korina.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. /* KORINA_RBSIZE is the hardware's default maximum receive
  80. * frame size in bytes. Having this hardcoded means that there
  81. * is no support for MTU sizes greater than 1500. */
  82. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  83. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  84. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  85. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  86. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  87. #define TX_TIMEOUT (6000 * HZ / 1000)
  88. enum chain_status { desc_filled, desc_empty };
  89. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  90. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  91. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  92. /* Information that need to be kept for each board. */
  93. struct korina_private {
  94. struct eth_regs *eth_regs;
  95. struct dma_reg *rx_dma_regs;
  96. struct dma_reg *tx_dma_regs;
  97. struct dma_desc *td_ring; /* transmit descriptor ring */
  98. struct dma_desc *rd_ring; /* receive descriptor ring */
  99. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  100. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  101. int rx_next_done;
  102. int rx_chain_head;
  103. int rx_chain_tail;
  104. enum chain_status rx_chain_status;
  105. int tx_next_done;
  106. int tx_chain_head;
  107. int tx_chain_tail;
  108. enum chain_status tx_chain_status;
  109. int tx_count;
  110. int tx_full;
  111. int rx_irq;
  112. int tx_irq;
  113. int ovr_irq;
  114. int und_irq;
  115. spinlock_t lock; /* NIC xmit lock */
  116. int dma_halt_cnt;
  117. int dma_run_cnt;
  118. struct napi_struct napi;
  119. struct timer_list media_check_timer;
  120. struct mii_if_info mii_if;
  121. struct net_device *dev;
  122. int phy_addr;
  123. };
  124. extern unsigned int idt_cpu_freq;
  125. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  126. {
  127. writel(0, &ch->dmandptr);
  128. writel(dma_addr, &ch->dmadptr);
  129. }
  130. static inline void korina_abort_dma(struct net_device *dev,
  131. struct dma_reg *ch)
  132. {
  133. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  134. writel(0x10, &ch->dmac);
  135. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  136. dev->trans_start = jiffies;
  137. writel(0, &ch->dmas);
  138. }
  139. writel(0, &ch->dmadptr);
  140. writel(0, &ch->dmandptr);
  141. }
  142. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  143. {
  144. writel(dma_addr, &ch->dmandptr);
  145. }
  146. static void korina_abort_tx(struct net_device *dev)
  147. {
  148. struct korina_private *lp = netdev_priv(dev);
  149. korina_abort_dma(dev, lp->tx_dma_regs);
  150. }
  151. static void korina_abort_rx(struct net_device *dev)
  152. {
  153. struct korina_private *lp = netdev_priv(dev);
  154. korina_abort_dma(dev, lp->rx_dma_regs);
  155. }
  156. static void korina_start_rx(struct korina_private *lp,
  157. struct dma_desc *rd)
  158. {
  159. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  160. }
  161. static void korina_chain_rx(struct korina_private *lp,
  162. struct dma_desc *rd)
  163. {
  164. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  165. }
  166. /* transmit packet */
  167. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  168. {
  169. struct korina_private *lp = netdev_priv(dev);
  170. unsigned long flags;
  171. u32 length;
  172. u32 chain_prev, chain_next;
  173. struct dma_desc *td;
  174. spin_lock_irqsave(&lp->lock, flags);
  175. td = &lp->td_ring[lp->tx_chain_tail];
  176. /* stop queue when full, drop pkts if queue already full */
  177. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  178. lp->tx_full = 1;
  179. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  180. netif_stop_queue(dev);
  181. else {
  182. dev->stats.tx_dropped++;
  183. dev_kfree_skb_any(skb);
  184. spin_unlock_irqrestore(&lp->lock, flags);
  185. return NETDEV_TX_BUSY;
  186. }
  187. }
  188. lp->tx_count++;
  189. lp->tx_skb[lp->tx_chain_tail] = skb;
  190. length = skb->len;
  191. dma_cache_wback((u32)skb->data, skb->len);
  192. /* Setup the transmit descriptor. */
  193. dma_cache_inv((u32) td, sizeof(*td));
