_spec *fsp)
  5869. {
  5870. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5871. TCAM_V4KEY3_SADDR_SHIFT;
  5872. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5873. TCAM_V4KEY3_DADDR_SHIFT;
  5874. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5875. TCAM_V4KEY3_SADDR_SHIFT;
  5876. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5877. TCAM_V4KEY3_DADDR_SHIFT;
  5878. fsp->h_u.tcp_ip4_spec.ip4src =
  5879. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5880. fsp->m_u.tcp_ip4_spec.ip4src =
  5881. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5882. fsp->h_u.tcp_ip4_spec.ip4dst =
  5883. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5884. fsp->m_u.tcp_ip4_spec.ip4dst =
  5885. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5886. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5887. TCAM_V4KEY2_TOS_SHIFT;
  5888. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5889. TCAM_V4KEY2_TOS_SHIFT;
  5890. switch (fsp->flow_type) {
  5891. case TCP_V4_FLOW:
  5892. case UDP_V4_FLOW:
  5893. case SCTP_V4_FLOW:
  5894. fsp->h_u.tcp_ip4_spec.psrc =
  5895. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5896. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5897. fsp->h_u.tcp_ip4_spec.pdst =
  5898. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5899. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5900. fsp->m_u.tcp_ip4_spec.psrc =
  5901. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5902. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5903. fsp->m_u.tcp_ip4_spec.pdst =
  5904. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5905. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5906. fsp->h_u.tcp_ip4_spec.psrc =
  5907. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5908. fsp->h_u.tcp_ip4_spec.pdst =
  5909. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5910. fsp->m_u.tcp_ip4_spec.psrc =
  5911. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5912. fsp->m_u.tcp_ip4_spec.pdst =
  5913. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5914. break;
  5915. case AH_V4_FLOW:
  5916. case ESP_V4_FLOW:
  5917. fsp->h_u.ah_ip4_spec.spi =
  5918. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5919. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5920. fsp->m_u.ah_ip4_spec.spi =
  5921. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5922. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5923. fsp->h_u.ah_ip4_spec.spi =
  5924. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5925. fsp->m_u.ah_ip4_spec.spi =
  5926. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5927. break;
  5928. case IP_USER_FLOW:
  5929. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5930. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5931. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5932. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5933. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5934. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5935. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5936. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5937. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5938. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5939. fsp->h_u.usr_ip4_spec.proto =
  5940. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5941. TCAM_V4KEY2_PROTO_SHIFT;
  5942. fsp->m_u.usr_ip4_spec.proto =
  5943. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5944. TCAM_V4KEY2_PROTO_SHIFT;
  5945. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5946. break;
  5947. default:
  5948. break;
  5949. }
  5950. }
  5951. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5952. struct ethtool_rxnfc *nfc)
  5953. {
  5954. struct niu_parent *parent = np->parent;
  5955. struct niu_tcam_entry *tp;
  5956. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5957. u16 idx;
  5958. u64 class;
  5959. int ret = 0;
  5960. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5961. tp = &parent->tcam[idx];
  5962. if (!tp->valid) {
  5963. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5964. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5965. return -EINVAL;
  5966. }
  5967. /* fill the flow spec entry */
  5968. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5969. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5970. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5971. if (ret < 0) {
  5972. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5973. parent->index, np->dev->name);
  5974. ret = -EINVAL;
  5975. goto out;
  5976. }
  5977. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5978. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5979. TCAM_V4KEY2_PROTO_SHIFT;
  5980. if (proto == IPPROTO_ESP) {
  5981. if (fsp->flow_type == AH_V4_FLOW)
  5982. fsp->flow_type = ESP_V4_FLOW;
  5983. else
  5984. fsp->flow_type = ESP_V6_FLOW;
  5985. }
  5986. }
  5987. switch (fsp->flow_type) {
  5988. case TCP_V4_FLOW:
  5989. case UDP_V4_FLOW:
  5990. case SCTP_V4_FLOW:
  5991. case AH_V4_FLOW:
  5992. case ESP_V4_FLOW:
  5993. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5994. break;
  5995. case TCP_V6_FLOW:
  5996. case UDP_V6_FLOW:
  5997. case SCTP_V6_FLOW:
  5998. case AH_V6_FLOW:
  5999. case ESP_V6_FLOW:
  6000. /* Not yet implemented */
  6001. ret = -EINVAL;
  6002. break;
  6003. case IP_USER_FLOW:
  6004. niu_get_ip4fs_from_tcam_key(tp, fsp);
  6005. break;
  6006. default:
  6007. ret = -EINVAL;
  6008. break;
  6009. }
  6010. if (ret < 0)
  6011. goto out;
  6012. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  6013. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  6014. else
  6015. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  6016. TCAM_ASSOCDATA_OFFSET_SHIFT;
  6017. /* put the tcam size here */
  6018. nfc->data = tcam_get_size(np);
  6019. out:
  6020. return ret;
  6021. }
  6022. static int niu_get_ethtool_tcam_all(struct niu *np,
  6023. struct ethtool_rxnfc *nfc,
  6024. u32 *rule_locs)
  6025. {
  6026. struct niu_parent *parent = np->parent;
  6027. struct niu_tcam_entry *tp;
  6028. int i, idx, cnt;
  6029. u16 n_entries;
  6030. unsigned long flags;
  6031. /* put the tcam size here */
  6032. nfc->data = tcam_get_size(np);
  6033. niu_lock_parent(np, flags);
  6034. n_entries = nfc->rule_cnt;
  6035. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6036. idx = tcam_get_index(np, i);
  6037. tp = &parent->tcam[idx];
  6038. if (!tp->valid)
  6039. continue;
  6040. rule_locs[cnt] = i;
  6041. cnt++;
  6042. }
  6043. niu_unlock_parent(np, flags);
  6044. if (n_entries != cnt) {
  6045. /* print warning, this should not happen */
  6046. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6047. "n_entries[%d] != cnt[%d]!!!\n\n",
  6048. np->parent->index, np->dev->name, n_entries, cnt);
  6049. }
  6050. return 0;
  6051. }
  6052. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6053. void *rule_locs)
  6054. {
  6055. struct niu *np = netdev_priv(dev);
  6056. int ret = 0;
  6057. switch (cmd->cmd) {
  6058. case ETHTOOL_GRXFH:
  6059. ret = niu_get_hash_opts(np, cmd);
  6060. break;
  6061. case ETHTOOL_GRXRINGS:
  6062. cmd->data = np->num_rx_rings;
  6063. break;
  6064. case ETHTOOL_GRXCLSRLCNT:
  6065. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6066. break;
  6067. case ETHTOOL_GRXCLSRULE:
  6068. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6069. break;
  6070. case ETHTOOL_GRXCLSRLALL:
  6071. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6072. break;
  6073. default:
  6074. ret = -EINVAL;
  6075. break;
  6076. }
  6077. return ret;
  6078. }
  6079. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6080. {
  6081. u64 class;
  6082. u64 flow_key = 0;
  6083. unsigned long flags;
  6084. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6085. return -EINVAL;
  6086. if (class < CLASS_CODE_USER_PROG1 ||
  6087. class > CLASS_CODE_SCTP_IPV6)
  6088. return -EINVAL;
  6089. if (nfc->data & RXH_DISCARD) {
  6090. niu_lock_parent(np, flags);
  6091. flow_key = np->parent->tcam_key[class -
  6092. CLASS_CODE_USER_PROG1];
  6093. flow_key |= TCAM_KEY_DISC;
  6094. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6095. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6096. niu_unlock_parent(np, flags);
  6097. return 0;
  6098. } else {
  6099. /* Discard was set before, but is not set now */
  6100. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6101. TCAM_KEY_DISC) {
  6102. niu_lock_parent(np, flags);
  6103. flow_key = np->parent->tcam_key[class -
  6104. CLASS_CODE_USER_PROG1];
  6105. flow_key &= ~TCAM_KEY_DISC;
  6106. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6107. flow_key);
  6108. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6109. flow_key;
  6110. niu_unlock_parent(np, flags);
  6111. }
  6112. }
  6113. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6114. return -EINVAL;
  6115. niu_lock_parent(np, flags);
  6116. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6117. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6118. niu_unlock_parent(np, flags);
  6119. return 0;
  6120. }
  6121. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6122. struct niu_tcam_entry *tp,
  6123. int l2_rdc_tab, u64 class)
  6124. {
  6125. u8 pid = 0;
  6126. u32 sip, dip, sipm, dipm, spi, spim;
  6127. u16 sport, dport, spm, dpm;
  6128. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6129. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6130. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6131. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6132. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6133. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6134. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6135. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6136. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6137. tp->key[3] |= dip;
  6138. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6139. tp->key_mask[3] |= dipm;
  6140. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6141. TCAM_V4KEY2_TOS_SHIFT);
  6142. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6143. TCAM_V4KEY2_TOS_SHIFT);
  6144. switch (fsp->flow_type) {
  6145. case TCP_V4_FLOW:
  6146. case UDP_V4_FLOW:
  6147. case SCTP_V4_FLOW:
  6148. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6149. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6150. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6151. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6152. tp->key[2] |= (((u64)sport << 16) | dport);
  6153. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6154. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6155. break;
  6156. case AH_V4_FLOW:
  6157. case ESP_V4_FLOW:
  6158. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6159. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6160. tp->key[2] |= spi;
  6161. tp->key_mask[2] |= spim;
  6162. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6163. break;
  6164. case IP_USER_FLOW:
  6165. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6166. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6167. tp->key[2] |= spi;
  6168. tp->key_mask[2] |= spim;
  6169. pid = fsp->h_u.usr_ip4_spec.proto;
  6170. break;
  6171. default:
  6172. break;
  6173. }
  6174. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6175. if (pid) {
  6176. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6177. }
  6178. }
  6179. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6180. struct ethtool_rxnfc *nfc)
  6181. {
  6182. struct niu_parent *parent = np->parent;
  6183. struct niu_tcam_entry *tp;
  6184. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6185. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6186. int l2_rdc_table = rdc_table->first_table_num;
  6187. u16 idx;
  6188. u64 class;
  6189. unsigned long flags;
  6190. int err, ret;
  6191. ret = 0;
  6192. idx = nfc->fs.location;
  6193. if (idx >= tcam_get_size(np))
  6194. return -EINVAL;
  6195. if (fsp->flow_type == IP_USER_FLOW) {
  6196. int i;
  6197. int add_usr_cls = 0;
  6198. int ipv6 = 0;
  6199. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6200. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6201. niu_lock_parent(np, flags);
  6202. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6203. if (parent->l3_cls[i]) {
  6204. if (uspec->proto == parent->l3_cls_pid[i]) {
  6205. class = parent->l3_cls[i];
  6206. parent->l3_cls_refcnt[i]++;
  6207. add_usr_cls = 1;
  6208. break;
  6209. }
  6210. } else {
  6211. /* Program new user IP class */
  6212. switch (i) {
  6213. case 0:
  6214. class = CLASS_CODE_USER_PROG1;
  6215. break;
  6216. case 1:
  6217. class = CLASS_CODE_USER_PROG2;
  6218. break;
