dev.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*
  2. * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/can.h>
  24. #include <linux/can/dev.h>
  25. #include <linux/can/netlink.h>
  26. #include <net/rtnetlink.h>
  27. #define MOD_DESC "CAN device driver interface"
  28. MODULE_DESCRIPTION(MOD_DESC);
  29. MODULE_LICENSE("GPL v2");
  30. MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  31. #ifdef CONFIG_CAN_CALC_BITTIMING
  32. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  33. /*
  34. * Bit-timing calculation derived from:
  35. *
  36. * Code based on LinCAN sources and H8S2638 project
  37. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  38. * Copyright 2005 Stanislav Marek
  39. * email: pisa@cmp.felk.cvut.cz
  40. *
  41. * Calculates proper bit-timing parameters for a specified bit-rate
  42. * and sample-point, which can then be used to set the bit-timing
  43. * registers of the CAN controller. You can find more information
  44. * in the header file linux/can/netlink.h.
  45. */
  46. static int can_update_spt(const struct can_bittiming_const *btc,
  47. int sampl_pt, int tseg, int *tseg1, int *tseg2)
  48. {
  49. *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  50. if (*tseg2 < btc->tseg2_min)
  51. *tseg2 = btc->tseg2_min;
  52. if (*tseg2 > btc->tseg2_max)
  53. *tseg2 = btc->tseg2_max;
  54. *tseg1 = tseg - *tseg2;
  55. if (*tseg1 > btc->tseg1_max) {
  56. *tseg1 = btc->tseg1_max;
  57. *tseg2 = tseg - *tseg1;
  58. }
  59. return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
  60. }
  61. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  62. {
  63. struct can_priv *priv = netdev_priv(dev);
  64. const struct can_bittiming_const *btc = priv->bittiming_const;
  65. long rate, best_rate = 0;
  66. long best_error = 1000000000, error = 0;
  67. int best_tseg = 0, best_brp = 0, brp = 0;
  68. int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
  69. int spt_error = 1000, spt = 0, sampl_pt;
  70. u64 v64;
  71. if (!priv->bittiming_const)
  72. return -ENOTSUPP;
  73. /* Use CIA recommended sample points */
  74. if (bt->sample_point) {
  75. sampl_pt = bt->sample_point;
  76. } else {
  77. if (bt->bitrate > 800000)
  78. sampl_pt = 750;
  79. else if (bt->bitrate > 500000)
  80. sampl_pt = 800;
  81. else
  82. sampl_pt = 875;
  83. }
  84. /* tseg even = round down, odd = round up */
  85. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  86. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  87. tsegall = 1 + tseg / 2;
  88. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  89. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  90. /* chose brp step which is possible in system */
  91. brp = (brp / btc->brp_inc) * btc->brp_inc;
  92. if ((brp < btc->brp_min) || (brp > btc->brp_max))
  93. continue;
  94. rate = priv->clock.freq / (brp * tsegall);
  95. error = bt->bitrate - rate;
  96. /* tseg brp biterror */
  97. if (error < 0)
  98. error = -error;
  99. if (error > best_error)
  100. continue;
  101. best_error = error;
  102. if (error == 0) {
  103. spt = can_update_spt(btc, sampl_pt, tseg / 2,
  104. &tseg1, &tseg2);
  105. error = sampl_pt - spt;
  106. if (error < 0)
  107. error = -error;
  108. if (error > spt_error)
  109. continue;
  110. spt_error = error;
  111. }
  112. best_tseg = tseg / 2;
  113. best_brp = brp;
  114. best_rate = rate;
  115. if (error == 0)
  116. break;
  117. }
  118. if (best_error) {
  119. /* Error in one-tenth of a percent */
  120. error = (best_error * 1000) / bt->bitrate;
  121. if (error > CAN_CALC_MAX_ERROR) {
  122. dev_err(dev->dev.parent,
  123. "bitrate error %ld.%ld%% too high\n",
  124. error / 10, error % 10);
  125. return -EDOM;
  126. } else {
  127. dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
  128. error / 10, error % 10);
  129. }
  130. }
  131. /* real sample point */
  132. bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
  133. &tseg1, &tseg2);
  134. v64 = (u64)best_brp * 1000000000UL;
  135. do_div(v64, priv->clock.freq);
  136. bt->tq = (u32)v64;
  137. bt->prop_seg = tseg1 / 2;
  138. bt->phase_seg1 = tseg1 - bt->prop_seg;
  139. bt->phase_seg2 = tseg2;
  140. bt->sjw = 1;
  141. bt->brp = best_brp;
  142. /* real bit-rate */
  143. bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
  144. return 0;
  145. }
  146. #else /* !CONFIG_CAN_CALC_BITTIMING */
  147. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  148. {
  149. dev_err(dev->dev.parent, "bit-timing calculation not available\n");
  150. return -EINVAL;
  151. }
  152. #endif /* CONFIG_CAN_CALC_BITTIMING */
  153. /*
  154. * Checks the validity of the specified bit-timing parameters prop_seg,
  155. * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
  156. * prescaler value brp. You can find more information in the header
  157. * file linux/can/netlink.h.
