mace.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * Network device driver for the MACE ethernet controller on
  3. * Apple Powermacs. Assumes it's under a DBDMA controller.
  4. *
  5. * Copyright (C) 1996 Paul Mackerras.
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/etherdevice.h>
  11. #include <linux/delay.h>
  12. #include <linux/string.h>
  13. #include <linux/timer.h>
  14. #include <linux/init.h>
  15. #include <linux/crc32.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/bitrev.h>
  18. #include <asm/prom.h>
  19. #include <asm/dbdma.h>
  20. #include <asm/io.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/macio.h>
  23. #include "mace.h"
  24. static int port_aaui = -1;
  25. #define N_RX_RING 8
  26. #define N_TX_RING 6
  27. #define MAX_TX_ACTIVE 1
  28. #define NCMDS_TX 1 /* dma commands per element in tx ring */
  29. #define RX_BUFLEN (ETH_FRAME_LEN + 8)
  30. #define TX_TIMEOUT HZ /* 1 second */
  31. /* Chip rev needs workaround on HW & multicast addr change */
  32. #define BROKEN_ADDRCHG_REV 0x0941
  33. /* Bits in transmit DMA status */
  34. #define TX_DMA_ERR 0x80
  35. struct mace_data {
  36. volatile struct mace __iomem *mace;
  37. volatile struct dbdma_regs __iomem *tx_dma;
  38. int tx_dma_intr;
  39. volatile struct dbdma_regs __iomem *rx_dma;
  40. int rx_dma_intr;
  41. volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
  42. volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
  43. struct sk_buff *rx_bufs[N_RX_RING];
  44. int rx_fill;
  45. int rx_empty;
  46. struct sk_buff *tx_bufs[N_TX_RING];
  47. int tx_fill;
  48. int tx_empty;
  49. unsigned char maccc;
  50. unsigned char tx_fullup;
  51. unsigned char tx_active;
  52. unsigned char tx_bad_runt;
  53. struct timer_list tx_timeout;
  54. int timeout_active;
  55. int port_aaui;
  56. int chipid;
  57. struct macio_dev *mdev;
  58. spinlock_t lock;
  59. };
  60. /*
  61. * Number of bytes of private data per MACE: allow enough for
  62. * the rx and tx dma commands plus a branch dma command each,
  63. * and another 16 bytes to allow us to align the dma command
  64. * buffers on a 16 byte boundary.
  65. */
  66. #define PRIV_BYTES (sizeof(struct mace_data) \
  67. + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
  68. static int mace_open(struct net_device *dev);
  69. static int mace_close(struct net_device *dev);
  70. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
  71. static void mace_set_multicast(struct net_device *dev);
  72. static void mace_reset(struct net_device *dev);
  73. static int mace_set_address(struct net_device *dev, void *addr);
  74. static irqreturn_t mace_interrupt(int irq, void *dev_id);
  75. static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
  76. static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
  77. static void mace_set_timeout(struct net_device *dev);
  78. static void mace_tx_timeout(unsigned long data);
  79. static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
  80. static inline void mace_clean_rings(struct mace_data *mp);
  81. static void __mace_set_address(struct net_device *dev, void *addr);
  82. /*
  83. * If we can't get a skbuff when we need it, we use this area for DMA.