  194. td->ca = CPHYSADDR(skb->data);
  195. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  196. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  197. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  198. if (lp->tx_chain_status == desc_empty) {
  199. /* Update tail */
  200. td->control = DMA_COUNT(length) |
  201. DMA_DESC_COF | DMA_DESC_IOF;
  202. /* Move tail */
  203. lp->tx_chain_tail = chain_next;
  204. /* Write to NDPTR */
  205. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  206. &lp->tx_dma_regs->dmandptr);
  207. /* Move head to tail */
  208. lp->tx_chain_head = lp->tx_chain_tail;
  209. } else {
  210. /* Update tail */
  211. td->control = DMA_COUNT(length) |
  212. DMA_DESC_COF | DMA_DESC_IOF;
  213. /* Link to prev */
  214. lp->td_ring[chain_prev].control &=
  215. ~DMA_DESC_COF;
  216. /* Link to prev */
  217. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  218. /* Move tail */
  219. lp->tx_chain_tail = chain_next;
  220. /* Write to NDPTR */
  221. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  222. &(lp->tx_dma_regs->dmandptr));
  223. /* Move head to tail */
  224. lp->tx_chain_head = lp->tx_chain_tail;
  225. lp->tx_chain_status = desc_empty;
  226. }
  227. } else {
  228. if (lp->tx_chain_status == desc_empty) {
  229. /* Update tail */
  230. td->control = DMA_COUNT(length) |
  231. DMA_DESC_COF | DMA_DESC_IOF;
  232. /* Move tail */
  233. lp->tx_chain_tail = chain_next;
  234. lp->tx_chain_status = desc_filled;
  235. } else {
  236. /* Update tail */
  237. td->control = DMA_COUNT(length) |
  238. DMA_DESC_COF | DMA_DESC_IOF;
  239. lp->td_ring[chain_prev].control &=
  240. ~DMA_DESC_COF;
  241. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  242. lp->tx_chain_tail = chain_next;
  243. }
  244. }
  245. dma_cache_wback((u32) td, sizeof(*td));
  246. dev->trans_start = jiffies;
  247. spin_unlock_irqrestore(&lp->lock, flags);
  248. return NETDEV_TX_OK;
  249. }
  250. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  251. {
  252. struct korina_private *lp = netdev_priv(dev);
  253. int ret;
  254. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  255. writel(0, &lp->eth_regs->miimcfg);
  256. writel(0, &lp->eth_regs->miimcmd);
  257. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  258. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  259. ret = (int)(readl(&lp->eth_regs->miimrdd));
  260. return ret;
  261. }
  262. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  263. {
  264. struct korina_private *lp = netdev_priv(dev);
  265. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  266. writel(0, &lp->eth_regs->miimcfg);
  267. writel(1, &lp->eth_regs->miimcmd);
  268. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  269. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  270. writel(val, &lp->eth_regs->miimwtd);
  271. }
  272. /* Ethernet Rx DMA interrupt */
  273. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  274. {
  275. struct net_device *dev = dev_id;
  276. struct korina_private *lp = netdev_priv(dev);
  277. u32 dmas, dmasm;
  278. irqreturn_t retval;
  279. dmas = readl(&lp->rx_dma_regs->dmas);
  280. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  281. dmasm = readl(&lp->rx_dma_regs->dmasm);
  282. writel(dmasm | (DMA_STAT_DONE |
  283. DMA_STAT_HALT | DMA_STAT_ERR),
  284. &lp->rx_dma_regs->dmasm);
  285. napi_schedule(&lp->napi);
  286. if (dmas & DMA_STAT_ERR)
  287. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  288. retval = IRQ_HANDLED;
  289. } else
  290. retval = IRQ_NONE;
  291. return retval;
  292. }
  293. static int korina_rx(struct net_device *dev, int limit)
  294. {
  295. struct korina_private *lp = netdev_priv(dev);
  296. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  297. struct sk_buff *skb, *skb_new;
  298. u8 *pkt_buf;
  299. u32 devcs, pkt_len, dmas;
  300. int count;
  301. dma_cache_inv((u32)rd, sizeof(*rd));
  302. for (count = 0; count < limit; count++) {
  303. skb = lp->rx_skb[lp->rx_next_done];
  304. skb_new = NULL;
  305. devcs = rd->devcs;
  306. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  307. break;
  308. /* Update statistics counters */
  309. if (devcs & ETH_RX_CRC)