  6219. case 2:
  6220. class = CLASS_CODE_USER_PROG3;
  6221. break;
  6222. case 3:
  6223. class = CLASS_CODE_USER_PROG4;
  6224. break;
  6225. default:
  6226. break;
  6227. }
  6228. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6229. ipv6 = 1;
  6230. ret = tcam_user_ip_class_set(np, class, ipv6,
  6231. uspec->proto,
  6232. uspec->tos,
  6233. umask->tos);
  6234. if (ret)
  6235. goto out;
  6236. ret = tcam_user_ip_class_enable(np, class, 1);
  6237. if (ret)
  6238. goto out;
  6239. parent->l3_cls[i] = class;
  6240. parent->l3_cls_pid[i] = uspec->proto;
  6241. parent->l3_cls_refcnt[i]++;
  6242. add_usr_cls = 1;
  6243. break;
  6244. }
  6245. }
  6246. if (!add_usr_cls) {
  6247. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6248. "Could not find/insert class for pid %d\n",
  6249. parent->index, np->dev->name, uspec->proto);
  6250. ret = -EINVAL;
  6251. goto out;
  6252. }
  6253. niu_unlock_parent(np, flags);
  6254. } else {
  6255. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6256. return -EINVAL;
  6257. }
  6258. }
  6259. niu_lock_parent(np, flags);
  6260. idx = tcam_get_index(np, idx);
  6261. tp = &parent->tcam[idx];
  6262. memset(tp, 0, sizeof(*tp));
  6263. /* fill in the tcam key and mask */
  6264. switch (fsp->flow_type) {
  6265. case TCP_V4_FLOW:
  6266. case UDP_V4_FLOW:
  6267. case SCTP_V4_FLOW:
  6268. case AH_V4_FLOW:
  6269. case ESP_V4_FLOW:
  6270. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6271. break;
  6272. case TCP_V6_FLOW:
  6273. case UDP_V6_FLOW:
  6274. case SCTP_V6_FLOW:
  6275. case AH_V6_FLOW:
  6276. case ESP_V6_FLOW:
  6277. /* Not yet implemented */
  6278. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6279. "flow %d for IPv6 not implemented\n\n",
  6280. parent->index, np->dev->name, fsp->flow_type);
  6281. ret = -EINVAL;
  6282. goto out;
  6283. case IP_USER_FLOW:
  6284. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6285. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6286. class);
  6287. } else {
  6288. /* Not yet implemented */
  6289. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6290. "usr flow for IPv6 not implemented\n\n",
  6291. parent->index, np->dev->name);
  6292. ret = -EINVAL;
  6293. goto out;
  6294. }
  6295. break;
  6296. default:
  6297. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6298. "Unknown flow type %d\n\n",
  6299. parent->index, np->dev->name, fsp->flow_type);
  6300. ret = -EINVAL;
  6301. goto out;
  6302. }
  6303. /* fill in the assoc data */
  6304. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6305. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6306. } else {
  6307. if (fsp->ring_cookie >= np->num_rx_rings) {
  6308. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6309. "Invalid RX ring %lld\n\n",
  6310. parent->index, np->dev->name,
  6311. (long long) fsp->ring_cookie);
  6312. ret = -EINVAL;
  6313. goto out;
  6314. }
  6315. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6316. (fsp->ring_cookie <<
  6317. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6318. }
  6319. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6320. if (err) {
  6321. ret = -EINVAL;
  6322. goto out;
  6323. }
  6324. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6325. if (err) {
  6326. ret = -EINVAL;
  6327. goto out;
  6328. }
  6329. /* validate the entry */
  6330. tp->valid = 1;
  6331. np->clas.tcam_valid_entries++;
  6332. out:
  6333. niu_unlock_parent(np, flags);
  6334. return ret;
  6335. }
  6336. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6337. {
  6338. struct niu_parent *parent = np->parent;
  6339. struct niu_tcam_entry *tp;
  6340. u16 idx;
  6341. unsigned long flags;
  6342. u64 class;
  6343. int ret = 0;
  6344. if (loc >= tcam_get_size(np))
  6345. return -EINVAL;
  6346. niu_lock_parent(np, flags);
  6347. idx = tcam_get_index(np, loc);
  6348. tp = &parent->tcam[idx];
  6349. /* if the entry is of a user defined class, then update*/
  6350. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6351. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6352. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6353. int i;
  6354. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6355. if (parent->l3_cls[i] == class) {
  6356. parent->l3_cls_refcnt[i]--;
  6357. if (!parent->l3_cls_refcnt[i]) {
  6358. /* disable class */
  6359. ret = tcam_user_ip_class_enable(np,
  6360. class,
  6361. 0);
  6362. if (ret)
  6363. goto out;
  6364. parent->l3_cls[i] = 0;
  6365. parent->l3_cls_pid[i] = 0;
  6366. }
  6367. break;
  6368. }
  6369. }
  6370. if (i == NIU_L3_PROG_CLS) {
  6371. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6372. "Usr class 0x%llx not found \n",
  6373. parent->index, np->dev->name,
  6374. (unsigned long long) class);
  6375. ret = -EINVAL;
  6376. goto out;
  6377. }
  6378. }
  6379. ret = tcam_flush(np, idx);
  6380. if (ret)
  6381. goto out;
  6382. /* invalidate the entry */
  6383. tp->valid = 0;
  6384. np->clas.tcam_valid_entries--;
  6385. out:
  6386. niu_unlock_parent(np, flags);
  6387. return ret;
  6388. }
  6389. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6390. {
  6391. struct niu *np = netdev_priv(dev);
  6392. int ret = 0;
  6393. switch (cmd->cmd) {
  6394. case ETHTOOL_SRXFH:
  6395. ret = niu_set_hash_opts(np, cmd);
  6396. break;
  6397. case ETHTOOL_SRXCLSRLINS:
  6398. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6399. break;
  6400. case ETHTOOL_SRXCLSRLDEL:
  6401. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6402. break;
  6403. default:
  6404. ret = -EINVAL;
  6405. break;
  6406. }
  6407. return ret;
  6408. }
  6409. static const struct {
  6410. const char string[ETH_GSTRING_LEN];
  6411. } niu_xmac_stat_keys[] = {
  6412. { "tx_frames" },
  6413. { "tx_bytes" },
  6414. { "tx_fifo_errors" },
  6415. { "tx_overflow_errors" },
  6416. { "tx_max_pkt_size_errors" },
  6417. { "tx_underflow_errors" },
  6418. { "rx_local_faults" },
  6419. { "rx_remote_faults" },
  6420. { "rx_link_faults" },
  6421. { "rx_align_errors" },
  6422. { "rx_frags" },
  6423. { "rx_mcasts" },
  6424. { "rx_bcasts" },
  6425. { "rx_hist_cnt1" },
  6426. { "rx_hist_cnt2" },
  6427. { "rx_hist_cnt3" },
  6428. { "rx_hist_cnt4" },
  6429. { "rx_hist_cnt5" },
  6430. { "rx_hist_cnt6" },
  6431. { "rx_hist_cnt7" },
  6432. { "rx_octets" },
  6433. { "rx_code_violations" },
  6434. { "rx_len_errors" },
  6435. { "rx_crc_errors" },
  6436. { "rx_underflows" },
  6437. { "rx_overflows" },
  6438. { "pause_off_state" },
  6439. { "pause_on_state" },
  6440. { "pause_received" },
  6441. };
  6442. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6443. static const struct {
  6444. const char string[ETH_GSTRING_LEN];
  6445. } niu_bmac_stat_keys[] = {
  6446. { "tx_underflow_errors" },
  6447. { "tx_max_pkt_size_errors" },
  6448. { "tx_bytes" },
  6449. { "tx_frames" },
  6450. { "rx_overflows" },
  6451. { "rx_frames" },
  6452. { "rx_align_errors" },
  6453. { "rx_crc_errors" },
  6454. { "rx_len_errors" },
  6455. { "pause_off_state" },
  6456. { "pause_on_state" },
  6457. { "pause_received" },
  6458. };
  6459. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6460. static const struct {
  6461. const char string[ETH_GSTRING_LEN];
  6462. } niu_rxchan_stat_keys[] = {
  6463. { "rx_channel" },
  6464. { "rx_packets" },
  6465. { "rx_bytes" },
  6466. { "rx_dropped" },
  6467. { "rx_errors" },
  6468. };
  6469. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6470. static const struct {
  6471. const char string[ETH_GSTRING_LEN];
  6472. } niu_txchan_stat_keys[] = {
  6473. { "tx_channel" },
  6474. { "tx_packets" },
  6475. { "tx_bytes" },
  6476. { "tx_errors" },
  6477. };
  6478. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6479. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6480. {
  6481. struct niu *np = netdev_priv(dev);
  6482. int i;
  6483. if (stringset != ETH_SS_STATS)
  6484. return;
  6485. if (np->flags & NIU_FLAGS_XMAC) {
  6486. memcpy(data, niu_xmac_stat_keys,
  6487. sizeof(niu_xmac_stat_keys));
  6488. data += sizeof(niu_xmac_stat_keys);
  6489. } else {
  6490. memcpy(data, niu_bmac_stat_keys,
  6491. sizeof(niu_bmac_stat_keys));
  6492. data += sizeof(niu_bmac_stat_keys);
  6493. }
  6494. for (i = 0; i < np->num_rx_rings; i++) {
  6495. memcpy(data, niu_rxchan_stat_keys,
  6496. sizeof(niu_rxchan_stat_keys));
  6497. data += sizeof(niu_rxchan_stat_keys);
  6498. }
  6499. for (i = 0; i < np->num_tx_rings; i++) {
  6500. memcpy(data, niu_txchan_stat_keys,
  6501. sizeof(niu_txchan_stat_keys));
  6502. data += sizeof(niu_txchan_stat_keys);
  6503. }
  6504. }
  6505. static int niu_get_stats_count(struct net_device *dev)
  6506. {
  6507. struct niu *np = netdev_priv(dev);
  6508. return ((np->flags & NIU_FLAGS_XMAC ?
  6509. NUM_XMAC_STAT_KEYS :
  6510. NUM_BMAC_STAT_KEYS) +
  6511. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6512. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6513. }
  6514. static void niu_get_ethtool_stats(struct net_device *dev,
  6515. struct ethtool_stats *stats, u64 *data)
  6516. {
  6517. struct niu *np = netdev_priv(dev);
  6518. int i;
  6519. niu_sync_mac_stats(np);
  6520. if (np->flags & NIU_FLAGS_XMAC) {
  6521. memcpy(data, &np->mac_stats.xmac,
  6522. sizeof(struct niu_xmac_stats));
  6523. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6524. } else {
  6525. memcpy(data, &np->mac_stats.bmac,
  6526. sizeof(struct niu_bmac_stats));
  6527. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6528. }
  6529. for (i = 0; i < np->num_rx_rings; i++) {
  6530. struct rx_ring_info *rp = &np->rx_rings[i];
  6531. niu_sync_rx_discard_stats(np, rp, 0);
  6532. data[0] = rp->rx_channel;
  6533. data[1] = rp->rx_packets;
  6534. data[2] = rp->rx_bytes;
  6535. data[3] = rp->rx_dropped;
  6536. data[4] = rp->rx_errors;
  6537. data += 5;
  6538. }
  6539. for (i = 0; i < np->num_tx_rings; i++) {
  6540. struct tx_ring_info *rp = &np->tx_rings[i];
  6541. data[0] = rp->tx_channel;
  6542. data[1] = rp->tx_packets;
  6543. data[2] = rp->tx_bytes;
  6544. data[3] = rp->tx_errors;
  6545. data += 4;
  6546. }
  6547. }
  6548. static u64 niu_led_state_save(struct niu *np)
  6549. {
  6550. if (np->flags & NIU_FLAGS_XMAC)
  6551. return nr64_mac(XMAC_CONFIG);
  6552. else
  6553. return nr64_mac(BMAC_XIF_CONFIG);
  6554. }
  6555. static void niu_led_state_restore(struct niu *np, u64 val)
  6556. {
  6557. if (np->flags & NIU_FLAGS_XMAC)
  6558. nw64_mac(XMAC_CONFIG, val);
  6559. else
  6560. nw64_mac(BMAC_XIF_CONFIG, val);
  6561. }
  6562. static void niu_force_led(struct niu *np, int on)
  6563. {
  6564. u64 val, reg, bit;
  6565. if (np->flags & NIU_FLAGS_XMAC) {
  6566. reg = XMAC_CONFIG;
  6567. bit = XMAC_CONFIG_FORCE_LED_ON;
  6568. } else {
  6569. reg = BMAC_XIF_CONFIG;
  6570. bit = BMAC_XIF_CONFIG_LINK_LED;
  6571. }
  6572. val = nr64_mac(reg);
  6573. if (on)
  6574. val |= bit;
  6575. else
  6576. val &= ~bit;
  6577. nw64_mac(reg, val);
  6578. }
  6579. static int niu_phys_id(struct net_device *dev, u32 data)
  6580. {
  6581. struct niu *np = netdev_priv(dev);
  6582. u64 orig_led_state;
  6583. int i;
  6584. if (!netif_running(dev))
  6585. return -EAGAIN;
  6586. if (data == 0)
  6587. data = 2;
  6588. orig_led_state = niu_led_state_save(np);
  6589. for (i = 0; i < (data * 2); i++) {
  6590. int on = ((i % 2) == 0);
  6591. niu_force_led(np, on);
  6592. if (msleep_interruptible(500))
  6593. break;
  6594. }
  6595. niu_led_state_restore(np, orig_led_state);
  6596. return 0;
  6597. }
  6598. static const struct ethtool_ops niu_ethtool_ops = {
  6599. .get_drvinfo = niu_get_drvinfo,
  6600. .get_link = ethtool_op_get_link,
  6601. .get_msglevel = niu_get_msglevel,
  6602. .set_msglevel = niu_set_msglevel,
  6603. .nway_reset = niu_nway_reset,
  6604. .get_eeprom_len = niu_get_eeprom_len,
  6605. .get_eeprom = niu_get_eeprom,
  6606. .get_settings = niu_get_settings,
  6607. .set_settings = niu_set_settings,
  6608. .get_strings = niu_get_strings,
  6609. .get_stats_count = niu_get_stats_count,
  6610. .get_ethtool_stats = niu_get_ethtool_stats,
  6611. .phys_id = niu_phys_id,
  6612. .get_rxnfc = niu_get_nfc,
  6613. .set_rxnfc = niu_set_nfc,
  6614. };
  6615. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6616. int ldg, int ldn)
  6617. {
  6618. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6619. return -EINVAL;
  6620. if (ldn < 0 || ldn > LDN_MAX)
  6621. return -EINVAL;
  6622. parent->ldg_map[ldn] = ldg;
  6623. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6624. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6625. * the firmware, and we're not supposed to change them.