  84. */
  85. static unsigned char *dummy_buf;
  86. static const struct net_device_ops mace_netdev_ops = {
  87. .ndo_open = mace_open,
  88. .ndo_stop = mace_close,
  89. .ndo_start_xmit = mace_xmit_start,
  90. .ndo_set_multicast_list = mace_set_multicast,
  91. .ndo_set_mac_address = mace_set_address,
  92. .ndo_change_mtu = eth_change_mtu,
  93. .ndo_validate_addr = eth_validate_addr,
  94. };
  95. static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
  96. {
  97. struct device_node *mace = macio_get_of_node(mdev);
  98. struct net_device *dev;
  99. struct mace_data *mp;
  100. const unsigned char *addr;
  101. int j, rev, rc = -EBUSY;
  102. if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
  103. printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
  104. mace->full_name);
  105. return -ENODEV;
  106. }
  107. addr = of_get_property(mace, "mac-address", NULL);
  108. if (addr == NULL) {
  109. addr = of_get_property(mace, "local-mac-address", NULL);
  110. if (addr == NULL) {
  111. printk(KERN_ERR "Can't get mac-address for MACE %s\n",
  112. mace->full_name);
  113. return -ENODEV;
  114. }
  115. }
  116. /*
  117. * lazy allocate the driver-wide dummy buffer. (Note that we
  118. * never have more than one MACE in the system anyway)
  119. */
  120. if (dummy_buf == NULL) {
  121. dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
  122. if (dummy_buf == NULL) {
  123. printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
  124. return -ENOMEM;
  125. }
  126. }
  127. if (macio_request_resources(mdev, "mace")) {
  128. printk(KERN_ERR "MACE: can't request IO resources !\n");
  129. return -EBUSY;
  130. }
  131. dev = alloc_etherdev(PRIV_BYTES);
  132. if (!dev) {
  133. printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
  134. rc = -ENOMEM;
  135. goto err_release;
  136. }
  137. SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
  138. mp = netdev_priv(dev);
  139. mp->mdev = mdev;
  140. macio_set_drvdata(mdev, dev);
  141. dev->base_addr = macio_resource_start(mdev, 0);
  142. mp->mace = ioremap(dev->base_addr, 0x1000);
  143. if (mp->mace == NULL) {
  144. printk(KERN_ERR "MACE: can't map IO resources !\n");
  145. rc = -ENOMEM;
  146. goto err_free;
  147. }
  148. dev->irq = macio_irq(mdev, 0);
  149. rev = addr[0] == 0 && addr[1] == 0xA0;
  150. for (j = 0; j < 6; ++j) {
  151. dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
  152. }
  153. mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
  154. in_8(&mp->mace->chipid_lo);
  155. mp = netdev_priv(dev);
  156. mp->maccc = ENXMT | ENRCV;
  157. mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
  158. if (mp->tx_dma == NULL) {
  159. printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
  160. rc = -ENOMEM;
  161. goto err_unmap_io;
  162. }
  163. mp->tx_dma_intr = macio_irq(mdev, 1);
  164. mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
  165. if (mp->rx_dma == NULL) {
  166. printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
  167. rc = -ENOMEM;
  168. goto err_unmap_tx_dma;
  169. }
  170. mp->rx_dma_intr = macio_irq(mdev, 2);
  171. mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
  172. mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
  173. memset((char *) mp->tx_cmds, 0,
  174. (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
  175. init_timer(&mp->tx_timeout);
  176. spin_lock_init(&mp->lock);
  177. mp->timeout_active = 0;
  178. if (port_aaui >= 0)
  179. mp->port_aaui = port_aaui;
  180. else {
  181. /* Apple Network Server uses the AAUI port */
  182. if (machine_is_compatible("AAPL,ShinerESB"))
  183. mp->port_aaui = 1;
  184. else {
  185. #ifdef CONFIG_MACE_AAUI_PORT
  186. mp->port_aaui = 1;
  187. #else
  188. mp->port_aaui = 0;
  189. #endif
  190. }
  191. }
  192. dev->netdev_ops = &mace_netdev_ops;
  193. /*
  194. * Most of what is below could be moved to mace_open()
  195. */
  196. mace_reset(dev);
  197. rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
  198. if (rc) {
  199. printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
  200. goto err_unmap_rx_dma;
  201. }
  202. rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
  203. if (rc) {
  204. printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
  205. goto err_free_irq;
  206. }
  207. rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
  208. if (rc) {
  209. printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
  210. goto err_free_tx_irq;
  211. }
  212. rc = register_netdev(dev);
  213. if (rc) {
  214. printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
  215. goto err_free_rx_irq;
  216. }
  217. printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
  218. dev->name, dev->dev_addr,
  219. mp->chipid >> 8, mp->chipid & 0xff);
  220. return 0;
  221. err_free_rx_irq:
  222. free_irq(macio_irq(mdev, 2), dev);
  223. err_free_tx_irq:
  224. free_irq(macio_irq(mdev, 1), dev);
  225. err_free_irq:
  226. free_irq(macio_irq(mdev, 0), dev);
  227. err_unmap_rx_dma:
  228. iounmap(mp->rx_dma);
  229. err_unmap_tx_dma:
  230. iounmap(mp->tx_dma);
  231. err_unmap_io:
  232. iounmap(mp->mace);
  233. err_free:
  234. free_netdev(dev);
  235. err_release:
  236. macio_release_resources(mdev);
  237. return rc;
  238. }
  239. static int __devexit mace_remove(struct macio_dev *mdev)
  240. {
  241. struct net_device *dev = macio_get_drvdata(mdev);
  242. struct mace_data *mp;
  243. BUG_ON(dev == NULL);
  244. macio_set_drvdata(mdev, NULL);
  245. mp = netdev_priv(dev);
  246. unregister_netdev(dev);
  247. free_irq(dev->irq, dev);
  248. free_irq(mp->tx_dma_intr, dev);
  249. free_irq(mp->rx_dma_intr, dev);
  250. iounmap(mp->rx_dma);
  251. iounmap(mp->tx_dma);
  252. iounmap(mp->mace);
  253. free_netdev(dev);
  254. macio_release_resources(mdev);
  255. return 0;
  256. }
  257. static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
  258. {
  259. int i;
  260. out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
  261. /*
  262. * Yes this looks peculiar, but apparently it needs to be this
  263. * way on some machines.