  310. dev->stats.rx_crc_errors++;
  311. if (devcs & ETH_RX_LOR)
  312. dev->stats.rx_length_errors++;
  313. if (devcs & ETH_RX_LE)
  314. dev->stats.rx_length_errors++;
  315. if (devcs & ETH_RX_OVR)
  316. dev->stats.rx_over_errors++;
  317. if (devcs & ETH_RX_CV)
  318. dev->stats.rx_frame_errors++;
  319. if (devcs & ETH_RX_CES)
  320. dev->stats.rx_length_errors++;
  321. if (devcs & ETH_RX_MP)
  322. dev->stats.multicast++;
  323. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  324. /* check that this is a whole packet
  325. * WARNING: DMA_FD bit incorrectly set
  326. * in Rc32434 (errata ref #077) */
  327. dev->stats.rx_errors++;
  328. dev->stats.rx_dropped++;
  329. } else if ((devcs & ETH_RX_ROK)) {
  330. pkt_len = RCVPKT_LENGTH(devcs);
  331. /* must be the (first and) last
  332. * descriptor then */
  333. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  334. /* invalidate the cache */
  335. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  336. /* Malloc up new buffer. */
  337. skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
  338. if (!skb_new)
  339. break;
  340. /* Do not count the CRC */
  341. skb_put(skb, pkt_len - 4);
  342. skb->protocol = eth_type_trans(skb, dev);
  343. /* Pass the packet to upper layers */
  344. netif_receive_skb(skb);
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. /* 16 bit align */
  351. skb_reserve(skb_new, 2);
  352. lp->rx_skb[lp->rx_next_done] = skb_new;
  353. }
  354. rd->devcs = 0;
  355. /* Restore descriptor's curr_addr */
  356. if (skb_new)
  357. rd->ca = CPHYSADDR(skb_new->data);
  358. else
  359. rd->ca = CPHYSADDR(skb->data);
  360. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  361. DMA_DESC_COD | DMA_DESC_IOD;
  362. lp->rd_ring[(lp->rx_next_done - 1) &
  363. KORINA_RDS_MASK].control &=
  364. ~DMA_DESC_COD;
  365. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  366. dma_cache_wback((u32)rd, sizeof(*rd));
  367. rd = &lp->rd_ring[lp->rx_next_done];
  368. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  369. }
  370. dmas = readl(&lp->rx_dma_regs->dmas);
  371. if (dmas & DMA_STAT_HALT) {
  372. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  373. &lp->rx_dma_regs->dmas);
  374. lp->dma_halt_cnt++;
  375. rd->devcs = 0;
  376. skb = lp->rx_skb[lp->rx_next_done];
  377. rd->ca = CPHYSADDR(skb->data);
  378. dma_cache_wback((u32)rd, sizeof(*rd));
  379. korina_chain_rx(lp, rd);
  380. }
  381. return count;
  382. }
  383. static int korina_poll(struct napi_struct *napi, int budget)
  384. {
  385. struct korina_private *lp =
  386. container_of(napi, struct korina_private, napi);
  387. struct net_device *dev = lp->dev;
  388. int work_done;
  389. work_done = korina_rx(dev, budget);
  390. if (work_done < budget) {
  391. napi_complete(napi);
  392. writel(readl(&lp->rx_dma_regs->dmasm) &
  393. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  394. &lp->rx_dma_regs->dmasm);
  395. }
  396. return work_done;
  397. }
  398. /*
  399. * Set or clear the multicast filter for this adaptor.
  400. */
  401. static void korina_multicast_list(struct net_device *dev)
  402. {
  403. struct korina_private *lp = netdev_priv(dev);
  404. unsigned long flags;
  405. struct dev_mc_list *dmi = dev->mc_list;
  406. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  407. int i;
  408. /* Set promiscuous mode */
  409. if (dev->flags & IFF_PROMISC)
  410. recognise |= ETH_ARC_PRO;
  411. else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
  412. /* All multicast and broadcast */
  413. recognise |= ETH_ARC_AM;
  414. /* Build the hash table */
  415. if (dev->mc_count > 4) {
  416. u16 hash_table[4];
  417. u32 crc;
  418. for (i = 0; i < 4; i++)
  419. hash_table[i] = 0;
  420. for (i = 0; i < dev->mc_count; i++) {
  421. char *addrs = dmi->dmi_addr;
  422. dmi = dmi->next;
  423. if (!(*addrs & 1))
  424. continue;
  425. crc = ether_crc_le(6, addrs);
  426. crc >>= 26;
  427. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  428. }
  429. /* Accept filtered multicast */
  430. recognise |= ETH_ARC_AFM;
  431. /* Fill the MAC hash tables with their values */
  432. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  433. &lp->eth_regs->ethhash0);
