forcedeth.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  94. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  95. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  96. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  97. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  98. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  99. enum {
  100. NvRegIrqStatus = 0x000,
  101. #define NVREG_IRQSTAT_MIIEVENT 0x040
  102. #define NVREG_IRQSTAT_MASK 0x83ff
  103. NvRegIrqMask = 0x004,
  104. #define NVREG_IRQ_RX_ERROR 0x0001
  105. #define NVREG_IRQ_RX 0x0002
  106. #define NVREG_IRQ_RX_NOBUF 0x0004
  107. #define NVREG_IRQ_TX_ERR 0x0008
  108. #define NVREG_IRQ_TX_OK 0x0010
  109. #define NVREG_IRQ_TIMER 0x0020
  110. #define NVREG_IRQ_LINK 0x0040
  111. #define NVREG_IRQ_RX_FORCED 0x0080
  112. #define NVREG_IRQ_TX_FORCED 0x0100
  113. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  114. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  115. #define NVREG_IRQMASK_CPU 0x0060
  116. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  117. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  118. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  119. NvRegUnknownSetupReg6 = 0x008,
  120. #define NVREG_UNKSETUP6_VAL 3
  121. /*
  122. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  123. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  124. */
  125. NvRegPollingInterval = 0x00c,
  126. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  127. #define NVREG_POLL_DEFAULT_CPU 13
  128. NvRegMSIMap0 = 0x020,
  129. NvRegMSIMap1 = 0x024,
  130. NvRegMSIIrqMask = 0x030,
  131. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  132. NvRegMisc1 = 0x080,
  133. #define NVREG_MISC1_PAUSE_TX 0x01
  134. #define NVREG_MISC1_HD 0x02
  135. #define NVREG_MISC1_FORCE 0x3b0f3c
  136. NvRegMacReset = 0x34,
  137. #define NVREG_MAC_RESET_ASSERT 0x0F3
  138. NvRegTransmitterControl = 0x084,
  139. #define NVREG_XMITCTL_START 0x01
  140. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  141. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  142. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  143. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  144. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  145. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  146. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  147. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  148. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  149. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  150. #define NVREG_XMITCTL_DATA_START 0x00100000
  151. #define NVREG_XMITCTL_DATA_READY 0x00010000
  152. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  153. NvRegTransmitterStatus = 0x088,
  154. #define NVREG_XMITSTAT_BUSY 0x01
  155. NvRegPacketFilterFlags = 0x8c,
  156. #define NVREG_PFF_PAUSE_RX 0x08
  157. #define NVREG_PFF_ALWAYS 0x7F0000
  158. #define NVREG_PFF_PROMISC 0x80
  159. #define NVREG_PFF_MYADDR 0x20
  160. #define NVREG_PFF_LOOPBACK 0x10
  161. NvRegOffloadConfig = 0x90,
  162. #define NVREG_OFFLOAD_HOMEPHY 0x601
  163. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  164. NvRegReceiverControl = 0x094,
  165. #define NVREG_RCVCTL_START 0x01
  166. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  167. NvRegReceiverStatus = 0x98,
  168. #define NVREG_RCVSTAT_BUSY 0x01
  169. NvRegSlotTime = 0x9c,
  170. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  171. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  172. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  173. #define NVREG_SLOTTIME_HALF 0x0000ff00
  174. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  175. #define NVREG_SLOTTIME_MASK 0x000000ff
  176. NvRegTxDeferral = 0xA0,
  177. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  178. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  179. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  180. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  181. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  182. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  183. NvRegRxDeferral = 0xA4,
  184. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  185. NvRegMacAddrA = 0xA8,
  186. NvRegMacAddrB = 0xAC,
  187. NvRegMulticastAddrA = 0xB0,
  188. #define NVREG_MCASTADDRA_FORCE 0x01
  189. NvRegMulticastAddrB = 0xB4,
  190. NvRegMulticastMaskA = 0xB8,
  191. #define NVREG_MCASTMASKA_NONE 0xffffffff
  192. NvRegMulticastMaskB = 0xBC,
  193. #define NVREG_MCASTMASKB_NONE 0xffff
  194. NvRegPhyInterface = 0xC0,
  195. #define PHY_RGMII 0x10000000
  196. NvRegBackOffControl = 0xC4,
  197. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  198. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  199. #define NVREG_BKOFFCTRL_SELECT 24
  200. #define NVREG_BKOFFCTRL_GEAR 12
  201. NvRegTxRingPhysAddr = 0x100,
  202. NvRegRxRingPhysAddr = 0x104,
  203. NvRegRingSizes = 0x108,
  204. #define NVREG_RINGSZ_TXSHIFT 0
  205. #define NVREG_RINGSZ_RXSHIFT 16
  206. NvRegTransmitPoll = 0x10c,
  207. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  208. NvRegLinkSpeed = 0x110,
  209. #define NVREG_LINKSPEED_FORCE 0x10000
  210. #define NVREG_LINKSPEED_10 1000
  211. #define NVREG_LINKSPEED_100 100
  212. #define NVREG_LINKSPEED_1000 50
  213. #define NVREG_LINKSPEED_MASK (0xFFF)
  214. NvRegUnknownSetupReg5 = 0x130,
  215. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  216. NvRegTxWatermark = 0x13c,
  217. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  218. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  219. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  220. NvRegTxRxControl = 0x144,
  221. #define NVREG_TXRXCTL_KICK 0x0001
  222. #define NVREG_TXRXCTL_BIT1 0x0002
  223. #define NVREG_TXRXCTL_BIT2 0x0004
  224. #define NVREG_TXRXCTL_IDLE 0x0008
  225. #define NVREG_TXRXCTL_RESET 0x0010
  226. #define NVREG_TXRXCTL_RXCHECK 0x0400
  227. #define NVREG_TXRXCTL_DESC_1 0
  228. #define NVREG_TXRXCTL_DESC_2 0x002100
  229. #define NVREG_TXRXCTL_DESC_3 0xc02200
  230. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  231. #define NVREG_TXRXCTL_VLANINS 0x00080
  232. NvRegTxRingPhysAddrHigh = 0x148,
  233. NvRegRxRingPhysAddrHigh = 0x14C,
  234. NvRegTxPauseFrame = 0x170,
  235. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  236. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  239. NvRegTxPauseFrameLimit = 0x174,
  240. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  241. NvRegMIIStatus = 0x180,
  242. #define NVREG_MIISTAT_ERROR 0x0001
  243. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  244. #define NVREG_MIISTAT_MASK_RW 0x0007
  245. #define NVREG_MIISTAT_MASK_ALL 0x000f
  246. NvRegMIIMask = 0x184,
  247. #define NVREG_MII_LINKCHANGE 0x0008
  248. NvRegAdapterControl = 0x188,
  249. #define NVREG_ADAPTCTL_START 0x02
  250. #define NVREG_ADAPTCTL_LINKUP 0x04
  251. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  252. #define NVREG_ADAPTCTL_RUNNING 0x100000
  253. #define NVREG_ADAPTCTL_PHYSHIFT 24
  254. NvRegMIISpeed = 0x18c,
  255. #define NVREG_MIISPEED_BIT8 (1<<8)
  256. #define NVREG_MIIDELAY 5
  257. NvRegMIIControl = 0x190,
  258. #define NVREG_MIICTL_INUSE 0x08000
  259. #define NVREG_MIICTL_WRITE 0x00400
  260. #define NVREG_MIICTL_ADDRSHIFT 5
  261. NvRegMIIData = 0x194,
  262. NvRegTxUnicast = 0x1a0,
  263. NvRegTxMulticast = 0x1a4,
  264. NvRegTxBroadcast = 0x1a8,
  265. NvRegWakeUpFlags = 0x200,
  266. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  267. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  268. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  269. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  270. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  271. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  272. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  273. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  276. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  277. NvRegMgmtUnitGetVersion = 0x204,
  278. #define NVREG_MGMTUNITGETVERSION 0x01
  279. NvRegMgmtUnitVersion = 0x208,
  280. #define NVREG_MGMTUNITVERSION 0x08
  281. NvRegPowerCap = 0x268,
  282. #define NVREG_POWERCAP_D3SUPP (1<<30)
  283. #define NVREG_POWERCAP_D2SUPP (1<<26)
  284. #define NVREG_POWERCAP_D1SUPP (1<<25)
  285. NvRegPowerState = 0x26c,
  286. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  287. #define NVREG_POWERSTATE_VALID 0x0100
  288. #define NVREG_POWERSTATE_MASK 0x0003
  289. #define NVREG_POWERSTATE_D0 0x0000
  290. #define NVREG_POWERSTATE_D1 0x0001
  291. #define NVREG_POWERSTATE_D2 0x0002
  292. #define NVREG_POWERSTATE_D3 0x0003
  293. NvRegMgmtUnitControl = 0x278,
  294. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  295. NvRegTxCnt = 0x280,
  296. NvRegTxZeroReXmt = 0x284,
  297. NvRegTxOneReXmt = 0x288,
  298. NvRegTxManyReXmt = 0x28c,
  299. NvRegTxLateCol = 0x290,
  300. NvRegTxUnderflow = 0x294,
  301. NvRegTxLossCarrier = 0x298,
  302. NvRegTxExcessDef = 0x29c,
  303. NvRegTxRetryErr = 0x2a0,
  304. NvRegRxFrameErr = 0x2a4,
  305. NvRegRxExtraByte = 0x2a8,
  306. NvRegRxLateCol = 0x2ac,
  307. NvRegRxRunt = 0x2b0,
  308. NvRegRxFrameTooLong = 0x2b4,
  309. NvRegRxOverflow = 0x2b8,
  310. NvRegRxFCSErr = 0x2bc,
  311. NvRegRxFrameAlignErr = 0x2c0,
  312. NvRegRxLenErr = 0x2c4,
  313. NvRegRxUnicast = 0x2c8,
  314. NvRegRxMulticast = 0x2cc,
  315. NvRegRxBroadcast = 0x2d0,
  316. NvRegTxDef = 0x2d4,
  317. NvRegTxFrame = 0x2d8,
  318. NvRegRxCnt = 0x2dc,
  319. NvRegTxPause = 0x2e0,
  320. NvRegRxPause = 0x2e4,
  321. NvRegRxDropFrame = 0x2e8,
  322. NvRegVlanControl = 0x300,
  323. #define NVREG_VLANCONTROL_ENABLE 0x2000
  324. NvRegMSIXMap0 = 0x3e0,
  325. NvRegMSIXMap1 = 0x3e4,
  326. NvRegMSIXIrqStatus = 0x3f0,
  327. NvRegPowerState2 = 0x600,
  328. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  329. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  330. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  331. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  332. };
  333. /* Big endian: should work, but is untested */
  334. struct ring_desc {
  335. __le32 buf;
  336. __le32 flaglen;
  337. };
  338. struct ring_desc_ex {
  339. __le32 bufhigh;
  340. __le32 buflow;
  341. __le32 txvlan;
  342. __le32 flaglen;
  343. };
  344. union ring_type {
  345. struct ring_desc* orig;
  346. struct ring_desc_ex* ex;
  347. };
  348. #define FLAG_MASK_V1 0xffff0000
  349. #define FLAG_MASK_V2 0xffffc000
  350. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  351. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  352. #define NV_TX_LASTPACKET (1<<16)
  353. #define NV_TX_RETRYERROR (1<<19)
  354. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  355. #define NV_TX_FORCED_INTERRUPT (1<<24)
  356. #define NV_TX_DEFERRED (1<<26)
  357. #define NV_TX_CARRIERLOST (1<<27)
  358. #define NV_TX_LATECOLLISION (1<<28)
  359. #define NV_TX_UNDERFLOW (1<<29)
  360. #define NV_TX_ERROR (1<<30)
  361. #define NV_TX_VALID (1<<31)
  362. #define NV_TX2_LASTPACKET (1<<29)
  363. #define NV_TX2_RETRYERROR (1<<18)
  364. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  365. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  366. #define NV_TX2_DEFERRED (1<<25)
  367. #define NV_TX2_CARRIERLOST (1<<26)
  368. #define NV_TX2_LATECOLLISION (1<<27)
  369. #define NV_TX2_UNDERFLOW (1<<28)
  370. /* error and valid are the same for both */
  371. #define NV_TX2_ERROR (1<<30)
  372. #define NV_TX2_VALID (1<<31)
  373. #define NV_TX2_TSO (1<<28)
  374. #define NV_TX2_TSO_SHIFT 14
  375. #define NV_TX2_TSO_MAX_SHIFT 14
  376. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  377. #define NV_TX2_CHECKSUM_L3 (1<<27)
  378. #define NV_TX2_CHECKSUM_L4 (1<<26)
  379. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  380. #define NV_RX_DESCRIPTORVALID (1<<16)
  381. #define NV_RX_MISSEDFRAME (1<<17)
  382. #define NV_RX_SUBSTRACT1 (1<<18)
  383. #define NV_RX_ERROR1 (1<<23)
  384. #define NV_RX_ERROR2 (1<<24)
  385. #define NV_RX_ERROR3 (1<<25)
  386. #define NV_RX_ERROR4 (1<<26)
  387. #define NV_RX_CRCERR (1<<27)
  388. #define NV_RX_OVERFLOW (1<<28)
  389. #define NV_RX_FRAMINGERR (1<<29)
  390. #define NV_RX_ERROR (1<<30)
  391. #define NV_RX_AVAIL (1<<31)
  392. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  393. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  394. #define NV_RX2_CHECKSUM_IP (0x10000000)
  395. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  396. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  397. #define NV_RX2_DESCRIPTORVALID (1<<29)
  398. #define NV_RX2_SUBSTRACT1 (1<<25)
  399. #define NV_RX2_ERROR1 (1<<18)
  400. #define NV_RX2_ERROR2 (1<<19)
  401. #define NV_RX2_ERROR3 (1<<20)
  402. #define NV_RX2_ERROR4 (1<<21)
  403. #define NV_RX2_CRCERR (1<<22)
  404. #define NV_RX2_OVERFLOW (1<<23)
  405. #define NV_RX2_FRAMINGERR (1<<24)
  406. /* error and avail are the same for both */
  407. #define NV_RX2_ERROR (1<<30)
  408. #define NV_RX2_AVAIL (1<<31)
  409. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  410. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  411. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  412. /* Miscelaneous hardware related defines: */
  413. #define NV_PCI_REGSZ_VER1 0x270
  414. #define NV_PCI_REGSZ_VER2 0x2d4
  415. #define NV_PCI_REGSZ_VER3 0x604
  416. #define NV_PCI_REGSZ_MAX 0x604
  417. /* various timeout delays: all in usec */
  418. #define NV_TXRX_RESET_DELAY 4
  419. #define NV_TXSTOP_DELAY1 10
  420. #define NV_TXSTOP_DELAY1MAX 500000
  421. #define NV_TXSTOP_DELAY2 100
  422. #define NV_RXSTOP_DELAY1 10
  423. #define NV_RXSTOP_DELAY1MAX 500000
  424. #define NV_RXSTOP_DELAY2 100
  425. #define NV_SETUP5_DELAY 5
  426. #define NV_SETUP5_DELAYMAX 50000
  427. #define NV_POWERUP_DELAY 5
  428. #define NV_POWERUP_DELAYMAX 5000
  429. #define NV_MIIBUSY_DELAY 50
  430. #define NV_MIIPHY_DELAY 10
  431. #define NV_MIIPHY_DELAYMAX 10000
  432. #define NV_MAC_RESET_DELAY 64
  433. #define NV_WAKEUPPATTERNS 5
  434. #define NV_WAKEUPMASKENTRIES 4
  435. /* General driver defaults */
  436. #define NV_WATCHDOG_TIMEO (5*HZ)
  437. #define RX_RING_DEFAULT 512
  438. #define TX_RING_DEFAULT 256
  439. #define RX_RING_MIN 128
  440. #define TX_RING_MIN 64
  441. #define RING_MAX_DESC_VER_1 1024
  442. #define RING_MAX_DESC_VER_2_3 16384
  443. /* rx/tx mac addr + type + vlan + align + slack*/
  444. #define NV_RX_HEADERS (64)
  445. /* even more slack. */
  446. #define NV_RX_ALLOC_PAD (64)
  447. /* maximum mtu size */
  448. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  449. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  450. #define OOM_REFILL (1+HZ/20)
  451. #define POLL_WAIT (1+HZ/100)
  452. #define LINK_TIMEOUT (3*HZ)
  453. #define STATS_INTERVAL (10*HZ)
  454. /*
  455. * desc_ver values:
  456. * The nic supports three different descriptor types:
  457. * - DESC_VER_1: Original
  458. * - DESC_VER_2: support for jumbo frames.
  459. * - DESC_VER_3: 64-bit format.
  460. */
  461. #define DESC_VER_1 1
  462. #define DESC_VER_2 2
  463. #define DESC_VER_3 3
  464. /* PHY defines */
  465. #define PHY_OUI_MARVELL 0x5043
  466. #define PHY_OUI_CICADA 0x03f1
  467. #define PHY_OUI_VITESSE 0x01c1
  468. #define PHY_OUI_REALTEK 0x0732
  469. #define PHY_OUI_REALTEK2 0x0020
  470. #define PHYID1_OUI_MASK 0x03ff
  471. #define PHYID1_OUI_SHFT 6
  472. #define PHYID2_OUI_MASK 0xfc00
  473. #define PHYID2_OUI_SHFT 10
  474. #define PHYID2_MODEL_MASK 0x03f0
  475. #define PHY_MODEL_REALTEK_8211 0x0110
  476. #define PHY_REV_MASK 0x0001
  477. #define PHY_REV_REALTEK_8211B 0x0000
  478. #define PHY_REV_REALTEK_8211C 0x0001
  479. #define PHY_MODEL_REALTEK_8201 0x0200
  480. #define PHY_MODEL_MARVELL_E3016 0x0220
  481. #define PHY_MARVELL_E3016_INITMASK 0x0300
  482. #define PHY_CICADA_INIT1 0x0f000
  483. #define PHY_CICADA_INIT2 0x0e00
  484. #define PHY_CICADA_INIT3 0x01000
  485. #define PHY_CICADA_INIT4 0x0200
  486. #define PHY_CICADA_INIT5 0x0004
  487. #define PHY_CICADA_INIT6 0x02000
  488. #define PHY_VITESSE_INIT_REG1 0x1f
  489. #define PHY_VITESSE_INIT_REG2 0x10
  490. #define PHY_VITESSE_INIT_REG3 0x11
  491. #define PHY_VITESSE_INIT_REG4 0x12
  492. #define PHY_VITESSE_INIT_MSK1 0xc
  493. #define PHY_VITESSE_INIT_MSK2 0x0180
  494. #define PHY_VITESSE_INIT1 0x52b5
  495. #define PHY_VITESSE_INIT2 0xaf8a
  496. #define PHY_VITESSE_INIT3 0x8
  497. #define PHY_VITESSE_INIT4 0x8f8a
  498. #define PHY_VITESSE_INIT5 0xaf86
  499. #define PHY_VITESSE_INIT6 0x8f86
  500. #define PHY_VITESSE_INIT7 0xaf82
  501. #define PHY_VITESSE_INIT8 0x0100
  502. #define PHY_VITESSE_INIT9 0x8f82
  503. #define PHY_VITESSE_INIT10 0x0
  504. #define PHY_REALTEK_INIT_REG1 0x1f
  505. #define PHY_REALTEK_INIT_REG2 0x19
  506. #define PHY_REALTEK_INIT_REG3 0x13
  507. #define PHY_REALTEK_INIT_REG4 0x14
  508. #define PHY_REALTEK_INIT_REG5 0x18
  509. #define PHY_REALTEK_INIT_REG6 0x11
  510. #define PHY_REALTEK_INIT_REG7 0x01
  511. #define PHY_REALTEK_INIT1 0x0000
  512. #define PHY_REALTEK_INIT2 0x8e00
  513. #define PHY_REALTEK_INIT3 0x0001
  514. #define PHY_REALTEK_INIT4 0xad17
  515. #define PHY_REALTEK_INIT5 0xfb54
  516. #define PHY_REALTEK_INIT6 0xf5c7
  517. #define PHY_REALTEK_INIT7 0x1000
  518. #define PHY_REALTEK_INIT8 0x0003
  519. #define PHY_REALTEK_INIT9 0x0008
  520. #define PHY_REALTEK_INIT10 0x0005
  521. #define PHY_REALTEK_INIT11 0x0200
  522. #define PHY_REALTEK_INIT_MSK1 0x0003
  523. #define PHY_GIGABIT 0x0100
  524. #define PHY_TIMEOUT 0x1
  525. #define PHY_ERROR 0x2
  526. #define PHY_100 0x1
  527. #define PHY_1000 0x2
  528. #define PHY_HALF 0x100
  529. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  530. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  531. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  532. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  533. #define NV_PAUSEFRAME_RX_REQ 0x0010
  534. #define NV_PAUSEFRAME_TX_REQ 0x0020
  535. #define NV_PAUSEFRAME_AUTONEG 0x0040
  536. /* MSI/MSI-X defines */
  537. #define NV_MSI_X_MAX_VECTORS 8
  538. #define NV_MSI_X_VECTORS_MASK 0x000f
  539. #define NV_MSI_CAPABLE 0x0010
  540. #define NV_MSI_X_CAPABLE 0x0020
  541. #define NV_MSI_ENABLED 0x0040
  542. #define NV_MSI_X_ENABLED 0x0080
  543. #define NV_MSI_X_VECTOR_ALL 0x0
  544. #define NV_MSI_X_VECTOR_RX 0x0
  545. #define NV_MSI_X_VECTOR_TX 0x1
  546. #define NV_MSI_X_VECTOR_OTHER 0x2
  547. #define NV_MSI_PRIV_OFFSET 0x68
  548. #define NV_MSI_PRIV_VALUE 0xffffffff
  549. #define NV_RESTART_TX 0x1
  550. #define NV_RESTART_RX 0x2
  551. #define NV_TX_LIMIT_COUNT 16
  552. #define NV_DYNAMIC_THRESHOLD 4
  553. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  554. /* statistics */
  555. struct nv_ethtool_str {
  556. char name[ETH_GSTRING_LEN];
  557. };
  558. static const struct nv_ethtool_str nv_estats_str[] = {
  559. { "tx_bytes" },
  560. { "tx_zero_rexmt" },
  561. { "tx_one_rexmt" },
  562. { "tx_many_rexmt" },
  563. { "tx_late_collision" },
  564. { "tx_fifo_errors" },
  565. { "tx_carrier_errors" },
  566. { "tx_excess_deferral" },
  567. { "tx_retry_error" },
  568. { "rx_frame_error" },
  569. { "rx_extra_byte" },
  570. { "rx_late_collision" },
  571. { "rx_runt" },
  572. { "rx_frame_too_long" },
  573. { "rx_over_errors" },
  574. { "rx_crc_errors" },
  575. { "rx_frame_align_error" },
  576. { "rx_length_error" },
  577. { "rx_unicast" },
  578. { "rx_multicast" },
  579. { "rx_broadcast" },
  580. { "rx_packets" },
  581. { "rx_errors_total" },
  582. { "tx_errors_total" },
  583. /* version 2 stats */
  584. { "tx_deferral" },
  585. { "tx_packets" },
  586. { "rx_bytes" },
  587. { "tx_pause" },
  588. { "rx_pause" },
  589. { "rx_drop_frame" },
  590. /* version 3 stats */
  591. { "tx_unicast" },
  592. { "tx_multicast" },
  593. { "tx_broadcast" }
  594. };
  595. struct nv_ethtool_stats {
  596. u64 tx_bytes;
  597. u64 tx_zero_rexmt;
  598. u64 tx_one_rexmt;
  599. u64 tx_many_rexmt;
  600. u64 tx_late_collision;
  601. u64 tx_fifo_errors;
  602. u64 tx_carrier_errors;
  603. u64 tx_excess_deferral;
  604. u64 tx_retry_error;
  605. u64 rx_frame_error;
  606. u64 rx_extra_byte;
  607. u64 rx_late_collision;
  608. u64 rx_runt;
  609. u64 rx_frame_too_long;
  610. u64 rx_over_errors;
  611. u64 rx_crc_errors;
  612. u64 rx_frame_align_error;
  613. u64 rx_length_error;
  614. u64 rx_unicast;
  615. u64 rx_multicast;
  616. u64 rx_broadcast;
  617. u64 rx_packets;
  618. u64 rx_errors_total;
  619. u64 tx_errors_total;
  620. /* version 2 stats */
  621. u64 tx_deferral;
  622. u64 tx_packets;
  623. u64 rx_bytes;
  624. u64 tx_pause;
  625. u64 rx_pause;
  626. u64 rx_drop_frame;
  627. /* version 3 stats */
  628. u64 tx_unicast;
  629. u64 tx_multicast;
  630. u64 tx_broadcast;
  631. };
  632. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  633. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  634. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  635. /* diagnostics */
  636. #define NV_TEST_COUNT_BASE 3
  637. #define NV_TEST_COUNT_EXTENDED 4
  638. static const struct nv_ethtool_str nv_etests_str[] = {
  639. { "link (online/offline)" },
  640. { "register (offline) " },
  641. { "interrupt (offline) " },
  642. { "loopback (offline) " }
  643. };
  644. struct register_test {
  645. __u32 reg;
  646. __u32 mask;
  647. };
  648. static const struct register_test nv_registers_test[] = {
  649. { NvRegUnknownSetupReg6, 0x01 },
  650. { NvRegMisc1, 0x03c },
  651. { NvRegOffloadConfig, 0x03ff },
  652. { NvRegMulticastAddrA, 0xffffffff },
  653. { NvRegTxWatermark, 0x0ff },
  654. { NvRegWakeUpFlags, 0x07777 },
  655. { 0,0 }
  656. };
  657. struct nv_skb_map {
  658. struct sk_buff *skb;
  659. dma_addr_t dma;
  660. unsigned int dma_len:31;
  661. unsigned int dma_single:1;
  662. struct ring_desc_ex *first_tx_desc;
  663. struct nv_skb_map *next_tx_ctx;
  664. };
  665. /*
  666. * SMP locking:
  667. * All hardware access under netdev_priv(dev)->lock, except the performance
  668. * critical parts:
  669. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  670. * by the arch code for interrupts.