  264. */
  265. for (i = 200; i > 0; --i)
  266. if (ld_le32(&dma->control) & RUN)
  267. udelay(1);
  268. }
  269. static void mace_reset(struct net_device *dev)
  270. {
  271. struct mace_data *mp = netdev_priv(dev);
  272. volatile struct mace __iomem *mb = mp->mace;
  273. int i;
  274. /* soft-reset the chip */
  275. i = 200;
  276. while (--i) {
  277. out_8(&mb->biucc, SWRST);
  278. if (in_8(&mb->biucc) & SWRST) {
  279. udelay(10);
  280. continue;
  281. }
  282. break;
  283. }
  284. if (!i) {
  285. printk(KERN_ERR "mace: cannot reset chip!\n");
  286. return;
  287. }
  288. out_8(&mb->imr, 0xff); /* disable all intrs for now */
  289. i = in_8(&mb->ir);
  290. out_8(&mb->maccc, 0); /* turn off tx, rx */
  291. out_8(&mb->biucc, XMTSP_64);
  292. out_8(&mb->utr, RTRD);
  293. out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
  294. out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
  295. out_8(&mb->rcvfc, 0);
  296. /* load up the hardware address */
  297. __mace_set_address(dev, dev->dev_addr);
  298. /* clear the multicast filter */
  299. if (mp->chipid == BROKEN_ADDRCHG_REV)
  300. out_8(&mb->iac, LOGADDR);
  301. else {
  302. out_8(&mb->iac, ADDRCHG | LOGADDR);
  303. while ((in_8(&mb->iac) & ADDRCHG) != 0)
  304. ;
  305. }
  306. for (i = 0; i < 8; ++i)
  307. out_8(&mb->ladrf, 0);
  308. /* done changing address */
  309. if (mp->chipid != BROKEN_ADDRCHG_REV)
  310. out_8(&mb->iac, 0);
  311. if (mp->port_aaui)
  312. out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
  313. else
  314. out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
  315. }
  316. static void __mace_set_address(struct net_device *dev, void *addr)
  317. {
  318. struct mace_data *mp = netdev_priv(dev);
  319. volatile struct mace __iomem *mb = mp->mace;
  320. unsigned char *p = addr;
  321. int i;
  322. /* load up the hardware address */
  323. if (mp->chipid == BROKEN_ADDRCHG_REV)
  324. out_8(&mb->iac, PHYADDR);
  325. else {
  326. out_8(&mb->iac, ADDRCHG | PHYADDR);
  327. while ((in_8(&mb->iac) & ADDRCHG) != 0)
  328. ;
  329. }
  330. for (i = 0; i < 6; ++i)
  331. out_8(&mb->padr, dev->dev_addr[i] = p[i]);
  332. if (mp->chipid != BROKEN_ADDRCHG_REV)
  333. out_8(&mb->iac, 0);
  334. }
  335. static int mace_set_address(struct net_device *dev, void *addr)
  336. {
  337. struct mace_data *mp = netdev_priv(dev);
  338. volatile struct mace __iomem *mb = mp->mace;
  339. unsigned long flags;
  340. spin_lock_irqsave(&mp->lock, flags);
  341. __mace_set_address(dev, addr);
  342. /* note: setting ADDRCHG clears ENRCV */
  343. out_8(&mb->maccc, mp->maccc);
  344. spin_unlock_irqrestore(&mp->lock, flags);
  345. return 0;
  346. }
  347. static inline void mace_clean_rings(struct mace_data *mp)
  348. {
  349. int i;
  350. /* free some skb's */
  351. for (i = 0; i < N_RX_RING; ++i) {
  352. if (mp->rx_bufs[i] != NULL) {
  353. dev_kfree_skb(mp->rx_bufs[i]);
  354. mp->rx_bufs[i] = NULL;
  355. }
  356. }
  357. for (i = mp->tx_empty; i != mp->tx_fill; ) {
  358. dev_kfree_skb(mp->tx_bufs[i]);
  359. if (++i >= N_TX_RING)
  360. i = 0;
  361. }
  362. }
  363. static int mace_open(struct net_device *dev)
  364. {
  365. struct mace_data *mp = netdev_priv(dev);
  366. volatile struct mace __iomem *mb = mp->mace;
  367. volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
  368. volatile struct dbdma_regs __iomem *td = mp->tx_dma;
  369. volatile struct dbdma_cmd *cp;
  370. int i;
  371. struct sk_buff *skb;
  372. unsigned char *data;
  373. /* reset the chip */
  374. mace_reset(dev);
  375. /* initialize list of sk_buffs for receiving and set up recv dma */
  376. mace_clean_rings(mp);
  377. memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
  378. cp = mp->rx_cmds;
  379. for (i = 0; i < N_RX_RING - 1; ++i) {
  380. skb = dev_alloc_skb(RX_BUFLEN + 2);