  6626. * Validate the mapping, because if it's wrong we probably
  6627. * won't get any interrupts and that's painful to debug.
  6628. */
  6629. if (nr64(LDG_NUM(ldn)) != ldg) {
  6630. dev_err(np->device, PFX "Port %u, mis-matched "
  6631. "LDG assignment "
  6632. "for ldn %d, should be %d is %llu\n",
  6633. np->port, ldn, ldg,
  6634. (unsigned long long) nr64(LDG_NUM(ldn)));
  6635. return -EINVAL;
  6636. }
  6637. } else
  6638. nw64(LDG_NUM(ldn), ldg);
  6639. return 0;
  6640. }
  6641. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6642. {
  6643. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6644. return -EINVAL;
  6645. nw64(LDG_TIMER_RES, res);
  6646. return 0;
  6647. }
  6648. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6649. {
  6650. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6651. (func < 0 || func > 3) ||
  6652. (vector < 0 || vector > 0x1f))
  6653. return -EINVAL;
  6654. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6655. return 0;
  6656. }
  6657. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6658. {
  6659. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6660. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6661. int limit;
  6662. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6663. return -EINVAL;
  6664. frame = frame_base;
  6665. nw64(ESPC_PIO_STAT, frame);
  6666. limit = 64;
  6667. do {
  6668. udelay(5);
  6669. frame = nr64(ESPC_PIO_STAT);
  6670. if (frame & ESPC_PIO_STAT_READ_END)
  6671. break;
  6672. } while (limit--);
  6673. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6674. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6675. (unsigned long long) frame);
  6676. return -ENODEV;
  6677. }
  6678. frame = frame_base;
  6679. nw64(ESPC_PIO_STAT, frame);
  6680. limit = 64;
  6681. do {
  6682. udelay(5);
  6683. frame = nr64(ESPC_PIO_STAT);
  6684. if (frame & ESPC_PIO_STAT_READ_END)
  6685. break;
  6686. } while (limit--);
  6687. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6688. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6689. (unsigned long long) frame);
  6690. return -ENODEV;
  6691. }
  6692. frame = nr64(ESPC_PIO_STAT);
  6693. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6694. }
  6695. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6696. {
  6697. int err = niu_pci_eeprom_read(np, off);
  6698. u16 val;
  6699. if (err < 0)
  6700. return err;
  6701. val = (err << 8);
  6702. err = niu_pci_eeprom_read(np, off + 1);
  6703. if (err < 0)
  6704. return err;
  6705. val |= (err & 0xff);
  6706. return val;
  6707. }
  6708. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6709. {
  6710. int err = niu_pci_eeprom_read(np, off);
  6711. u16 val;
  6712. if (err < 0)
  6713. return err;
  6714. val = (err & 0xff);
  6715. err = niu_pci_eeprom_read(np, off + 1);
  6716. if (err < 0)
  6717. return err;
  6718. val |= (err & 0xff) << 8;
  6719. return val;
  6720. }
  6721. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6722. u32 off,
  6723. char *namebuf,
  6724. int namebuf_len)
  6725. {
  6726. int i;
  6727. for (i = 0; i < namebuf_len; i++) {
  6728. int err = niu_pci_eeprom_read(np, off + i);
  6729. if (err < 0)
  6730. return err;
  6731. *namebuf++ = err;
  6732. if (!err)
  6733. break;
  6734. }
  6735. if (i >= namebuf_len)
  6736. return -EINVAL;
  6737. return i + 1;
  6738. }
  6739. static void __devinit niu_vpd_parse_version(struct niu *np)
  6740. {
  6741. struct niu_vpd *vpd = &np->vpd;
  6742. int len = strlen(vpd->version) + 1;
  6743. const char *s = vpd->version;
  6744. int i;
  6745. for (i = 0; i < len - 5; i++) {
  6746. if (!strncmp(s + i, "FCode ", 5))
  6747. break;
  6748. }
  6749. if (i >= len - 5)
  6750. return;
  6751. s += i + 5;
  6752. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6753. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6754. vpd->fcode_major, vpd->fcode_minor);
  6755. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6756. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6757. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6758. np->flags |= NIU_FLAGS_VPD_VALID;
  6759. }
  6760. /* ESPC_PIO_EN_ENABLE must be set */
  6761. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6762. u32 start, u32 end)
  6763. {
  6764. unsigned int found_mask = 0;
  6765. #define FOUND_MASK_MODEL 0x00000001
  6766. #define FOUND_MASK_BMODEL 0x00000002
  6767. #define FOUND_MASK_VERS 0x00000004
  6768. #define FOUND_MASK_MAC 0x00000008
  6769. #define FOUND_MASK_NMAC 0x00000010
  6770. #define FOUND_MASK_PHY 0x00000020
  6771. #define FOUND_MASK_ALL 0x0000003f
  6772. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6773. start, end);
  6774. while (start < end) {
  6775. int len, err, instance, type, prop_len;
  6776. char namebuf[64];
  6777. u8 *prop_buf;
  6778. int max_len;
  6779. if (found_mask == FOUND_MASK_ALL) {
  6780. niu_vpd_parse_version(np);
  6781. return 1;
  6782. }
  6783. err = niu_pci_eeprom_read(np, start + 2);
  6784. if (err < 0)
  6785. return err;
  6786. len = err;
  6787. start += 3;
  6788. instance = niu_pci_eeprom_read(np, start);
  6789. type = niu_pci_eeprom_read(np, start + 3);
  6790. prop_len = niu_pci_eeprom_read(np, start + 4);
  6791. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6792. if (err < 0)
  6793. return err;
  6794. prop_buf = NULL;
  6795. max_len = 0;
  6796. if (!strcmp(namebuf, "model")) {
  6797. prop_buf = np->vpd.model;
  6798. max_len = NIU_VPD_MODEL_MAX;
  6799. found_mask |= FOUND_MASK_MODEL;
  6800. } else if (!strcmp(namebuf, "board-model")) {
  6801. prop_buf = np->vpd.board_model;
  6802. max_len = NIU_VPD_BD_MODEL_MAX;
  6803. found_mask |= FOUND_MASK_BMODEL;
  6804. } else if (!strcmp(namebuf, "version")) {
  6805. prop_buf = np->vpd.version;
  6806. max_len = NIU_VPD_VERSION_MAX;
  6807. found_mask |= FOUND_MASK_VERS;
  6808. } else if (!strcmp(namebuf, "local-mac-address")) {
  6809. prop_buf = np->vpd.local_mac;
  6810. max_len = ETH_ALEN;
  6811. found_mask |= FOUND_MASK_MAC;
  6812. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6813. prop_buf = &np->vpd.mac_num;
  6814. max_len = 1;
  6815. found_mask |= FOUND_MASK_NMAC;
  6816. } else if (!strcmp(namebuf, "phy-type")) {
  6817. prop_buf = np->vpd.phy_type;
  6818. max_len = NIU_VPD_PHY_TYPE_MAX;
  6819. found_mask |= FOUND_MASK_PHY;
  6820. }
  6821. if (max_len && prop_len > max_len) {
  6822. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6823. "too long.\n", namebuf, prop_len);
  6824. return -EINVAL;
  6825. }
  6826. if (prop_buf) {
  6827. u32 off = start + 5 + err;
  6828. int i;
  6829. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6830. "len[%d]\n", namebuf, prop_len);
  6831. for (i = 0; i < prop_len; i++)
  6832. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6833. }
  6834. start += len;
  6835. }
  6836. return 0;
  6837. }
  6838. /* ESPC_PIO_EN_ENABLE must be set */
  6839. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6840. {
  6841. u32 offset;
  6842. int err;
  6843. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6844. if (err < 0)
  6845. return;
  6846. offset = err + 3;
  6847. while (start + offset < ESPC_EEPROM_SIZE) {
  6848. u32 here = start + offset;
  6849. u32 end;
  6850. err = niu_pci_eeprom_read(np, here);
  6851. if (err != 0x90)
  6852. return;
  6853. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6854. if (err < 0)
  6855. return;
  6856. here = start + offset + 3;
  6857. end = start + offset + err;
  6858. offset += err;
  6859. err = niu_pci_vpd_scan_props(np, here, end);
  6860. if (err < 0 || err == 1)
  6861. return;
  6862. }
  6863. }
  6864. /* ESPC_PIO_EN_ENABLE must be set */
  6865. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6866. {
  6867. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6868. int err;
  6869. while (start < end) {
  6870. ret = start;
  6871. /* ROM header signature? */
  6872. err = niu_pci_eeprom_read16(np, start + 0);
  6873. if (err != 0x55aa)
  6874. return 0;
  6875. /* Apply offset to PCI data structure. */
  6876. err = niu_pci_eeprom_read16(np, start + 23);
  6877. if (err < 0)
  6878. return 0;
  6879. start += err;
  6880. /* Check for "PCIR" signature. */
  6881. err = niu_pci_eeprom_read16(np, start + 0);
  6882. if (err != 0x5043)
  6883. return 0;
  6884. err = niu_pci_eeprom_read16(np, start + 2);
  6885. if (err != 0x4952)
  6886. return 0;
  6887. /* Check for OBP image type. */
  6888. err = niu_pci_eeprom_read(np, start + 20);
  6889. if (err < 0)
  6890. return 0;
  6891. if (err != 0x01) {
  6892. err = niu_pci_eeprom_read(np, ret + 2);
  6893. if (err < 0)
  6894. return 0;
  6895. start = ret + (err * 512);
  6896. continue;
  6897. }
  6898. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6899. if (err < 0)
  6900. return err;
  6901. ret += err;
  6902. err = niu_pci_eeprom_read(np, ret + 0);
  6903. if (err != 0x82)
  6904. return 0;
  6905. return ret;
  6906. }
  6907. return 0;
  6908. }
  6909. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6910. const char *phy_prop)
  6911. {
  6912. if (!strcmp(phy_prop, "mif")) {
  6913. /* 1G copper, MII */
  6914. np->flags &= ~(NIU_FLAGS_FIBER |
  6915. NIU_FLAGS_10G);
  6916. np->mac_xcvr = MAC_XCVR_MII;
  6917. } else if (!strcmp(phy_prop, "xgf")) {
  6918. /* 10G fiber, XPCS */
  6919. np->flags |= (NIU_FLAGS_10G |
  6920. NIU_FLAGS_FIBER);
  6921. np->mac_xcvr = MAC_XCVR_XPCS;
  6922. } else if (!strcmp(phy_prop, "pcs")) {
  6923. /* 1G fiber, PCS */
  6924. np->flags &= ~NIU_FLAGS_10G;