  671. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  672. * needs netdev_priv(dev)->lock :-(
  673. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  674. */
  675. /* in dev: base, irq */
  676. struct fe_priv {
  677. spinlock_t lock;
  678. struct net_device *dev;
  679. struct napi_struct napi;
  680. /* General data:
  681. * Locking: spin_lock(&np->lock); */
  682. struct nv_ethtool_stats estats;
  683. int in_shutdown;
  684. u32 linkspeed;
  685. int duplex;
  686. int autoneg;
  687. int fixed_mode;
  688. int phyaddr;
  689. int wolenabled;
  690. unsigned int phy_oui;
  691. unsigned int phy_model;
  692. unsigned int phy_rev;
  693. u16 gigabit;
  694. int intr_test;
  695. int recover_error;
  696. int quiet_count;
  697. /* General data: RO fields */
  698. dma_addr_t ring_addr;
  699. struct pci_dev *pci_dev;
  700. u32 orig_mac[2];
  701. u32 events;
  702. u32 irqmask;
  703. u32 desc_ver;
  704. u32 txrxctl_bits;
  705. u32 vlanctl_bits;
  706. u32 driver_data;
  707. u32 device_id;
  708. u32 register_size;
  709. int rx_csum;
  710. u32 mac_in_use;
  711. int mgmt_version;
  712. int mgmt_sema;
  713. void __iomem *base;
  714. /* rx specific fields.
  715. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  716. */
  717. union ring_type get_rx, put_rx, first_rx, last_rx;
  718. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  719. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  720. struct nv_skb_map *rx_skb;
  721. union ring_type rx_ring;
  722. unsigned int rx_buf_sz;
  723. unsigned int pkt_limit;
  724. struct timer_list oom_kick;
  725. struct timer_list nic_poll;
  726. struct timer_list stats_poll;
  727. u32 nic_poll_irq;
  728. int rx_ring_size;
  729. /* media detection workaround.
  730. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  731. */
  732. int need_linktimer;
  733. unsigned long link_timeout;
  734. /*
  735. * tx specific fields.
  736. */
  737. union ring_type get_tx, put_tx, first_tx, last_tx;
  738. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  739. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  740. struct nv_skb_map *tx_skb;
  741. union ring_type tx_ring;
  742. u32 tx_flags;
  743. int tx_ring_size;
  744. int tx_limit;
  745. u32 tx_pkts_in_progress;
  746. struct nv_skb_map *tx_change_owner;
  747. struct nv_skb_map *tx_end_flip;
  748. int tx_stop;
  749. /* vlan fields */
  750. struct vlan_group *vlangrp;
  751. /* msi/msi-x fields */
  752. u32 msi_flags;
  753. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  754. /* flow control */
  755. u32 pause_flags;
  756. /* power saved state */
  757. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  758. /* for different msi-x irq type */
  759. char name_rx[IFNAMSIZ + 3]; /* -rx */
  760. char name_tx[IFNAMSIZ + 3]; /* -tx */
  761. char name_other[IFNAMSIZ + 6]; /* -other */
  762. };
  763. /*
  764. * Maximum number of loops until we assume that a bit in the irq mask
  765. * is stuck. Overridable with module param.
  766. */
  767. static int max_interrupt_work = 4;
  768. /*
  769. * Optimization can be either throuput mode or cpu mode
  770. *
  771. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  772. * CPU Mode: Interrupts are controlled by a timer.
  773. */
  774. enum {
  775. NV_OPTIMIZATION_MODE_THROUGHPUT,
  776. NV_OPTIMIZATION_MODE_CPU,
  777. NV_OPTIMIZATION_MODE_DYNAMIC
  778. };
  779. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  780. /*
  781. * Poll interval for timer irq
  782. *
  783. * This interval determines how frequent an interrupt is generated.
  784. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  785. * Min = 0, and Max = 65535
  786. */
  787. static int poll_interval = -1;
  788. /*
  789. * MSI interrupts
  790. */
  791. enum {
  792. NV_MSI_INT_DISABLED,
  793. NV_MSI_INT_ENABLED
  794. };
  795. static int msi = NV_MSI_INT_ENABLED;
  796. /*
  797. * MSIX interrupts
  798. */
  799. enum {
  800. NV_MSIX_INT_DISABLED,
  801. NV_MSIX_INT_ENABLED
  802. };
  803. static int msix = NV_MSIX_INT_ENABLED;
  804. /*
  805. * DMA 64bit
  806. */
  807. enum {
  808. NV_DMA_64BIT_DISABLED,
  809. NV_DMA_64BIT_ENABLED
  810. };
  811. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  812. /*
  813. * Crossover Detection
  814. * Realtek 8201 phy + some OEM boards do not work properly.
  815. */
  816. enum {
  817. NV_CROSSOVER_DETECTION_DISABLED,
  818. NV_CROSSOVER_DETECTION_ENABLED
  819. };
  820. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  821. /*
  822. * Power down phy when interface is down (persists through reboot;
  823. * older Linux and other OSes may not power it up again)
  824. */
  825. static int phy_power_down = 0;
  826. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  827. {
  828. return netdev_priv(dev);
  829. }
  830. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  831. {
  832. return ((struct fe_priv *)netdev_priv(dev))->base;
  833. }
  834. static inline void pci_push(u8 __iomem *base)
  835. {
  836. /* force out pending posted writes */
  837. readl(base);
  838. }
  839. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  840. {
  841. return le32_to_cpu(prd->flaglen)
  842. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  843. }
  844. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  845. {
  846. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  847. }
  848. static bool nv_optimized(struct fe_priv *np)
  849. {
  850. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  851. return false;
  852. return true;
  853. }
  854. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  855. int delay, int delaymax, const char *msg)
  856. {
  857. u8 __iomem *base = get_hwbase(dev);
  858. pci_push(base);
  859. do {
  860. udelay(delay);
  861. delaymax -= delay;
  862. if (delaymax < 0) {
  863. if (msg)
  864. printk("%s", msg);
  865. return 1;
  866. }
  867. } while ((readl(base + offset) & mask) != target);
  868. return 0;
  869. }
  870. #define NV_SETUP_RX_RING 0x01
  871. #define NV_SETUP_TX_RING 0x02
  872. static inline u32 dma_low(dma_addr_t addr)
  873. {
  874. return addr;
  875. }
  876. static inline u32 dma_high(dma_addr_t addr)
  877. {
  878. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  879. }
  880. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  881. {
  882. struct fe_priv *np = get_nvpriv(dev);
  883. u8 __iomem *base = get_hwbase(dev);
  884. if (!nv_optimized(np)) {
  885. if (rxtx_flags & NV_SETUP_RX_RING) {
  886. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  887. }
  888. if (rxtx_flags & NV_SETUP_TX_RING) {
  889. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  890. }
  891. } else {
  892. if (rxtx_flags & NV_SETUP_RX_RING) {
  893. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  894. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  895. }
  896. if (rxtx_flags & NV_SETUP_TX_RING) {
  897. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  898. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  899. }
  900. }
  901. }
  902. static void free_rings(struct net_device *dev)
  903. {
  904. struct fe_priv *np = get_nvpriv(dev);
  905. if (!nv_optimized(np)) {
  906. if (np->rx_ring.orig)
  907. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  908. np->rx_ring.orig, np->ring_addr);
  909. } else {
  910. if (np->rx_ring.ex)
  911. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  912. np->rx_ring.ex, np->ring_addr);
  913. }
  914. if (np->rx_skb)
  915. kfree(np->rx_skb);
  916. if (np->tx_skb)
  917. kfree(np->tx_skb);
  918. }
  919. static int using_multi_irqs(struct net_device *dev)
  920. {
  921. struct fe_priv *np = get_nvpriv(dev);
  922. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  923. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  924. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  925. return 0;
  926. else
  927. return 1;
  928. }
  929. static void nv_txrx_gate(struct net_device *dev, bool gate)
  930. {
  931. struct fe_priv *np = get_nvpriv(dev);
  932. u8 __iomem *base = get_hwbase(dev);
  933. u32 powerstate;
  934. if (!np->mac_in_use &&
  935. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  936. powerstate = readl(base + NvRegPowerState2);
  937. if (gate)
  938. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  939. else
  940. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  941. writel(powerstate, base + NvRegPowerState2);
  942. }
  943. }
  944. static void nv_enable_irq(struct net_device *dev)
  945. {
  946. struct fe_priv *np = get_nvpriv(dev);
  947. if (!using_multi_irqs(dev)) {
  948. if (np->msi_flags & NV_MSI_X_ENABLED)
  949. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  950. else
  951. enable_irq(np->pci_dev->irq);
  952. } else {
  953. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  954. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  955. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  956. }
  957. }
  958. static void nv_disable_irq(struct net_device *dev)
  959. {
  960. struct fe_priv *np = get_nvpriv(dev);
  961. if (!using_multi_irqs(dev)) {
  962. if (np->msi_flags & NV_MSI_X_ENABLED)
  963. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  964. else
  965. disable_irq(np->pci_dev->irq);
  966. } else {
  967. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  968. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  969. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  970. }
  971. }
  972. /* In MSIX mode, a write to irqmask behaves as XOR */
  973. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  974. {
  975. u8 __iomem *base = get_hwbase(dev);
  976. writel(mask, base + NvRegIrqMask);
  977. }
  978. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  979. {
  980. struct fe_priv *np = get_nvpriv(dev);
  981. u8 __iomem *base = get_hwbase(dev);
  982. if (np->msi_flags & NV_MSI_X_ENABLED) {
  983. writel(mask, base + NvRegIrqMask);
  984. } else {
  985. if (np->msi_flags & NV_MSI_ENABLED)
  986. writel(0, base + NvRegMSIIrqMask);
  987. writel(0, base + NvRegIrqMask);
  988. }
  989. }
  990. static void nv_napi_enable(struct net_device *dev)
  991. {
  992. #ifdef CONFIG_FORCEDETH_NAPI
  993. struct fe_priv *np = get_nvpriv(dev);
  994. napi_enable(&np->napi);
  995. #endif
  996. }
  997. static void nv_napi_disable(struct net_device *dev)
  998. {
  999. #ifdef CONFIG_FORCEDETH_NAPI
  1000. struct fe_priv *np = get_nvpriv(dev);
  1001. napi_disable(&np->napi);
  1002. #endif
  1003. }
  1004. #define MII_READ (-1)
  1005. /* mii_rw: read/write a register on the PHY.
  1006. *
  1007. * Caller must guarantee serialization
  1008. */
  1009. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1010. {
  1011. u8 __iomem *base = get_hwbase(dev);
  1012. u32 reg;
  1013. int retval;
  1014. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1015. reg = readl(base + NvRegMIIControl);
  1016. if (reg & NVREG_MIICTL_INUSE) {
  1017. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1018. udelay(NV_MIIBUSY_DELAY);
  1019. }
  1020. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1021. if (value != MII_READ) {
  1022. writel(value, base + NvRegMIIData);
  1023. reg |= NVREG_MIICTL_WRITE;
  1024. }
  1025. writel(reg, base + NvRegMIIControl);
  1026. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1027. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1028. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1029. dev->name, miireg, addr);
  1030. retval = -1;
  1031. } else if (value != MII_READ) {
  1032. /* it was a write operation - fewer failures are detectable */
  1033. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1034. dev->name, value, miireg, addr);
  1035. retval = 0;
  1036. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1037. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1038. dev->name, miireg, addr);
  1039. retval = -1;
  1040. } else {
  1041. retval = readl(base + NvRegMIIData);
  1042. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1043. dev->name, miireg, addr, retval);
  1044. }
  1045. return retval;
  1046. }
  1047. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1048. {
  1049. struct fe_priv *np = netdev_priv(dev);
  1050. u32 miicontrol;
  1051. unsigned int tries = 0;
  1052. miicontrol = BMCR_RESET | bmcr_setup;
  1053. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1054. return -1;
  1055. }
  1056. /* wait for 500ms */
  1057. msleep(500);
  1058. /* must wait till reset is deasserted */
  1059. while (miicontrol & BMCR_RESET) {
  1060. msleep(10);
  1061. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1062. /* FIXME: 100 tries seem excessive */
  1063. if (tries++ > 100)
  1064. return -1;
  1065. }
  1066. return 0;
  1067. }
  1068. static int phy_init(struct net_device *dev)
  1069. {
  1070. struct fe_priv *np = get_nvpriv(dev);
  1071. u8 __iomem *base = get_hwbase(dev);
  1072. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1073. /* phy errata for E3016 phy */
  1074. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1075. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1076. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1077. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1078. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1079. return PHY_ERROR;
  1080. }
  1081. }
  1082. if (np->phy_oui == PHY_OUI_REALTEK) {
  1083. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1084. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1085. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1086. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1087. return PHY_ERROR;
  1088. }
  1089. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1090. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1091. return PHY_ERROR;
  1092. }
  1093. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1094. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1095. return PHY_ERROR;
  1096. }
  1097. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1098. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1099. return PHY_ERROR;
  1100. }
  1101. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1102. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1103. return PHY_ERROR;
  1104. }
  1105. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1106. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1107. return PHY_ERROR;
  1108. }
  1109. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1110. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1111. return PHY_ERROR;
  1112. }
  1113. }
  1114. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1115. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1116. u32 powerstate = readl(base + NvRegPowerState2);
  1117. /* need to perform hw phy reset */
  1118. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1119. writel(powerstate, base + NvRegPowerState2);
  1120. msleep(25);
  1121. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1122. writel(powerstate, base + NvRegPowerState2);
  1123. msleep(25);
  1124. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1125. reg |= PHY_REALTEK_INIT9;
  1126. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1135. if (!(reg & PHY_REALTEK_INIT11)) {
  1136. reg |= PHY_REALTEK_INIT11;
  1137. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1138. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1139. return PHY_ERROR;
  1140. }
  1141. }
  1142. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. }
  1147. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1148. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1149. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1150. phy_reserved |= PHY_REALTEK_INIT7;
  1151. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1152. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1153. return PHY_ERROR;
  1154. }
  1155. }
  1156. }
  1157. }
  1158. /* set advertise register */
  1159. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1160. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1161. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1162. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1163. return PHY_ERROR;
  1164. }
  1165. /* get phy interface type */
  1166. phyinterface = readl(base + NvRegPhyInterface);
  1167. /* see if gigabit phy */
  1168. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1169. if (mii_status & PHY_GIGABIT) {
  1170. np->gigabit = PHY_GIGABIT;
  1171. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1172. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1173. if (phyinterface & PHY_RGMII)
  1174. mii_control_1000 |= ADVERTISE_1000FULL;
  1175. else
  1176. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1177. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. }
  1182. else
  1183. np->gigabit = 0;
  1184. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1185. mii_control |= BMCR_ANENABLE;
  1186. if (np->phy_oui == PHY_OUI_REALTEK &&
  1187. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1188. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1189. /* start autoneg since we already performed hw reset above */
  1190. mii_control |= BMCR_ANRESTART;
  1191. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1192. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1193. return PHY_ERROR;
  1194. }
  1195. } else {
  1196. /* reset the phy
  1197. * (certain phys need bmcr to be setup with reset)
  1198. */
  1199. if (phy_reset(dev, mii_control)) {
  1200. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1201. return PHY_ERROR;
  1202. }
  1203. }
  1204. /* phy vendor specific configuration */
  1205. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1206. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1207. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1208. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1209. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1214. phy_reserved |= PHY_CICADA_INIT5;
  1215. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1216. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1217. return PHY_ERROR;
  1218. }
  1219. }
  1220. if (np->phy_oui == PHY_OUI_CICADA) {
  1221. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1222. phy_reserved |= PHY_CICADA_INIT6;
  1223. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1224. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1225. return PHY_ERROR;
  1226. }
  1227. }
  1228. if (np->phy_oui == PHY_OUI_VITESSE) {
  1229. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1230. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1231. return PHY_ERROR;
  1232. }
  1233. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1234. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1235. return PHY_ERROR;
  1236. }
  1237. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1238. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1239. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1240. return PHY_ERROR;
  1241. }
  1242. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1243. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1244. phy_reserved |= PHY_VITESSE_INIT3;
  1245. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1246. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1247. return PHY_ERROR;
  1248. }
  1249. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1250. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1251. return PHY_ERROR;
  1252. }
  1253. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1254. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1255. return PHY_ERROR;
  1256. }
  1257. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1258. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1259. phy_reserved |= PHY_VITESSE_INIT3;
  1260. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1261. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1262. return PHY_ERROR;
  1263. }
  1264. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1265. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1266. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1267. return PHY_ERROR;
  1268. }
  1269. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1270. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1271. return PHY_ERROR;
  1272. }
  1273. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1274. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1275. return PHY_ERROR;
  1276. }
  1277. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1278. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1279. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1280. return PHY_ERROR;
  1281. }
  1282. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1283. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1284. phy_reserved |= PHY_VITESSE_INIT8;
  1285. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1286. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1287. return PHY_ERROR;
  1288. }
  1289. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1290. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1291. return PHY_ERROR;
  1292. }
  1293. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1294. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1295. return PHY_ERROR;
  1296. }
  1297. }
  1298. if (np->phy_oui == PHY_OUI_REALTEK) {
  1299. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1300. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1301. /* reset could have cleared these out, set them back */
  1302. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1303. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1304. return PHY_ERROR;
  1305. }
  1306. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1307. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1308. return PHY_ERROR;
  1309. }
  1310. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1311. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1312. return PHY_ERROR;
  1313. }
  1314. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1315. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1316. return PHY_ERROR;
  1317. }
  1318. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1319. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1320. return PHY_ERROR;
  1321. }
  1322. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1323. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1324. return PHY_ERROR;
  1325. }
  1326. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1327. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1328. return PHY_ERROR;
  1329. }
  1330. }
  1331. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1332. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1333. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1334. phy_reserved |= PHY_REALTEK_INIT7;
  1335. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1336. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1337. return PHY_ERROR;
  1338. }
  1339. }
  1340. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1341. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1342. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1343. return PHY_ERROR;
  1344. }
  1345. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1346. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1347. phy_reserved |= PHY_REALTEK_INIT3;
  1348. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1349. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1350. return PHY_ERROR;
  1351. }
  1352. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1353. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1354. return PHY_ERROR;
  1355. }
  1356. }
  1357. }
  1358. }
  1359. /* some phys clear out pause advertisment on reset, set it back */
  1360. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1361. /* restart auto negotiation, power down phy */
  1362. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1363. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1364. if (phy_power_down) {
  1365. mii_control |= BMCR_PDOWN;
  1366. }
  1367. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1368. return PHY_ERROR;
  1369. }
  1370. return 0;
  1371. }
  1372. static void nv_start_rx(struct net_device *dev)
  1373. {
  1374. struct fe_priv *np = netdev_priv(dev);
  1375. u8 __iomem *base = get_hwbase(dev);
  1376. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1377. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1378. /* Already running? Stop it. */
  1379. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1380. rx_ctrl &= ~NVREG_RCVCTL_START;
  1381. writel(rx_ctrl, base + NvRegReceiverControl);
  1382. pci_push(base);
  1383. }
  1384. writel(np->linkspeed, base + NvRegLinkSpeed);
  1385. pci_push(base);
  1386. rx_ctrl |= NVREG_RCVCTL_START;
  1387. if (np->mac_in_use)
  1388. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1389. writel(rx_ctrl, base + NvRegReceiverControl);
  1390. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1391. dev->name, np->duplex, np->linkspeed);
  1392. pci_push(base);
  1393. }
  1394. static void nv_stop_rx(struct net_device *dev)
  1395. {
  1396. struct fe_priv *np = netdev_priv(dev);
  1397. u8 __iomem *base = get_hwbase(dev);
  1398. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1399. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1400. if (!np->mac_in_use)
  1401. rx_ctrl &= ~NVREG_RCVCTL_START;
  1402. else
  1403. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1404. writel(rx_ctrl, base + NvRegReceiverControl);
  1405. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1406. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1407. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1408. udelay(NV_RXSTOP_DELAY2);
  1409. if (!np->mac_in_use)
  1410. writel(0, base + NvRegLinkSpeed);
  1411. }
  1412. static void nv_start_tx(struct net_device *dev)
  1413. {
  1414. struct fe_priv *np = netdev_priv(dev);
  1415. u8 __iomem *base = get_hwbase(dev);
  1416. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1417. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1418. tx_ctrl |= NVREG_XMITCTL_START;
  1419. if (np->mac_in_use)
  1420. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1421. writel(tx_ctrl, base + NvRegTransmitterControl);
  1422. pci_push(base);
  1423. }
  1424. static void nv_stop_tx(struct net_device *dev)
  1425. {
  1426. struct fe_priv *np = netdev_priv(dev);
  1427. u8 __iomem *base = get_hwbase(dev);
  1428. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1429. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1430. if (!np->mac_in_use)
  1431. tx_ctrl &= ~NVREG_XMITCTL_START;
  1432. else
  1433. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1434. writel(tx_ctrl, base + NvRegTransmitterControl);
  1435. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1436. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1437. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1438. udelay(NV_TXSTOP_DELAY2);
  1439. if (!np->mac_in_use)
  1440. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1441. base + NvRegTransmitPoll);
  1442. }
  1443. static void nv_start_rxtx(struct net_device *dev)
  1444. {
  1445. nv_start_rx(dev);
  1446. nv_start_tx(dev);
  1447. }
  1448. static void nv_stop_rxtx(struct net_device *dev)
  1449. {
  1450. nv_stop_rx(dev);
  1451. nv_stop_tx(dev);
  1452. }
  1453. static void nv_txrx_reset(struct net_device *dev)
  1454. {
  1455. struct fe_priv *np = netdev_priv(dev);
  1456. u8 __iomem *base = get_hwbase(dev);
  1457. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1458. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1459. pci_push(base);
  1460. udelay(NV_TXRX_RESET_DELAY);
  1461. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1462. pci_push(base);
  1463. }
  1464. static void nv_mac_reset(struct net_device *dev)
  1465. {
  1466. struct fe_priv *np = netdev_priv(dev);
  1467. u8 __iomem *base = get_hwbase(dev);
  1468. u32 temp1, temp2, temp3;
  1469. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1470. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1471. pci_push(base);
  1472. /* save registers since they will be cleared on reset */
  1473. temp1 = readl(base + NvRegMacAddrA);
  1474. temp2 = readl(base + NvRegMacAddrB);
  1475. temp3 = readl(base + NvRegTransmitPoll);
  1476. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1477. pci_push(base);
  1478. udelay(NV_MAC_RESET_DELAY);
  1479. writel(0, base + NvRegMacReset);
  1480. pci_push(base);
  1481. udelay(NV_MAC_RESET_DELAY);
  1482. /* restore saved registers */
  1483. writel(temp1, base + NvRegMacAddrA);
  1484. writel(temp2, base + NvRegMacAddrB);
  1485. writel(temp3, base + NvRegTransmitPoll);
  1486. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1487. pci_push(base);
  1488. }
  1489. static void nv_get_hw_stats(struct net_device *dev)
  1490. {
  1491. struct fe_priv *np = netdev_priv(dev);
  1492. u8 __iomem *base = get_hwbase(dev);
  1493. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1494. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1495. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1496. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1497. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1498. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1499. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1500. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1501. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1502. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1503. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1504. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1505. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1506. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1507. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1508. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1509. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1510. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1511. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1512. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1513. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1514. np->estats.rx_packets =
  1515. np->estats.rx_unicast +
  1516. np->estats.rx_multicast +
  1517. np->estats.rx_broadcast;
  1518. np->estats.rx_errors_total =
  1519. np->estats.rx_crc_errors +
  1520. np->estats.rx_over_errors +
  1521. np->estats.rx_frame_error +
  1522. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1523. np->estats.rx_late_collision +
  1524. np->estats.rx_runt +
  1525. np->estats.rx_frame_too_long;
  1526. np->estats.tx_errors_total =
  1527. np->estats.tx_late_collision +
  1528. np->estats.tx_fifo_errors +
  1529. np->estats.tx_carrier_errors +
  1530. np->estats.tx_excess_deferral +
  1531. np->estats.tx_retry_error;
  1532. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1533. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1534. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1535. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1536. np->estats.tx_pause += readl(base + NvRegTxPause);
  1537. np->estats.rx_pause += readl(base + NvRegRxPause);
  1538. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1539. }
  1540. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1541. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1542. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1543. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1544. }
  1545. }
  1546. /*
  1547. * nv_get_stats: dev->get_stats function
  1548. * Get latest stats value from the nic.