  381. if (!skb) {
  382. data = dummy_buf;
  383. } else {
  384. skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
  385. data = skb->data;
  386. }
  387. mp->rx_bufs[i] = skb;
  388. st_le16(&cp->req_count, RX_BUFLEN);
  389. st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
  390. st_le32(&cp->phy_addr, virt_to_bus(data));
  391. cp->xfer_status = 0;
  392. ++cp;
  393. }
  394. mp->rx_bufs[i] = NULL;
  395. st_le16(&cp->command, DBDMA_STOP);
  396. mp->rx_fill = i;
  397. mp->rx_empty = 0;
  398. /* Put a branch back to the beginning of the receive command list */
  399. ++cp;
  400. st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
  401. st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
  402. /* start rx dma */
  403. out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
  404. out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
  405. out_le32(&rd->control, (RUN << 16) | RUN);
  406. /* put a branch at the end of the tx command list */
  407. cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
  408. st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
  409. st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
  410. /* reset tx dma */
  411. out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
  412. out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
  413. mp->tx_fill = 0;
  414. mp->tx_empty = 0;
  415. mp->tx_fullup = 0;
  416. mp->tx_active = 0;
  417. mp->tx_bad_runt = 0;
  418. /* turn it on! */
  419. out_8(&mb->maccc, mp->maccc);
  420. /* enable all interrupts except receive interrupts */
  421. out_8(&mb->imr, RCVINT);
  422. return 0;
  423. }
  424. static int mace_close(struct net_device *dev)
  425. {
  426. struct mace_data *mp = netdev_priv(dev);
  427. volatile struct mace __iomem *mb = mp->mace;
  428. volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
  429. volatile struct dbdma_regs __iomem *td = mp->tx_dma;
  430. /* disable rx and tx */
  431. out_8(&mb->maccc, 0);
  432. out_8(&mb->imr, 0xff); /* disable all intrs */
  433. /* disable rx and tx dma */
  434. st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
  435. st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
  436. mace_clean_rings(mp);
  437. return 0;
  438. }
  439. static inline void mace_set_timeout(struct net_device *dev)
  440. {
  441. struct mace_data *mp = netdev_priv(dev);
  442. if (mp->timeout_active)
  443. del_timer(&mp->tx_timeout);
  444. mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
  445. mp->tx_timeout.function = mace_tx_timeout;
  446. mp->tx_timeout.data = (unsigned long) dev;
  447. add_timer(&mp->tx_timeout);
  448. mp->timeout_active = 1;
  449. }
  450. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
  451. {
  452. struct mace_data *mp = netdev_priv(dev);
  453. volatile struct dbdma_regs __iomem *td = mp->tx_dma;
  454. volatile struct dbdma_cmd *cp, *np;
  455. unsigned long flags;
  456. int fill, next, len;
  457. /* see if there's a free slot in the tx ring */
  458. spin_lock_irqsave(&mp->lock, flags);
  459. fill = mp->tx_fill;
  460. next = fill + 1;
  461. if (next >= N_TX_RING)
  462. next = 0;
  463. if (next == mp->tx_empty) {
  464. netif_stop_queue(dev);
  465. mp->tx_fullup = 1;
  466. spin_unlock_irqrestore(&mp->lock, flags);
  467. return NETDEV_TX_BUSY; /* can't take it at the moment */
  468. }
  469. spin_unlock_irqrestore(&mp->lock, flags);
  470. /* partially fill in the dma command block */
  471. len = skb->len;
  472. if (len > ETH_FRAME_LEN) {
  473. printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
  474. len = ETH_FRAME_LEN;
  475. }
  476. mp->tx_bufs[fill] = skb;
  477. cp = mp->tx_cmds + NCMDS_TX * fill;
  478. st_le16(&cp->req_count, len);
  479. st_le32(&cp->phy_addr, virt_to_bus(skb->data));
  480. np = mp->tx_cmds + NCMDS_TX * next;