  6925. np->flags |= NIU_FLAGS_FIBER;
  6926. np->mac_xcvr = MAC_XCVR_PCS;
  6927. } else if (!strcmp(phy_prop, "xgc")) {
  6928. /* 10G copper, XPCS */
  6929. np->flags |= NIU_FLAGS_10G;
  6930. np->flags &= ~NIU_FLAGS_FIBER;
  6931. np->mac_xcvr = MAC_XCVR_XPCS;
  6932. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6933. /* 10G Serdes or 1G Serdes, default to 10G */
  6934. np->flags |= NIU_FLAGS_10G;
  6935. np->flags &= ~NIU_FLAGS_FIBER;
  6936. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6937. np->mac_xcvr = MAC_XCVR_XPCS;
  6938. } else {
  6939. return -EINVAL;
  6940. }
  6941. return 0;
  6942. }
  6943. static int niu_pci_vpd_get_nports(struct niu *np)
  6944. {
  6945. int ports = 0;
  6946. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6947. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6948. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6949. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6950. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6951. ports = 4;
  6952. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6953. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6954. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6955. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6956. ports = 2;
  6957. }
  6958. return ports;
  6959. }
  6960. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6961. {
  6962. struct net_device *dev = np->dev;
  6963. struct niu_vpd *vpd = &np->vpd;
  6964. u8 val8;
  6965. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6966. dev_err(np->device, PFX "VPD MAC invalid, "
  6967. "falling back to SPROM.\n");
  6968. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6969. return;
  6970. }
  6971. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6972. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6973. np->flags |= NIU_FLAGS_10G;
  6974. np->flags &= ~NIU_FLAGS_FIBER;
  6975. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6976. np->mac_xcvr = MAC_XCVR_PCS;
  6977. if (np->port > 1) {
  6978. np->flags |= NIU_FLAGS_FIBER;
  6979. np->flags &= ~NIU_FLAGS_10G;
  6980. }
  6981. if (np->flags & NIU_FLAGS_10G)
  6982. np->mac_xcvr = MAC_XCVR_XPCS;
  6983. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6984. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6985. NIU_FLAGS_HOTPLUG_PHY);
  6986. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6987. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6988. np->vpd.phy_type);
  6989. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6990. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6991. return;
  6992. }
  6993. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6994. val8 = dev->perm_addr[5];
  6995. dev->perm_addr[5] += np->port;
  6996. if (dev->perm_addr[5] < val8)
  6997. dev->perm_addr[4]++;
  6998. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6999. }
  7000. static int __devinit niu_pci_probe_sprom(struct niu *np)
  7001. {
  7002. struct net_device *dev = np->dev;
  7003. int len, i;
  7004. u64 val, sum;
  7005. u8 val8;
  7006. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  7007. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  7008. len = val / 4;
  7009. np->eeprom_len = len;
  7010. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  7011. sum = 0;
  7012. for (i = 0; i < len; i++) {
  7013. val = nr64(ESPC_NCR(i));
  7014. sum += (val >> 0) & 0xff;
  7015. sum += (val >> 8) & 0xff;
  7016. sum += (val >> 16) & 0xff;
  7017. sum += (val >> 24) & 0xff;
  7018. }
  7019. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  7020. if ((sum & 0xff) != 0xab) {
  7021. dev_err(np->device, PFX "Bad SPROM checksum "
  7022. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  7023. return -EINVAL;
  7024. }
  7025. val = nr64(ESPC_PHY_TYPE);
  7026. switch (np->port) {
  7027. case 0:
  7028. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  7029. ESPC_PHY_TYPE_PORT0_SHIFT;
  7030. break;
  7031. case 1:
  7032. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7033. ESPC_PHY_TYPE_PORT1_SHIFT;
  7034. break;
  7035. case 2:
  7036. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7037. ESPC_PHY_TYPE_PORT2_SHIFT;
  7038. break;
  7039. case 3:
  7040. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7041. ESPC_PHY_TYPE_PORT3_SHIFT;
  7042. break;
  7043. default:
  7044. dev_err(np->device, PFX "Bogus port number %u\n",
  7045. np->port);
  7046. return -EINVAL;
  7047. }
  7048. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7049. switch (val8) {
  7050. case ESPC_PHY_TYPE_1G_COPPER:
  7051. /* 1G copper, MII */
  7052. np->flags &= ~(NIU_FLAGS_FIBER |
  7053. NIU_FLAGS_10G);
  7054. np->mac_xcvr = MAC_XCVR_MII;
  7055. break;
  7056. case ESPC_PHY_TYPE_1G_FIBER:
  7057. /* 1G fiber, PCS */
  7058. np->flags &= ~NIU_FLAGS_10G;
  7059. np->flags |= NIU_FLAGS_FIBER;
  7060. np->mac_xcvr = MAC_XCVR_PCS;
  7061. break;
  7062. case ESPC_PHY_TYPE_10G_COPPER:
  7063. /* 10G copper, XPCS */
  7064. np->flags |= NIU_FLAGS_10G;
  7065. np->flags &= ~NIU_FLAGS_FIBER;
  7066. np->mac_xcvr = MAC_XCVR_XPCS;
  7067. break;
  7068. case ESPC_PHY_TYPE_10G_FIBER:
  7069. /* 10G fiber, XPCS */
  7070. np->flags |= (NIU_FLAGS_10G |
  7071. NIU_FLAGS_FIBER);
  7072. np->mac_xcvr = MAC_XCVR_XPCS;
  7073. break;
  7074. default:
  7075. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7076. return -EINVAL;
  7077. }
  7078. val = nr64(ESPC_MAC_ADDR0);
  7079. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7080. (unsigned long long) val);
  7081. dev->perm_addr[0] = (val >> 0) & 0xff;
  7082. dev->perm_addr[1] = (val >> 8) & 0xff;
  7083. dev->perm_addr[2] = (val >> 16) & 0xff;
  7084. dev->perm_addr[3] = (val >> 24) & 0xff;
  7085. val = nr64(ESPC_MAC_ADDR1);
  7086. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7087. (unsigned long long) val);
  7088. dev->perm_addr[4] = (val >> 0) & 0xff;
  7089. dev->perm_addr[5] = (val >> 8) & 0xff;
  7090. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7091. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7092. dev_err(np->device, PFX "[ \n");
  7093. for (i = 0; i < 6; i++)
  7094. printk("%02x ", dev->perm_addr[i]);
  7095. printk("]\n");
  7096. return -EINVAL;
  7097. }
  7098. val8 = dev->perm_addr[5];
  7099. dev->perm_addr[5] += np->port;
  7100. if (dev->perm_addr[5] < val8)
  7101. dev->perm_addr[4]++;
  7102. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7103. val = nr64(ESPC_MOD_STR_LEN);
  7104. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7105. (unsigned long long) val);
  7106. if (val >= 8 * 4)
  7107. return -EINVAL;
  7108. for (i = 0; i < val; i += 4) {
  7109. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7110. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7111. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7112. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7113. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7114. }
  7115. np->vpd.model[val] = '\0';
  7116. val = nr64(ESPC_BD_MOD_STR_LEN);
  7117. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7118. (unsigned long long) val);
  7119. if (val >= 4 * 4)
  7120. return -EINVAL;
  7121. for (i = 0; i < val; i += 4) {
  7122. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7123. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7124. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7125. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7126. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7127. }
  7128. np->vpd.board_model[val] = '\0';
  7129. np->vpd.mac_num =
  7130. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7131. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7132. np->vpd.mac_num);
  7133. return 0;
  7134. }
  7135. static int __devinit niu_get_and_validate_port(struct niu *np)
  7136. {
  7137. struct niu_parent *parent = np->parent;
  7138. if (np->port <= 1)
  7139. np->flags |= NIU_FLAGS_XMAC;
  7140. if (!parent->num_ports) {
  7141. if (parent->plat_type == PLAT_TYPE_NIU) {
  7142. parent->num_ports = 2;
  7143. } else {
  7144. parent->num_ports = niu_pci_vpd_get_nports(np);
  7145. if (!parent->num_ports) {
  7146. /* Fall back to SPROM as last resort.
  7147. * This will fail on most cards.
  7148. */
  7149. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7150. ESPC_NUM_PORTS_MACS_VAL;
  7151. /* All of the current probing methods fail on
  7152. * Maramba on-board parts.
  7153. */
  7154. if (!parent->num_ports)
  7155. parent->num_ports = 4;
  7156. }
  7157. }
  7158. }
  7159. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7160. np->port, parent->num_ports);
  7161. if (np->port >= parent->num_ports)
  7162. return -ENODEV;
  7163. return 0;
  7164. }
  7165. static int __devinit phy_record(struct niu_parent *parent,
  7166. struct phy_probe_info *p,
  7167. int dev_id_1, int dev_id_2, u8 phy_port,
  7168. int type)
  7169. {
  7170. u32 id = (dev_id_1 << 16) | dev_id_2;
  7171. u8 idx;
  7172. if (dev_id_1 < 0 || dev_id_2 < 0)
  7173. return 0;
  7174. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7175. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7176. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7177. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7178. return 0;
  7179. } else {
  7180. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7181. return 0;
  7182. }
  7183. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7184. parent->index, id,
  7185. (type == PHY_TYPE_PMA_PMD ?
  7186. "PMA/PMD" :
  7187. (type == PHY_TYPE_PCS ?