  1549. * Called with read_lock(&dev_base_lock) held for read -
  1550. * only synchronized against unregister_netdevice.
  1551. */
  1552. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1553. {
  1554. struct fe_priv *np = netdev_priv(dev);
  1555. /* If the nic supports hw counters then retrieve latest values */
  1556. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1557. nv_get_hw_stats(dev);
  1558. /* copy to net_device stats */
  1559. dev->stats.tx_bytes = np->estats.tx_bytes;
  1560. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1561. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1562. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1563. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1564. dev->stats.rx_errors = np->estats.rx_errors_total;
  1565. dev->stats.tx_errors = np->estats.tx_errors_total;
  1566. }
  1567. return &dev->stats;
  1568. }
  1569. /*
  1570. * nv_alloc_rx: fill rx ring entries.
  1571. * Return 1 if the allocations for the skbs failed and the
  1572. * rx engine is without Available descriptors
  1573. */
  1574. static int nv_alloc_rx(struct net_device *dev)
  1575. {
  1576. struct fe_priv *np = netdev_priv(dev);
  1577. struct ring_desc* less_rx;
  1578. less_rx = np->get_rx.orig;
  1579. if (less_rx-- == np->first_rx.orig)
  1580. less_rx = np->last_rx.orig;
  1581. while (np->put_rx.orig != less_rx) {
  1582. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1583. if (skb) {
  1584. np->put_rx_ctx->skb = skb;
  1585. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1586. skb->data,
  1587. skb_tailroom(skb),
  1588. PCI_DMA_FROMDEVICE);
  1589. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1590. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1591. wmb();
  1592. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1593. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1594. np->put_rx.orig = np->first_rx.orig;
  1595. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1596. np->put_rx_ctx = np->first_rx_ctx;
  1597. } else {
  1598. return 1;
  1599. }
  1600. }
  1601. return 0;
  1602. }
  1603. static int nv_alloc_rx_optimized(struct net_device *dev)
  1604. {
  1605. struct fe_priv *np = netdev_priv(dev);
  1606. struct ring_desc_ex* less_rx;
  1607. less_rx = np->get_rx.ex;
  1608. if (less_rx-- == np->first_rx.ex)
  1609. less_rx = np->last_rx.ex;
  1610. while (np->put_rx.ex != less_rx) {
  1611. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1612. if (skb) {
  1613. np->put_rx_ctx->skb = skb;
  1614. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1615. skb->data,
  1616. skb_tailroom(skb),
  1617. PCI_DMA_FROMDEVICE);
  1618. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1619. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1620. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1621. wmb();
  1622. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1623. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1624. np->put_rx.ex = np->first_rx.ex;
  1625. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1626. np->put_rx_ctx = np->first_rx_ctx;
  1627. } else {
  1628. return 1;
  1629. }
  1630. }
  1631. return 0;
  1632. }
  1633. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1634. #ifdef CONFIG_FORCEDETH_NAPI
  1635. static void nv_do_rx_refill(unsigned long data)
  1636. {
  1637. struct net_device *dev = (struct net_device *) data;
  1638. struct fe_priv *np = netdev_priv(dev);
  1639. /* Just reschedule NAPI rx processing */
  1640. napi_schedule(&np->napi);
  1641. }
  1642. #else
  1643. static void nv_do_rx_refill(unsigned long data)
  1644. {
  1645. struct net_device *dev = (struct net_device *) data;
  1646. struct fe_priv *np = netdev_priv(dev);
  1647. int retcode;
  1648. if (!using_multi_irqs(dev)) {
  1649. if (np->msi_flags & NV_MSI_X_ENABLED)
  1650. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1651. else
  1652. disable_irq(np->pci_dev->irq);
  1653. } else {
  1654. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1655. }
  1656. if (!nv_optimized(np))
  1657. retcode = nv_alloc_rx(dev);
  1658. else
  1659. retcode = nv_alloc_rx_optimized(dev);
  1660. if (retcode) {
  1661. spin_lock_irq(&np->lock);
  1662. if (!np->in_shutdown)
  1663. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1664. spin_unlock_irq(&np->lock);
  1665. }
  1666. if (!using_multi_irqs(dev)) {
  1667. if (np->msi_flags & NV_MSI_X_ENABLED)
  1668. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1669. else
  1670. enable_irq(np->pci_dev->irq);
  1671. } else {
  1672. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1673. }
  1674. }
  1675. #endif
  1676. static void nv_init_rx(struct net_device *dev)
  1677. {
  1678. struct fe_priv *np = netdev_priv(dev);
  1679. int i;
  1680. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1681. if (!nv_optimized(np))
  1682. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1683. else
  1684. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1685. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1686. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1687. for (i = 0; i < np->rx_ring_size; i++) {
  1688. if (!nv_optimized(np)) {
  1689. np->rx_ring.orig[i].flaglen = 0;
  1690. np->rx_ring.orig[i].buf = 0;
  1691. } else {
  1692. np->rx_ring.ex[i].flaglen = 0;
  1693. np->rx_ring.ex[i].txvlan = 0;
  1694. np->rx_ring.ex[i].bufhigh = 0;
  1695. np->rx_ring.ex[i].buflow = 0;
  1696. }
  1697. np->rx_skb[i].skb = NULL;
  1698. np->rx_skb[i].dma = 0;
  1699. }
  1700. }
  1701. static void nv_init_tx(struct net_device *dev)
  1702. {
  1703. struct fe_priv *np = netdev_priv(dev);
  1704. int i;
  1705. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1706. if (!nv_optimized(np))
  1707. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1708. else
  1709. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1710. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1711. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1712. np->tx_pkts_in_progress = 0;
  1713. np->tx_change_owner = NULL;
  1714. np->tx_end_flip = NULL;
  1715. np->tx_stop = 0;
  1716. for (i = 0; i < np->tx_ring_size; i++) {
  1717. if (!nv_optimized(np)) {
  1718. np->tx_ring.orig[i].flaglen = 0;
  1719. np->tx_ring.orig[i].buf = 0;
  1720. } else {
  1721. np->tx_ring.ex[i].flaglen = 0;
  1722. np->tx_ring.ex[i].txvlan = 0;
  1723. np->tx_ring.ex[i].bufhigh = 0;
  1724. np->tx_ring.ex[i].buflow = 0;
  1725. }
  1726. np->tx_skb[i].skb = NULL;
  1727. np->tx_skb[i].dma = 0;
  1728. np->tx_skb[i].dma_len = 0;
  1729. np->tx_skb[i].dma_single = 0;
  1730. np->tx_skb[i].first_tx_desc = NULL;
  1731. np->tx_skb[i].next_tx_ctx = NULL;
  1732. }
  1733. }
  1734. static int nv_init_ring(struct net_device *dev)
  1735. {
  1736. struct fe_priv *np = netdev_priv(dev);
  1737. nv_init_tx(dev);
  1738. nv_init_rx(dev);
  1739. if (!nv_optimized(np))
  1740. return nv_alloc_rx(dev);
  1741. else
  1742. return nv_alloc_rx_optimized(dev);
  1743. }
  1744. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1745. {
  1746. if (tx_skb->dma) {
  1747. if (tx_skb->dma_single)
  1748. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1749. tx_skb->dma_len,
  1750. PCI_DMA_TODEVICE);
  1751. else
  1752. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1753. tx_skb->dma_len,
  1754. PCI_DMA_TODEVICE);
  1755. tx_skb->dma = 0;
  1756. }
  1757. }
  1758. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1759. {
  1760. nv_unmap_txskb(np, tx_skb);
  1761. if (tx_skb->skb) {
  1762. dev_kfree_skb_any(tx_skb->skb);
  1763. tx_skb->skb = NULL;
  1764. return 1;
  1765. }
  1766. return 0;
  1767. }
  1768. static void nv_drain_tx(struct net_device *dev)
  1769. {
  1770. struct fe_priv *np = netdev_priv(dev);
  1771. unsigned int i;
  1772. for (i = 0; i < np->tx_ring_size; i++) {
  1773. if (!nv_optimized(np)) {
  1774. np->tx_ring.orig[i].flaglen = 0;
  1775. np->tx_ring.orig[i].buf = 0;
  1776. } else {
  1777. np->tx_ring.ex[i].flaglen = 0;
  1778. np->tx_ring.ex[i].txvlan = 0;
  1779. np->tx_ring.ex[i].bufhigh = 0;
  1780. np->tx_ring.ex[i].buflow = 0;
  1781. }
  1782. if (nv_release_txskb(np, &np->tx_skb[i]))
  1783. dev->stats.tx_dropped++;
  1784. np->tx_skb[i].dma = 0;
  1785. np->tx_skb[i].dma_len = 0;
  1786. np->tx_skb[i].dma_single = 0;
  1787. np->tx_skb[i].first_tx_desc = NULL;
  1788. np->tx_skb[i].next_tx_ctx = NULL;
  1789. }
  1790. np->tx_pkts_in_progress = 0;
  1791. np->tx_change_owner = NULL;
  1792. np->tx_end_flip = NULL;
  1793. }
  1794. static void nv_drain_rx(struct net_device *dev)
  1795. {
  1796. struct fe_priv *np = netdev_priv(dev);
  1797. int i;
  1798. for (i = 0; i < np->rx_ring_size; i++) {
  1799. if (!nv_optimized(np)) {
  1800. np->rx_ring.orig[i].flaglen = 0;
  1801. np->rx_ring.orig[i].buf = 0;
  1802. } else {
  1803. np->rx_ring.ex[i].flaglen = 0;
  1804. np->rx_ring.ex[i].txvlan = 0;
  1805. np->rx_ring.ex[i].bufhigh = 0;
  1806. np->rx_ring.ex[i].buflow = 0;
  1807. }
  1808. wmb();
  1809. if (np->rx_skb[i].skb) {
  1810. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1811. (skb_end_pointer(np->rx_skb[i].skb) -
  1812. np->rx_skb[i].skb->data),
  1813. PCI_DMA_FROMDEVICE);
  1814. dev_kfree_skb(np->rx_skb[i].skb);
  1815. np->rx_skb[i].skb = NULL;
  1816. }
  1817. }
  1818. }
  1819. static void nv_drain_rxtx(struct net_device *dev)
  1820. {
  1821. nv_drain_tx(dev);
  1822. nv_drain_rx(dev);
  1823. }
  1824. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1825. {
  1826. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1827. }
  1828. static void nv_legacybackoff_reseed(struct net_device *dev)
  1829. {
  1830. u8 __iomem *base = get_hwbase(dev);
  1831. u32 reg;
  1832. u32 low;
  1833. int tx_status = 0;
  1834. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1835. get_random_bytes(&low, sizeof(low));
  1836. reg |= low & NVREG_SLOTTIME_MASK;
  1837. /* Need to stop tx before change takes effect.
  1838. * Caller has already gained np->lock.
  1839. */
  1840. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1841. if (tx_status)
  1842. nv_stop_tx(dev);
  1843. nv_stop_rx(dev);
  1844. writel(reg, base + NvRegSlotTime);
  1845. if (tx_status)
  1846. nv_start_tx(dev);
  1847. nv_start_rx(dev);
  1848. }
  1849. /* Gear Backoff Seeds */
  1850. #define BACKOFF_SEEDSET_ROWS 8
  1851. #define BACKOFF_SEEDSET_LFSRS 15
  1852. /* Known Good seed sets */
  1853. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1854. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1855. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1856. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1857. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1858. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1859. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1860. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1861. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1862. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1863. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1864. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1865. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1866. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1867. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1868. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1869. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1870. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1871. static void nv_gear_backoff_reseed(struct net_device *dev)
  1872. {
  1873. u8 __iomem *base = get_hwbase(dev);
  1874. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1875. u32 temp, seedset, combinedSeed;
  1876. int i;
  1877. /* Setup seed for free running LFSR */
  1878. /* We are going to read the time stamp counter 3 times
  1879. and swizzle bits around to increase randomness */
  1880. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1881. miniseed1 &= 0x0fff;
  1882. if (miniseed1 == 0)
  1883. miniseed1 = 0xabc;
  1884. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1885. miniseed2 &= 0x0fff;
  1886. if (miniseed2 == 0)
  1887. miniseed2 = 0xabc;
  1888. miniseed2_reversed =
  1889. ((miniseed2 & 0xF00) >> 8) |
  1890. (miniseed2 & 0x0F0) |
  1891. ((miniseed2 & 0x00F) << 8);
  1892. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1893. miniseed3 &= 0x0fff;
  1894. if (miniseed3 == 0)
  1895. miniseed3 = 0xabc;
  1896. miniseed3_reversed =
  1897. ((miniseed3 & 0xF00) >> 8) |
  1898. (miniseed3 & 0x0F0) |
  1899. ((miniseed3 & 0x00F) << 8);
  1900. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1901. (miniseed2 ^ miniseed3_reversed);
  1902. /* Seeds can not be zero */
  1903. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1904. combinedSeed |= 0x08;
  1905. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1906. combinedSeed |= 0x8000;
  1907. /* No need to disable tx here */
  1908. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1909. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1910. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1911. writel(temp,base + NvRegBackOffControl);
  1912. /* Setup seeds for all gear LFSRs. */
  1913. get_random_bytes(&seedset, sizeof(seedset));
  1914. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1915. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1916. {
  1917. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1918. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1919. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1920. writel(temp, base + NvRegBackOffControl);
  1921. }
  1922. }
  1923. /*
  1924. * nv_start_xmit: dev->hard_start_xmit function
  1925. * Called with netif_tx_lock held.
  1926. */
  1927. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1928. {
  1929. struct fe_priv *np = netdev_priv(dev);
  1930. u32 tx_flags = 0;
  1931. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1932. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1933. unsigned int i;
  1934. u32 offset = 0;
  1935. u32 bcnt;
  1936. u32 size = skb->len-skb->data_len;
  1937. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1938. u32 empty_slots;
  1939. struct ring_desc* put_tx;
  1940. struct ring_desc* start_tx;
  1941. struct ring_desc* prev_tx;
  1942. struct nv_skb_map* prev_tx_ctx;
  1943. unsigned long flags;
  1944. /* add fragments to entries count */
  1945. for (i = 0; i < fragments; i++) {
  1946. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1947. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1948. }
  1949. spin_lock_irqsave(&np->lock, flags);
  1950. empty_slots = nv_get_empty_tx_slots(np);
  1951. if (unlikely(empty_slots <= entries)) {
  1952. netif_stop_queue(dev);
  1953. np->tx_stop = 1;
  1954. spin_unlock_irqrestore(&np->lock, flags);
  1955. return NETDEV_TX_BUSY;
  1956. }
  1957. spin_unlock_irqrestore(&np->lock, flags);
  1958. start_tx = put_tx = np->put_tx.orig;
  1959. /* setup the header buffer */
  1960. do {
  1961. prev_tx = put_tx;
  1962. prev_tx_ctx = np->put_tx_ctx;
  1963. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1964. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1965. PCI_DMA_TODEVICE);
  1966. np->put_tx_ctx->dma_len = bcnt;
  1967. np->put_tx_ctx->dma_single = 1;
  1968. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1969. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1970. tx_flags = np->tx_flags;
  1971. offset += bcnt;
  1972. size -= bcnt;
  1973. if (unlikely(put_tx++ == np->last_tx.orig))
  1974. put_tx = np->first_tx.orig;
  1975. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1976. np->put_tx_ctx = np->first_tx_ctx;
  1977. } while (size);
  1978. /* setup the fragments */
  1979. for (i = 0; i < fragments; i++) {
  1980. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1981. u32 size = frag->size;
  1982. offset = 0;
  1983. do {
  1984. prev_tx = put_tx;
  1985. prev_tx_ctx = np->put_tx_ctx;
  1986. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1987. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1988. PCI_DMA_TODEVICE);
  1989. np->put_tx_ctx->dma_len = bcnt;
  1990. np->put_tx_ctx->dma_single = 0;
  1991. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1992. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1993. offset += bcnt;
  1994. size -= bcnt;
  1995. if (unlikely(put_tx++ == np->last_tx.orig))
  1996. put_tx = np->first_tx.orig;
  1997. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1998. np->put_tx_ctx = np->first_tx_ctx;
  1999. } while (size);
  2000. }
  2001. /* set last fragment flag */
  2002. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2003. /* save skb in this slot's context area */
  2004. prev_tx_ctx->skb = skb;
  2005. if (skb_is_gso(skb))
  2006. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2007. else
  2008. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2009. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2010. spin_lock_irqsave(&np->lock, flags);
  2011. /* set tx flags */
  2012. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2013. np->put_tx.orig = put_tx;
  2014. spin_unlock_irqrestore(&np->lock, flags);
  2015. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  2016. dev->name, entries, tx_flags_extra);
  2017. {
  2018. int j;
  2019. for (j=0; j<64; j++) {
  2020. if ((j%16) == 0)
  2021. dprintk("\n%03x:", j);
  2022. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2023. }
  2024. dprintk("\n");
  2025. }
  2026. dev->trans_start = jiffies;
  2027. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2028. return NETDEV_TX_OK;
  2029. }
  2030. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2031. {
  2032. struct fe_priv *np = netdev_priv(dev);
  2033. u32 tx_flags = 0;
  2034. u32 tx_flags_extra;
  2035. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2036. unsigned int i;
  2037. u32 offset = 0;
  2038. u32 bcnt;
  2039. u32 size = skb->len-skb->data_len;
  2040. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2041. u32 empty_slots;
  2042. struct ring_desc_ex* put_tx;
  2043. struct ring_desc_ex* start_tx;
  2044. struct ring_desc_ex* prev_tx;
  2045. struct nv_skb_map* prev_tx_ctx;
  2046. struct nv_skb_map* start_tx_ctx;
  2047. unsigned long flags;
  2048. /* add fragments to entries count */
  2049. for (i = 0; i < fragments; i++) {
  2050. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2051. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2052. }
  2053. spin_lock_irqsave(&np->lock, flags);
  2054. empty_slots = nv_get_empty_tx_slots(np);
  2055. if (unlikely(empty_slots <= entries)) {
  2056. netif_stop_queue(dev);
  2057. np->tx_stop = 1;
  2058. spin_unlock_irqrestore(&np->lock, flags);
  2059. return NETDEV_TX_BUSY;
  2060. }
  2061. spin_unlock_irqrestore(&np->lock, flags);
  2062. start_tx = put_tx = np->put_tx.ex;
  2063. start_tx_ctx = np->put_tx_ctx;
  2064. /* setup the header buffer */
  2065. do {
  2066. prev_tx = put_tx;
  2067. prev_tx_ctx = np->put_tx_ctx;
  2068. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2069. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2070. PCI_DMA_TODEVICE);
  2071. np->put_tx_ctx->dma_len = bcnt;
  2072. np->put_tx_ctx->dma_single = 1;
  2073. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2074. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2075. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2076. tx_flags = NV_TX2_VALID;
  2077. offset += bcnt;
  2078. size -= bcnt;
  2079. if (unlikely(put_tx++ == np->last_tx.ex))
  2080. put_tx = np->first_tx.ex;
  2081. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2082. np->put_tx_ctx = np->first_tx_ctx;
  2083. } while (size);
  2084. /* setup the fragments */
  2085. for (i = 0; i < fragments; i++) {
  2086. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2087. u32 size = frag->size;
  2088. offset = 0;
  2089. do {
  2090. prev_tx = put_tx;
  2091. prev_tx_ctx = np->put_tx_ctx;
  2092. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2093. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2094. PCI_DMA_TODEVICE);
  2095. np->put_tx_ctx->dma_len = bcnt;
  2096. np->put_tx_ctx->dma_single = 0;
  2097. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2098. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2099. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2100. offset += bcnt;
  2101. size -= bcnt;
  2102. if (unlikely(put_tx++ == np->last_tx.ex))
  2103. put_tx = np->first_tx.ex;
  2104. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2105. np->put_tx_ctx = np->first_tx_ctx;
  2106. } while (size);
  2107. }
  2108. /* set last fragment flag */
  2109. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2110. /* save skb in this slot's context area */
  2111. prev_tx_ctx->skb = skb;
  2112. if (skb_is_gso(skb))
  2113. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2114. else
  2115. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2116. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2117. /* vlan tag */
  2118. if (likely(!np->vlangrp)) {
  2119. start_tx->txvlan = 0;
  2120. } else {
  2121. if (vlan_tx_tag_present(skb))
  2122. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2123. else
  2124. start_tx->txvlan = 0;
  2125. }
  2126. spin_lock_irqsave(&np->lock, flags);
  2127. if (np->tx_limit) {
  2128. /* Limit the number of outstanding tx. Setup all fragments, but
  2129. * do not set the VALID bit on the first descriptor. Save a pointer
  2130. * to that descriptor and also for next skb_map element.