  481. out_le16(&np->command, DBDMA_STOP);
  482. /* poke the tx dma channel */
  483. spin_lock_irqsave(&mp->lock, flags);
  484. mp->tx_fill = next;
  485. if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
  486. out_le16(&cp->xfer_status, 0);
  487. out_le16(&cp->command, OUTPUT_LAST);
  488. out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
  489. ++mp->tx_active;
  490. mace_set_timeout(dev);
  491. }
  492. if (++next >= N_TX_RING)
  493. next = 0;
  494. if (next == mp->tx_empty)
  495. netif_stop_queue(dev);
  496. spin_unlock_irqrestore(&mp->lock, flags);
  497. return 0;
  498. }
  499. static void mace_set_multicast(struct net_device *dev)
  500. {
  501. struct mace_data *mp = netdev_priv(dev);
  502. volatile struct mace __iomem *mb = mp->mace;
  503. int i, j;
  504. u32 crc;
  505. unsigned long flags;
  506. spin_lock_irqsave(&mp->lock, flags);
  507. mp->maccc &= ~PROM;
  508. if (dev->flags & IFF_PROMISC) {
  509. mp->maccc |= PROM;
  510. } else {
  511. unsigned char multicast_filter[8];
  512. struct dev_mc_list *dmi = dev->mc_list;
  513. if (dev->flags & IFF_ALLMULTI) {
  514. for (i = 0; i < 8; i++)
  515. multicast_filter[i] = 0xff;
  516. } else {
  517. for (i = 0; i < 8; i++)
  518. multicast_filter[i] = 0;
  519. for (i = 0; i < dev->mc_count; i++) {
  520. crc = ether_crc_le(6, dmi->dmi_addr);
  521. j = crc >> 26; /* bit number in multicast_filter */
  522. multicast_filter[j >> 3] |= 1 << (j & 7);
  523. dmi = dmi->next;
  524. }
  525. }
  526. #if 0
  527. printk("Multicast filter :");
  528. for (i = 0; i < 8; i++)
  529. printk("%02x ", multicast_filter[i]);
  530. printk("\n");
  531. #endif
  532. if (mp->chipid == BROKEN_ADDRCHG_REV)
  533. out_8(&mb->iac, LOGADDR);
  534. else {
  535. out_8(&mb->iac, ADDRCHG | LOGADDR);
  536. while ((in_8(&mb->iac) & ADDRCHG) != 0)
  537. ;
  538. }
  539. for (i = 0; i < 8; ++i)
  540. out_8(&mb->ladrf, multicast_filter[i]);
  541. if (mp->chipid != BROKEN_ADDRCHG_REV)
  542. out_8(&mb->iac, 0);
  543. }
  544. /* reset maccc */
  545. out_8(&mb->maccc, mp->maccc);
  546. spin_unlock_irqrestore(&mp->lock, flags);
  547. }
  548. static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
  549. {
  550. volatile struct mace __iomem *mb = mp->mace;
  551. static int mace_babbles, mace_jabbers;
  552. if (intr & MPCO)
  553. dev->stats.rx_missed_errors += 256;
  554. dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
  555. if (intr & RNTPCO)
  556. dev->stats.rx_length_errors += 256;
  557. dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
  558. if (intr & CERR)
  559. ++dev->stats.tx_heartbeat_errors;
  560. if (intr & BABBLE)
  561. if (mace_babbles++ < 4)
  562. printk(KERN_DEBUG "mace: babbling transmitter\n");
  563. if (intr & JABBER)
  564. if (mace_jabbers++ < 4)
  565. printk(KERN_DEBUG "mace: jabbering transceiver\n");
  566. }
  567. static irqreturn_t mace_interrupt(int irq, void *dev_id)
  568. {
  569. struct net_device *dev = (struct net_device *) dev_id;
  570. struct mace_data *mp = netdev_priv(dev);
  571. volatile struct mace __iomem *mb = mp->mace;
  572. volatile struct dbdma_regs __iomem *td = mp->tx_dma;
  573. volatile struct dbdma_cmd *cp;
  574. int intr, fs, i, stat, x;
  575. int xcount, dstat;
  576. unsigned long flags;
  577. /* static int mace_last_fs, mace_last_xcount; */
  578. spin_lock_irqsave(&mp->lock, flags);
  579. intr = in_8(&mb->ir); /* read interrupt register */
  580. in_8(&mb->xmtrc); /* get retries */
  581. mace_handle_misc_intrs(mp, intr, dev);
  582. i = mp->tx_empty;
  583. while (in_8(&mb->pr) & XMTSV) {
  584. del_timer(&mp->tx_timeout);
  585. mp->timeout_active = 0;
  586. /*
  587. * Clear any interrupt indication associated with this status
  588. * word. This appears to unlatch any error indication from
  589. * the DMA controller.