  7188. "PCS" : "MII")),
  7189. phy_port);
  7190. if (p->cur[type] >= NIU_MAX_PORTS) {
  7191. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7192. return -EINVAL;
  7193. }
  7194. idx = p->cur[type];
  7195. p->phy_id[type][idx] = id;
  7196. p->phy_port[type][idx] = phy_port;
  7197. p->cur[type] = idx + 1;
  7198. return 0;
  7199. }
  7200. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7201. {
  7202. int i;
  7203. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7204. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7205. return 1;
  7206. }
  7207. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7208. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7209. return 1;
  7210. }
  7211. return 0;
  7212. }
  7213. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7214. {
  7215. int port, cnt;
  7216. cnt = 0;
  7217. *lowest = 32;
  7218. for (port = 8; port < 32; port++) {
  7219. if (port_has_10g(p, port)) {
  7220. if (!cnt)
  7221. *lowest = port;
  7222. cnt++;
  7223. }
  7224. }
  7225. return cnt;
  7226. }
  7227. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7228. {
  7229. *lowest = 32;
  7230. if (p->cur[PHY_TYPE_MII])
  7231. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7232. return p->cur[PHY_TYPE_MII];
  7233. }
  7234. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7235. {
  7236. int num_ports = parent->num_ports;
  7237. int i;
  7238. for (i = 0; i < num_ports; i++) {
  7239. parent->rxchan_per_port[i] = (16 / num_ports);
  7240. parent->txchan_per_port[i] = (16 / num_ports);
  7241. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7242. "[%u TX chans]\n",
  7243. parent->index, i,
  7244. parent->rxchan_per_port[i],
  7245. parent->txchan_per_port[i]);
  7246. }
  7247. }
  7248. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7249. int num_10g, int num_1g)
  7250. {
  7251. int num_ports = parent->num_ports;
  7252. int rx_chans_per_10g, rx_chans_per_1g;
  7253. int tx_chans_per_10g, tx_chans_per_1g;
  7254. int i, tot_rx, tot_tx;
  7255. if (!num_10g || !num_1g) {
  7256. rx_chans_per_10g = rx_chans_per_1g =
  7257. (NIU_NUM_RXCHAN / num_ports);
  7258. tx_chans_per_10g = tx_chans_per_1g =
  7259. (NIU_NUM_TXCHAN / num_ports);
  7260. } else {
  7261. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7262. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7263. (rx_chans_per_1g * num_1g)) /
  7264. num_10g;
  7265. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7266. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7267. (tx_chans_per_1g * num_1g)) /
  7268. num_10g;
  7269. }
  7270. tot_rx = tot_tx = 0;
  7271. for (i = 0; i < num_ports; i++) {
  7272. int type = phy_decode(parent->port_phy, i);
  7273. if (type == PORT_TYPE_10G) {
  7274. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7275. parent->txchan_per_port[i] = tx_chans_per_10g;
  7276. } else {
  7277. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7278. parent->txchan_per_port[i] = tx_chans_per_1g;
  7279. }
  7280. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7281. "[%u TX chans]\n",
  7282. parent->index, i,
  7283. parent->rxchan_per_port[i],
  7284. parent->txchan_per_port[i]);
  7285. tot_rx += parent->rxchan_per_port[i];
  7286. tot_tx += parent->txchan_per_port[i];
  7287. }
  7288. if (tot_rx > NIU_NUM_RXCHAN) {
  7289. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7290. "resetting to one per port.\n",
  7291. parent->index, tot_rx);
  7292. for (i = 0; i < num_ports; i++)
  7293. parent->rxchan_per_port[i] = 1;
  7294. }
  7295. if (tot_tx > NIU_NUM_TXCHAN) {
  7296. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7297. "resetting to one per port.\n",
  7298. parent->index, tot_tx);
  7299. for (i = 0; i < num_ports; i++)
  7300. parent->txchan_per_port[i] = 1;
  7301. }
  7302. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7303. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7304. "RX[%d] TX[%d]\n",
  7305. parent->index, tot_rx, tot_tx);
  7306. }
  7307. }
  7308. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7309. int num_10g, int num_1g)
  7310. {
  7311. int i, num_ports = parent->num_ports;
  7312. int rdc_group, rdc_groups_per_port;
  7313. int rdc_channel_base;
  7314. rdc_group = 0;
  7315. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7316. rdc_channel_base = 0;
  7317. for (i = 0; i < num_ports; i++) {
  7318. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7319. int grp, num_channels = parent->rxchan_per_port[i];
  7320. int this_channel_offset;
  7321. tp->first_table_num = rdc_group;
  7322. tp->num_tables = rdc_groups_per_port;
  7323. this_channel_offset = 0;
  7324. for (grp = 0; grp < tp->num_tables; grp++) {
  7325. struct rdc_table *rt = &tp->tables[grp];
  7326. int slot;
  7327. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7328. parent->index, i, tp->first_table_num + grp);
  7329. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7330. rt->rxdma_channel[slot] =
  7331. rdc_channel_base + this_channel_offset;
  7332. printk("%d ", rt->rxdma_channel[slot]);
  7333. if (++this_channel_offset == num_channels)
  7334. this_channel_offset = 0;
  7335. }
  7336. printk("]\n");
  7337. }
  7338. parent->rdc_default[i] = rdc_channel_base;
  7339. rdc_channel_base += num_channels;
  7340. rdc_group += rdc_groups_per_port;
  7341. }
  7342. }
  7343. static int __devinit fill_phy_probe_info(struct niu *np,
  7344. struct niu_parent *parent,
  7345. struct phy_probe_info *info)
  7346. {
  7347. unsigned long flags;
  7348. int port, err;
  7349. memset(info, 0, sizeof(*info));
  7350. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7351. niu_lock_parent(np, flags);
  7352. err = 0;
  7353. for (port = 8; port < 32; port++) {
  7354. int dev_id_1, dev_id_2;
  7355. dev_id_1 = mdio_read(np, port,
  7356. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7357. dev_id_2 = mdio_read(np, port,
  7358. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7359. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7360. PHY_TYPE_PMA_PMD);
  7361. if (err)
  7362. break;
  7363. dev_id_1 = mdio_read(np, port,
  7364. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7365. dev_id_2 = mdio_read(np, port,
  7366. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7367. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7368. PHY_TYPE_PCS);
  7369. if (err)
  7370. break;
  7371. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7372. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7373. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7374. PHY_TYPE_MII);
  7375. if (err)
  7376. break;
  7377. }
  7378. niu_unlock_parent(np, flags);
  7379. return err;
  7380. }
  7381. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7382. {
  7383. struct phy_probe_info *info = &parent->phy_probe_info;
  7384. int lowest_10g, lowest_1g;
  7385. int num_10g, num_1g;
  7386. u32 val;
  7387. int err;
  7388. num_10g = num_1g = 0;
  7389. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7390. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7391. num_10g = 0;
  7392. num_1g = 2;
  7393. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7394. parent->num_ports = 4;
  7395. val = (phy_encode(PORT_TYPE_1G, 0) |
  7396. phy_encode(PORT_TYPE_1G, 1) |
  7397. phy_encode(PORT_TYPE_1G, 2) |
  7398. phy_encode(PORT_TYPE_1G, 3));
  7399. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7400. num_10g = 2;
  7401. num_1g = 0;
  7402. parent->num_ports = 2;
  7403. val = (phy_encode(PORT_TYPE_10G, 0) |
  7404. phy_encode(PORT_TYPE_10G, 1));
  7405. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7406. (parent->plat_type == PLAT_TYPE_NIU)) {
  7407. /* this is the Monza case */
  7408. if (np->flags & NIU_FLAGS_10G) {
  7409. val = (phy_encode(PORT_TYPE_10G, 0) |
  7410. phy_encode(PORT_TYPE_10G, 1));
  7411. } else {
  7412. val = (phy_encode(PORT_TYPE_1G, 0) |
  7413. phy_encode(PORT_TYPE_1G, 1));
  7414. }
  7415. } else {
  7416. err = fill_phy_probe_info(np, parent, info);
  7417. if (err)
  7418. return err;
  7419. num_10g = count_10g_ports(info, &lowest_10g);
  7420. num_1g = count_1g_ports(info, &lowest_1g);
  7421. switch ((num_10g << 4) | num_1g) {
  7422. case 0x24:
  7423. if (lowest_1g == 10)
  7424. parent->plat_type = PLAT_TYPE_VF_P0;
  7425. else if (lowest_1g == 26)
  7426. parent->plat_type = PLAT_TYPE_VF_P1;
  7427. else
  7428. goto unknown_vg_1g_port;
  7429. /* fallthru */
  7430. case 0x22:
  7431. val = (phy_encode(PORT_TYPE_10G, 0) |
  7432. phy_encode(PORT_TYPE_10G, 1) |
  7433. phy_encode(PORT_TYPE_1G, 2) |
  7434. phy_encode(PORT_TYPE_1G, 3));
  7435. break;
  7436. case 0x20:
  7437. val = (phy_encode(PORT_TYPE_10G, 0) |
  7438. phy_encode(PORT_TYPE_10G, 1));
  7439. break;
  7440. case 0x10:
  7441. val = phy_encode(PORT_TYPE_10G, np->port);
  7442. break;
  7443. case 0x14:
  7444. if (lowest_1g == 10)
  7445. parent->plat_type = PLAT_TYPE_VF_P0;
  7446. else if (lowest_1g == 26)
  7447. parent->plat_type = PLAT_TYPE_VF_P1;
  7448. else
  7449. goto unknown_vg_1g_port;
  7450. /* fallthru */
  7451. case 0x13:
  7452. if ((lowest_10g & 0x7) == 0)
  7453. val = (phy_encode(PORT_TYPE_10G, 0) |
  7454. phy_encode(PORT_TYPE_1G, 1) |
  7455. phy_encode(PORT_TYPE_1G, 2) |
  7456. phy_encode(PORT_TYPE_1G, 3));
  7457. else
  7458. val = (phy_encode(PORT_TYPE_1G, 0) |
  7459. phy_encode(PORT_TYPE_10G, 1) |
  7460. phy_encode(PORT_TYPE_1G, 2) |
  7461. phy_encode(PORT_TYPE_1G, 3));
  7462. break;
  7463. case 0x04:
  7464. if (lowest_1g == 10)
  7465. parent->plat_type = PLAT_TYPE_VF_P0;
  7466. else if (lowest_1g == 26)
  7467. parent->plat_type = PLAT_TYPE_VF_P1;
  7468. else
  7469. goto unknown_vg_1g_port;
  7470. val = (phy_encode(PORT_TYPE_1G, 0) |
  7471. phy_encode(PORT_TYPE_1G, 1) |
  7472. phy_encode(PORT_TYPE_1G, 2) |
  7473. phy_encode(PORT_TYPE_1G, 3));
  7474. break;
  7475. default:
  7476. printk(KERN_ERR PFX "Unsupported port config "
  7477. "10G[%d] 1G[%d]\n",
  7478. num_10g, num_1g);
  7479. return -EINVAL;
  7480. }
  7481. }
  7482. parent->port_phy = val;
  7483. if (parent->plat_type == PLAT_TYPE_NIU)
  7484. niu_n2_divide_channels(parent);
  7485. else
  7486. niu_divide_channels(parent, num_10g, num_1g);
  7487. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7488. return 0;
  7489. unknown_vg_1g_port:
  7490. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7491. lowest_1g);
  7492. return -EINVAL;
  7493. }
  7494. static int __devinit niu_probe_ports(struct niu *np)
  7495. {
  7496. struct niu_parent *parent = np->parent;
  7497. int err, i;
  7498. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7499. parent->port_phy);
  7500. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7501. err = walk_phys(np, parent);
  7502. if (err)
  7503. return err;
  7504. niu_set_ldg_timer_res(np, 2);
  7505. for (i = 0; i <= LDN_MAX; i++)
  7506. niu_ldn_irq_enable(np, i, 0);
  7507. }
  7508. if (parent->port_phy == PORT_PHY_INVALID)
  7509. return -EINVAL;
  7510. return 0;
  7511. }
  7512. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7513. {
  7514. struct niu_classifier *cp = &np->clas;
  7515. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7516. np->parent->tcam_num_entries);
  7517. cp->tcam_top = (u16) np->port;
  7518. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7519. cp->h1_init = 0xffffffff;
  7520. cp->h2_init = 0xffff;
  7521. return fflp_early_init(np);
  7522. }