  2131. */
  2132. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2133. if (!np->tx_change_owner)
  2134. np->tx_change_owner = start_tx_ctx;
  2135. /* remove VALID bit */
  2136. tx_flags &= ~NV_TX2_VALID;
  2137. start_tx_ctx->first_tx_desc = start_tx;
  2138. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2139. np->tx_end_flip = np->put_tx_ctx;
  2140. } else {
  2141. np->tx_pkts_in_progress++;
  2142. }
  2143. }
  2144. /* set tx flags */
  2145. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2146. np->put_tx.ex = put_tx;
  2147. spin_unlock_irqrestore(&np->lock, flags);
  2148. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2149. dev->name, entries, tx_flags_extra);
  2150. {
  2151. int j;
  2152. for (j=0; j<64; j++) {
  2153. if ((j%16) == 0)
  2154. dprintk("\n%03x:", j);
  2155. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2156. }
  2157. dprintk("\n");
  2158. }
  2159. dev->trans_start = jiffies;
  2160. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2161. return NETDEV_TX_OK;
  2162. }
  2163. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2164. {
  2165. struct fe_priv *np = netdev_priv(dev);
  2166. np->tx_pkts_in_progress--;
  2167. if (np->tx_change_owner) {
  2168. np->tx_change_owner->first_tx_desc->flaglen |=
  2169. cpu_to_le32(NV_TX2_VALID);
  2170. np->tx_pkts_in_progress++;
  2171. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2172. if (np->tx_change_owner == np->tx_end_flip)
  2173. np->tx_change_owner = NULL;
  2174. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2175. }
  2176. }
  2177. /*
  2178. * nv_tx_done: check for completed packets, release the skbs.
  2179. *
  2180. * Caller must own np->lock.
  2181. */
  2182. static int nv_tx_done(struct net_device *dev, int limit)
  2183. {
  2184. struct fe_priv *np = netdev_priv(dev);
  2185. u32 flags;
  2186. int tx_work = 0;
  2187. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2188. while ((np->get_tx.orig != np->put_tx.orig) &&
  2189. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2190. (tx_work < limit)) {
  2191. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2192. dev->name, flags);
  2193. nv_unmap_txskb(np, np->get_tx_ctx);
  2194. if (np->desc_ver == DESC_VER_1) {
  2195. if (flags & NV_TX_LASTPACKET) {
  2196. if (flags & NV_TX_ERROR) {
  2197. if (flags & NV_TX_UNDERFLOW)
  2198. dev->stats.tx_fifo_errors++;
  2199. if (flags & NV_TX_CARRIERLOST)
  2200. dev->stats.tx_carrier_errors++;
  2201. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2202. nv_legacybackoff_reseed(dev);
  2203. dev->stats.tx_errors++;
  2204. } else {
  2205. dev->stats.tx_packets++;
  2206. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2207. }
  2208. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2209. np->get_tx_ctx->skb = NULL;
  2210. tx_work++;
  2211. }
  2212. } else {
  2213. if (flags & NV_TX2_LASTPACKET) {
  2214. if (flags & NV_TX2_ERROR) {
  2215. if (flags & NV_TX2_UNDERFLOW)
  2216. dev->stats.tx_fifo_errors++;
  2217. if (flags & NV_TX2_CARRIERLOST)
  2218. dev->stats.tx_carrier_errors++;
  2219. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2220. nv_legacybackoff_reseed(dev);
  2221. dev->stats.tx_errors++;
  2222. } else {
  2223. dev->stats.tx_packets++;
  2224. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2225. }
  2226. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2227. np->get_tx_ctx->skb = NULL;
  2228. tx_work++;
  2229. }
  2230. }
  2231. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2232. np->get_tx.orig = np->first_tx.orig;
  2233. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2234. np->get_tx_ctx = np->first_tx_ctx;
  2235. }
  2236. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2237. np->tx_stop = 0;
  2238. netif_wake_queue(dev);
  2239. }
  2240. return tx_work;
  2241. }
  2242. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2243. {
  2244. struct fe_priv *np = netdev_priv(dev);
  2245. u32 flags;
  2246. int tx_work = 0;
  2247. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2248. while ((np->get_tx.ex != np->put_tx.ex) &&
  2249. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2250. (tx_work < limit)) {
  2251. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2252. dev->name, flags);
  2253. nv_unmap_txskb(np, np->get_tx_ctx);
  2254. if (flags & NV_TX2_LASTPACKET) {
  2255. if (!(flags & NV_TX2_ERROR))
  2256. dev->stats.tx_packets++;
  2257. else {
  2258. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2259. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2260. nv_gear_backoff_reseed(dev);
  2261. else
  2262. nv_legacybackoff_reseed(dev);
  2263. }
  2264. }
  2265. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2266. np->get_tx_ctx->skb = NULL;
  2267. tx_work++;
  2268. if (np->tx_limit) {
  2269. nv_tx_flip_ownership(dev);
  2270. }
  2271. }
  2272. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2273. np->get_tx.ex = np->first_tx.ex;
  2274. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2275. np->get_tx_ctx = np->first_tx_ctx;
  2276. }
  2277. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2278. np->tx_stop = 0;
  2279. netif_wake_queue(dev);
  2280. }
  2281. return tx_work;
  2282. }
  2283. /*
  2284. * nv_tx_timeout: dev->tx_timeout function
  2285. * Called with netif_tx_lock held.
  2286. */
  2287. static void nv_tx_timeout(struct net_device *dev)
  2288. {
  2289. struct fe_priv *np = netdev_priv(dev);
  2290. u8 __iomem *base = get_hwbase(dev);
  2291. u32 status;
  2292. union ring_type put_tx;
  2293. int saved_tx_limit;
  2294. if (np->msi_flags & NV_MSI_X_ENABLED)
  2295. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2296. else
  2297. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2298. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2299. {
  2300. int i;
  2301. printk(KERN_INFO "%s: Ring at %lx\n",
  2302. dev->name, (unsigned long)np->ring_addr);
  2303. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2304. for (i=0;i<=np->register_size;i+= 32) {
  2305. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2306. i,
  2307. readl(base + i + 0), readl(base + i + 4),
  2308. readl(base + i + 8), readl(base + i + 12),
  2309. readl(base + i + 16), readl(base + i + 20),
  2310. readl(base + i + 24), readl(base + i + 28));
  2311. }
  2312. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2313. for (i=0;i<np->tx_ring_size;i+= 4) {
  2314. if (!nv_optimized(np)) {
  2315. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2316. i,
  2317. le32_to_cpu(np->tx_ring.orig[i].buf),
  2318. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2319. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2320. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2321. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2322. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2323. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2324. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2325. } else {
  2326. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2327. i,
  2328. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2329. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2330. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2331. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2332. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2333. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2334. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2335. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2336. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2337. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2338. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2339. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2340. }
  2341. }
  2342. }
  2343. spin_lock_irq(&np->lock);
  2344. /* 1) stop tx engine */
  2345. nv_stop_tx(dev);
  2346. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2347. saved_tx_limit = np->tx_limit;
  2348. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2349. np->tx_stop = 0; /* prevent waking tx queue */
  2350. if (!nv_optimized(np))
  2351. nv_tx_done(dev, np->tx_ring_size);
  2352. else
  2353. nv_tx_done_optimized(dev, np->tx_ring_size);
  2354. /* save current HW postion */
  2355. if (np->tx_change_owner)
  2356. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2357. else
  2358. put_tx = np->put_tx;
  2359. /* 3) clear all tx state */
  2360. nv_drain_tx(dev);
  2361. nv_init_tx(dev);
  2362. /* 4) restore state to current HW position */
  2363. np->get_tx = np->put_tx = put_tx;
  2364. np->tx_limit = saved_tx_limit;
  2365. /* 5) restart tx engine */
  2366. nv_start_tx(dev);
  2367. netif_wake_queue(dev);
  2368. spin_unlock_irq(&np->lock);
  2369. }
  2370. /*
  2371. * Called when the nic notices a mismatch between the actual data len on the
  2372. * wire and the len indicated in the 802 header
  2373. */
  2374. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2375. {
  2376. int hdrlen; /* length of the 802 header */
  2377. int protolen; /* length as stored in the proto field */
  2378. /* 1) calculate len according to header */
  2379. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2380. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2381. hdrlen = VLAN_HLEN;
  2382. } else {
  2383. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2384. hdrlen = ETH_HLEN;
  2385. }
  2386. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2387. dev->name, datalen, protolen, hdrlen);
  2388. if (protolen > ETH_DATA_LEN)
  2389. return datalen; /* Value in proto field not a len, no checks possible */
  2390. protolen += hdrlen;
  2391. /* consistency checks: */
  2392. if (datalen > ETH_ZLEN) {
  2393. if (datalen >= protolen) {
  2394. /* more data on wire than in 802 header, trim of
  2395. * additional data.
  2396. */
  2397. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2398. dev->name, protolen);
  2399. return protolen;
  2400. } else {
  2401. /* less data on wire than mentioned in header.
  2402. * Discard the packet.
  2403. */
  2404. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2405. dev->name);
  2406. return -1;
  2407. }
  2408. } else {
  2409. /* short packet. Accept only if 802 values are also short */
  2410. if (protolen > ETH_ZLEN) {
  2411. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2412. dev->name);
  2413. return -1;
  2414. }
  2415. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2416. dev->name, datalen);
  2417. return datalen;
  2418. }
  2419. }
  2420. static int nv_rx_process(struct net_device *dev, int limit)
  2421. {
  2422. struct fe_priv *np = netdev_priv(dev);
  2423. u32 flags;
  2424. int rx_work = 0;
  2425. struct sk_buff *skb;
  2426. int len;
  2427. while((np->get_rx.orig != np->put_rx.orig) &&
  2428. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2429. (rx_work < limit)) {
  2430. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2431. dev->name, flags);
  2432. /*
  2433. * the packet is for us - immediately tear down the pci mapping.
  2434. * TODO: check if a prefetch of the first cacheline improves
  2435. * the performance.
  2436. */
  2437. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2438. np->get_rx_ctx->dma_len,
  2439. PCI_DMA_FROMDEVICE);
  2440. skb = np->get_rx_ctx->skb;
  2441. np->get_rx_ctx->skb = NULL;
  2442. {
  2443. int j;
  2444. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2445. for (j=0; j<64; j++) {
  2446. if ((j%16) == 0)
  2447. dprintk("\n%03x:", j);
  2448. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2449. }
  2450. dprintk("\n");
  2451. }
  2452. /* look at what we actually got: */
  2453. if (np->desc_ver == DESC_VER_1) {
  2454. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2455. len = flags & LEN_MASK_V1;
  2456. if (unlikely(flags & NV_RX_ERROR)) {
  2457. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2458. len = nv_getlen(dev, skb->data, len);
  2459. if (len < 0) {
  2460. dev->stats.rx_errors++;
  2461. dev_kfree_skb(skb);
  2462. goto next_pkt;
  2463. }
  2464. }
  2465. /* framing errors are soft errors */
  2466. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2467. if (flags & NV_RX_SUBSTRACT1) {
  2468. len--;
  2469. }
  2470. }
  2471. /* the rest are hard errors */
  2472. else {
  2473. if (flags & NV_RX_MISSEDFRAME)
  2474. dev->stats.rx_missed_errors++;
  2475. if (flags & NV_RX_CRCERR)
  2476. dev->stats.rx_crc_errors++;
  2477. if (flags & NV_RX_OVERFLOW)
  2478. dev->stats.rx_over_errors++;
  2479. dev->stats.rx_errors++;
  2480. dev_kfree_skb(skb);
  2481. goto next_pkt;
  2482. }
  2483. }
  2484. } else {
  2485. dev_kfree_skb(skb);
  2486. goto next_pkt;
  2487. }
  2488. } else {
  2489. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2490. len = flags & LEN_MASK_V2;
  2491. if (unlikely(flags & NV_RX2_ERROR)) {
  2492. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2493. len = nv_getlen(dev, skb->data, len);
  2494. if (len < 0) {
  2495. dev->stats.rx_errors++;
  2496. dev_kfree_skb(skb);
  2497. goto next_pkt;
  2498. }
  2499. }
  2500. /* framing errors are soft errors */
  2501. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2502. if (flags & NV_RX2_SUBSTRACT1) {
  2503. len--;
  2504. }
  2505. }
  2506. /* the rest are hard errors */
  2507. else {
  2508. if (flags & NV_RX2_CRCERR)
  2509. dev->stats.rx_crc_errors++;
  2510. if (flags & NV_RX2_OVERFLOW)
  2511. dev->stats.rx_over_errors++;
  2512. dev->stats.rx_errors++;
  2513. dev_kfree_skb(skb);
  2514. goto next_pkt;
  2515. }
  2516. }
  2517. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2518. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2519. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2520. } else {
  2521. dev_kfree_skb(skb);
  2522. goto next_pkt;
  2523. }
  2524. }
  2525. /* got a valid packet - forward it to the network core */
  2526. skb_put(skb, len);
  2527. skb->protocol = eth_type_trans(skb, dev);
  2528. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2529. dev->name, len, skb->protocol);
  2530. #ifdef CONFIG_FORCEDETH_NAPI
  2531. netif_receive_skb(skb);
  2532. #else
  2533. netif_rx(skb);
  2534. #endif
  2535. dev->stats.rx_packets++;
  2536. dev->stats.rx_bytes += len;
  2537. next_pkt:
  2538. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2539. np->get_rx.orig = np->first_rx.orig;
  2540. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2541. np->get_rx_ctx = np->first_rx_ctx;
  2542. rx_work++;
  2543. }
  2544. return rx_work;
  2545. }
  2546. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2547. {
  2548. struct fe_priv *np = netdev_priv(dev);
  2549. u32 flags;
  2550. u32 vlanflags = 0;
  2551. int rx_work = 0;
  2552. struct sk_buff *skb;
  2553. int len;
  2554. while((np->get_rx.ex != np->put_rx.ex) &&
  2555. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2556. (rx_work < limit)) {
  2557. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2558. dev->name, flags);
  2559. /*
  2560. * the packet is for us - immediately tear down the pci mapping.
  2561. * TODO: check if a prefetch of the first cacheline improves
  2562. * the performance.
  2563. */
  2564. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2565. np->get_rx_ctx->dma_len,
  2566. PCI_DMA_FROMDEVICE);
  2567. skb = np->get_rx_ctx->skb;
  2568. np->get_rx_ctx->skb = NULL;
  2569. {
  2570. int j;
  2571. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2572. for (j=0; j<64; j++) {
  2573. if ((j%16) == 0)
  2574. dprintk("\n%03x:", j);
  2575. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2576. }
  2577. dprintk("\n");
  2578. }
  2579. /* look at what we actually got: */
  2580. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2581. len = flags & LEN_MASK_V2;
  2582. if (unlikely(flags & NV_RX2_ERROR)) {
  2583. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2584. len = nv_getlen(dev, skb->data, len);
  2585. if (len < 0) {
  2586. dev_kfree_skb(skb);
  2587. goto next_pkt;
  2588. }
  2589. }
  2590. /* framing errors are soft errors */
  2591. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2592. if (flags & NV_RX2_SUBSTRACT1) {
  2593. len--;
  2594. }
  2595. }
  2596. /* the rest are hard errors */
  2597. else {
  2598. dev_kfree_skb(skb);
  2599. goto next_pkt;
  2600. }
  2601. }
  2602. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2603. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2604. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2605. /* got a valid packet - forward it to the network core */
  2606. skb_put(skb, len);
  2607. skb->protocol = eth_type_trans(skb, dev);
  2608. prefetch(skb->data);
  2609. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2610. dev->name, len, skb->protocol);
  2611. if (likely(!np->vlangrp)) {
  2612. #ifdef CONFIG_FORCEDETH_NAPI
  2613. netif_receive_skb(skb);
  2614. #else
  2615. netif_rx(skb);
  2616. #endif
  2617. } else {
  2618. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2619. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2620. #ifdef CONFIG_FORCEDETH_NAPI
  2621. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2622. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2623. #else
  2624. vlan_hwaccel_rx(skb, np->vlangrp,
  2625. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2626. #endif
  2627. } else {
  2628. #ifdef CONFIG_FORCEDETH_NAPI
  2629. netif_receive_skb(skb);
  2630. #else
  2631. netif_rx(skb);
  2632. #endif
  2633. }
  2634. }
  2635. dev->stats.rx_packets++;
  2636. dev->stats.rx_bytes += len;
  2637. } else {
  2638. dev_kfree_skb(skb);
  2639. }
  2640. next_pkt:
  2641. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2642. np->get_rx.ex = np->first_rx.ex;
  2643. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2644. np->get_rx_ctx = np->first_rx_ctx;
  2645. rx_work++;
  2646. }
  2647. return rx_work;
  2648. }
  2649. static void set_bufsize(struct net_device *dev)
  2650. {
  2651. struct fe_priv *np = netdev_priv(dev);
  2652. if (dev->mtu <= ETH_DATA_LEN)
  2653. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2654. else
  2655. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2656. }
  2657. /*
  2658. * nv_change_mtu: dev->change_mtu function
  2659. * Called with dev_base_lock held for read.
  2660. */
  2661. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2662. {
  2663. struct fe_priv *np = netdev_priv(dev);
  2664. int old_mtu;
  2665. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2666. return -EINVAL;
  2667. old_mtu = dev->mtu;
  2668. dev->mtu = new_mtu;
  2669. /* return early if the buffer sizes will not change */
  2670. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2671. return 0;
  2672. if (old_mtu == new_mtu)
  2673. return 0;
  2674. /* synchronized against open : rtnl_lock() held by caller */
  2675. if (netif_running(dev)) {
  2676. u8 __iomem *base = get_hwbase(dev);
  2677. /*
  2678. * It seems that the nic preloads valid ring entries into an
  2679. * internal buffer. The procedure for flushing everything is
  2680. * guessed, there is probably a simpler approach.
  2681. * Changing the MTU is a rare event, it shouldn't matter.
  2682. */
  2683. nv_disable_irq(dev);
  2684. nv_napi_disable(dev);
  2685. netif_tx_lock_bh(dev);
  2686. netif_addr_lock(dev);
  2687. spin_lock(&np->lock);
  2688. /* stop engines */
  2689. nv_stop_rxtx(dev);
  2690. nv_txrx_reset(dev);
  2691. /* drain rx queue */
  2692. nv_drain_rxtx(dev);
  2693. /* reinit driver view of the rx queue */
  2694. set_bufsize(dev);
  2695. if (nv_init_ring(dev)) {
  2696. if (!np->in_shutdown)
  2697. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2698. }
  2699. /* reinit nic view of the rx queue */
  2700. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2701. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2702. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2703. base + NvRegRingSizes);
  2704. pci_push(base);
  2705. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2706. pci_push(base);
  2707. /* restart rx engine */
  2708. nv_start_rxtx(dev);
  2709. spin_unlock(&np->lock);
  2710. netif_addr_unlock(dev);
  2711. netif_tx_unlock_bh(dev);
  2712. nv_napi_enable(dev);
  2713. nv_enable_irq(dev);
  2714. }
  2715. return 0;
  2716. }
  2717. static void nv_copy_mac_to_hw(struct net_device *dev)
  2718. {
  2719. u8 __iomem *base = get_hwbase(dev);
  2720. u32 mac[2];
  2721. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2722. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2723. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2724. writel(mac[0], base + NvRegMacAddrA);
  2725. writel(mac[1], base + NvRegMacAddrB);
  2726. }
  2727. /*
  2728. * nv_set_mac_address: dev->set_mac_address function
  2729. * Called with rtnl_lock() held.
  2730. */
  2731. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2732. {
  2733. struct fe_priv *np = netdev_priv(dev);
  2734. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2735. if (!is_valid_ether_addr(macaddr->sa_data))
  2736. return -EADDRNOTAVAIL;
  2737. /* synchronized against open : rtnl_lock() held by caller */
  2738. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2739. if (netif_running(dev)) {
  2740. netif_tx_lock_bh(dev);
  2741. netif_addr_lock(dev);
  2742. spin_lock_irq(&np->lock);
  2743. /* stop rx engine */
  2744. nv_stop_rx(dev);
  2745. /* set mac address */
  2746. nv_copy_mac_to_hw(dev);
  2747. /* restart rx engine */
  2748. nv_start_rx(dev);
  2749. spin_unlock_irq(&np->lock);
  2750. netif_addr_unlock(dev);
  2751. netif_tx_unlock_bh(dev);
  2752. } else {
  2753. nv_copy_mac_to_hw(dev);
  2754. }
  2755. return 0;
  2756. }
  2757. /*
  2758. * nv_set_multicast: dev->set_multicast function
  2759. * Called with netif_tx_lock held.
  2760. */
  2761. static void nv_set_multicast(struct net_device *dev)
  2762. {
  2763. struct fe_priv *np = netdev_priv(dev);
  2764. u8 __iomem *base = get_hwbase(dev);
  2765. u32 addr[2];
  2766. u32 mask[2];
  2767. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2768. memset(addr, 0, sizeof(addr));
  2769. memset(mask, 0, sizeof(mask));
  2770. if (dev->flags & IFF_PROMISC) {
  2771. pff |= NVREG_PFF_PROMISC;
  2772. } else {
  2773. pff |= NVREG_PFF_MYADDR;
  2774. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2775. u32 alwaysOff[2];
  2776. u32 alwaysOn[2];
  2777. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2778. if (dev->flags & IFF_ALLMULTI) {
  2779. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2780. } else {
  2781. struct dev_mc_list *walk;
  2782. walk = dev->mc_list;
  2783. while (walk != NULL) {
  2784. u32 a, b;
  2785. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2786. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2787. alwaysOn[0] &= a;
  2788. alwaysOff[0] &= ~a;
  2789. alwaysOn[1] &= b;
  2790. alwaysOff[1] &= ~b;
  2791. walk = walk->next;
  2792. }
  2793. }
  2794. addr[0] = alwaysOn[0];
  2795. addr[1] = alwaysOn[1];
  2796. mask[0] = alwaysOn[0] | alwaysOff[0];
  2797. mask[1] = alwaysOn[1] | alwaysOff[1];
  2798. } else {
  2799. mask[0] = NVREG_MCASTMASKA_NONE;
  2800. mask[1] = NVREG_MCASTMASKB_NONE;
  2801. }
  2802. }
  2803. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2804. pff |= NVREG_PFF_ALWAYS;
  2805. spin_lock_irq(&np->lock);
  2806. nv_stop_rx(dev);
  2807. writel(addr[0], base + NvRegMulticastAddrA);
  2808. writel(addr[1], base + NvRegMulticastAddrB);
  2809. writel(mask[0], base + NvRegMulticastMaskA);
  2810. writel(mask[1], base + NvRegMulticastMaskB);
  2811. writel(pff, base + NvRegPacketFilterFlags);
  2812. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2813. dev->name);
  2814. nv_start_rx(dev);
  2815. spin_unlock_irq(&np->lock);
  2816. }
  2817. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2818. {
  2819. struct fe_priv *np = netdev_priv(dev);
  2820. u8 __iomem *base = get_hwbase(dev);
  2821. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2822. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2823. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2824. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2825. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2826. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2827. } else {
  2828. writel(pff, base + NvRegPacketFilterFlags);
  2829. }
  2830. }
  2831. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2832. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2833. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2834. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2835. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2836. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2837. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2838. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2839. /* limit the number of tx pause frames to a default of 8 */
  2840. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2841. }
  2842. writel(pause_enable, base + NvRegTxPauseFrame);
  2843. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2844. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2845. } else {
  2846. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2847. writel(regmisc, base + NvRegMisc1);
  2848. }
  2849. }
  2850. }
  2851. /**
  2852. * nv_update_linkspeed: Setup the MAC according to the link partner
  2853. * @dev: Network device to be configured
  2854. *
  2855. * The function queries the PHY and checks if there is a link partner.