  590. */
  591. intr = in_8(&mb->ir);
  592. if (intr != 0)
  593. mace_handle_misc_intrs(mp, intr, dev);
  594. if (mp->tx_bad_runt) {
  595. fs = in_8(&mb->xmtfs);
  596. mp->tx_bad_runt = 0;
  597. out_8(&mb->xmtfc, AUTO_PAD_XMIT);
  598. continue;
  599. }
  600. dstat = ld_le32(&td->status);
  601. /* stop DMA controller */
  602. out_le32(&td->control, RUN << 16);
  603. /*
  604. * xcount is the number of complete frames which have been
  605. * written to the fifo but for which status has not been read.
  606. */
  607. xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
  608. if (xcount == 0 || (dstat & DEAD)) {
  609. /*
  610. * If a packet was aborted before the DMA controller has
  611. * finished transferring it, it seems that there are 2 bytes
  612. * which are stuck in some buffer somewhere. These will get
  613. * transmitted as soon as we read the frame status (which
  614. * reenables the transmit data transfer request). Turning
  615. * off the DMA controller and/or resetting the MACE doesn't
  616. * help. So we disable auto-padding and FCS transmission
  617. * so the two bytes will only be a runt packet which should
  618. * be ignored by other stations.
  619. */
  620. out_8(&mb->xmtfc, DXMTFCS);
  621. }
  622. fs = in_8(&mb->xmtfs);
  623. if ((fs & XMTSV) == 0) {
  624. printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
  625. fs, xcount, dstat);
  626. mace_reset(dev);
  627. /*
  628. * XXX mace likes to hang the machine after a xmtfs error.
  629. * This is hard to reproduce, reseting *may* help
  630. */
  631. }
  632. cp = mp->tx_cmds + NCMDS_TX * i;
  633. stat = ld_le16(&cp->xfer_status);
  634. if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
  635. /*
  636. * Check whether there were in fact 2 bytes written to
  637. * the transmit FIFO.
  638. */
  639. udelay(1);
  640. x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
  641. if (x != 0) {
  642. /* there were two bytes with an end-of-packet indication */
  643. mp->tx_bad_runt = 1;
  644. mace_set_timeout(dev);
  645. } else {
  646. /*
  647. * Either there weren't the two bytes buffered up, or they
  648. * didn't have an end-of-packet indication.
  649. * We flush the transmit FIFO just in case (by setting the
  650. * XMTFWU bit with the transmitter disabled).