  7523. static void __devinit niu_link_config_init(struct niu *np)
  7524. {
  7525. struct niu_link_config *lp = &np->link_config;
  7526. lp->advertising = (ADVERTISED_10baseT_Half |
  7527. ADVERTISED_10baseT_Full |
  7528. ADVERTISED_100baseT_Half |
  7529. ADVERTISED_100baseT_Full |
  7530. ADVERTISED_1000baseT_Half |
  7531. ADVERTISED_1000baseT_Full |
  7532. ADVERTISED_10000baseT_Full |
  7533. ADVERTISED_Autoneg);
  7534. lp->speed = lp->active_speed = SPEED_INVALID;
  7535. lp->duplex = DUPLEX_FULL;
  7536. lp->active_duplex = DUPLEX_INVALID;
  7537. lp->autoneg = 1;
  7538. #if 0
  7539. lp->loopback_mode = LOOPBACK_MAC;
  7540. lp->active_speed = SPEED_10000;
  7541. lp->active_duplex = DUPLEX_FULL;
  7542. #else
  7543. lp->loopback_mode = LOOPBACK_DISABLED;
  7544. #endif
  7545. }
  7546. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7547. {
  7548. switch (np->port) {
  7549. case 0:
  7550. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7551. np->ipp_off = 0x00000;
  7552. np->pcs_off = 0x04000;
  7553. np->xpcs_off = 0x02000;
  7554. break;
  7555. case 1:
  7556. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7557. np->ipp_off = 0x08000;
  7558. np->pcs_off = 0x0a000;
  7559. np->xpcs_off = 0x08000;
  7560. break;
  7561. case 2:
  7562. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7563. np->ipp_off = 0x04000;
  7564. np->pcs_off = 0x0e000;
  7565. np->xpcs_off = ~0UL;
  7566. break;
  7567. case 3:
  7568. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7569. np->ipp_off = 0x0c000;
  7570. np->pcs_off = 0x12000;
  7571. np->xpcs_off = ~0UL;
  7572. break;
  7573. default:
  7574. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7575. "compute MAC block offset.\n", np->port);
  7576. return -EINVAL;
  7577. }
  7578. return 0;
  7579. }
  7580. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7581. {
  7582. struct msix_entry msi_vec[NIU_NUM_LDG];
  7583. struct niu_parent *parent = np->parent;
  7584. struct pci_dev *pdev = np->pdev;
  7585. int i, num_irqs, err;
  7586. u8 first_ldg;
  7587. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7588. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7589. ldg_num_map[i] = first_ldg + i;
  7590. num_irqs = (parent->rxchan_per_port[np->port] +
  7591. parent->txchan_per_port[np->port] +
  7592. (np->port == 0 ? 3 : 1));
  7593. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7594. retry:
  7595. for (i = 0; i < num_irqs; i++) {
  7596. msi_vec[i].vector = 0;
  7597. msi_vec[i].entry = i;
  7598. }
  7599. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7600. if (err < 0) {
  7601. np->flags &= ~NIU_FLAGS_MSIX;
  7602. return;
  7603. }
  7604. if (err > 0) {
  7605. num_irqs = err;
  7606. goto retry;
  7607. }
  7608. np->flags |= NIU_FLAGS_MSIX;
  7609. for (i = 0; i < num_irqs; i++)
  7610. np->ldg[i].irq = msi_vec[i].vector;
  7611. np->num_ldg = num_irqs;
  7612. }
  7613. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7614. {
  7615. #ifdef CONFIG_SPARC64
  7616. struct of_device *op = np->op;
  7617. const u32 *int_prop;
  7618. int i;
  7619. int_prop = of_get_property(op->node, "interrupts", NULL);
  7620. if (!int_prop)
  7621. return -ENODEV;
  7622. for (i = 0; i < op->num_irqs; i++) {
  7623. ldg_num_map[i] = int_prop[i];
  7624. np->ldg[i].irq = op->irqs[i];
  7625. }
  7626. np->num_ldg = op->num_irqs;
  7627. return 0;
  7628. #else
  7629. return -EINVAL;
  7630. #endif
  7631. }
  7632. static int __devinit niu_ldg_init(struct niu *np)
  7633. {
  7634. struct niu_parent *parent = np->parent;
  7635. u8 ldg_num_map[NIU_NUM_LDG];
  7636. int first_chan, num_chan;
  7637. int i, err, ldg_rotor;
  7638. u8 port;
  7639. np->num_ldg = 1;
  7640. np->ldg[0].irq = np->dev->irq;
  7641. if (parent->plat_type == PLAT_TYPE_NIU) {
  7642. err = niu_n2_irq_init(np, ldg_num_map);
  7643. if (err)
  7644. return err;
  7645. } else
  7646. niu_try_msix(np, ldg_num_map);
  7647. port = np->port;
  7648. for (i = 0; i < np->num_ldg; i++) {
  7649. struct niu_ldg *lp = &np->ldg[i];
  7650. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7651. lp->np = np;
  7652. lp->ldg_num = ldg_num_map[i];
  7653. lp->timer = 2; /* XXX */
  7654. /* On N2 NIU the firmware has setup the SID mappings so they go
  7655. * to the correct values that will route the LDG to the proper
  7656. * interrupt in the NCU interrupt table.
  7657. */
  7658. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7659. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7660. if (err)
  7661. return err;
  7662. }
  7663. }
  7664. /* We adopt the LDG assignment ordering used by the N2 NIU
  7665. * 'interrupt' properties because that simplifies a lot of
  7666. * things. This ordering is:
  7667. *
  7668. * MAC
  7669. * MIF (if port zero)
  7670. * SYSERR (if port zero)
  7671. * RX channels
  7672. * TX channels
  7673. */
  7674. ldg_rotor = 0;
  7675. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7676. LDN_MAC(port));
  7677. if (err)
  7678. return err;
  7679. ldg_rotor++;
  7680. if (ldg_rotor == np->num_ldg)
  7681. ldg_rotor = 0;
  7682. if (port == 0) {
  7683. err = niu_ldg_assign_ldn(np, parent,
  7684. ldg_num_map[ldg_rotor],
  7685. LDN_MIF);
  7686. if (err)
  7687. return err;
  7688. ldg_rotor++;
  7689. if (ldg_rotor == np->num_ldg)
  7690. ldg_rotor = 0;
  7691. err = niu_ldg_assign_ldn(np, parent,
  7692. ldg_num_map[ldg_rotor],
  7693. LDN_DEVICE_ERROR);
  7694. if (err)
  7695. return err;
  7696. ldg_rotor++;
  7697. if (ldg_rotor == np->num_ldg)
  7698. ldg_rotor = 0;
  7699. }
  7700. first_chan = 0;
  7701. for (i = 0; i < port; i++)
  7702. first_chan += parent->rxchan_per_port[port];
  7703. num_chan = parent->rxchan_per_port[port];
  7704. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7705. err = niu_ldg_assign_ldn(np, parent,
  7706. ldg_num_map[ldg_rotor],
  7707. LDN_RXDMA(i));
  7708. if (err)
  7709. return err;
  7710. ldg_rotor++;
  7711. if (ldg_rotor == np->num_ldg)
  7712. ldg_rotor = 0;
  7713. }
  7714. first_chan = 0;
  7715. for (i = 0; i < port; i++)
  7716. first_chan += parent->txchan_per_port[port];
  7717. num_chan = parent->txchan_per_port[port];
  7718. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7719. err = niu_ldg_assign_ldn(np, parent,
  7720. ldg_num_map[ldg_rotor],
  7721. LDN_TXDMA(i));
  7722. if (err)
  7723. return err;
  7724. ldg_rotor++;
  7725. if (ldg_rotor == np->num_ldg)
  7726. ldg_rotor = 0;
  7727. }
  7728. return 0;
  7729. }
  7730. static void __devexit niu_ldg_free(struct niu *np)
  7731. {
  7732. if (np->flags & NIU_FLAGS_MSIX)
  7733. pci_disable_msix(np->pdev);
  7734. }
  7735. static int __devinit niu_get_of_props(struct niu *np)
  7736. {
  7737. #ifdef CONFIG_SPARC64
  7738. struct net_device *dev = np->dev;
  7739. struct device_node *dp;
  7740. const char *phy_type;
  7741. const u8 *mac_addr;
  7742. const char *model;
  7743. int prop_len;
  7744. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7745. dp = np->op->node;
  7746. else
  7747. dp = pci_device_to_OF_node(np->pdev);
  7748. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7749. if (!phy_type) {
  7750. dev_err(np->device, PFX "%s: OF node lacks "
  7751. "phy-type property\n",
  7752. dp->full_name);
  7753. return -EINVAL;
  7754. }
  7755. if (!strcmp(phy_type, "none"))
  7756. return -ENODEV;
  7757. strcpy(np->vpd.phy_type, phy_type);
  7758. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7759. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7760. dp->full_name, np->vpd.phy_type);
  7761. return -EINVAL;
  7762. }
  7763. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7764. if (!mac_addr) {
  7765. dev_err(np->device, PFX "%s: OF node lacks "
  7766. "local-mac-address property\n",
  7767. dp->full_name);
  7768. return -EINVAL;
  7769. }
  7770. if (prop_len != dev->addr_len) {
  7771. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7772. "is wrong.\n",
  7773. dp->full_name, prop_len);
  7774. }
  7775. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7776. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7777. int i;
  7778. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7779. dp->full_name);
  7780. dev_err(np->device, PFX "%s: [ \n",
  7781. dp->full_name);
  7782. for (i = 0; i < 6; i++)
  7783. printk("%02x ", dev->perm_addr[i]);
  7784. printk("]\n");
  7785. return -EINVAL;
  7786. }
  7787. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7788. model = of_get_property(dp, "model", &prop_len);
  7789. if (model)
  7790. strcpy(np->vpd.model, model);
  7791. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7792. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7793. NIU_FLAGS_HOTPLUG_PHY);
  7794. }
  7795. return 0;
  7796. #else
  7797. return -EINVAL;
  7798. #endif
  7799. }
  7800. static int __devinit niu_get_invariants(struct niu *np)
  7801. {
  7802. int err, have_props;
  7803. u32 offset;
  7804. err = niu_get_of_props(np);
  7805. if (err == -ENODEV)
  7806. return err;
  7807. have_props = !err;
  7808. err = niu_init_mac_ipp_pcs_base(np);
  7809. if (err)
  7810. return err;
  7811. if (have_props) {
  7812. err = niu_get_and_validate_port(np);
  7813. if (err)
  7814. return err;
  7815. } else {
  7816. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7817. return -EINVAL;
  7818. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7819. offset = niu_pci_vpd_offset(np);
  7820. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7821. offset);
  7822. if (offset)
  7823. niu_pci_vpd_fetch(np, offset);
  7824. nw64(ESPC_PIO_EN, 0);
  7825. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7826. niu_pci_vpd_validate(np);
  7827. err = niu_get_and_validate_port(np);
  7828. if (err)
  7829. return err;
  7830. }
  7831. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7832. err = niu_get_and_validate_port(np);
  7833. if (err)
  7834. return err;
  7835. err = niu_pci_probe_sprom(np);
  7836. if (err)
  7837. return err;
  7838. }
  7839. }
  7840. err = niu_probe_ports(np);
  7841. if (err)
  7842. return err;
  7843. niu_ldg_init(np);
  7844. niu_classifier_swstate_init(np);
  7845. niu_link_config_init(np);
  7846. err = niu_determine_phy_disposition(np);
  7847. if (!err)
  7848. err = niu_init_link(np);
  7849. return err;
  7850. }
  7851. static LIST_HEAD(niu_parent_list);
  7852. static DEFINE_MUTEX(niu_parent_lock);
  7853. static int niu_parent_index;
  7854. static ssize_t show_port_phy(struct device *dev,
  7855. struct device_attribute *attr, char *buf)
  7856. {
  7857. struct platform_device *plat_dev = to_platform_device(dev);
  7858. struct niu_parent *p = plat_dev->dev.platform_data;
  7859. u32 port_phy = p->port_phy;
  7860. char *orig_buf = buf;
  7861. int i;
  7862. if (port_phy == PORT_PHY_UNKNOWN ||
  7863. port_phy == PORT_PHY_INVALID)
  7864. return 0;
  7865. for (i = 0; i < p->num_ports; i++) {
  7866. const char *type_str;
  7867. int type;
  7868. type = phy_decode(port_phy, i);
  7869. if (type == PORT_TYPE_10G)
  7870. type_str = "10G";
  7871. else
  7872. type_str = "1G";
  7873. buf += sprintf(buf,
  7874. (i == 0) ? "%s" : " %s",
  7875. type_str);
  7876. }
  7877. buf += sprintf(buf, "\n");
  7878. return buf - orig_buf;
  7879. }
  7880. static ssize_t show_plat_type(struct device *dev,
  7881. struct device_attribute *attr, char *buf)
  7882. {
  7883. struct platform_device *plat_dev = to_platform_device(dev);
  7884. struct niu_parent *p = plat_dev->dev.platform_data;