  158. */
  159. static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
  160. {
  161. struct can_priv *priv = netdev_priv(dev);
  162. const struct can_bittiming_const *btc = priv->bittiming_const;
  163. int tseg1, alltseg;
  164. u64 brp64;
  165. if (!priv->bittiming_const)
  166. return -ENOTSUPP;
  167. tseg1 = bt->prop_seg + bt->phase_seg1;
  168. if (!bt->sjw)
  169. bt->sjw = 1;
  170. if (bt->sjw > btc->sjw_max ||
  171. tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
  172. bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
  173. return -ERANGE;
  174. brp64 = (u64)priv->clock.freq * (u64)bt->tq;
  175. if (btc->brp_inc > 1)
  176. do_div(brp64, btc->brp_inc);
  177. brp64 += 500000000UL - 1;
  178. do_div(brp64, 1000000000UL); /* the practicable BRP */
  179. if (btc->brp_inc > 1)
  180. brp64 *= btc->brp_inc;
  181. bt->brp = (u32)brp64;
  182. if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
  183. return -EINVAL;
  184. alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
  185. bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
  186. bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
  187. return 0;
  188. }
  189. int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
  190. {
  191. struct can_priv *priv = netdev_priv(dev);
  192. int err;
  193. /* Check if the CAN device has bit-timing parameters */
  194. if (priv->bittiming_const) {
  195. /* Non-expert mode? Check if the bitrate has been pre-defined */
  196. if (!bt->tq)
  197. /* Determine bit-timing parameters */
  198. err = can_calc_bittiming(dev, bt);
  199. else
  200. /* Check bit-timing params and calculate proper brp */
  201. err = can_fixup_bittiming(dev, bt);
  202. if (err)
  203. return err;
  204. }
  205. return 0;
  206. }
  207. /*
  208. * Local echo of CAN messages
  209. *
  210. * CAN network devices *should* support a local echo functionality
  211. * (see Documentation/networking/can.txt). To test the handling of CAN
  212. * interfaces that do not support the local echo both driver types are
  213. * implemented. In the case that the driver does not support the echo
  214. * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
  215. * to perform the echo as a fallback solution.
  216. */
  217. static void can_flush_echo_skb(struct net_device *dev)
  218. {
  219. struct can_priv *priv = netdev_priv(dev);
  220. struct net_device_stats *stats = &dev->stats;
  221. int i;
  222. for (i = 0; i < CAN_ECHO_SKB_MAX; i++) {
  223. if (priv->echo_skb[i]) {
  224. kfree_skb(priv->echo_skb[i]);
  225. priv->echo_skb[i] = NULL;
  226. stats->tx_dropped++;
  227. stats->tx_aborted_errors++;
  228. }
  229. }
  230. }
  231. /*
  232. * Put the skb on the stack to be looped backed locally lateron
  233. *
  234. * The function is typically called in the start_xmit function
  235. * of the device driver. The driver must protect access to
  236. * priv->echo_skb, if necessary.