  651. */
  652. out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
  653. out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
  654. udelay(1);
  655. out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
  656. out_8(&mb->xmtfc, AUTO_PAD_XMIT);
  657. }
  658. }
  659. /* dma should have finished */
  660. if (i == mp->tx_fill) {
  661. printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
  662. fs, xcount, dstat);
  663. continue;
  664. }
  665. /* Update stats */
  666. if (fs & (UFLO|LCOL|LCAR|RTRY)) {
  667. ++dev->stats.tx_errors;
  668. if (fs & LCAR)
  669. ++dev->stats.tx_carrier_errors;
  670. if (fs & (UFLO|LCOL|RTRY))
  671. ++dev->stats.tx_aborted_errors;
  672. } else {
  673. dev->stats.tx_bytes += mp->tx_bufs[i]->len;
  674. ++dev->stats.tx_packets;
  675. }
  676. dev_kfree_skb_irq(mp->tx_bufs[i]);
  677. --mp->tx_active;
  678. if (++i >= N_TX_RING)
  679. i = 0;
  680. #if 0
  681. mace_last_fs = fs;
  682. mace_last_xcount = xcount;
  683. #endif
  684. }
  685. if (i != mp->tx_empty) {
  686. mp->tx_fullup = 0;
  687. netif_wake_queue(dev);
  688. }
  689. mp->tx_empty = i;
  690. i += mp->tx_active;
  691. if (i >= N_TX_RING)
  692. i -= N_TX_RING;
  693. if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
  694. do {
  695. /* set up the next one */
  696. cp = mp->tx_cmds + NCMDS_TX * i;
  697. out_le16(&cp->xfer_status, 0);
  698. out_le16(&cp->command, OUTPUT_LAST);
  699. ++mp->tx_active;
  700. if (++i >= N_TX_RING)
  701. i = 0;
  702. } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
  703. out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
  704. mace_set_timeout(dev);
  705. }
  706. spin_unlock_irqrestore(&mp->lock, flags);
  707. return IRQ_HANDLED;
  708. }
  709. static void mace_tx_timeout(unsigned long data)
  710. {
  711. struct net_device *dev = (struct net_device *) data;
  712. struct mace_data *mp = netdev_priv(dev);
  713. volatile struct mace __iomem *mb = mp->mace;
  714. volatile struct dbdma_regs __iomem *td = mp->tx_dma;
  715. volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
  716. volatile struct dbdma_cmd *cp;
  717. unsigned long flags;
  718. int i;
  719. spin_lock_irqsave(&mp->lock, flags);
  720. mp->timeout_active = 0;
  721. if (mp->tx_active == 0 && !mp->tx_bad_runt)
  722. goto out;
  723. /* update various counters */
  724. mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
  725. cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
  726. /* turn off both tx and rx and reset the chip */
  727. out_8(&mb->maccc, 0);
  728. printk(KERN_ERR "mace: transmit timeout - resetting\n");
  729. dbdma_reset(td);
  730. mace_reset(dev);
  731. /* restart rx dma */
  732. cp = bus_to_virt(ld_le32(&rd->cmdptr));
  733. dbdma_reset(rd);
  734. out_le16(&cp->xfer_status, 0);
  735. out_le32(&rd->cmdptr, virt_to_bus(cp));
  736. out_le32(&rd->control, (RUN << 16) | RUN);
  737. /* fix up the transmit side */
  738. i = mp->tx_empty;
  739. mp->tx_active = 0;
  740. ++dev->stats.tx_errors;
  741. if (mp->tx_bad_runt) {
  742. mp->tx_bad_runt = 0;
  743. } else if (i != mp->tx_fill) {
  744. dev_kfree_skb(mp->tx_bufs[i]);
  745. if (++i >= N_TX_RING)
  746. i = 0;
  747. mp->tx_empty = i;
  748. }
  749. mp->tx_fullup = 0;
  750. netif_wake_queue(dev);
  751. if (i != mp->tx_fill) {
  752. cp = mp->tx_cmds + NCMDS_TX * i;
  753. out_le16(&cp->xfer_status, 0);
  754. out_le16(&cp->command, OUTPUT_LAST);
  755. out_le32(&td->cmdptr, virt_to_bus(cp));
  756. out_le32(&td->control, (RUN << 16) | RUN);
  757. ++mp->tx_active;
  758. mace_set_timeout(dev);
  759. }
  760. /* turn it back on */
  761. out_8(&mb->imr, RCVINT);
  762. out_8(&mb->maccc, mp->maccc);
  763. out:
  764. spin_unlock_irqrestore(&mp->lock, flags);
  765. }
  766. static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
  767. {
  768. return IRQ_HANDLED;
  769. }
  770. static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
  771. {
  772. struct net_device *dev = (struct net_device *) dev_id;
  773. struct mace_data *mp = netdev_priv(dev);
  774. volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