  434. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  435. &lp->eth_regs->ethhash1);
  436. }
  437. spin_lock_irqsave(&lp->lock, flags);
  438. writel(recognise, &lp->eth_regs->etharc);
  439. spin_unlock_irqrestore(&lp->lock, flags);
  440. }
  441. static void korina_tx(struct net_device *dev)
  442. {
  443. struct korina_private *lp = netdev_priv(dev);
  444. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  445. u32 devcs;
  446. u32 dmas;
  447. spin_lock(&lp->lock);
  448. /* Process all desc that are done */
  449. while (IS_DMA_FINISHED(td->control)) {
  450. if (lp->tx_full == 1) {
  451. netif_wake_queue(dev);
  452. lp->tx_full = 0;
  453. }
  454. devcs = lp->td_ring[lp->tx_next_done].devcs;
  455. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  456. (ETH_TX_FD | ETH_TX_LD)) {
  457. dev->stats.tx_errors++;
  458. dev->stats.tx_dropped++;
  459. /* Should never happen */
  460. printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
  461. dev->name);
  462. } else if (devcs & ETH_TX_TOK) {
  463. dev->stats.tx_packets++;
  464. dev->stats.tx_bytes +=
  465. lp->tx_skb[lp->tx_next_done]->len;
  466. } else {
  467. dev->stats.tx_errors++;
  468. dev->stats.tx_dropped++;
  469. /* Underflow */
  470. if (devcs & ETH_TX_UND)
  471. dev->stats.tx_fifo_errors++;
  472. /* Oversized frame */
  473. if (devcs & ETH_TX_OF)
  474. dev->stats.tx_aborted_errors++;
  475. /* Excessive deferrals */
  476. if (devcs & ETH_TX_ED)
  477. dev->stats.tx_carrier_errors++;
  478. /* Collisions: medium busy */
  479. if (devcs & ETH_TX_EC)
  480. dev->stats.collisions++;
  481. /* Late collision */
  482. if (devcs & ETH_TX_LC)
  483. dev->stats.tx_window_errors++;
  484. }
  485. /* We must always free the original skb */
  486. if (lp->tx_skb[lp->tx_next_done]) {
  487. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  488. lp->tx_skb[lp->tx_next_done] = NULL;
  489. }
  490. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  491. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  492. lp->td_ring[lp->tx_next_done].link = 0;
  493. lp->td_ring[lp->tx_next_done].ca = 0;
  494. lp->tx_count--;
  495. /* Go on to next transmission */
  496. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  497. td = &lp->td_ring[lp->tx_next_done];
  498. }
  499. /* Clear the DMA status register */
  500. dmas = readl(&lp->tx_dma_regs->dmas);
  501. writel(~dmas, &lp->tx_dma_regs->dmas);
  502. writel(readl(&lp->tx_dma_regs->dmasm) &
  503. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  504. &lp->tx_dma_regs->dmasm);
  505. spin_unlock(&lp->lock);
  506. }
  507. static irqreturn_t
  508. korina_tx_dma_interrupt(int irq, void *dev_id)
  509. {
  510. struct net_device *dev = dev_id;
  511. struct korina_private *lp = netdev_priv(dev);
  512. u32 dmas, dmasm;
  513. irqreturn_t retval;
  514. dmas = readl(&lp->tx_dma_regs->dmas);
  515. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  516. dmasm = readl(&lp->tx_dma_regs->dmasm);
  517. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  518. &lp->tx_dma_regs->dmasm);
  519. korina_tx(dev);
  520. if (lp->tx_chain_status == desc_filled &&
  521. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  522. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  523. &(lp->tx_dma_regs->dmandptr));
  524. lp->tx_chain_status = desc_empty;
  525. lp->tx_chain_head = lp->tx_chain_tail;
  526. dev->trans_start = jiffies;
  527. }
  528. if (dmas & DMA_STAT_ERR)
  529. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  530. retval = IRQ_HANDLED;
  531. } else
  532. retval = IRQ_NONE;
  533. return retval;
  534. }
  535. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  536. {
  537. struct korina_private *lp = netdev_priv(dev);
  538. mii_check_media(&lp->mii_if, 0, init_media);
  539. if (lp->mii_if.full_duplex)
  540. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  541. &lp->eth_regs->ethmac2);
  542. else
  543. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  544. &lp->eth_regs->ethmac2);
  545. }
  546. static void korina_poll_media(unsigned long data)
  547. {
  548. struct net_device *dev = (struct net_device *) data;
  549. struct korina_private *lp = netdev_priv(dev);