  2856. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2857. * set to 10 MBit HD.
  2858. *
  2859. * The function returns 0 if there is no link partner and 1 if there is
  2860. * a good link partner.
  2861. */
  2862. static int nv_update_linkspeed(struct net_device *dev)
  2863. {
  2864. struct fe_priv *np = netdev_priv(dev);
  2865. u8 __iomem *base = get_hwbase(dev);
  2866. int adv = 0;
  2867. int lpa = 0;
  2868. int adv_lpa, adv_pause, lpa_pause;
  2869. int newls = np->linkspeed;
  2870. int newdup = np->duplex;
  2871. int mii_status;
  2872. int retval = 0;
  2873. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2874. u32 txrxFlags = 0;
  2875. u32 phy_exp;
  2876. /* BMSR_LSTATUS is latched, read it twice:
  2877. * we want the current value.
  2878. */
  2879. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2880. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2881. if (!(mii_status & BMSR_LSTATUS)) {
  2882. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2883. dev->name);
  2884. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2885. newdup = 0;
  2886. retval = 0;
  2887. goto set_speed;
  2888. }
  2889. if (np->autoneg == 0) {
  2890. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2891. dev->name, np->fixed_mode);
  2892. if (np->fixed_mode & LPA_100FULL) {
  2893. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2894. newdup = 1;
  2895. } else if (np->fixed_mode & LPA_100HALF) {
  2896. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2897. newdup = 0;
  2898. } else if (np->fixed_mode & LPA_10FULL) {
  2899. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2900. newdup = 1;
  2901. } else {
  2902. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2903. newdup = 0;
  2904. }
  2905. retval = 1;
  2906. goto set_speed;
  2907. }
  2908. /* check auto negotiation is complete */
  2909. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2910. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2911. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2912. newdup = 0;
  2913. retval = 0;
  2914. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2915. goto set_speed;
  2916. }
  2917. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2918. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2919. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2920. dev->name, adv, lpa);
  2921. retval = 1;
  2922. if (np->gigabit == PHY_GIGABIT) {
  2923. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2924. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2925. if ((control_1000 & ADVERTISE_1000FULL) &&
  2926. (status_1000 & LPA_1000FULL)) {
  2927. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2928. dev->name);
  2929. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2930. newdup = 1;
  2931. goto set_speed;
  2932. }
  2933. }
  2934. /* FIXME: handle parallel detection properly */
  2935. adv_lpa = lpa & adv;
  2936. if (adv_lpa & LPA_100FULL) {
  2937. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2938. newdup = 1;
  2939. } else if (adv_lpa & LPA_100HALF) {
  2940. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2941. newdup = 0;
  2942. } else if (adv_lpa & LPA_10FULL) {
  2943. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2944. newdup = 1;
  2945. } else if (adv_lpa & LPA_10HALF) {
  2946. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2947. newdup = 0;
  2948. } else {
  2949. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2950. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2951. newdup = 0;
  2952. }
  2953. set_speed:
  2954. if (np->duplex == newdup && np->linkspeed == newls)
  2955. return retval;
  2956. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2957. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2958. np->duplex = newdup;
  2959. np->linkspeed = newls;
  2960. /* The transmitter and receiver must be restarted for safe update */
  2961. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2962. txrxFlags |= NV_RESTART_TX;
  2963. nv_stop_tx(dev);
  2964. }
  2965. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2966. txrxFlags |= NV_RESTART_RX;
  2967. nv_stop_rx(dev);
  2968. }
  2969. if (np->gigabit == PHY_GIGABIT) {
  2970. phyreg = readl(base + NvRegSlotTime);
  2971. phyreg &= ~(0x3FF00);
  2972. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2973. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2974. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2975. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2976. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2977. writel(phyreg, base + NvRegSlotTime);
  2978. }
  2979. phyreg = readl(base + NvRegPhyInterface);
  2980. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2981. if (np->duplex == 0)
  2982. phyreg |= PHY_HALF;
  2983. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2984. phyreg |= PHY_100;
  2985. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2986. phyreg |= PHY_1000;
  2987. writel(phyreg, base + NvRegPhyInterface);
  2988. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2989. if (phyreg & PHY_RGMII) {
  2990. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2991. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2992. } else {
  2993. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2994. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2995. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2996. else
  2997. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2998. } else {
  2999. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3000. }
  3001. }
  3002. } else {
  3003. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3004. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3005. else
  3006. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3007. }
  3008. writel(txreg, base + NvRegTxDeferral);
  3009. if (np->desc_ver == DESC_VER_1) {
  3010. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3011. } else {
  3012. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3013. txreg = NVREG_TX_WM_DESC2_3_1000;
  3014. else
  3015. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3016. }
  3017. writel(txreg, base + NvRegTxWatermark);
  3018. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  3019. base + NvRegMisc1);
  3020. pci_push(base);
  3021. writel(np->linkspeed, base + NvRegLinkSpeed);
  3022. pci_push(base);
  3023. pause_flags = 0;
  3024. /* setup pause frame */
  3025. if (np->duplex != 0) {
  3026. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3027. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3028. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3029. switch (adv_pause) {
  3030. case ADVERTISE_PAUSE_CAP:
  3031. if (lpa_pause & LPA_PAUSE_CAP) {
  3032. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3033. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3034. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3035. }
  3036. break;
  3037. case ADVERTISE_PAUSE_ASYM:
  3038. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3039. {
  3040. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3041. }
  3042. break;
  3043. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3044. if (lpa_pause & LPA_PAUSE_CAP)
  3045. {
  3046. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3047. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3048. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3049. }
  3050. if (lpa_pause == LPA_PAUSE_ASYM)
  3051. {
  3052. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3053. }
  3054. break;
  3055. }
  3056. } else {
  3057. pause_flags = np->pause_flags;
  3058. }
  3059. }
  3060. nv_update_pause(dev, pause_flags);
  3061. if (txrxFlags & NV_RESTART_TX)
  3062. nv_start_tx(dev);
  3063. if (txrxFlags & NV_RESTART_RX)
  3064. nv_start_rx(dev);
  3065. return retval;
  3066. }
  3067. static void nv_linkchange(struct net_device *dev)
  3068. {
  3069. if (nv_update_linkspeed(dev)) {
  3070. if (!netif_carrier_ok(dev)) {
  3071. netif_carrier_on(dev);
  3072. printk(KERN_INFO "%s: link up.\n", dev->name);
  3073. nv_txrx_gate(dev, false);
  3074. nv_start_rx(dev);
  3075. }
  3076. } else {
  3077. if (netif_carrier_ok(dev)) {
  3078. netif_carrier_off(dev);
  3079. printk(KERN_INFO "%s: link down.\n", dev->name);
  3080. nv_txrx_gate(dev, true);
  3081. nv_stop_rx(dev);
  3082. }
  3083. }
  3084. }
  3085. static void nv_link_irq(struct net_device *dev)
  3086. {
  3087. u8 __iomem *base = get_hwbase(dev);
  3088. u32 miistat;
  3089. miistat = readl(base + NvRegMIIStatus);
  3090. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3091. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3092. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3093. nv_linkchange(dev);
  3094. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3095. }
  3096. static void nv_msi_workaround(struct fe_priv *np)
  3097. {
  3098. /* Need to toggle the msi irq mask within the ethernet device,
  3099. * otherwise, future interrupts will not be detected.
  3100. */
  3101. if (np->msi_flags & NV_MSI_ENABLED) {
  3102. u8 __iomem *base = np->base;
  3103. writel(0, base + NvRegMSIIrqMask);
  3104. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3105. }
  3106. }
  3107. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3108. {
  3109. struct fe_priv *np = netdev_priv(dev);
  3110. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3111. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3112. /* transition to poll based interrupts */
  3113. np->quiet_count = 0;
  3114. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3115. np->irqmask = NVREG_IRQMASK_CPU;
  3116. return 1;
  3117. }
  3118. } else {
  3119. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3120. np->quiet_count++;
  3121. } else {
  3122. /* reached a period of low activity, switch
  3123. to per tx/rx packet interrupts */
  3124. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3125. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3126. return 1;
  3127. }
  3128. }
  3129. }
  3130. }
  3131. return 0;
  3132. }
  3133. static irqreturn_t nv_nic_irq(int foo, void *data)
  3134. {
  3135. struct net_device *dev = (struct net_device *) data;
  3136. struct fe_priv *np = netdev_priv(dev);
  3137. u8 __iomem *base = get_hwbase(dev);
  3138. #ifndef CONFIG_FORCEDETH_NAPI
  3139. int total_work = 0;
  3140. int loop_count = 0;
  3141. #endif
  3142. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3143. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3144. np->events = readl(base + NvRegIrqStatus);
  3145. writel(np->events, base + NvRegIrqStatus);
  3146. } else {
  3147. np->events = readl(base + NvRegMSIXIrqStatus);
  3148. writel(np->events, base + NvRegMSIXIrqStatus);
  3149. }
  3150. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3151. if (!(np->events & np->irqmask))
  3152. return IRQ_NONE;
  3153. nv_msi_workaround(np);
  3154. #ifdef CONFIG_FORCEDETH_NAPI
  3155. if (napi_schedule_prep(&np->napi)) {
  3156. /*
  3157. * Disable further irq's (msix not enabled with napi)
  3158. */
  3159. writel(0, base + NvRegIrqMask);
  3160. __napi_schedule(&np->napi);
  3161. }
  3162. #else
  3163. do
  3164. {
  3165. int work = 0;
  3166. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3167. if (unlikely(nv_alloc_rx(dev))) {
  3168. spin_lock(&np->lock);
  3169. if (!np->in_shutdown)
  3170. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3171. spin_unlock(&np->lock);
  3172. }
  3173. }
  3174. spin_lock(&np->lock);
  3175. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3176. spin_unlock(&np->lock);
  3177. if (!work)
  3178. break;
  3179. total_work += work;
  3180. loop_count++;
  3181. }
  3182. while (loop_count < max_interrupt_work);
  3183. if (nv_change_interrupt_mode(dev, total_work)) {
  3184. /* setup new irq mask */
  3185. writel(np->irqmask, base + NvRegIrqMask);
  3186. }
  3187. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3188. spin_lock(&np->lock);
  3189. nv_link_irq(dev);
  3190. spin_unlock(&np->lock);
  3191. }
  3192. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3193. spin_lock(&np->lock);
  3194. nv_linkchange(dev);
  3195. spin_unlock(&np->lock);
  3196. np->link_timeout = jiffies + LINK_TIMEOUT;
  3197. }
  3198. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3199. spin_lock(&np->lock);
  3200. /* disable interrupts on the nic */
  3201. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3202. writel(0, base + NvRegIrqMask);
  3203. else
  3204. writel(np->irqmask, base + NvRegIrqMask);
  3205. pci_push(base);
  3206. if (!np->in_shutdown) {
  3207. np->nic_poll_irq = np->irqmask;
  3208. np->recover_error = 1;
  3209. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3210. }
  3211. spin_unlock(&np->lock);
  3212. }
  3213. #endif
  3214. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3215. return IRQ_HANDLED;
  3216. }
  3217. /**
  3218. * All _optimized functions are used to help increase performance
  3219. * (reduce CPU and increase throughput). They use descripter version 3,
  3220. * compiler directives, and reduce memory accesses.
  3221. */
  3222. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3223. {
  3224. struct net_device *dev = (struct net_device *) data;
  3225. struct fe_priv *np = netdev_priv(dev);
  3226. u8 __iomem *base = get_hwbase(dev);
  3227. #ifndef CONFIG_FORCEDETH_NAPI
  3228. int total_work = 0;
  3229. int loop_count = 0;
  3230. #endif
  3231. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3232. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3233. np->events = readl(base + NvRegIrqStatus);
  3234. writel(np->events, base + NvRegIrqStatus);
  3235. } else {
  3236. np->events = readl(base + NvRegMSIXIrqStatus);
  3237. writel(np->events, base + NvRegMSIXIrqStatus);
  3238. }
  3239. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3240. if (!(np->events & np->irqmask))
  3241. return IRQ_NONE;
  3242. nv_msi_workaround(np);
  3243. #ifdef CONFIG_FORCEDETH_NAPI
  3244. if (napi_schedule_prep(&np->napi)) {
  3245. /*
  3246. * Disable further irq's (msix not enabled with napi)
  3247. */
  3248. writel(0, base + NvRegIrqMask);
  3249. __napi_schedule(&np->napi);
  3250. }
  3251. #else
  3252. do
  3253. {
  3254. int work = 0;
  3255. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3256. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3257. spin_lock(&np->lock);
  3258. if (!np->in_shutdown)
  3259. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3260. spin_unlock(&np->lock);
  3261. }
  3262. }
  3263. spin_lock(&np->lock);
  3264. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3265. spin_unlock(&np->lock);
  3266. if (!work)
  3267. break;
  3268. total_work += work;
  3269. loop_count++;
  3270. }
  3271. while (loop_count < max_interrupt_work);
  3272. if (nv_change_interrupt_mode(dev, total_work)) {
  3273. /* setup new irq mask */
  3274. writel(np->irqmask, base + NvRegIrqMask);
  3275. }
  3276. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3277. spin_lock(&np->lock);
  3278. nv_link_irq(dev);
  3279. spin_unlock(&np->lock);
  3280. }
  3281. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3282. spin_lock(&np->lock);
  3283. nv_linkchange(dev);
  3284. spin_unlock(&np->lock);
  3285. np->link_timeout = jiffies + LINK_TIMEOUT;
  3286. }
  3287. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3288. spin_lock(&np->lock);
  3289. /* disable interrupts on the nic */
  3290. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3291. writel(0, base + NvRegIrqMask);
  3292. else
  3293. writel(np->irqmask, base + NvRegIrqMask);
  3294. pci_push(base);
  3295. if (!np->in_shutdown) {
  3296. np->nic_poll_irq = np->irqmask;
  3297. np->recover_error = 1;
  3298. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3299. }
  3300. spin_unlock(&np->lock);
  3301. }
  3302. #endif
  3303. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3304. return IRQ_HANDLED;
  3305. }
  3306. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3307. {
  3308. struct net_device *dev = (struct net_device *) data;
  3309. struct fe_priv *np = netdev_priv(dev);
  3310. u8 __iomem *base = get_hwbase(dev);
  3311. u32 events;
  3312. int i;
  3313. unsigned long flags;
  3314. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3315. for (i=0; ; i++) {
  3316. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3317. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3318. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3319. if (!(events & np->irqmask))
  3320. break;
  3321. spin_lock_irqsave(&np->lock, flags);
  3322. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3323. spin_unlock_irqrestore(&np->lock, flags);
  3324. if (unlikely(i > max_interrupt_work)) {
  3325. spin_lock_irqsave(&np->lock, flags);
  3326. /* disable interrupts on the nic */
  3327. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3328. pci_push(base);
  3329. if (!np->in_shutdown) {
  3330. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3331. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3332. }
  3333. spin_unlock_irqrestore(&np->lock, flags);
  3334. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3335. break;
  3336. }
  3337. }
  3338. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3339. return IRQ_RETVAL(i);
  3340. }
  3341. #ifdef CONFIG_FORCEDETH_NAPI
  3342. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3343. {
  3344. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3345. struct net_device *dev = np->dev;
  3346. u8 __iomem *base = get_hwbase(dev);
  3347. unsigned long flags;
  3348. int retcode;
  3349. int tx_work, rx_work;
  3350. if (!nv_optimized(np)) {
  3351. spin_lock_irqsave(&np->lock, flags);
  3352. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3353. spin_unlock_irqrestore(&np->lock, flags);
  3354. rx_work = nv_rx_process(dev, budget);
  3355. retcode = nv_alloc_rx(dev);
  3356. } else {
  3357. spin_lock_irqsave(&np->lock, flags);
  3358. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3359. spin_unlock_irqrestore(&np->lock, flags);
  3360. rx_work = nv_rx_process_optimized(dev, budget);
  3361. retcode = nv_alloc_rx_optimized(dev);
  3362. }
  3363. if (retcode) {
  3364. spin_lock_irqsave(&np->lock, flags);
  3365. if (!np->in_shutdown)
  3366. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3367. spin_unlock_irqrestore(&np->lock, flags);
  3368. }
  3369. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3370. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3371. spin_lock_irqsave(&np->lock, flags);
  3372. nv_link_irq(dev);
  3373. spin_unlock_irqrestore(&np->lock, flags);
  3374. }
  3375. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3376. spin_lock_irqsave(&np->lock, flags);
  3377. nv_linkchange(dev);
  3378. spin_unlock_irqrestore(&np->lock, flags);
  3379. np->link_timeout = jiffies + LINK_TIMEOUT;
  3380. }
  3381. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3382. spin_lock_irqsave(&np->lock, flags);
  3383. if (!np->in_shutdown) {
  3384. np->nic_poll_irq = np->irqmask;
  3385. np->recover_error = 1;
  3386. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3387. }
  3388. spin_unlock_irqrestore(&np->lock, flags);
  3389. napi_complete(napi);
  3390. return rx_work;
  3391. }
  3392. if (rx_work < budget) {
  3393. /* re-enable interrupts
  3394. (msix not enabled in napi) */
  3395. napi_complete(napi);
  3396. writel(np->irqmask, base + NvRegIrqMask);
  3397. }
  3398. return rx_work;
  3399. }
  3400. #endif
  3401. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3402. {
  3403. struct net_device *dev = (struct net_device *) data;
  3404. struct fe_priv *np = netdev_priv(dev);
  3405. u8 __iomem *base = get_hwbase(dev);
  3406. u32 events;
  3407. int i;
  3408. unsigned long flags;
  3409. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3410. for (i=0; ; i++) {
  3411. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3412. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3413. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3414. if (!(events & np->irqmask))
  3415. break;
  3416. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3417. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3418. spin_lock_irqsave(&np->lock, flags);
  3419. if (!np->in_shutdown)
  3420. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3421. spin_unlock_irqrestore(&np->lock, flags);
  3422. }
  3423. }
  3424. if (unlikely(i > max_interrupt_work)) {
  3425. spin_lock_irqsave(&np->lock, flags);
  3426. /* disable interrupts on the nic */
  3427. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3428. pci_push(base);
  3429. if (!np->in_shutdown) {
  3430. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3431. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3432. }
  3433. spin_unlock_irqrestore(&np->lock, flags);
  3434. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3435. break;
  3436. }
  3437. }
  3438. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3439. return IRQ_RETVAL(i);
  3440. }
  3441. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3442. {
  3443. struct net_device *dev = (struct net_device *) data;
  3444. struct fe_priv *np = netdev_priv(dev);
  3445. u8 __iomem *base = get_hwbase(dev);
  3446. u32 events;
  3447. int i;
  3448. unsigned long flags;
  3449. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3450. for (i=0; ; i++) {
  3451. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3452. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3453. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3454. if (!(events & np->irqmask))
  3455. break;
  3456. /* check tx in case we reached max loop limit in tx isr */
  3457. spin_lock_irqsave(&np->lock, flags);
  3458. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3459. spin_unlock_irqrestore(&np->lock, flags);
  3460. if (events & NVREG_IRQ_LINK) {
  3461. spin_lock_irqsave(&np->lock, flags);
  3462. nv_link_irq(dev);
  3463. spin_unlock_irqrestore(&np->lock, flags);
  3464. }
  3465. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3466. spin_lock_irqsave(&np->lock, flags);
  3467. nv_linkchange(dev);
  3468. spin_unlock_irqrestore(&np->lock, flags);
  3469. np->link_timeout = jiffies + LINK_TIMEOUT;
  3470. }
  3471. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3472. spin_lock_irq(&np->lock);
  3473. /* disable interrupts on the nic */
  3474. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3475. pci_push(base);
  3476. if (!np->in_shutdown) {
  3477. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3478. np->recover_error = 1;
  3479. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3480. }
  3481. spin_unlock_irq(&np->lock);
  3482. break;
  3483. }
  3484. if (unlikely(i > max_interrupt_work)) {
  3485. spin_lock_irqsave(&np->lock, flags);
  3486. /* disable interrupts on the nic */
  3487. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3488. pci_push(base);
  3489. if (!np->in_shutdown) {
  3490. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3491. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3492. }
  3493. spin_unlock_irqrestore(&np->lock, flags);
  3494. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3495. break;
  3496. }
  3497. }
  3498. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3499. return IRQ_RETVAL(i);
  3500. }
  3501. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3502. {
  3503. struct net_device *dev = (struct net_device *) data;
  3504. struct fe_priv *np = netdev_priv(dev);
  3505. u8 __iomem *base = get_hwbase(dev);
  3506. u32 events;
  3507. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3508. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3509. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3510. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3511. } else {
  3512. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3513. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3514. }
  3515. pci_push(base);
  3516. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3517. if (!(events & NVREG_IRQ_TIMER))
  3518. return IRQ_RETVAL(0);
  3519. nv_msi_workaround(np);
  3520. spin_lock(&np->lock);
  3521. np->intr_test = 1;
  3522. spin_unlock(&np->lock);
  3523. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3524. return IRQ_RETVAL(1);
  3525. }
  3526. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3527. {
  3528. u8 __iomem *base = get_hwbase(dev);
  3529. int i;
  3530. u32 msixmap = 0;
  3531. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3532. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3533. * the remaining 8 interrupts.