  775. volatile struct dbdma_cmd *cp, *np;
  776. int i, nb, stat, next;
  777. struct sk_buff *skb;
  778. unsigned frame_status;
  779. static int mace_lost_status;
  780. unsigned char *data;
  781. unsigned long flags;
  782. spin_lock_irqsave(&mp->lock, flags);
  783. for (i = mp->rx_empty; i != mp->rx_fill; ) {
  784. cp = mp->rx_cmds + i;
  785. stat = ld_le16(&cp->xfer_status);
  786. if ((stat & ACTIVE) == 0) {
  787. next = i + 1;
  788. if (next >= N_RX_RING)
  789. next = 0;
  790. np = mp->rx_cmds + next;
  791. if (next != mp->rx_fill
  792. && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
  793. printk(KERN_DEBUG "mace: lost a status word\n");
  794. ++mace_lost_status;
  795. } else
  796. break;
  797. }
  798. nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
  799. out_le16(&cp->command, DBDMA_STOP);
  800. /* got a packet, have a look at it */
  801. skb = mp->rx_bufs[i];
  802. if (!skb) {
  803. ++dev->stats.rx_dropped;
  804. } else if (nb > 8) {
  805. data = skb->data;
  806. frame_status = (data[nb-3] << 8) + data[nb-4];
  807. if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
  808. ++dev->stats.rx_errors;
  809. if (frame_status & RS_OFLO)
  810. ++dev->stats.rx_over_errors;
  811. if (frame_status & RS_FRAMERR)
  812. ++dev->stats.rx_frame_errors;
  813. if (frame_status & RS_FCSERR)
  814. ++dev->stats.rx_crc_errors;
  815. } else {
  816. /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
  817. * FCS on frames with 802.3 headers. This means that Ethernet
  818. * frames have 8 extra octets at the end, while 802.3 frames
  819. * have only 4. We need to correctly account for this. */
  820. if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
  821. nb -= 4;
  822. else /* Ethernet header; mace includes FCS */
  823. nb -= 8;
  824. skb_put(skb, nb);
  825. skb->protocol = eth_type_trans(skb, dev);
  826. dev->stats.rx_bytes += skb->len;
  827. netif_rx(skb);
  828. mp->rx_bufs[i] = NULL;
  829. ++dev->stats.rx_packets;
  830. }
  831. } else {
  832. ++dev->stats.rx_errors;
  833. ++dev->stats.rx_length_errors;
  834. }
  835. /* advance to next */
  836. if (++i >= N_RX_RING)
  837. i = 0;
  838. }
  839. mp->rx_empty = i;
  840. i = mp->rx_fill;
  841. for (;;) {
  842. next = i + 1;
  843. if (next >= N_RX_RING)
  844. next = 0;
  845. if (next == mp->rx_empty)
  846. break;
  847. cp = mp->rx_cmds + i;
  848. skb = mp->rx_bufs[i];
  849. if (!skb) {
  850. skb = dev_alloc_skb(RX_BUFLEN + 2);
  851. if (skb) {
  852. skb_reserve(skb, 2);
  853. mp->rx_bufs[i] = skb;
  854. }
  855. }
  856. st_le16(&cp->req_count, RX_BUFLEN);
  857. data = skb? skb->data: dummy_buf;
  858. st_le32(&cp->phy_addr, virt_to_bus(data));
  859. out_le16(&cp->xfer_status, 0);
  860. out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
  861. #if 0
  862. if ((ld_le32(&rd->status) & ACTIVE) != 0) {
  863. out_le32(&rd->control, (PAUSE << 16) | PAUSE);
  864. while ((in_le32(&rd->status) & ACTIVE) != 0)
  865. ;
  866. }
  867. #endif
  868. i = next;
  869. }
  870. if (i != mp->rx_fill) {
  871. out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
  872. mp->rx_fill = i;
  873. }
  874. spin_unlock_irqrestore(&mp->lock, flags);
  875. return IRQ_HANDLED;
  876. }
  877. static struct of_device_id mace_match[] =
  878. {
  879. {
  880. .name = "mace",
  881. },
  882. {},
  883. };
  884. MODULE_DEVICE_TABLE (of, mace_match);
  885. static struct macio_driver mace_driver =
  886. {
  887. .name = "mace",
  888. .match_table = mace_match,
  889. .probe = mace_probe,
  890. .remove = mace_remove,
  891. };
  892. static int __init mace_init(void)
  893. {
  894. return macio_register_driver(&mace_driver);
  895. }
  896. static void __exit mace_cleanup(void)
  897. {
  898. macio_unregister_driver(&mace_driver);
  899. kfree(dummy_buf);
  900. dummy_buf = NULL;
  901. }
  902. MODULE_AUTHOR("Paul Mackerras");
  903. MODULE_DESCRIPTION("PowerMac MACE driver.");
  904. module_param(port_aaui, int, 0);
  905. MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
  906. MODULE_LICENSE("GPL");
  907. module_init(mace_init);
  908. module_exit(mace_cleanup);