  550. korina_check_media(dev, 0);
  551. mod_timer(&lp->media_check_timer, jiffies + HZ);
  552. }
  553. static void korina_set_carrier(struct mii_if_info *mii)
  554. {
  555. if (mii->force_media) {
  556. /* autoneg is off: Link is always assumed to be up */
  557. if (!netif_carrier_ok(mii->dev))
  558. netif_carrier_on(mii->dev);
  559. } else /* Let MMI library update carrier status */
  560. korina_check_media(mii->dev, 0);
  561. }
  562. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  563. {
  564. struct korina_private *lp = netdev_priv(dev);
  565. struct mii_ioctl_data *data = if_mii(rq);
  566. int rc;
  567. if (!netif_running(dev))
  568. return -EINVAL;
  569. spin_lock_irq(&lp->lock);
  570. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  571. spin_unlock_irq(&lp->lock);
  572. korina_set_carrier(&lp->mii_if);
  573. return rc;
  574. }
  575. /* ethtool helpers */
  576. static void netdev_get_drvinfo(struct net_device *dev,
  577. struct ethtool_drvinfo *info)
  578. {
  579. struct korina_private *lp = netdev_priv(dev);
  580. strcpy(info->driver, DRV_NAME);
  581. strcpy(info->version, DRV_VERSION);
  582. strcpy(info->bus_info, lp->dev->name);
  583. }
  584. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  585. {
  586. struct korina_private *lp = netdev_priv(dev);
  587. int rc;
  588. spin_lock_irq(&lp->lock);
  589. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  590. spin_unlock_irq(&lp->lock);
  591. return rc;
  592. }
  593. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  594. {
  595. struct korina_private *lp = netdev_priv(dev);
  596. int rc;
  597. spin_lock_irq(&lp->lock);
  598. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  599. spin_unlock_irq(&lp->lock);
  600. korina_set_carrier(&lp->mii_if);
  601. return rc;
  602. }
  603. static u32 netdev_get_link(struct net_device *dev)
  604. {
  605. struct korina_private *lp = netdev_priv(dev);
  606. return mii_link_ok(&lp->mii_if);
  607. }
  608. static struct ethtool_ops netdev_ethtool_ops = {
  609. .get_drvinfo = netdev_get_drvinfo,
  610. .get_settings = netdev_get_settings,
  611. .set_settings = netdev_set_settings,
  612. .get_link = netdev_get_link,
  613. };
  614. static void korina_alloc_ring(struct net_device *dev)
  615. {
  616. struct korina_private *lp = netdev_priv(dev);
  617. struct sk_buff *skb;
  618. int i;
  619. /* Initialize the transmit descriptors */
  620. for (i = 0; i < KORINA_NUM_TDS; i++) {
  621. lp->td_ring[i].control = DMA_DESC_IOF;
  622. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  623. lp->td_ring[i].ca = 0;
  624. lp->td_ring[i].link = 0;
  625. }
  626. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  627. lp->tx_full = lp->tx_count = 0;
  628. lp->tx_chain_status = desc_empty;
  629. /* Initialize the receive descriptors */
  630. for (i = 0; i < KORINA_NUM_RDS; i++) {
  631. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  632. if (!skb)
  633. break;
  634. skb_reserve(skb, 2);
  635. lp->rx_skb[i] = skb;
  636. lp->rd_ring[i].control = DMA_DESC_IOD |
  637. DMA_COUNT(KORINA_RBSIZE);
  638. lp->rd_ring[i].devcs = 0;
  639. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  640. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  641. }
  642. /* loop back receive descriptors, so the last
  643. * descriptor points to the first one */
  644. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  645. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  646. lp->rx_next_done = 0;
  647. lp->rx_chain_head = 0;
  648. lp->rx_chain_tail = 0;
  649. lp->rx_chain_status = desc_empty;
  650. }
  651. static void korina_free_ring(struct net_device *dev)
  652. {
  653. struct korina_private *lp = netdev_priv(dev);
  654. int i;
  655. for (i = 0; i < KORINA_NUM_RDS; i++) {
  656. lp->rd_ring[i].control = 0;
  657. if (lp->rx_skb[i])
  658. dev_kfree_skb_any(lp->rx_skb[i]);
  659. lp->rx_skb[i] = NULL;
  660. }
  661. for (i = 0; i < KORINA_NUM_TDS; i++) {
  662. lp->td_ring[i].control = 0;
  663. if (lp->tx_skb[i])
  664. dev_kfree_skb_any(lp->tx_skb[i]);
  665. lp->tx_skb[i] = NULL;
  666. }
  667. }
  668. /*
  669. * Initialize the RC32434 ethernet controller.