  3534. */
  3535. for (i = 0; i < 8; i++) {
  3536. if ((irqmask >> i) & 0x1) {
  3537. msixmap |= vector << (i << 2);
  3538. }
  3539. }
  3540. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3541. msixmap = 0;
  3542. for (i = 0; i < 8; i++) {
  3543. if ((irqmask >> (i + 8)) & 0x1) {
  3544. msixmap |= vector << (i << 2);
  3545. }
  3546. }
  3547. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3548. }
  3549. static int nv_request_irq(struct net_device *dev, int intr_test)
  3550. {
  3551. struct fe_priv *np = get_nvpriv(dev);
  3552. u8 __iomem *base = get_hwbase(dev);
  3553. int ret = 1;
  3554. int i;
  3555. irqreturn_t (*handler)(int foo, void *data);
  3556. if (intr_test) {
  3557. handler = nv_nic_irq_test;
  3558. } else {
  3559. if (nv_optimized(np))
  3560. handler = nv_nic_irq_optimized;
  3561. else
  3562. handler = nv_nic_irq;
  3563. }
  3564. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3565. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3566. np->msi_x_entry[i].entry = i;
  3567. }
  3568. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3569. np->msi_flags |= NV_MSI_X_ENABLED;
  3570. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3571. /* Request irq for rx handling */
  3572. sprintf(np->name_rx, "%s-rx", dev->name);
  3573. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3574. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3575. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3576. pci_disable_msix(np->pci_dev);
  3577. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3578. goto out_err;
  3579. }
  3580. /* Request irq for tx handling */
  3581. sprintf(np->name_tx, "%s-tx", dev->name);
  3582. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3583. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3584. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3585. pci_disable_msix(np->pci_dev);
  3586. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3587. goto out_free_rx;
  3588. }
  3589. /* Request irq for link and timer handling */
  3590. sprintf(np->name_other, "%s-other", dev->name);
  3591. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3592. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3593. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3594. pci_disable_msix(np->pci_dev);
  3595. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3596. goto out_free_tx;
  3597. }
  3598. /* map interrupts to their respective vector */
  3599. writel(0, base + NvRegMSIXMap0);
  3600. writel(0, base + NvRegMSIXMap1);
  3601. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3602. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3603. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3604. } else {
  3605. /* Request irq for all interrupts */
  3606. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3607. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3608. pci_disable_msix(np->pci_dev);
  3609. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3610. goto out_err;
  3611. }
  3612. /* map interrupts to vector 0 */
  3613. writel(0, base + NvRegMSIXMap0);
  3614. writel(0, base + NvRegMSIXMap1);
  3615. }
  3616. }
  3617. }
  3618. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3619. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3620. np->msi_flags |= NV_MSI_ENABLED;
  3621. dev->irq = np->pci_dev->irq;
  3622. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3623. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3624. pci_disable_msi(np->pci_dev);
  3625. np->msi_flags &= ~NV_MSI_ENABLED;
  3626. dev->irq = np->pci_dev->irq;
  3627. goto out_err;
  3628. }
  3629. /* map interrupts to vector 0 */
  3630. writel(0, base + NvRegMSIMap0);
  3631. writel(0, base + NvRegMSIMap1);
  3632. /* enable msi vector 0 */
  3633. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3634. }
  3635. }
  3636. if (ret != 0) {
  3637. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3638. goto out_err;
  3639. }
  3640. return 0;
  3641. out_free_tx:
  3642. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3643. out_free_rx:
  3644. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3645. out_err:
  3646. return 1;
  3647. }
  3648. static void nv_free_irq(struct net_device *dev)
  3649. {
  3650. struct fe_priv *np = get_nvpriv(dev);
  3651. int i;
  3652. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3653. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3654. free_irq(np->msi_x_entry[i].vector, dev);
  3655. }
  3656. pci_disable_msix(np->pci_dev);
  3657. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3658. } else {
  3659. free_irq(np->pci_dev->irq, dev);
  3660. if (np->msi_flags & NV_MSI_ENABLED) {
  3661. pci_disable_msi(np->pci_dev);
  3662. np->msi_flags &= ~NV_MSI_ENABLED;
  3663. }
  3664. }
  3665. }
  3666. static void nv_do_nic_poll(unsigned long data)
  3667. {
  3668. struct net_device *dev = (struct net_device *) data;
  3669. struct fe_priv *np = netdev_priv(dev);
  3670. u8 __iomem *base = get_hwbase(dev);
  3671. u32 mask = 0;
  3672. /*
  3673. * First disable irq(s) and then
  3674. * reenable interrupts on the nic, we have to do this before calling
  3675. * nv_nic_irq because that may decide to do otherwise
  3676. */
  3677. if (!using_multi_irqs(dev)) {
  3678. if (np->msi_flags & NV_MSI_X_ENABLED)
  3679. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3680. else
  3681. disable_irq_lockdep(np->pci_dev->irq);
  3682. mask = np->irqmask;
  3683. } else {
  3684. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3685. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3686. mask |= NVREG_IRQ_RX_ALL;
  3687. }
  3688. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3689. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3690. mask |= NVREG_IRQ_TX_ALL;
  3691. }
  3692. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3693. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3694. mask |= NVREG_IRQ_OTHER;
  3695. }
  3696. }
  3697. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3698. if (np->recover_error) {
  3699. np->recover_error = 0;
  3700. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3701. if (netif_running(dev)) {
  3702. netif_tx_lock_bh(dev);
  3703. netif_addr_lock(dev);
  3704. spin_lock(&np->lock);
  3705. /* stop engines */
  3706. nv_stop_rxtx(dev);
  3707. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3708. nv_mac_reset(dev);
  3709. nv_txrx_reset(dev);
  3710. /* drain rx queue */
  3711. nv_drain_rxtx(dev);
  3712. /* reinit driver view of the rx queue */
  3713. set_bufsize(dev);
  3714. if (nv_init_ring(dev)) {
  3715. if (!np->in_shutdown)
  3716. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3717. }
  3718. /* reinit nic view of the rx queue */
  3719. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3720. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3721. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3722. base + NvRegRingSizes);
  3723. pci_push(base);
  3724. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3725. pci_push(base);
  3726. /* clear interrupts */
  3727. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3728. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3729. else
  3730. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3731. /* restart rx engine */
  3732. nv_start_rxtx(dev);
  3733. spin_unlock(&np->lock);
  3734. netif_addr_unlock(dev);
  3735. netif_tx_unlock_bh(dev);
  3736. }
  3737. }
  3738. writel(mask, base + NvRegIrqMask);
  3739. pci_push(base);
  3740. if (!using_multi_irqs(dev)) {
  3741. np->nic_poll_irq = 0;
  3742. if (nv_optimized(np))
  3743. nv_nic_irq_optimized(0, dev);
  3744. else
  3745. nv_nic_irq(0, dev);
  3746. if (np->msi_flags & NV_MSI_X_ENABLED)
  3747. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3748. else
  3749. enable_irq_lockdep(np->pci_dev->irq);
  3750. } else {
  3751. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3752. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3753. nv_nic_irq_rx(0, dev);
  3754. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3755. }
  3756. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3757. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3758. nv_nic_irq_tx(0, dev);
  3759. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3760. }
  3761. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3762. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3763. nv_nic_irq_other(0, dev);
  3764. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3765. }
  3766. }
  3767. }
  3768. #ifdef CONFIG_NET_POLL_CONTROLLER
  3769. static void nv_poll_controller(struct net_device *dev)
  3770. {
  3771. nv_do_nic_poll((unsigned long) dev);
  3772. }
  3773. #endif
  3774. static void nv_do_stats_poll(unsigned long data)
  3775. {
  3776. struct net_device *dev = (struct net_device *) data;
  3777. struct fe_priv *np = netdev_priv(dev);
  3778. nv_get_hw_stats(dev);
  3779. if (!np->in_shutdown)
  3780. mod_timer(&np->stats_poll,
  3781. round_jiffies(jiffies + STATS_INTERVAL));
  3782. }
  3783. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3784. {
  3785. struct fe_priv *np = netdev_priv(dev);
  3786. strcpy(info->driver, DRV_NAME);
  3787. strcpy(info->version, FORCEDETH_VERSION);
  3788. strcpy(info->bus_info, pci_name(np->pci_dev));
  3789. }
  3790. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3791. {
  3792. struct fe_priv *np = netdev_priv(dev);
  3793. wolinfo->supported = WAKE_MAGIC;
  3794. spin_lock_irq(&np->lock);
  3795. if (np->wolenabled)
  3796. wolinfo->wolopts = WAKE_MAGIC;
  3797. spin_unlock_irq(&np->lock);
  3798. }
  3799. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3800. {
  3801. struct fe_priv *np = netdev_priv(dev);
  3802. u8 __iomem *base = get_hwbase(dev);
  3803. u32 flags = 0;
  3804. if (wolinfo->wolopts == 0) {
  3805. np->wolenabled = 0;
  3806. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3807. np->wolenabled = 1;
  3808. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3809. }
  3810. if (netif_running(dev)) {
  3811. spin_lock_irq(&np->lock);
  3812. writel(flags, base + NvRegWakeUpFlags);
  3813. spin_unlock_irq(&np->lock);
  3814. }
  3815. return 0;
  3816. }
  3817. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3818. {
  3819. struct fe_priv *np = netdev_priv(dev);
  3820. int adv;
  3821. spin_lock_irq(&np->lock);
  3822. ecmd->port = PORT_MII;
  3823. if (!netif_running(dev)) {
  3824. /* We do not track link speed / duplex setting if the
  3825. * interface is disabled. Force a link check */
  3826. if (nv_update_linkspeed(dev)) {
  3827. if (!netif_carrier_ok(dev))
  3828. netif_carrier_on(dev);
  3829. } else {
  3830. if (netif_carrier_ok(dev))
  3831. netif_carrier_off(dev);
  3832. }
  3833. }
  3834. if (netif_carrier_ok(dev)) {
  3835. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3836. case NVREG_LINKSPEED_10:
  3837. ecmd->speed = SPEED_10;
  3838. break;
  3839. case NVREG_LINKSPEED_100:
  3840. ecmd->speed = SPEED_100;
  3841. break;
  3842. case NVREG_LINKSPEED_1000:
  3843. ecmd->speed = SPEED_1000;
  3844. break;
  3845. }
  3846. ecmd->duplex = DUPLEX_HALF;
  3847. if (np->duplex)
  3848. ecmd->duplex = DUPLEX_FULL;
  3849. } else {
  3850. ecmd->speed = -1;
  3851. ecmd->duplex = -1;
  3852. }
  3853. ecmd->autoneg = np->autoneg;
  3854. ecmd->advertising = ADVERTISED_MII;
  3855. if (np->autoneg) {
  3856. ecmd->advertising |= ADVERTISED_Autoneg;
  3857. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3858. if (adv & ADVERTISE_10HALF)
  3859. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3860. if (adv & ADVERTISE_10FULL)
  3861. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3862. if (adv & ADVERTISE_100HALF)
  3863. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3864. if (adv & ADVERTISE_100FULL)
  3865. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3866. if (np->gigabit == PHY_GIGABIT) {
  3867. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3868. if (adv & ADVERTISE_1000FULL)
  3869. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3870. }
  3871. }
  3872. ecmd->supported = (SUPPORTED_Autoneg |
  3873. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3874. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3875. SUPPORTED_MII);
  3876. if (np->gigabit == PHY_GIGABIT)
  3877. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3878. ecmd->phy_address = np->phyaddr;
  3879. ecmd->transceiver = XCVR_EXTERNAL;
  3880. /* ignore maxtxpkt, maxrxpkt for now */
  3881. spin_unlock_irq(&np->lock);
  3882. return 0;
  3883. }
  3884. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3885. {
  3886. struct fe_priv *np = netdev_priv(dev);
  3887. if (ecmd->port != PORT_MII)
  3888. return -EINVAL;
  3889. if (ecmd->transceiver != XCVR_EXTERNAL)
  3890. return -EINVAL;
  3891. if (ecmd->phy_address != np->phyaddr) {
  3892. /* TODO: support switching between multiple phys. Should be
  3893. * trivial, but not enabled due to lack of test hardware. */
  3894. return -EINVAL;
  3895. }
  3896. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3897. u32 mask;
  3898. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3899. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3900. if (np->gigabit == PHY_GIGABIT)
  3901. mask |= ADVERTISED_1000baseT_Full;
  3902. if ((ecmd->advertising & mask) == 0)
  3903. return -EINVAL;
  3904. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3905. /* Note: autonegotiation disable, speed 1000 intentionally
  3906. * forbidden - noone should need that. */
  3907. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3908. return -EINVAL;
  3909. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3910. return -EINVAL;
  3911. } else {
  3912. return -EINVAL;
  3913. }
  3914. netif_carrier_off(dev);
  3915. if (netif_running(dev)) {
  3916. unsigned long flags;
  3917. nv_disable_irq(dev);
  3918. netif_tx_lock_bh(dev);
  3919. netif_addr_lock(dev);
  3920. /* with plain spinlock lockdep complains */
  3921. spin_lock_irqsave(&np->lock, flags);
  3922. /* stop engines */
  3923. /* FIXME:
  3924. * this can take some time, and interrupts are disabled
  3925. * due to spin_lock_irqsave, but let's hope no daemon
  3926. * is going to change the settings very often...
  3927. * Worst case:
  3928. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3929. * + some minor delays, which is up to a second approximately
  3930. */
  3931. nv_stop_rxtx(dev);
  3932. spin_unlock_irqrestore(&np->lock, flags);
  3933. netif_addr_unlock(dev);
  3934. netif_tx_unlock_bh(dev);
  3935. }
  3936. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3937. int adv, bmcr;
  3938. np->autoneg = 1;
  3939. /* advertise only what has been requested */
  3940. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3941. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3942. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3943. adv |= ADVERTISE_10HALF;
  3944. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3945. adv |= ADVERTISE_10FULL;
  3946. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3947. adv |= ADVERTISE_100HALF;
  3948. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3949. adv |= ADVERTISE_100FULL;
  3950. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3951. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3952. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3953. adv |= ADVERTISE_PAUSE_ASYM;
  3954. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3955. if (np->gigabit == PHY_GIGABIT) {
  3956. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3957. adv &= ~ADVERTISE_1000FULL;
  3958. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3959. adv |= ADVERTISE_1000FULL;
  3960. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3961. }
  3962. if (netif_running(dev))
  3963. printk(KERN_INFO "%s: link down.\n", dev->name);
  3964. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3965. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3966. bmcr |= BMCR_ANENABLE;
  3967. /* reset the phy in order for settings to stick,
  3968. * and cause autoneg to start */
  3969. if (phy_reset(dev, bmcr)) {
  3970. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3971. return -EINVAL;
  3972. }
  3973. } else {
  3974. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3975. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3976. }
  3977. } else {
  3978. int adv, bmcr;
  3979. np->autoneg = 0;
  3980. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3981. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3982. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3983. adv |= ADVERTISE_10HALF;
  3984. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3985. adv |= ADVERTISE_10FULL;
  3986. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3987. adv |= ADVERTISE_100HALF;
  3988. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3989. adv |= ADVERTISE_100FULL;
  3990. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3991. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3992. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3993. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3994. }
  3995. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3996. adv |= ADVERTISE_PAUSE_ASYM;
  3997. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3998. }
  3999. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4000. np->fixed_mode = adv;
  4001. if (np->gigabit == PHY_GIGABIT) {
  4002. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  4003. adv &= ~ADVERTISE_1000FULL;
  4004. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  4005. }
  4006. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4007. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  4008. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  4009. bmcr |= BMCR_FULLDPLX;
  4010. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  4011. bmcr |= BMCR_SPEED100;
  4012. if (np->phy_oui == PHY_OUI_MARVELL) {
  4013. /* reset the phy in order for forced mode settings to stick */
  4014. if (phy_reset(dev, bmcr)) {
  4015. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4016. return -EINVAL;
  4017. }
  4018. } else {
  4019. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4020. if (netif_running(dev)) {
  4021. /* Wait a bit and then reconfigure the nic. */
  4022. udelay(10);
  4023. nv_linkchange(dev);
  4024. }
  4025. }
  4026. }
  4027. if (netif_running(dev)) {
  4028. nv_start_rxtx(dev);
  4029. nv_enable_irq(dev);
  4030. }
  4031. return 0;
  4032. }
  4033. #define FORCEDETH_REGS_VER 1
  4034. static int nv_get_regs_len(struct net_device *dev)
  4035. {
  4036. struct fe_priv *np = netdev_priv(dev);
  4037. return np->register_size;
  4038. }
  4039. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4040. {
  4041. struct fe_priv *np = netdev_priv(dev);
  4042. u8 __iomem *base = get_hwbase(dev);
  4043. u32 *rbuf = buf;
  4044. int i;
  4045. regs->version = FORCEDETH_REGS_VER;
  4046. spin_lock_irq(&np->lock);
  4047. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4048. rbuf[i] = readl(base + i*sizeof(u32));
  4049. spin_unlock_irq(&np->lock);
  4050. }
  4051. static int nv_nway_reset(struct net_device *dev)
  4052. {
  4053. struct fe_priv *np = netdev_priv(dev);
  4054. int ret;
  4055. if (np->autoneg) {
  4056. int bmcr;
  4057. netif_carrier_off(dev);
  4058. if (netif_running(dev)) {
  4059. nv_disable_irq(dev);
  4060. netif_tx_lock_bh(dev);
  4061. netif_addr_lock(dev);
  4062. spin_lock(&np->lock);
  4063. /* stop engines */
  4064. nv_stop_rxtx(dev);
  4065. spin_unlock(&np->lock);
  4066. netif_addr_unlock(dev);
  4067. netif_tx_unlock_bh(dev);
  4068. printk(KERN_INFO "%s: link down.\n", dev->name);
  4069. }
  4070. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4071. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4072. bmcr |= BMCR_ANENABLE;
  4073. /* reset the phy in order for settings to stick*/
  4074. if (phy_reset(dev, bmcr)) {
  4075. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4076. return -EINVAL;
  4077. }
  4078. } else {
  4079. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4080. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4081. }
  4082. if (netif_running(dev)) {
  4083. nv_start_rxtx(dev);
  4084. nv_enable_irq(dev);
  4085. }
  4086. ret = 0;
  4087. } else {
  4088. ret = -EINVAL;
  4089. }
  4090. return ret;
  4091. }
  4092. static int nv_set_tso(struct net_device *dev, u32 value)
  4093. {
  4094. struct fe_priv *np = netdev_priv(dev);
  4095. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4096. return ethtool_op_set_tso(dev, value);
  4097. else
  4098. return -EOPNOTSUPP;
  4099. }
  4100. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4101. {
  4102. struct fe_priv *np = netdev_priv(dev);
  4103. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4104. ring->rx_mini_max_pending = 0;
  4105. ring->rx_jumbo_max_pending = 0;
  4106. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4107. ring->rx_pending = np->rx_ring_size;
  4108. ring->rx_mini_pending = 0;
  4109. ring->rx_jumbo_pending = 0;
  4110. ring->tx_pending = np->tx_ring_size;
  4111. }
  4112. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4113. {
  4114. struct fe_priv *np = netdev_priv(dev);
  4115. u8 __iomem *base = get_hwbase(dev);
  4116. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4117. dma_addr_t ring_addr;
  4118. if (ring->rx_pending < RX_RING_MIN ||
  4119. ring->tx_pending < TX_RING_MIN ||
  4120. ring->rx_mini_pending != 0 ||
  4121. ring->rx_jumbo_pending != 0 ||
  4122. (np->desc_ver == DESC_VER_1 &&
  4123. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4124. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4125. (np->desc_ver != DESC_VER_1 &&
  4126. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4127. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4128. return -EINVAL;
  4129. }
  4130. /* allocate new rings */
  4131. if (!nv_optimized(np)) {
  4132. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4133. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4134. &ring_addr);
  4135. } else {
  4136. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4137. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4138. &ring_addr);
  4139. }
  4140. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4141. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4142. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4143. /* fall back to old rings */
  4144. if (!nv_optimized(np)) {
  4145. if (rxtx_ring)
  4146. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4147. rxtx_ring, ring_addr);
  4148. } else {
  4149. if (rxtx_ring)
  4150. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4151. rxtx_ring, ring_addr);
  4152. }
  4153. if (rx_skbuff)
  4154. kfree(rx_skbuff);
  4155. if (tx_skbuff)
  4156. kfree(tx_skbuff);
  4157. goto exit;
  4158. }
  4159. if (netif_running(dev)) {
  4160. nv_disable_irq(dev);
  4161. nv_napi_disable(dev);
  4162. netif_tx_lock_bh(dev);
  4163. netif_addr_lock(dev);
  4164. spin_lock(&np->lock);
  4165. /* stop engines */
  4166. nv_stop_rxtx(dev);
  4167. nv_txrx_reset(dev);
  4168. /* drain queues */
  4169. nv_drain_rxtx(dev);
  4170. /* delete queues */
  4171. free_rings(dev);
  4172. }
  4173. /* set new values */
  4174. np->rx_ring_size = ring->rx_pending;
  4175. np->tx_ring_size = ring->tx_pending;
  4176. if (!nv_optimized(np)) {
  4177. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4178. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4179. } else {
  4180. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4181. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4182. }
  4183. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4184. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4185. np->ring_addr = ring_addr;
  4186. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4187. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4188. if (netif_running(dev)) {
  4189. /* reinit driver view of the queues */
  4190. set_bufsize(dev);
  4191. if (nv_init_ring(dev)) {
  4192. if (!np->in_shutdown)
  4193. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4194. }
  4195. /* reinit nic view of the queues */
  4196. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4197. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4198. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4199. base + NvRegRingSizes);
  4200. pci_push(base);
  4201. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4202. pci_push(base);
  4203. /* restart engines */
  4204. nv_start_rxtx(dev);
  4205. spin_unlock(&np->lock);
  4206. netif_addr_unlock(dev);
  4207. netif_tx_unlock_bh(dev);
  4208. nv_napi_enable(dev);
  4209. nv_enable_irq(dev);
  4210. }
  4211. return 0;
  4212. exit:
  4213. return -ENOMEM;
  4214. }
  4215. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4216. {
  4217. struct fe_priv *np = netdev_priv(dev);
  4218. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4219. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4220. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4221. }
  4222. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4223. {
  4224. struct fe_priv *np = netdev_priv(dev);
  4225. int adv, bmcr;
  4226. if ((!np->autoneg && np->duplex == 0) ||
  4227. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4228. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4229. dev->name);
  4230. return -EINVAL;
  4231. }
  4232. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4233. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4234. return -EINVAL;
  4235. }
  4236. netif_carrier_off(dev);
  4237. if (netif_running(dev)) {
  4238. nv_disable_irq(dev);
  4239. netif_tx_lock_bh(dev);
  4240. netif_addr_lock(dev);
  4241. spin_lock(&np->lock);
  4242. /* stop engines */
  4243. nv_stop_rxtx(dev);
  4244. spin_unlock(&np->lock);
  4245. netif_addr_unlock(dev);
  4246. netif_tx_unlock_bh(dev);
  4247. }
  4248. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4249. if (pause->rx_pause)
  4250. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4251. if (pause->tx_pause)
  4252. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4253. if (np->autoneg && pause->autoneg) {
  4254. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4255. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4256. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4257. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4258. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4259. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4260. adv |= ADVERTISE_PAUSE_ASYM;
  4261. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4262. if (netif_running(dev))
  4263. printk(KERN_INFO "%s: link down.\n", dev->name);
  4264. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4265. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4266. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4267. } else {
  4268. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4269. if (pause->rx_pause)
  4270. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4271. if (pause->tx_pause)
  4272. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4273. if (!netif_running(dev))
  4274. nv_update_linkspeed(dev);
  4275. else
  4276. nv_update_pause(dev, np->pause_flags);
  4277. }
  4278. if (netif_running(dev)) {
  4279. nv_start_rxtx(dev);
  4280. nv_enable_irq(dev);
  4281. }
  4282. return 0;
  4283. }
  4284. static u32 nv_get_rx_csum(struct net_device *dev)
  4285. {
  4286. struct fe_priv *np = netdev_priv(dev);
  4287. return (np->rx_csum) != 0;
  4288. }
  4289. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4290. {
  4291. struct fe_priv *np = netdev_priv(dev);
  4292. u8 __iomem *base = get_hwbase(dev);
  4293. int retcode = 0;
  4294. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4295. if (data) {
  4296. np->rx_csum = 1;
  4297. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4298. } else {
  4299. np->rx_csum = 0;
  4300. /* vlan is dependent on rx checksum offload */
  4301. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4302. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4303. }
  4304. if (netif_running(dev)) {
  4305. spin_lock_irq(&np->lock);
  4306. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4307. spin_unlock_irq(&np->lock);
  4308. }
  4309. } else {
  4310. return -EINVAL;
  4311. }
  4312. return retcode;
  4313. }
  4314. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4315. {
  4316. struct fe_priv *np = netdev_priv(dev);
  4317. if (np->driver_data & DEV_HAS_CHECKSUM)
  4318. return ethtool_op_set_tx_csum(dev, data);
  4319. else
  4320. return -EOPNOTSUPP;
  4321. }
  4322. static int nv_set_sg(struct net_device *dev, u32 data)
  4323. {
  4324. struct fe_priv *np = netdev_priv(dev);
  4325. if (np->driver_data & DEV_HAS_CHECKSUM)
  4326. return ethtool_op_set_sg(dev, data);
  4327. else
  4328. return -EOPNOTSUPP;
  4329. }
  4330. static int nv_get_sset_count(struct net_device *dev, int sset)
  4331. {
  4332. struct fe_priv *np = netdev_priv(dev);
  4333. switch (sset) {
  4334. case ETH_SS_TEST:
  4335. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4336. return NV_TEST_COUNT_EXTENDED;
  4337. else
  4338. return NV_TEST_COUNT_BASE;
  4339. case ETH_SS_STATS:
  4340. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4341. return NV_DEV_STATISTICS_V3_COUNT;