  7885. const char *type_str;
  7886. switch (p->plat_type) {
  7887. case PLAT_TYPE_ATLAS:
  7888. type_str = "atlas";
  7889. break;
  7890. case PLAT_TYPE_NIU:
  7891. type_str = "niu";
  7892. break;
  7893. case PLAT_TYPE_VF_P0:
  7894. type_str = "vf_p0";
  7895. break;
  7896. case PLAT_TYPE_VF_P1:
  7897. type_str = "vf_p1";
  7898. break;
  7899. default:
  7900. type_str = "unknown";
  7901. break;
  7902. }
  7903. return sprintf(buf, "%s\n", type_str);
  7904. }
  7905. static ssize_t __show_chan_per_port(struct device *dev,
  7906. struct device_attribute *attr, char *buf,
  7907. int rx)
  7908. {
  7909. struct platform_device *plat_dev = to_platform_device(dev);
  7910. struct niu_parent *p = plat_dev->dev.platform_data;
  7911. char *orig_buf = buf;
  7912. u8 *arr;
  7913. int i;
  7914. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7915. for (i = 0; i < p->num_ports; i++) {
  7916. buf += sprintf(buf,
  7917. (i == 0) ? "%d" : " %d",
  7918. arr[i]);
  7919. }
  7920. buf += sprintf(buf, "\n");
  7921. return buf - orig_buf;
  7922. }
  7923. static ssize_t show_rxchan_per_port(struct device *dev,
  7924. struct device_attribute *attr, char *buf)
  7925. {
  7926. return __show_chan_per_port(dev, attr, buf, 1);
  7927. }
  7928. static ssize_t show_txchan_per_port(struct device *dev,
  7929. struct device_attribute *attr, char *buf)
  7930. {
  7931. return __show_chan_per_port(dev, attr, buf, 1);
  7932. }
  7933. static ssize_t show_num_ports(struct device *dev,
  7934. struct device_attribute *attr, char *buf)
  7935. {
  7936. struct platform_device *plat_dev = to_platform_device(dev);
  7937. struct niu_parent *p = plat_dev->dev.platform_data;
  7938. return sprintf(buf, "%d\n", p->num_ports);
  7939. }
  7940. static struct device_attribute niu_parent_attributes[] = {
  7941. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7942. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7943. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7944. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7945. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7946. {}
  7947. };
  7948. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7949. union niu_parent_id *id,
  7950. u8 ptype)
  7951. {
  7952. struct platform_device *plat_dev;
  7953. struct niu_parent *p;
  7954. int i;
  7955. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7956. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7957. NULL, 0);
  7958. if (IS_ERR(plat_dev))
  7959. return NULL;
  7960. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7961. int err = device_create_file(&plat_dev->dev,
  7962. &niu_parent_attributes[i]);
  7963. if (err)
  7964. goto fail_unregister;
  7965. }
  7966. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7967. if (!p)
  7968. goto fail_unregister;
  7969. p->index = niu_parent_index++;
  7970. plat_dev->dev.platform_data = p;
  7971. p->plat_dev = plat_dev;
  7972. memcpy(&p->id, id, sizeof(*id));
  7973. p->plat_type = ptype;
  7974. INIT_LIST_HEAD(&p->list);
  7975. atomic_set(&p->refcnt, 0);
  7976. list_add(&p->list, &niu_parent_list);
  7977. spin_lock_init(&p->lock);
  7978. p->rxdma_clock_divider = 7500;
  7979. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7980. if (p->plat_type == PLAT_TYPE_NIU)
  7981. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7982. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7983. int index = i - CLASS_CODE_USER_PROG1;
  7984. p->tcam_key[index] = TCAM_KEY_TSEL;
  7985. p->flow_key[index] = (FLOW_KEY_IPSA |
  7986. FLOW_KEY_IPDA |
  7987. FLOW_KEY_PROTO |
  7988. (FLOW_KEY_L4_BYTE12 <<
  7989. FLOW_KEY_L4_0_SHIFT) |
  7990. (FLOW_KEY_L4_BYTE12 <<
  7991. FLOW_KEY_L4_1_SHIFT));
  7992. }
  7993. for (i = 0; i < LDN_MAX + 1; i++)
  7994. p->ldg_map[i] = LDG_INVALID;
  7995. return p;
  7996. fail_unregister:
  7997. platform_device_unregister(plat_dev);
  7998. return NULL;
  7999. }
  8000. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  8001. union niu_parent_id *id,
  8002. u8 ptype)
  8003. {
  8004. struct niu_parent *p, *tmp;
  8005. int port = np->port;
  8006. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  8007. ptype, port);
  8008. mutex_lock(&niu_parent_lock);
  8009. p = NULL;
  8010. list_for_each_entry(tmp, &niu_parent_list, list) {
  8011. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  8012. p = tmp;
  8013. break;
  8014. }
  8015. }
  8016. if (!p)
  8017. p = niu_new_parent(np, id, ptype);
  8018. if (p) {
  8019. char port_name[6];
  8020. int err;
  8021. sprintf(port_name, "port%d", port);
  8022. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  8023. &np->device->kobj,
  8024. port_name);
  8025. if (!err) {
  8026. p->ports[port] = np;
  8027. atomic_inc(&p->refcnt);
  8028. }
  8029. }
  8030. mutex_unlock(&niu_parent_lock);
  8031. return p;
  8032. }
  8033. static void niu_put_parent(struct niu *np)
  8034. {
  8035. struct niu_parent *p = np->parent;
  8036. u8 port = np->port;
  8037. char port_name[6];
  8038. BUG_ON(!p || p->ports[port] != np);
  8039. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8040. sprintf(port_name, "port%d", port);
  8041. mutex_lock(&niu_parent_lock);
  8042. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8043. p->ports[port] = NULL;
  8044. np->parent = NULL;
  8045. if (atomic_dec_and_test(&p->refcnt)) {
  8046. list_del(&p->list);
  8047. platform_device_unregister(p->plat_dev);
  8048. }
  8049. mutex_unlock(&niu_parent_lock);
  8050. }
  8051. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8052. u64 *handle, gfp_t flag)
  8053. {
  8054. dma_addr_t dh;
  8055. void *ret;
  8056. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8057. if (ret)
  8058. *handle = dh;
  8059. return ret;
  8060. }
  8061. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8062. void *cpu_addr, u64 handle)
  8063. {
  8064. dma_free_coherent(dev, size, cpu_addr, handle);
  8065. }
  8066. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8067. unsigned long offset, size_t size,
  8068. enum dma_data_direction direction)
  8069. {
  8070. return dma_map_page(dev, page, offset, size, direction);
  8071. }
  8072. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8073. size_t size, enum dma_data_direction direction)
  8074. {
  8075. dma_unmap_page(dev, dma_address, size, direction);
  8076. }
  8077. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8078. size_t size,
  8079. enum dma_data_direction direction)
  8080. {
  8081. return dma_map_single(dev, cpu_addr, size, direction);
  8082. }
  8083. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8084. size_t size,
  8085. enum dma_data_direction direction)
  8086. {
  8087. dma_unmap_single(dev, dma_address, size, direction);
  8088. }
  8089. static const struct niu_ops niu_pci_ops = {
  8090. .alloc_coherent = niu_pci_alloc_coherent,
  8091. .free_coherent = niu_pci_free_coherent,
  8092. .map_page = niu_pci_map_page,
  8093. .unmap_page = niu_pci_unmap_page,
  8094. .map_single = niu_pci_map_single,
  8095. .unmap_single = niu_pci_unmap_single,
  8096. };
  8097. static void __devinit niu_driver_version(void)
  8098. {
  8099. static int niu_version_printed;
  8100. if (niu_version_printed++ == 0)
  8101. pr_info("%s", version);
  8102. }
  8103. static struct net_device * __devinit niu_alloc_and_init(
  8104. struct device *gen_dev, struct pci_dev *pdev,
  8105. struct of_device *op, const struct niu_ops *ops,
  8106. u8 port)
  8107. {
  8108. struct net_device *dev;
  8109. struct niu *np;
  8110. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8111. if (!dev) {
  8112. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8113. return NULL;
  8114. }
  8115. SET_NETDEV_DEV(dev, gen_dev);
  8116. np = netdev_priv(dev);
  8117. np->dev = dev;
  8118. np->pdev = pdev;
  8119. np->op = op;
  8120. np->device = gen_dev;
  8121. np->ops = ops;
  8122. np->msg_enable = niu_debug;
  8123. spin_lock_init(&np->lock);
  8124. INIT_WORK(&np->reset_task, niu_reset_task);
  8125. np->port = port;
  8126. return dev;
  8127. }
  8128. static const struct net_device_ops niu_netdev_ops = {
  8129. .ndo_open = niu_open,
  8130. .ndo_stop = niu_close,
  8131. .ndo_start_xmit = niu_start_xmit,
  8132. .ndo_get_stats = niu_get_stats,
  8133. .ndo_set_multicast_list = niu_set_rx_mode,
  8134. .ndo_validate_addr = eth_validate_addr,
  8135. .ndo_set_mac_address = niu_set_mac_addr,
  8136. .ndo_do_ioctl = niu_ioctl,
  8137. .ndo_tx_timeout = niu_tx_timeout,
  8138. .ndo_change_mtu = niu_change_mtu,
  8139. };
  8140. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8141. {
  8142. dev->netdev_ops = &niu_netdev_ops;
  8143. dev->ethtool_ops = &niu_ethtool_ops;
  8144. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8145. }
  8146. static void __devinit niu_device_announce(struct niu *np)
  8147. {
  8148. struct net_device *dev = np->dev;
  8149. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8150. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8151. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8152. dev->name,
  8153. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8154. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8155. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8156. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8157. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8158. np->vpd.phy_type);
  8159. } else {
  8160. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8161. dev->name,
  8162. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8163. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8164. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8165. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8166. "COPPER")),
  8167. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8168. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8169. np->vpd.phy_type);
  8170. }
  8171. }
  8172. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8173. const struct pci_device_id *ent)
  8174. {
  8175. union niu_parent_id parent_id;
  8176. struct net_device *dev;
  8177. struct niu *np;
  8178. int err, pos;
  8179. u64 dma_mask;
  8180. u16 val16;
  8181. niu_driver_version();
  8182. err = pci_enable_device(pdev);
  8183. if (err) {
  8184. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8185. "aborting.\n");
  8186. return err;
  8187. }
  8188. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8189. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8190. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8191. "base addresses, aborting.\n");
  8192. err = -ENODEV;
  8193. goto err_out_disable_pdev;
  8194. }
  8195. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8196. if (err) {
  8197. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8198. "aborting.\n");
  8199. goto err_out_disable_pdev;
  8200. }
  8201. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8202. if (pos <= 0) {
  8203. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8204. "aborting.\n");
  8205. goto err_out_free_res;
  8206. }
  8207. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8208. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8209. if (!dev) {
  8210. err = -ENOMEM;
  8211. goto err_out_free_res;
  8212. }
  8213. np = netdev_priv(dev);
  8214. memset(&parent_id, 0, sizeof(parent_id));
  8215. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8216. parent_id.pci.bus = pdev->bus->number;