  670. */
  671. static int korina_init(struct net_device *dev)
  672. {
  673. struct korina_private *lp = netdev_priv(dev);
  674. /* Disable DMA */
  675. korina_abort_tx(dev);
  676. korina_abort_rx(dev);
  677. /* reset ethernet logic */
  678. writel(0, &lp->eth_regs->ethintfc);
  679. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  680. dev->trans_start = jiffies;
  681. /* Enable Ethernet Interface */
  682. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  683. /* Allocate rings */
  684. korina_alloc_ring(dev);
  685. writel(0, &lp->rx_dma_regs->dmas);
  686. /* Start Rx DMA */
  687. korina_start_rx(lp, &lp->rd_ring[0]);
  688. writel(readl(&lp->tx_dma_regs->dmasm) &
  689. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  690. &lp->tx_dma_regs->dmasm);
  691. writel(readl(&lp->rx_dma_regs->dmasm) &
  692. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  693. &lp->rx_dma_regs->dmasm);
  694. /* Accept only packets destined for this Ethernet device address */
  695. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  696. /* Set all Ether station address registers to their initial values */
  697. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  698. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  699. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  700. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  701. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  702. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  703. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  704. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  705. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  706. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  707. &lp->eth_regs->ethmac2);
  708. /* Back to back inter-packet-gap */
  709. writel(0x15, &lp->eth_regs->ethipgt);
  710. /* Non - Back to back inter-packet-gap */
  711. writel(0x12, &lp->eth_regs->ethipgr);
  712. /* Management Clock Prescaler Divisor
  713. * Clock independent setting */
  714. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  715. &lp->eth_regs->ethmcp);
  716. /* don't transmit until fifo contains 48b */
  717. writel(48, &lp->eth_regs->ethfifott);
  718. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  719. napi_enable(&lp->napi);
  720. netif_start_queue(dev);
  721. return 0;
  722. }
  723. /*
  724. * Restart the RC32434 ethernet controller.
  725. * FIXME: check the return status where we call it
  726. */
  727. static int korina_restart(struct net_device *dev)
  728. {
  729. struct korina_private *lp = netdev_priv(dev);
  730. int ret;
  731. /*
  732. * Disable interrupts
  733. */
  734. disable_irq(lp->rx_irq);
  735. disable_irq(lp->tx_irq);
  736. disable_irq(lp->ovr_irq);
  737. disable_irq(lp->und_irq);
  738. writel(readl(&lp->tx_dma_regs->dmasm) |
  739. DMA_STAT_FINI | DMA_STAT_ERR,
  740. &lp->tx_dma_regs->dmasm);
  741. writel(readl(&lp->rx_dma_regs->dmasm) |
  742. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  743. &lp->rx_dma_regs->dmasm);
  744. korina_free_ring(dev);
  745. napi_disable(&lp->napi);
  746. ret = korina_init(dev);
  747. if (ret < 0) {
  748. printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
  749. dev->name);
  750. return ret;
  751. }
  752. korina_multicast_list(dev);
  753. enable_irq(lp->und_irq);
  754. enable_irq(lp->ovr_irq);
  755. enable_irq(lp->tx_irq);
  756. enable_irq(lp->rx_irq);
  757. return ret;
  758. }
  759. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  760. {
  761. struct korina_private *lp = netdev_priv(dev);
  762. netif_stop_queue(dev);
  763. writel(value, &lp->eth_regs->ethintfc);
  764. korina_restart(dev);
  765. }
  766. /* Ethernet Tx Underflow interrupt */
  767. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  768. {
  769. struct net_device *dev = dev_id;
  770. struct korina_private *lp = netdev_priv(dev);
  771. unsigned int und;
  772. spin_lock(&lp->lock);
  773. und = readl(&lp->eth_regs->ethintfc);
  774. if (und & ETH_INT_FC_UND)
  775. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  776. spin_unlock(&lp->lock);
  777. return IRQ_HANDLED;
  778. }
  779. static void korina_tx_timeout(struct net_device *dev)
  780. {
  781. struct korina_private *lp = netdev_priv(dev);
  782. unsigned long flags;
  783. spin_lock_irqsave(&lp->lock, flags);