  4342. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4343. return NV_DEV_STATISTICS_V2_COUNT;
  4344. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4345. return NV_DEV_STATISTICS_V1_COUNT;
  4346. else
  4347. return 0;
  4348. default:
  4349. return -EOPNOTSUPP;
  4350. }
  4351. }
  4352. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4353. {
  4354. struct fe_priv *np = netdev_priv(dev);
  4355. /* update stats */
  4356. nv_do_stats_poll((unsigned long)dev);
  4357. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4358. }
  4359. static int nv_link_test(struct net_device *dev)
  4360. {
  4361. struct fe_priv *np = netdev_priv(dev);
  4362. int mii_status;
  4363. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4364. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4365. /* check phy link status */
  4366. if (!(mii_status & BMSR_LSTATUS))
  4367. return 0;
  4368. else
  4369. return 1;
  4370. }
  4371. static int nv_register_test(struct net_device *dev)
  4372. {
  4373. u8 __iomem *base = get_hwbase(dev);
  4374. int i = 0;
  4375. u32 orig_read, new_read;
  4376. do {
  4377. orig_read = readl(base + nv_registers_test[i].reg);
  4378. /* xor with mask to toggle bits */
  4379. orig_read ^= nv_registers_test[i].mask;
  4380. writel(orig_read, base + nv_registers_test[i].reg);
  4381. new_read = readl(base + nv_registers_test[i].reg);
  4382. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4383. return 0;
  4384. /* restore original value */
  4385. orig_read ^= nv_registers_test[i].mask;
  4386. writel(orig_read, base + nv_registers_test[i].reg);
  4387. } while (nv_registers_test[++i].reg != 0);
  4388. return 1;
  4389. }
  4390. static int nv_interrupt_test(struct net_device *dev)
  4391. {
  4392. struct fe_priv *np = netdev_priv(dev);
  4393. u8 __iomem *base = get_hwbase(dev);
  4394. int ret = 1;
  4395. int testcnt;
  4396. u32 save_msi_flags, save_poll_interval = 0;
  4397. if (netif_running(dev)) {
  4398. /* free current irq */
  4399. nv_free_irq(dev);
  4400. save_poll_interval = readl(base+NvRegPollingInterval);
  4401. }
  4402. /* flag to test interrupt handler */
  4403. np->intr_test = 0;
  4404. /* setup test irq */
  4405. save_msi_flags = np->msi_flags;
  4406. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4407. np->msi_flags |= 0x001; /* setup 1 vector */
  4408. if (nv_request_irq(dev, 1))
  4409. return 0;
  4410. /* setup timer interrupt */
  4411. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4412. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4413. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4414. /* wait for at least one interrupt */
  4415. msleep(100);
  4416. spin_lock_irq(&np->lock);
  4417. /* flag should be set within ISR */
  4418. testcnt = np->intr_test;
  4419. if (!testcnt)
  4420. ret = 2;
  4421. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4422. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4423. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4424. else
  4425. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4426. spin_unlock_irq(&np->lock);
  4427. nv_free_irq(dev);
  4428. np->msi_flags = save_msi_flags;
  4429. if (netif_running(dev)) {
  4430. writel(save_poll_interval, base + NvRegPollingInterval);
  4431. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4432. /* restore original irq */
  4433. if (nv_request_irq(dev, 0))
  4434. return 0;
  4435. }
  4436. return ret;
  4437. }
  4438. static int nv_loopback_test(struct net_device *dev)
  4439. {
  4440. struct fe_priv *np = netdev_priv(dev);
  4441. u8 __iomem *base = get_hwbase(dev);
  4442. struct sk_buff *tx_skb, *rx_skb;
  4443. dma_addr_t test_dma_addr;
  4444. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4445. u32 flags;
  4446. int len, i, pkt_len;
  4447. u8 *pkt_data;
  4448. u32 filter_flags = 0;
  4449. u32 misc1_flags = 0;
  4450. int ret = 1;
  4451. if (netif_running(dev)) {
  4452. nv_disable_irq(dev);
  4453. filter_flags = readl(base + NvRegPacketFilterFlags);
  4454. misc1_flags = readl(base + NvRegMisc1);
  4455. } else {
  4456. nv_txrx_reset(dev);
  4457. }
  4458. /* reinit driver view of the rx queue */
  4459. set_bufsize(dev);
  4460. nv_init_ring(dev);
  4461. /* setup hardware for loopback */
  4462. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4463. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4464. /* reinit nic view of the rx queue */
  4465. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4466. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4467. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4468. base + NvRegRingSizes);
  4469. pci_push(base);
  4470. /* restart rx engine */
  4471. nv_start_rxtx(dev);
  4472. /* setup packet for tx */
  4473. pkt_len = ETH_DATA_LEN;
  4474. tx_skb = dev_alloc_skb(pkt_len);
  4475. if (!tx_skb) {
  4476. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4477. " of %s\n", dev->name);
  4478. ret = 0;
  4479. goto out;
  4480. }
  4481. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4482. skb_tailroom(tx_skb),
  4483. PCI_DMA_FROMDEVICE);
  4484. pkt_data = skb_put(tx_skb, pkt_len);
  4485. for (i = 0; i < pkt_len; i++)
  4486. pkt_data[i] = (u8)(i & 0xff);
  4487. if (!nv_optimized(np)) {
  4488. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4489. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4490. } else {
  4491. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4492. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4493. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4494. }
  4495. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4496. pci_push(get_hwbase(dev));
  4497. msleep(500);
  4498. /* check for rx of the packet */
  4499. if (!nv_optimized(np)) {
  4500. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4501. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4502. } else {
  4503. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4504. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4505. }
  4506. if (flags & NV_RX_AVAIL) {
  4507. ret = 0;
  4508. } else if (np->desc_ver == DESC_VER_1) {
  4509. if (flags & NV_RX_ERROR)
  4510. ret = 0;
  4511. } else {
  4512. if (flags & NV_RX2_ERROR) {
  4513. ret = 0;
  4514. }
  4515. }
  4516. if (ret) {
  4517. if (len != pkt_len) {
  4518. ret = 0;
  4519. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4520. dev->name, len, pkt_len);
  4521. } else {
  4522. rx_skb = np->rx_skb[0].skb;
  4523. for (i = 0; i < pkt_len; i++) {
  4524. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4525. ret = 0;
  4526. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4527. dev->name, i);
  4528. break;
  4529. }
  4530. }
  4531. }
  4532. } else {
  4533. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4534. }
  4535. pci_unmap_single(np->pci_dev, test_dma_addr,
  4536. (skb_end_pointer(tx_skb) - tx_skb->data),
  4537. PCI_DMA_TODEVICE);
  4538. dev_kfree_skb_any(tx_skb);
  4539. out:
  4540. /* stop engines */
  4541. nv_stop_rxtx(dev);
  4542. nv_txrx_reset(dev);
  4543. /* drain rx queue */
  4544. nv_drain_rxtx(dev);
  4545. if (netif_running(dev)) {
  4546. writel(misc1_flags, base + NvRegMisc1);
  4547. writel(filter_flags, base + NvRegPacketFilterFlags);
  4548. nv_enable_irq(dev);
  4549. }
  4550. return ret;
  4551. }
  4552. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4553. {
  4554. struct fe_priv *np = netdev_priv(dev);
  4555. u8 __iomem *base = get_hwbase(dev);
  4556. int result;
  4557. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4558. if (!nv_link_test(dev)) {
  4559. test->flags |= ETH_TEST_FL_FAILED;
  4560. buffer[0] = 1;
  4561. }
  4562. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4563. if (netif_running(dev)) {
  4564. netif_stop_queue(dev);
  4565. nv_napi_disable(dev);
  4566. netif_tx_lock_bh(dev);
  4567. netif_addr_lock(dev);
  4568. spin_lock_irq(&np->lock);
  4569. nv_disable_hw_interrupts(dev, np->irqmask);
  4570. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4571. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4572. } else {
  4573. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4574. }
  4575. /* stop engines */
  4576. nv_stop_rxtx(dev);
  4577. nv_txrx_reset(dev);
  4578. /* drain rx queue */
  4579. nv_drain_rxtx(dev);
  4580. spin_unlock_irq(&np->lock);
  4581. netif_addr_unlock(dev);
  4582. netif_tx_unlock_bh(dev);
  4583. }
  4584. if (!nv_register_test(dev)) {
  4585. test->flags |= ETH_TEST_FL_FAILED;
  4586. buffer[1] = 1;
  4587. }
  4588. result = nv_interrupt_test(dev);
  4589. if (result != 1) {
  4590. test->flags |= ETH_TEST_FL_FAILED;
  4591. buffer[2] = 1;
  4592. }
  4593. if (result == 0) {
  4594. /* bail out */
  4595. return;
  4596. }
  4597. if (!nv_loopback_test(dev)) {
  4598. test->flags |= ETH_TEST_FL_FAILED;
  4599. buffer[3] = 1;
  4600. }
  4601. if (netif_running(dev)) {
  4602. /* reinit driver view of the rx queue */
  4603. set_bufsize(dev);
  4604. if (nv_init_ring(dev)) {
  4605. if (!np->in_shutdown)
  4606. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4607. }
  4608. /* reinit nic view of the rx queue */
  4609. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4610. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4611. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4612. base + NvRegRingSizes);
  4613. pci_push(base);
  4614. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4615. pci_push(base);
  4616. /* restart rx engine */
  4617. nv_start_rxtx(dev);
  4618. netif_start_queue(dev);
  4619. nv_napi_enable(dev);
  4620. nv_enable_hw_interrupts(dev, np->irqmask);
  4621. }
  4622. }
  4623. }
  4624. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4625. {
  4626. switch (stringset) {
  4627. case ETH_SS_STATS:
  4628. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4629. break;
  4630. case ETH_SS_TEST:
  4631. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4632. break;
  4633. }
  4634. }
  4635. static const struct ethtool_ops ops = {
  4636. .get_drvinfo = nv_get_drvinfo,
  4637. .get_link = ethtool_op_get_link,
  4638. .get_wol = nv_get_wol,
  4639. .set_wol = nv_set_wol,
  4640. .get_settings = nv_get_settings,
  4641. .set_settings = nv_set_settings,
  4642. .get_regs_len = nv_get_regs_len,
  4643. .get_regs = nv_get_regs,
  4644. .nway_reset = nv_nway_reset,
  4645. .set_tso = nv_set_tso,
  4646. .get_ringparam = nv_get_ringparam,
  4647. .set_ringparam = nv_set_ringparam,
  4648. .get_pauseparam = nv_get_pauseparam,
  4649. .set_pauseparam = nv_set_pauseparam,
  4650. .get_rx_csum = nv_get_rx_csum,
  4651. .set_rx_csum = nv_set_rx_csum,
  4652. .set_tx_csum = nv_set_tx_csum,
  4653. .set_sg = nv_set_sg,
  4654. .get_strings = nv_get_strings,
  4655. .get_ethtool_stats = nv_get_ethtool_stats,
  4656. .get_sset_count = nv_get_sset_count,
  4657. .self_test = nv_self_test,
  4658. };
  4659. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4660. {
  4661. struct fe_priv *np = get_nvpriv(dev);
  4662. spin_lock_irq(&np->lock);
  4663. /* save vlan group */
  4664. np->vlangrp = grp;
  4665. if (grp) {
  4666. /* enable vlan on MAC */
  4667. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4668. } else {
  4669. /* disable vlan on MAC */
  4670. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4671. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4672. }
  4673. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4674. spin_unlock_irq(&np->lock);
  4675. }
  4676. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4677. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4678. {
  4679. struct fe_priv *np = netdev_priv(dev);
  4680. u8 __iomem *base = get_hwbase(dev);
  4681. int i;
  4682. u32 tx_ctrl, mgmt_sema;
  4683. for (i = 0; i < 10; i++) {
  4684. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4685. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4686. break;
  4687. msleep(500);
  4688. }
  4689. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4690. return 0;
  4691. for (i = 0; i < 2; i++) {
  4692. tx_ctrl = readl(base + NvRegTransmitterControl);
  4693. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4694. writel(tx_ctrl, base + NvRegTransmitterControl);
  4695. /* verify that semaphore was acquired */
  4696. tx_ctrl = readl(base + NvRegTransmitterControl);
  4697. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4698. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4699. np->mgmt_sema = 1;
  4700. return 1;
  4701. }
  4702. else
  4703. udelay(50);
  4704. }
  4705. return 0;
  4706. }
  4707. static void nv_mgmt_release_sema(struct net_device *dev)
  4708. {
  4709. struct fe_priv *np = netdev_priv(dev);
  4710. u8 __iomem *base = get_hwbase(dev);
  4711. u32 tx_ctrl;
  4712. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4713. if (np->mgmt_sema) {
  4714. tx_ctrl = readl(base + NvRegTransmitterControl);
  4715. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4716. writel(tx_ctrl, base + NvRegTransmitterControl);
  4717. }
  4718. }
  4719. }
  4720. static int nv_mgmt_get_version(struct net_device *dev)
  4721. {
  4722. struct fe_priv *np = netdev_priv(dev);
  4723. u8 __iomem *base = get_hwbase(dev);
  4724. u32 data_ready = readl(base + NvRegTransmitterControl);
  4725. u32 data_ready2 = 0;
  4726. unsigned long start;
  4727. int ready = 0;
  4728. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4729. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4730. start = jiffies;
  4731. while (time_before(jiffies, start + 5*HZ)) {
  4732. data_ready2 = readl(base + NvRegTransmitterControl);
  4733. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4734. ready = 1;
  4735. break;
  4736. }
  4737. schedule_timeout_uninterruptible(1);
  4738. }
  4739. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4740. return 0;
  4741. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4742. return 1;
  4743. }
  4744. static int nv_open(struct net_device *dev)
  4745. {
  4746. struct fe_priv *np = netdev_priv(dev);
  4747. u8 __iomem *base = get_hwbase(dev);
  4748. int ret = 1;
  4749. int oom, i;
  4750. u32 low;
  4751. dprintk(KERN_DEBUG "nv_open: begin\n");
  4752. /* power up phy */
  4753. mii_rw(dev, np->phyaddr, MII_BMCR,
  4754. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4755. nv_txrx_gate(dev, false);
  4756. /* erase previous misconfiguration */
  4757. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4758. nv_mac_reset(dev);
  4759. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4760. writel(0, base + NvRegMulticastAddrB);
  4761. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4762. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4763. writel(0, base + NvRegPacketFilterFlags);
  4764. writel(0, base + NvRegTransmitterControl);
  4765. writel(0, base + NvRegReceiverControl);
  4766. writel(0, base + NvRegAdapterControl);
  4767. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4768. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4769. /* initialize descriptor rings */
  4770. set_bufsize(dev);
  4771. oom = nv_init_ring(dev);
  4772. writel(0, base + NvRegLinkSpeed);
  4773. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4774. nv_txrx_reset(dev);
  4775. writel(0, base + NvRegUnknownSetupReg6);
  4776. np->in_shutdown = 0;
  4777. /* give hw rings */
  4778. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4779. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4780. base + NvRegRingSizes);
  4781. writel(np->linkspeed, base + NvRegLinkSpeed);
  4782. if (np->desc_ver == DESC_VER_1)
  4783. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4784. else
  4785. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4786. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4787. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4788. pci_push(base);
  4789. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4790. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4791. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4792. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4793. writel(0, base + NvRegMIIMask);
  4794. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4795. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4796. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4797. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4798. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4799. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4800. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4801. get_random_bytes(&low, sizeof(low));
  4802. low &= NVREG_SLOTTIME_MASK;
  4803. if (np->desc_ver == DESC_VER_1) {
  4804. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4805. } else {
  4806. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4807. /* setup legacy backoff */
  4808. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4809. } else {
  4810. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4811. nv_gear_backoff_reseed(dev);
  4812. }
  4813. }
  4814. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4815. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4816. if (poll_interval == -1) {
  4817. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4818. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4819. else
  4820. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4821. }
  4822. else
  4823. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4824. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4825. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4826. base + NvRegAdapterControl);
  4827. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4828. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4829. if (np->wolenabled)
  4830. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4831. i = readl(base + NvRegPowerState);
  4832. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4833. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4834. pci_push(base);
  4835. udelay(10);
  4836. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4837. nv_disable_hw_interrupts(dev, np->irqmask);
  4838. pci_push(base);
  4839. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4840. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4841. pci_push(base);
  4842. if (nv_request_irq(dev, 0)) {
  4843. goto out_drain;
  4844. }
  4845. /* ask for interrupts */
  4846. nv_enable_hw_interrupts(dev, np->irqmask);
  4847. spin_lock_irq(&np->lock);
  4848. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4849. writel(0, base + NvRegMulticastAddrB);
  4850. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4851. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4852. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4853. /* One manual link speed update: Interrupts are enabled, future link
  4854. * speed changes cause interrupts and are handled by nv_link_irq().
  4855. */
  4856. {
  4857. u32 miistat;
  4858. miistat = readl(base + NvRegMIIStatus);
  4859. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4860. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4861. }
  4862. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4863. * to init hw */
  4864. np->linkspeed = 0;
  4865. ret = nv_update_linkspeed(dev);
  4866. nv_start_rxtx(dev);
  4867. netif_start_queue(dev);
  4868. nv_napi_enable(dev);
  4869. if (ret) {
  4870. netif_carrier_on(dev);
  4871. } else {
  4872. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4873. netif_carrier_off(dev);
  4874. }
  4875. if (oom)
  4876. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4877. /* start statistics timer */
  4878. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4879. mod_timer(&np->stats_poll,
  4880. round_jiffies(jiffies + STATS_INTERVAL));
  4881. spin_unlock_irq(&np->lock);
  4882. return 0;
  4883. out_drain:
  4884. nv_drain_rxtx(dev);
  4885. return ret;
  4886. }
  4887. static int nv_close(struct net_device *dev)
  4888. {
  4889. struct fe_priv *np = netdev_priv(dev);
  4890. u8 __iomem *base;
  4891. spin_lock_irq(&np->lock);
  4892. np->in_shutdown = 1;
  4893. spin_unlock_irq(&np->lock);
  4894. nv_napi_disable(dev);
  4895. synchronize_irq(np->pci_dev->irq);
  4896. del_timer_sync(&np->oom_kick);
  4897. del_timer_sync(&np->nic_poll);
  4898. del_timer_sync(&np->stats_poll);
  4899. netif_stop_queue(dev);
  4900. spin_lock_irq(&np->lock);
  4901. nv_stop_rxtx(dev);
  4902. nv_txrx_reset(dev);
  4903. /* disable interrupts on the nic or we will lock up */
  4904. base = get_hwbase(dev);
  4905. nv_disable_hw_interrupts(dev, np->irqmask);
  4906. pci_push(base);
  4907. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4908. spin_unlock_irq(&np->lock);
  4909. nv_free_irq(dev);
  4910. nv_drain_rxtx(dev);
  4911. if (np->wolenabled || !phy_power_down) {
  4912. nv_txrx_gate(dev, false);
  4913. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4914. nv_start_rx(dev);
  4915. } else {
  4916. /* power down phy */
  4917. mii_rw(dev, np->phyaddr, MII_BMCR,
  4918. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4919. nv_txrx_gate(dev, true);
  4920. }
  4921. /* FIXME: power down nic */
  4922. return 0;
  4923. }
  4924. static const struct net_device_ops nv_netdev_ops = {
  4925. .ndo_open = nv_open,
  4926. .ndo_stop = nv_close,
  4927. .ndo_get_stats = nv_get_stats,
  4928. .ndo_start_xmit = nv_start_xmit,
  4929. .ndo_tx_timeout = nv_tx_timeout,
  4930. .ndo_change_mtu = nv_change_mtu,
  4931. .ndo_validate_addr = eth_validate_addr,
  4932. .ndo_set_mac_address = nv_set_mac_address,
  4933. .ndo_set_multicast_list = nv_set_multicast,
  4934. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4935. #ifdef CONFIG_NET_POLL_CONTROLLER
  4936. .ndo_poll_controller = nv_poll_controller,
  4937. #endif
  4938. };
  4939. static const struct net_device_ops nv_netdev_ops_optimized = {
  4940. .ndo_open = nv_open,
  4941. .ndo_stop = nv_close,
  4942. .ndo_get_stats = nv_get_stats,
  4943. .ndo_start_xmit = nv_start_xmit_optimized,
  4944. .ndo_tx_timeout = nv_tx_timeout,
  4945. .ndo_change_mtu = nv_change_mtu,
  4946. .ndo_validate_addr = eth_validate_addr,
  4947. .ndo_set_mac_address = nv_set_mac_address,
  4948. .ndo_set_multicast_list = nv_set_multicast,
  4949. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4950. #ifdef CONFIG_NET_POLL_CONTROLLER
  4951. .ndo_poll_controller = nv_poll_controller,
  4952. #endif
  4953. };
  4954. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4955. {
  4956. struct net_device *dev;
  4957. struct fe_priv *np;
  4958. unsigned long addr;
  4959. u8 __iomem *base;
  4960. int err, i;
  4961. u32 powerstate, txreg;
  4962. u32 phystate_orig = 0, phystate;
  4963. int phyinitialized = 0;
  4964. static int printed_version;
  4965. if (!printed_version++)
  4966. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4967. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4968. dev = alloc_etherdev(sizeof(struct fe_priv));
  4969. err = -ENOMEM;
  4970. if (!dev)
  4971. goto out;
  4972. np = netdev_priv(dev);
  4973. np->dev = dev;
  4974. np->pci_dev = pci_dev;
  4975. spin_lock_init(&np->lock);
  4976. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4977. init_timer(&np->oom_kick);
  4978. np->oom_kick.data = (unsigned long) dev;
  4979. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4980. init_timer(&np->nic_poll);
  4981. np->nic_poll.data = (unsigned long) dev;
  4982. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4983. init_timer(&np->stats_poll);
  4984. np->stats_poll.data = (unsigned long) dev;
  4985. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4986. err = pci_enable_device(pci_dev);
  4987. if (err)
  4988. goto out_free;
  4989. pci_set_master(pci_dev);
  4990. err = pci_request_regions(pci_dev, DRV_NAME);
  4991. if (err < 0)
  4992. goto out_disable;
  4993. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4994. np->register_size = NV_PCI_REGSZ_VER3;
  4995. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4996. np->register_size = NV_PCI_REGSZ_VER2;
  4997. else
  4998. np->register_size = NV_PCI_REGSZ_VER1;
  4999. err = -EINVAL;
  5000. addr = 0;
  5001. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  5002. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  5003. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  5004. pci_resource_len(pci_dev, i),
  5005. pci_resource_flags(pci_dev, i));
  5006. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  5007. pci_resource_len(pci_dev, i) >= np->register_size) {
  5008. addr = pci_resource_start(pci_dev, i);
  5009. break;
  5010. }
  5011. }
  5012. if (i == DEVICE_COUNT_RESOURCE) {
  5013. dev_printk(KERN_INFO, &pci_dev->dev,
  5014. "Couldn't find register window\n");
  5015. goto out_relreg;
  5016. }
  5017. /* copy of driver data */
  5018. np->driver_data = id->driver_data;
  5019. /* copy of device id */
  5020. np->device_id = id->device;
  5021. /* handle different descriptor versions */
  5022. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  5023. /* packet format 3: supports 40-bit addressing */
  5024. np->desc_ver = DESC_VER_3;
  5025. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5026. if (dma_64bit) {
  5027. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  5028. dev_printk(KERN_INFO, &pci_dev->dev,
  5029. "64-bit DMA failed, using 32-bit addressing\n");
  5030. else
  5031. dev->features |= NETIF_F_HIGHDMA;
  5032. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5033. dev_printk(KERN_INFO, &pci_dev->dev,
  5034. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5035. }
  5036. }
  5037. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5038. /* packet format 2: supports jumbo frames */
  5039. np->desc_ver = DESC_VER_2;
  5040. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5041. } else {
  5042. /* original packet format */
  5043. np->desc_ver = DESC_VER_1;
  5044. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5045. }
  5046. np->pkt_limit = NV_PKTLIMIT_1;
  5047. if (id->driver_data & DEV_HAS_LARGEDESC)
  5048. np->pkt_limit = NV_PKTLIMIT_2;
  5049. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5050. np->rx_csum = 1;
  5051. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5052. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5053. dev->features |= NETIF_F_TSO;
  5054. }
  5055. np->vlanctl_bits = 0;
  5056. if (id->driver_data & DEV_HAS_VLAN) {
  5057. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5058. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5059. }
  5060. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5061. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5062. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5063. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5064. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5065. }
  5066. err = -ENOMEM;
  5067. np->base = ioremap(addr, np->register_size);
  5068. if (!np->base)
  5069. goto out_relreg;
  5070. dev->base_addr = (unsigned long)np->base;
  5071. dev->irq = pci_dev->irq;
  5072. np->rx_ring_size = RX_RING_DEFAULT;
  5073. np->tx_ring_size = TX_RING_DEFAULT;
  5074. if (!nv_optimized(np)) {
  5075. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5076. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5077. &np->ring_addr);
  5078. if (!np->rx_ring.orig)
  5079. goto out_unmap;
  5080. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5081. } else {
  5082. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5083. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5084. &np->ring_addr);
  5085. if (!np->rx_ring.ex)
  5086. goto out_unmap;
  5087. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5088. }
  5089. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5090. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5091. if (!np->rx_skb || !np->tx_skb)
  5092. goto out_freering;
  5093. if (!nv_optimized(np))
  5094. dev->netdev_ops = &nv_netdev_ops;
  5095. else
  5096. dev->netdev_ops = &nv_netdev_ops_optimized;
  5097. #ifdef CONFIG_FORCEDETH_NAPI
  5098. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5099. #endif
  5100. SET_ETHTOOL_OPS(dev, &ops);
  5101. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5102. pci_set_drvdata(pci_dev, dev);
  5103. /* read the mac address */
  5104. base = get_hwbase(dev);
  5105. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5106. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5107. /* check the workaround bit for correct mac address order */
  5108. txreg = readl(base + NvRegTransmitPoll);
  5109. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5110. /* mac address is already in correct order */
  5111. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5112. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5113. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5114. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5115. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5116. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5117. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5118. /* mac address is already in correct order */
  5119. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5120. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5121. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5122. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5123. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5124. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5125. /*
  5126. * Set orig mac address back to the reversed version.