  8217. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8218. np->parent = niu_get_parent(np, &parent_id,
  8219. PLAT_TYPE_ATLAS);
  8220. if (!np->parent) {
  8221. err = -ENOMEM;
  8222. goto err_out_free_dev;
  8223. }
  8224. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8225. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8226. val16 |= (PCI_EXP_DEVCTL_CERE |
  8227. PCI_EXP_DEVCTL_NFERE |
  8228. PCI_EXP_DEVCTL_FERE |
  8229. PCI_EXP_DEVCTL_URRE |
  8230. PCI_EXP_DEVCTL_RELAX_EN);
  8231. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8232. dma_mask = DMA_44BIT_MASK;
  8233. err = pci_set_dma_mask(pdev, dma_mask);
  8234. if (!err) {
  8235. dev->features |= NETIF_F_HIGHDMA;
  8236. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8237. if (err) {
  8238. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8239. "DMA for consistent allocations, "
  8240. "aborting.\n");
  8241. goto err_out_release_parent;
  8242. }
  8243. }
  8244. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8245. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8246. if (err) {
  8247. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8248. "aborting.\n");
  8249. goto err_out_release_parent;
  8250. }
  8251. }
  8252. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8253. np->regs = pci_ioremap_bar(pdev, 0);
  8254. if (!np->regs) {
  8255. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8256. "aborting.\n");
  8257. err = -ENOMEM;
  8258. goto err_out_release_parent;
  8259. }
  8260. pci_set_master(pdev);
  8261. pci_save_state(pdev);
  8262. dev->irq = pdev->irq;
  8263. niu_assign_netdev_ops(dev);
  8264. err = niu_get_invariants(np);
  8265. if (err) {
  8266. if (err != -ENODEV)
  8267. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8268. "of chip, aborting.\n");
  8269. goto err_out_iounmap;
  8270. }
  8271. err = register_netdev(dev);
  8272. if (err) {
  8273. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8274. "aborting.\n");
  8275. goto err_out_iounmap;
  8276. }
  8277. pci_set_drvdata(pdev, dev);
  8278. niu_device_announce(np);
  8279. return 0;
  8280. err_out_iounmap:
  8281. if (np->regs) {
  8282. iounmap(np->regs);
  8283. np->regs = NULL;
  8284. }
  8285. err_out_release_parent:
  8286. niu_put_parent(np);
  8287. err_out_free_dev:
  8288. free_netdev(dev);
  8289. err_out_free_res:
  8290. pci_release_regions(pdev);
  8291. err_out_disable_pdev:
  8292. pci_disable_device(pdev);
  8293. pci_set_drvdata(pdev, NULL);
  8294. return err;
  8295. }
  8296. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8297. {
  8298. struct net_device *dev = pci_get_drvdata(pdev);
  8299. if (dev) {
  8300. struct niu *np = netdev_priv(dev);
  8301. unregister_netdev(dev);
  8302. if (np->regs) {
  8303. iounmap(np->regs);
  8304. np->regs = NULL;
  8305. }
  8306. niu_ldg_free(np);
  8307. niu_put_parent(np);
  8308. free_netdev(dev);
  8309. pci_release_regions(pdev);
  8310. pci_disable_device(pdev);
  8311. pci_set_drvdata(pdev, NULL);
  8312. }
  8313. }
  8314. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8315. {
  8316. struct net_device *dev = pci_get_drvdata(pdev);
  8317. struct niu *np = netdev_priv(dev);
  8318. unsigned long flags;
  8319. if (!netif_running(dev))
  8320. return 0;
  8321. flush_scheduled_work();
  8322. niu_netif_stop(np);
  8323. del_timer_sync(&np->timer);
  8324. spin_lock_irqsave(&np->lock, flags);
  8325. niu_enable_interrupts(np, 0);
  8326. spin_unlock_irqrestore(&np->lock, flags);
  8327. netif_device_detach(dev);
  8328. spin_lock_irqsave(&np->lock, flags);
  8329. niu_stop_hw(np);
  8330. spin_unlock_irqrestore(&np->lock, flags);
  8331. pci_save_state(pdev);
  8332. return 0;
  8333. }
  8334. static int niu_resume(struct pci_dev *pdev)
  8335. {
  8336. struct net_device *dev = pci_get_drvdata(pdev);
  8337. struct niu *np = netdev_priv(dev);
  8338. unsigned long flags;
  8339. int err;
  8340. if (!netif_running(dev))
  8341. return 0;
  8342. pci_restore_state(pdev);
  8343. netif_device_attach(dev);
  8344. spin_lock_irqsave(&np->lock, flags);
  8345. err = niu_init_hw(np);
  8346. if (!err) {
  8347. np->timer.expires = jiffies + HZ;
  8348. add_timer(&np->timer);
  8349. niu_netif_start(np);
  8350. }
  8351. spin_unlock_irqrestore(&np->lock, flags);
  8352. return err;
  8353. }
  8354. static struct pci_driver niu_pci_driver = {
  8355. .name = DRV_MODULE_NAME,
  8356. .id_table = niu_pci_tbl,
  8357. .probe = niu_pci_init_one,
  8358. .remove = __devexit_p(niu_pci_remove_one),
  8359. .suspend = niu_suspend,
  8360. .resume = niu_resume,
  8361. };
  8362. #ifdef CONFIG_SPARC64
  8363. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8364. u64 *dma_addr, gfp_t flag)
  8365. {
  8366. unsigned long order = get_order(size);
  8367. unsigned long page = __get_free_pages(flag, order);
  8368. if (page == 0UL)
  8369. return NULL;
  8370. memset((char *)page, 0, PAGE_SIZE << order);
  8371. *dma_addr = __pa(page);
  8372. return (void *) page;
  8373. }
  8374. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8375. void *cpu_addr, u64 handle)
  8376. {
  8377. unsigned long order = get_order(size);
  8378. free_pages((unsigned long) cpu_addr, order);
  8379. }
  8380. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8381. unsigned long offset, size_t size,
  8382. enum dma_data_direction direction)
  8383. {
  8384. return page_to_phys(page) + offset;
  8385. }
  8386. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8387. size_t size, enum dma_data_direction direction)
  8388. {
  8389. /* Nothing to do. */
  8390. }
  8391. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8392. size_t size,
  8393. enum dma_data_direction direction)
  8394. {
  8395. return __pa(cpu_addr);
  8396. }
  8397. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8398. size_t size,
  8399. enum dma_data_direction direction)
  8400. {
  8401. /* Nothing to do. */
  8402. }
  8403. static const struct niu_ops niu_phys_ops = {
  8404. .alloc_coherent = niu_phys_alloc_coherent,
  8405. .free_coherent = niu_phys_free_coherent,
  8406. .map_page = niu_phys_map_page,
  8407. .unmap_page = niu_phys_unmap_page,
  8408. .map_single = niu_phys_map_single,
  8409. .unmap_single = niu_phys_unmap_single,
  8410. };
  8411. static unsigned long res_size(struct resource *r)
  8412. {
  8413. return r->end - r->start + 1UL;
  8414. }
  8415. static int __devinit niu_of_probe(struct of_device *op,
  8416. const struct of_device_id *match)
  8417. {
  8418. union niu_parent_id parent_id;
  8419. struct net_device *dev;
  8420. struct niu *np;
  8421. const u32 *reg;
  8422. int err;
  8423. niu_driver_version();
  8424. reg = of_get_property(op->node, "reg", NULL);
  8425. if (!reg) {
  8426. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8427. op->node->full_name);
  8428. return -ENODEV;
  8429. }
  8430. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8431. &niu_phys_ops, reg[0] & 0x1);
  8432. if (!dev) {
  8433. err = -ENOMEM;
  8434. goto err_out;
  8435. }
  8436. np = netdev_priv(dev);
  8437. memset(&parent_id, 0, sizeof(parent_id));
  8438. parent_id.of = of_get_parent(op->node);
  8439. np->parent = niu_get_parent(np, &parent_id,
  8440. PLAT_TYPE_NIU);
  8441. if (!np->parent) {
  8442. err = -ENOMEM;
  8443. goto err_out_free_dev;
  8444. }
  8445. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8446. np->regs = of_ioremap(&op->resource[1], 0,
  8447. res_size(&op->resource[1]),
  8448. "niu regs");
  8449. if (!np->regs) {
  8450. dev_err(&op->dev, PFX "Cannot map device registers, "
  8451. "aborting.\n");
  8452. err = -ENOMEM;
  8453. goto err_out_release_parent;
  8454. }
  8455. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8456. res_size(&op->resource[2]),
  8457. "niu vregs-1");
  8458. if (!np->vir_regs_1) {
  8459. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8460. "aborting.\n");
  8461. err = -ENOMEM;
  8462. goto err_out_iounmap;
  8463. }
  8464. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8465. res_size(&op->resource[3]),
  8466. "niu vregs-2");
  8467. if (!np->vir_regs_2) {
  8468. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8469. "aborting.\n");
  8470. err = -ENOMEM;
  8471. goto err_out_iounmap;
  8472. }
  8473. niu_assign_netdev_ops(dev);
  8474. err = niu_get_invariants(np);
  8475. if (err) {
  8476. if (err != -ENODEV)
  8477. dev_err(&op->dev, PFX "Problem fetching invariants "
  8478. "of chip, aborting.\n");
  8479. goto err_out_iounmap;
  8480. }
  8481. err = register_netdev(dev);
  8482. if (err) {
  8483. dev_err(&op->dev, PFX "Cannot register net device, "
  8484. "aborting.\n");
  8485. goto err_out_iounmap;
  8486. }
  8487. dev_set_drvdata(&op->dev, dev);
  8488. niu_device_announce(np);
  8489. return 0;
  8490. err_out_iounmap:
  8491. if (np->vir_regs_1) {
  8492. of_iounmap(&op->resource[2], np->vir_regs_1,
  8493. res_size(&op->resource[2]));
  8494. np->vir_regs_1 = NULL;
  8495. }
  8496. if (np->vir_regs_2) {
  8497. of_iounmap(&op->resource[3], np->vir_regs_2,
  8498. res_size(&op->resource[3]));
  8499. np->vir_regs_2 = NULL;
  8500. }
  8501. if (np->regs) {
  8502. of_iounmap(&op->resource[1], np->regs,
  8503. res_size(&op->resource[1]));
  8504. np->regs = NULL;
  8505. }
  8506. err_out_release_parent:
  8507. niu_put_parent(np);
  8508. err_out_free_dev:
  8509. free_netdev(dev);
  8510. err_out:
  8511. return err;
  8512. }
  8513. static int __devexit niu_of_remove(struct of_device *op)
  8514. {
  8515. struct net_device *dev = dev_get_drvdata(&op->dev);
  8516. if (dev) {
  8517. struct niu *np = netdev_priv(dev);
  8518. unregister_netdev(dev);
  8519. if (np->vir_regs_1) {
  8520. of_iounmap(&op->resource[2], np->vir_regs_1,
  8521. res_size(&op->resource[2]));
  8522. np->vir_regs_1 = NULL;
  8523. }
  8524. if (np->vir_regs_2) {
  8525. of_iounmap(&op->resource[3], np->vir_regs_2,
  8526. res_size(&op->resource[3]));
  8527. np->vir_regs_2 = NULL;
  8528. }
  8529. if (np->regs) {
  8530. of_iounmap(&op->resource[1], np->regs,
  8531. res_size(&op->resource[1]));
  8532. np->regs = NULL;
  8533. }
  8534. niu_ldg_free(np);
  8535. niu_put_parent(np);
  8536. free_netdev(dev);
  8537. dev_set_drvdata(&op->dev, NULL);
  8538. }
  8539. return 0;
  8540. }
  8541. static const struct of_device_id niu_match[] = {
  8542. {
  8543. .name = "network",
  8544. .compatible = "SUNW,niusl",
  8545. },
  8546. {},
  8547. };
  8548. MODULE_DEVICE_TABLE(of, niu_match);
  8549. static struct of_platform_driver niu_of_driver = {
  8550. .name = "niu",
  8551. .match_table = niu_match,
  8552. .probe = niu_of_probe,
  8553. .remove = __devexit_p(niu_of_remove),
  8554. };
  8555. #endif /* CONFIG_SPARC64 */
  8556. static int __init niu_init(void)
  8557. {
  8558. int err = 0;
  8559. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8560. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8561. #ifdef CONFIG_SPARC64
  8562. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8563. #endif
  8564. if (!err) {
  8565. err = pci_register_driver(&niu_pci_driver);
  8566. #ifdef CONFIG_SPARC64
  8567. if (err)
  8568. of_unregister_driver(&niu_of_driver);
  8569. #endif
  8570. }
  8571. return err;
  8572. }
  8573. static void __exit niu_exit(void)
  8574. {
  8575. pci_unregister_driver(&niu_pci_driver);
  8576. #ifdef CONFIG_SPARC64
  8577. of_unregister_driver(&niu_of_driver);
  8578. #endif
  8579. }
  8580. module_init(niu_init);
  8581. module_exit(niu_exit);