  784. korina_restart(dev);
  785. spin_unlock_irqrestore(&lp->lock, flags);
  786. }
  787. /* Ethernet Rx Overflow interrupt */
  788. static irqreturn_t
  789. korina_ovr_interrupt(int irq, void *dev_id)
  790. {
  791. struct net_device *dev = dev_id;
  792. struct korina_private *lp = netdev_priv(dev);
  793. unsigned int ovr;
  794. spin_lock(&lp->lock);
  795. ovr = readl(&lp->eth_regs->ethintfc);
  796. if (ovr & ETH_INT_FC_OVR)
  797. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  798. spin_unlock(&lp->lock);
  799. return IRQ_HANDLED;
  800. }
  801. #ifdef CONFIG_NET_POLL_CONTROLLER
  802. static void korina_poll_controller(struct net_device *dev)
  803. {
  804. disable_irq(dev->irq);
  805. korina_tx_dma_interrupt(dev->irq, dev);
  806. enable_irq(dev->irq);
  807. }
  808. #endif
  809. static int korina_open(struct net_device *dev)
  810. {
  811. struct korina_private *lp = netdev_priv(dev);
  812. int ret;
  813. /* Initialize */
  814. ret = korina_init(dev);
  815. if (ret < 0) {
  816. printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
  817. goto out;
  818. }
  819. /* Install the interrupt handler
  820. * that handles the Done Finished
  821. * Ovr and Und Events */
  822. ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
  823. IRQF_DISABLED, "Korina ethernet Rx", dev);
  824. if (ret < 0) {
  825. printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
  826. dev->name, lp->rx_irq);
  827. goto err_release;
  828. }
  829. ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
  830. IRQF_DISABLED, "Korina ethernet Tx", dev);
  831. if (ret < 0) {
  832. printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
  833. dev->name, lp->tx_irq);
  834. goto err_free_rx_irq;
  835. }
  836. /* Install handler for overrun error. */
  837. ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
  838. IRQF_DISABLED, "Ethernet Overflow", dev);
  839. if (ret < 0) {
  840. printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
  841. dev->name, lp->ovr_irq);
  842. goto err_free_tx_irq;
  843. }
  844. /* Install handler for underflow error. */
  845. ret = request_irq(lp->und_irq, &korina_und_interrupt,
  846. IRQF_DISABLED, "Ethernet Underflow", dev);
  847. if (ret < 0) {
  848. printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
  849. dev->name, lp->und_irq);
  850. goto err_free_ovr_irq;
  851. }
  852. mod_timer(&lp->media_check_timer, jiffies + 1);
  853. out:
  854. return ret;
  855. err_free_ovr_irq:
  856. free_irq(lp->ovr_irq, dev);
  857. err_free_tx_irq:
  858. free_irq(lp->tx_irq, dev);
  859. err_free_rx_irq:
  860. free_irq(lp->rx_irq, dev);
  861. err_release:
  862. korina_free_ring(dev);
  863. goto out;
  864. }
  865. static int korina_close(struct net_device *dev)
  866. {
  867. struct korina_private *lp = netdev_priv(dev);
  868. u32 tmp;
  869. del_timer(&lp->media_check_timer);
  870. /* Disable interrupts */
  871. disable_irq(lp->rx_irq);
  872. disable_irq(lp->tx_irq);
  873. disable_irq(lp->ovr_irq);
  874. disable_irq(lp->und_irq);
  875. korina_abort_tx(dev);
  876. tmp = readl(&lp->tx_dma_regs->dmasm);
  877. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  878. writel(tmp, &lp->tx_dma_regs->dmasm);
  879. korina_abort_rx(dev);
  880. tmp = readl(&lp->rx_dma_regs->dmasm);
  881. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  882. writel(tmp, &lp->rx_dma_regs->dmasm);
  883. korina_free_ring(dev);
  884. napi_disable(&lp->napi);
  885. free_irq(lp->rx_irq, dev);
  886. free_irq(lp->tx_irq, dev);
  887. free_irq(lp->ovr_irq, dev);
  888. free_irq(lp->und_irq, dev);
  889. return 0;
  890. }
  891. static const struct net_device_ops korina_netdev_ops = {
  892. .ndo_open = korina_open,
  893. .ndo_stop = korina_close,
  894. .ndo_start_xmit = korina_send_packet,
  895. .ndo_set_multicast_list = korina_multicast_list,
  896. .ndo_tx_timeout = korina_tx_timeout,
  897. .ndo_do_ioctl = korina_ioctl,
  898. .ndo_change_mtu = eth_change_mtu,
  899. .ndo_validate_addr = eth_validate_addr,
  900. .ndo_set_mac_address = eth_mac_addr,
  901. #ifdef CONFIG_NET_POLL_CONTROLLER
  902. .ndo_poll_controller = korina_poll_controller,
  903. #endif
  904. };
  905. static int korina_probe(struct platform_device *pdev)
  906. {
  907. struct korina_device *bif = platform_get_drvdata(pdev);