  5127. * This flag will be cleared during low power transition.
  5128. * Therefore, we should always put back the reversed address.
  5129. */
  5130. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5131. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5132. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5133. } else {
  5134. /* need to reverse mac address to correct order */
  5135. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5136. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5137. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5138. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5139. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5140. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5141. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5142. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5143. }
  5144. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5145. if (!is_valid_ether_addr(dev->perm_addr)) {
  5146. /*
  5147. * Bad mac address. At least one bios sets the mac address
  5148. * to 01:23:45:67:89:ab
  5149. */
  5150. dev_printk(KERN_ERR, &pci_dev->dev,
  5151. "Invalid Mac address detected: %pM\n",
  5152. dev->dev_addr);
  5153. dev_printk(KERN_ERR, &pci_dev->dev,
  5154. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5155. dev->dev_addr[0] = 0x00;
  5156. dev->dev_addr[1] = 0x00;
  5157. dev->dev_addr[2] = 0x6c;
  5158. get_random_bytes(&dev->dev_addr[3], 3);
  5159. }
  5160. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5161. pci_name(pci_dev), dev->dev_addr);
  5162. /* set mac address */
  5163. nv_copy_mac_to_hw(dev);
  5164. /* Workaround current PCI init glitch: wakeup bits aren't
  5165. * being set from PCI PM capability.
  5166. */
  5167. device_init_wakeup(&pci_dev->dev, 1);
  5168. /* disable WOL */
  5169. writel(0, base + NvRegWakeUpFlags);
  5170. np->wolenabled = 0;
  5171. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5172. /* take phy and nic out of low power mode */
  5173. powerstate = readl(base + NvRegPowerState2);
  5174. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5175. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5176. pci_dev->revision >= 0xA3)
  5177. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5178. writel(powerstate, base + NvRegPowerState2);
  5179. }
  5180. if (np->desc_ver == DESC_VER_1) {
  5181. np->tx_flags = NV_TX_VALID;
  5182. } else {
  5183. np->tx_flags = NV_TX2_VALID;
  5184. }
  5185. np->msi_flags = 0;
  5186. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5187. np->msi_flags |= NV_MSI_CAPABLE;
  5188. }
  5189. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5190. /* msix has had reported issues when modifying irqmask
  5191. as in the case of napi, therefore, disable for now
  5192. */
  5193. #ifndef CONFIG_FORCEDETH_NAPI
  5194. np->msi_flags |= NV_MSI_X_CAPABLE;
  5195. #endif
  5196. }
  5197. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5198. np->irqmask = NVREG_IRQMASK_CPU;
  5199. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5200. np->msi_flags |= 0x0001;
  5201. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5202. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5203. /* start off in throughput mode */
  5204. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5205. /* remove support for msix mode */
  5206. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5207. } else {
  5208. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5209. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5210. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5211. np->msi_flags |= 0x0003;
  5212. }
  5213. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5214. np->irqmask |= NVREG_IRQ_TIMER;
  5215. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5216. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5217. np->need_linktimer = 1;
  5218. np->link_timeout = jiffies + LINK_TIMEOUT;
  5219. } else {
  5220. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5221. np->need_linktimer = 0;
  5222. }
  5223. /* Limit the number of tx's outstanding for hw bug */
  5224. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5225. np->tx_limit = 1;
  5226. if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
  5227. pci_dev->revision >= 0xA2)
  5228. np->tx_limit = 0;
  5229. }
  5230. /* clear phy state and temporarily halt phy interrupts */
  5231. writel(0, base + NvRegMIIMask);
  5232. phystate = readl(base + NvRegAdapterControl);
  5233. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5234. phystate_orig = 1;
  5235. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5236. writel(phystate, base + NvRegAdapterControl);
  5237. }
  5238. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5239. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5240. /* management unit running on the mac? */
  5241. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5242. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5243. nv_mgmt_acquire_sema(dev) &&
  5244. nv_mgmt_get_version(dev)) {
  5245. np->mac_in_use = 1;
  5246. if (np->mgmt_version > 0) {
  5247. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5248. }
  5249. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5250. pci_name(pci_dev), np->mac_in_use);
  5251. /* management unit setup the phy already? */
  5252. if (np->mac_in_use &&
  5253. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5254. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5255. /* phy is inited by mgmt unit */
  5256. phyinitialized = 1;
  5257. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5258. pci_name(pci_dev));
  5259. } else {
  5260. /* we need to init the phy */
  5261. }
  5262. }
  5263. }
  5264. /* find a suitable phy */
  5265. for (i = 1; i <= 32; i++) {
  5266. int id1, id2;
  5267. int phyaddr = i & 0x1F;
  5268. spin_lock_irq(&np->lock);
  5269. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5270. spin_unlock_irq(&np->lock);
  5271. if (id1 < 0 || id1 == 0xffff)
  5272. continue;
  5273. spin_lock_irq(&np->lock);
  5274. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5275. spin_unlock_irq(&np->lock);
  5276. if (id2 < 0 || id2 == 0xffff)
  5277. continue;
  5278. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5279. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5280. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5281. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5282. pci_name(pci_dev), id1, id2, phyaddr);
  5283. np->phyaddr = phyaddr;
  5284. np->phy_oui = id1 | id2;
  5285. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5286. if (np->phy_oui == PHY_OUI_REALTEK2)
  5287. np->phy_oui = PHY_OUI_REALTEK;
  5288. /* Setup phy revision for Realtek */
  5289. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5290. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5291. break;
  5292. }
  5293. if (i == 33) {
  5294. dev_printk(KERN_INFO, &pci_dev->dev,
  5295. "open: Could not find a valid PHY.\n");
  5296. goto out_error;
  5297. }
  5298. if (!phyinitialized) {
  5299. /* reset it */
  5300. phy_init(dev);
  5301. } else {
  5302. /* see if it is a gigabit phy */
  5303. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5304. if (mii_status & PHY_GIGABIT) {
  5305. np->gigabit = PHY_GIGABIT;
  5306. }
  5307. }
  5308. /* set default link speed settings */
  5309. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5310. np->duplex = 0;
  5311. np->autoneg = 1;
  5312. err = register_netdev(dev);
  5313. if (err) {
  5314. dev_printk(KERN_INFO, &pci_dev->dev,
  5315. "unable to register netdev: %d\n", err);
  5316. goto out_error;
  5317. }
  5318. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5319. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5320. dev->name,
  5321. np->phy_oui,
  5322. np->phyaddr,
  5323. dev->dev_addr[0],
  5324. dev->dev_addr[1],
  5325. dev->dev_addr[2],
  5326. dev->dev_addr[3],
  5327. dev->dev_addr[4],
  5328. dev->dev_addr[5]);
  5329. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5330. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5331. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5332. "csum " : "",
  5333. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5334. "vlan " : "",
  5335. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5336. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5337. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5338. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5339. np->need_linktimer ? "lnktim " : "",
  5340. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5341. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5342. np->desc_ver);
  5343. return 0;
  5344. out_error:
  5345. if (phystate_orig)
  5346. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5347. pci_set_drvdata(pci_dev, NULL);
  5348. out_freering:
  5349. free_rings(dev);
  5350. out_unmap:
  5351. iounmap(get_hwbase(dev));
  5352. out_relreg:
  5353. pci_release_regions(pci_dev);
  5354. out_disable:
  5355. pci_disable_device(pci_dev);
  5356. out_free:
  5357. free_netdev(dev);
  5358. out:
  5359. return err;
  5360. }
  5361. static void nv_restore_phy(struct net_device *dev)
  5362. {
  5363. struct fe_priv *np = netdev_priv(dev);
  5364. u16 phy_reserved, mii_control;
  5365. if (np->phy_oui == PHY_OUI_REALTEK &&
  5366. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5367. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5368. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5369. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5370. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5371. phy_reserved |= PHY_REALTEK_INIT8;
  5372. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5373. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5374. /* restart auto negotiation */
  5375. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5376. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5377. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5378. }
  5379. }
  5380. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5381. {
  5382. struct net_device *dev = pci_get_drvdata(pci_dev);
  5383. struct fe_priv *np = netdev_priv(dev);
  5384. u8 __iomem *base = get_hwbase(dev);
  5385. /* special op: write back the misordered MAC address - otherwise
  5386. * the next nv_probe would see a wrong address.
  5387. */
  5388. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5389. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5390. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5391. base + NvRegTransmitPoll);
  5392. }
  5393. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5394. {
  5395. struct net_device *dev = pci_get_drvdata(pci_dev);
  5396. unregister_netdev(dev);
  5397. nv_restore_mac_addr(pci_dev);
  5398. /* restore any phy related changes */
  5399. nv_restore_phy(dev);
  5400. nv_mgmt_release_sema(dev);
  5401. /* free all structures */
  5402. free_rings(dev);
  5403. iounmap(get_hwbase(dev));
  5404. pci_release_regions(pci_dev);
  5405. pci_disable_device(pci_dev);
  5406. free_netdev(dev);
  5407. pci_set_drvdata(pci_dev, NULL);
  5408. }
  5409. #ifdef CONFIG_PM
  5410. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5411. {
  5412. struct net_device *dev = pci_get_drvdata(pdev);
  5413. struct fe_priv *np = netdev_priv(dev);
  5414. u8 __iomem *base = get_hwbase(dev);
  5415. int i;
  5416. if (netif_running(dev)) {
  5417. // Gross.
  5418. nv_close(dev);
  5419. }
  5420. netif_device_detach(dev);
  5421. /* save non-pci configuration space */
  5422. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5423. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5424. pci_save_state(pdev);
  5425. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5426. pci_disable_device(pdev);
  5427. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5428. return 0;
  5429. }
  5430. static int nv_resume(struct pci_dev *pdev)
  5431. {
  5432. struct net_device *dev = pci_get_drvdata(pdev);
  5433. struct fe_priv *np = netdev_priv(dev);
  5434. u8 __iomem *base = get_hwbase(dev);
  5435. int i, rc = 0;
  5436. pci_set_power_state(pdev, PCI_D0);
  5437. pci_restore_state(pdev);
  5438. /* ack any pending wake events, disable PME */
  5439. pci_enable_wake(pdev, PCI_D0, 0);
  5440. /* restore non-pci configuration space */
  5441. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5442. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5443. if (np->driver_data & DEV_NEED_MSI_FIX)
  5444. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5445. /* restore phy state, including autoneg */
  5446. phy_init(dev);
  5447. netif_device_attach(dev);
  5448. if (netif_running(dev)) {
  5449. rc = nv_open(dev);
  5450. nv_set_multicast(dev);
  5451. }
  5452. return rc;
  5453. }
  5454. static void nv_shutdown(struct pci_dev *pdev)
  5455. {
  5456. struct net_device *dev = pci_get_drvdata(pdev);
  5457. struct fe_priv *np = netdev_priv(dev);
  5458. if (netif_running(dev))
  5459. nv_close(dev);
  5460. /*
  5461. * Restore the MAC so a kernel started by kexec won't get confused.
  5462. * If we really go for poweroff, we must not restore the MAC,
  5463. * otherwise the MAC for WOL will be reversed at least on some boards.
  5464. */
  5465. if (system_state != SYSTEM_POWER_OFF) {
  5466. nv_restore_mac_addr(pdev);
  5467. }
  5468. pci_disable_device(pdev);
  5469. /*
  5470. * Apparently it is not possible to reinitialise from D3 hot,
  5471. * only put the device into D3 if we really go for poweroff.
  5472. */
  5473. if (system_state == SYSTEM_POWER_OFF) {
  5474. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5475. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5476. pci_set_power_state(pdev, PCI_D3hot);
  5477. }
  5478. }
  5479. #else
  5480. #define nv_suspend NULL
  5481. #define nv_shutdown NULL
  5482. #define nv_resume NULL
  5483. #endif /* CONFIG_PM */
  5484. static struct pci_device_id pci_tbl[] = {
  5485. { /* nForce Ethernet Controller */
  5486. PCI_DEVICE(0x10DE, 0x01C3),
  5487. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5488. },
  5489. { /* nForce2 Ethernet Controller */
  5490. PCI_DEVICE(0x10DE, 0x0066),
  5491. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5492. },
  5493. { /* nForce3 Ethernet Controller */
  5494. PCI_DEVICE(0x10DE, 0x00D6),
  5495. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5496. },
  5497. { /* nForce3 Ethernet Controller */
  5498. PCI_DEVICE(0x10DE, 0x0086),
  5499. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5500. },
  5501. { /* nForce3 Ethernet Controller */
  5502. PCI_DEVICE(0x10DE, 0x008C),
  5503. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5504. },
  5505. { /* nForce3 Ethernet Controller */
  5506. PCI_DEVICE(0x10DE, 0x00E6),
  5507. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5508. },
  5509. { /* nForce3 Ethernet Controller */
  5510. PCI_DEVICE(0x10DE, 0x00DF),
  5511. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5512. },
  5513. { /* CK804 Ethernet Controller */
  5514. PCI_DEVICE(0x10DE, 0x0056),
  5515. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5516. },
  5517. { /* CK804 Ethernet Controller */
  5518. PCI_DEVICE(0x10DE, 0x0057),
  5519. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5520. },
  5521. { /* MCP04 Ethernet Controller */
  5522. PCI_DEVICE(0x10DE, 0x0037),
  5523. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5524. },
  5525. { /* MCP04 Ethernet Controller */
  5526. PCI_DEVICE(0x10DE, 0x0038),
  5527. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5528. },
  5529. { /* MCP51 Ethernet Controller */
  5530. PCI_DEVICE(0x10DE, 0x0268),
  5531. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5532. },
  5533. { /* MCP51 Ethernet Controller */
  5534. PCI_DEVICE(0x10DE, 0x0269),
  5535. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5536. },
  5537. { /* MCP55 Ethernet Controller */
  5538. PCI_DEVICE(0x10DE, 0x0372),
  5539. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5540. },
  5541. { /* MCP55 Ethernet Controller */
  5542. PCI_DEVICE(0x10DE, 0x0373),
  5543. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5544. },
  5545. { /* MCP61 Ethernet Controller */
  5546. PCI_DEVICE(0x10DE, 0x03E5),
  5547. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5548. },
  5549. { /* MCP61 Ethernet Controller */
  5550. PCI_DEVICE(0x10DE, 0x03E6),
  5551. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5552. },
  5553. { /* MCP61 Ethernet Controller */
  5554. PCI_DEVICE(0x10DE, 0x03EE),
  5555. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5556. },
  5557. { /* MCP61 Ethernet Controller */
  5558. PCI_DEVICE(0x10DE, 0x03EF),
  5559. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5560. },
  5561. { /* MCP65 Ethernet Controller */
  5562. PCI_DEVICE(0x10DE, 0x0450),
  5563. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5564. },
  5565. { /* MCP65 Ethernet Controller */
  5566. PCI_DEVICE(0x10DE, 0x0451),
  5567. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5568. },
  5569. { /* MCP65 Ethernet Controller */
  5570. PCI_DEVICE(0x10DE, 0x0452),
  5571. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5572. },
  5573. { /* MCP65 Ethernet Controller */
  5574. PCI_DEVICE(0x10DE, 0x0453),
  5575. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5576. },
  5577. { /* MCP67 Ethernet Controller */
  5578. PCI_DEVICE(0x10DE, 0x054C),
  5579. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5580. },
  5581. { /* MCP67 Ethernet Controller */
  5582. PCI_DEVICE(0x10DE, 0x054D),
  5583. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5584. },
  5585. { /* MCP67 Ethernet Controller */
  5586. PCI_DEVICE(0x10DE, 0x054E),
  5587. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5588. },
  5589. { /* MCP67 Ethernet Controller */
  5590. PCI_DEVICE(0x10DE, 0x054F),
  5591. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5592. },
  5593. { /* MCP73 Ethernet Controller */
  5594. PCI_DEVICE(0x10DE, 0x07DC),
  5595. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5596. },
  5597. { /* MCP73 Ethernet Controller */
  5598. PCI_DEVICE(0x10DE, 0x07DD),
  5599. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5600. },
  5601. { /* MCP73 Ethernet Controller */
  5602. PCI_DEVICE(0x10DE, 0x07DE),
  5603. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5604. },
  5605. { /* MCP73 Ethernet Controller */
  5606. PCI_DEVICE(0x10DE, 0x07DF),
  5607. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5608. },
  5609. { /* MCP77 Ethernet Controller */
  5610. PCI_DEVICE(0x10DE, 0x0760),
  5611. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5612. },
  5613. { /* MCP77 Ethernet Controller */
  5614. PCI_DEVICE(0x10DE, 0x0761),
  5615. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5616. },
  5617. { /* MCP77 Ethernet Controller */
  5618. PCI_DEVICE(0x10DE, 0x0762),
  5619. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5620. },
  5621. { /* MCP77 Ethernet Controller */
  5622. PCI_DEVICE(0x10DE, 0x0763),
  5623. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5624. },
  5625. { /* MCP79 Ethernet Controller */
  5626. PCI_DEVICE(0x10DE, 0x0AB0),
  5627. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5628. },
  5629. { /* MCP79 Ethernet Controller */
  5630. PCI_DEVICE(0x10DE, 0x0AB1),
  5631. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5632. },
  5633. { /* MCP79 Ethernet Controller */
  5634. PCI_DEVICE(0x10DE, 0x0AB2),
  5635. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5636. },
  5637. { /* MCP79 Ethernet Controller */
  5638. PCI_DEVICE(0x10DE, 0x0AB3),
  5639. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5640. },
  5641. { /* MCP89 Ethernet Controller */
  5642. PCI_DEVICE(0x10DE, 0x0D7D),
  5643. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5644. },
  5645. {0,},
  5646. };
  5647. static struct pci_driver driver = {
  5648. .name = DRV_NAME,
  5649. .id_table = pci_tbl,
  5650. .probe = nv_probe,
  5651. .remove = __devexit_p(nv_remove),
  5652. .suspend = nv_suspend,
  5653. .resume = nv_resume,
  5654. .shutdown = nv_shutdown,
  5655. };
  5656. static int __init init_nic(void)
  5657. {
  5658. return pci_register_driver(&driver);
  5659. }
  5660. static void __exit exit_nic(void)
  5661. {
  5662. pci_unregister_driver(&driver);
  5663. }
  5664. module_param(max_interrupt_work, int, 0);
  5665. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5666. module_param(optimization_mode, int, 0);
  5667. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5668. module_param(poll_interval, int, 0);
  5669. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5670. module_param(msi, int, 0);
  5671. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5672. module_param(msix, int, 0);
  5673. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5674. module_param(dma_64bit, int, 0);
  5675. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5676. module_param(phy_cross, int, 0);
  5677. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5678. module_param(phy_power_down, int, 0);
  5679. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5680. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5681. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5682. MODULE_LICENSE("GPL");
  5683. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5684. module_init(init_nic);
  5685. module_exit(exit_nic);