  908. struct korina_private *lp;
  909. struct net_device *dev;
  910. struct resource *r;
  911. int rc;
  912. dev = alloc_etherdev(sizeof(struct korina_private));
  913. if (!dev) {
  914. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  915. return -ENOMEM;
  916. }
  917. SET_NETDEV_DEV(dev, &pdev->dev);
  918. lp = netdev_priv(dev);
  919. bif->dev = dev;
  920. memcpy(dev->dev_addr, bif->mac, 6);
  921. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  922. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  923. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  924. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  925. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  926. dev->base_addr = r->start;
  927. lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
  928. if (!lp->eth_regs) {
  929. printk(KERN_ERR DRV_NAME "cannot remap registers\n");
  930. rc = -ENXIO;
  931. goto probe_err_out;
  932. }
  933. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  934. lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  935. if (!lp->rx_dma_regs) {
  936. printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
  937. rc = -ENXIO;
  938. goto probe_err_dma_rx;
  939. }
  940. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  941. lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  942. if (!lp->tx_dma_regs) {
  943. printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
  944. rc = -ENXIO;
  945. goto probe_err_dma_tx;
  946. }
  947. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  948. if (!lp->td_ring) {
  949. printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
  950. rc = -ENXIO;
  951. goto probe_err_td_ring;
  952. }
  953. dma_cache_inv((unsigned long)(lp->td_ring),
  954. TD_RING_SIZE + RD_RING_SIZE);
  955. /* now convert TD_RING pointer to KSEG1 */
  956. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  957. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  958. spin_lock_init(&lp->lock);
  959. /* just use the rx dma irq */
  960. dev->irq = lp->rx_irq;
  961. lp->dev = dev;
  962. dev->netdev_ops = &korina_netdev_ops;
  963. dev->ethtool_ops = &netdev_ethtool_ops;
  964. dev->watchdog_timeo = TX_TIMEOUT;
  965. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  966. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  967. lp->mii_if.dev = dev;
  968. lp->mii_if.mdio_read = mdio_read;
  969. lp->mii_if.mdio_write = mdio_write;
  970. lp->mii_if.phy_id = lp->phy_addr;
  971. lp->mii_if.phy_id_mask = 0x1f;
  972. lp->mii_if.reg_num_mask = 0x1f;
  973. rc = register_netdev(dev);
  974. if (rc < 0) {
  975. printk(KERN_ERR DRV_NAME
  976. ": cannot register net device %d\n", rc);
  977. goto probe_err_register;
  978. }
  979. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  980. out:
  981. return rc;
  982. probe_err_register:
  983. kfree(lp->td_ring);
  984. probe_err_td_ring:
  985. iounmap(lp->tx_dma_regs);
  986. probe_err_dma_tx:
  987. iounmap(lp->rx_dma_regs);
  988. probe_err_dma_rx:
  989. iounmap(lp->eth_regs);
  990. probe_err_out:
  991. free_netdev(dev);
  992. goto out;
  993. }
  994. static int korina_remove(struct platform_device *pdev)
  995. {
  996. struct korina_device *bif = platform_get_drvdata(pdev);
  997. struct korina_private *lp = netdev_priv(bif->dev);
  998. iounmap(lp->eth_regs);
  999. iounmap(lp->rx_dma_regs);
  1000. iounmap(lp->tx_dma_regs);
  1001. platform_set_drvdata(pdev, NULL);
  1002. unregister_netdev(bif->dev);
  1003. free_netdev(bif->dev);
  1004. return 0;
  1005. }
  1006. static struct platform_driver korina_driver = {
  1007. .driver.name = "korina",
  1008. .probe = korina_probe,
  1009. .remove = korina_remove,
  1010. };
  1011. static int __init korina_init_module(void)
  1012. {
  1013. return platform_driver_register(&korina_driver);
  1014. }
  1015. static void korina_cleanup_module(void)
  1016. {
  1017. return platform_driver_unregister(&korina_driver);
  1018. }
  1019. module_init(korina_init_module);
  1020. module_exit(korina_cleanup_module);
  1021. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1022. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1023. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1024. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1025. MODULE_LICENSE("GPL");