  237. */
  238. void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, int idx)
  239. {
  240. struct can_priv *priv = netdev_priv(dev);
  241. /* check flag whether this packet has to be looped back */
  242. if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
  243. kfree_skb(skb);
  244. return;
  245. }
  246. if (!priv->echo_skb[idx]) {
  247. struct sock *srcsk = skb->sk;
  248. if (atomic_read(&skb->users) != 1) {
  249. struct sk_buff *old_skb = skb;
  250. skb = skb_clone(old_skb, GFP_ATOMIC);
  251. kfree_skb(old_skb);
  252. if (!skb)
  253. return;
  254. } else
  255. skb_orphan(skb);
  256. skb->sk = srcsk;
  257. /* make settings for echo to reduce code in irq context */
  258. skb->protocol = htons(ETH_P_CAN);
  259. skb->pkt_type = PACKET_BROADCAST;
  260. skb->ip_summed = CHECKSUM_UNNECESSARY;
  261. skb->dev = dev;
  262. /* save this skb for tx interrupt echo handling */
  263. priv->echo_skb[idx] = skb;
  264. } else {
  265. /* locking problem with netif_stop_queue() ?? */
  266. dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
  267. __func__);
  268. kfree_skb(skb);
  269. }
  270. }
  271. EXPORT_SYMBOL_GPL(can_put_echo_skb);
  272. /*
  273. * Get the skb from the stack and loop it back locally
  274. *
  275. * The function is typically called when the TX done interrupt
  276. * is handled in the device driver. The driver must protect
  277. * access to priv->echo_skb, if necessary.
  278. */
  279. void can_get_echo_skb(struct net_device *dev, int idx)
  280. {
  281. struct can_priv *priv = netdev_priv(dev);
  282. if ((dev->flags & IFF_ECHO) && priv->echo_skb[idx]) {
  283. netif_rx(priv->echo_skb[idx]);
  284. priv->echo_skb[idx] = NULL;
  285. }
  286. }
  287. EXPORT_SYMBOL_GPL(can_get_echo_skb);
  288. /*
  289. * CAN device restart for bus-off recovery
  290. */
  291. void can_restart(unsigned long data)
  292. {
  293. struct net_device *dev = (struct net_device *)data;
  294. struct can_priv *priv = netdev_priv(dev);
  295. struct net_device_stats *stats = &dev->stats;
  296. struct sk_buff *skb;
  297. struct can_frame *cf;
  298. int err;
  299. BUG_ON(netif_carrier_ok(dev));
  300. /*
  301. * No synchronization needed because the device is bus-off and
  302. * no messages can come in or go out.
  303. */
  304. can_flush_echo_skb(dev);
  305. /* send restart message upstream */
  306. skb = dev_alloc_skb(sizeof(struct can_frame));
  307. if (skb == NULL) {
  308. err = -ENOMEM;
  309. goto restart;
  310. }
  311. skb->dev = dev;
  312. skb->protocol = htons(ETH_P_CAN);
  313. cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  314. memset(cf, 0, sizeof(struct can_frame));
  315. cf->can_id = CAN_ERR_FLAG | CAN_ERR_RESTARTED;
  316. cf->can_dlc = CAN_ERR_DLC;
  317. netif_rx(skb);
  318. dev->last_rx = jiffies;
  319. stats->rx_packets++;
  320. stats->rx_bytes += cf->can_dlc;
  321. restart:
  322. dev_dbg(dev->dev.parent, "restarted\n");
  323. priv->can_stats.restarts++;
  324. /* Now restart the device */
  325. err = priv->do_set_mode(dev, CAN_MODE_START);
  326. netif_carrier_on(dev);
  327. if (err)
  328. dev_err(dev->dev.parent, "Error %d during restart", err);
  329. }
  330. int can_restart_now(struct net_device *dev)
  331. {
  332. struct can_priv *priv = netdev_priv(dev);
  333. /*
  334. * A manual restart is only permitted if automatic restart is
  335. * disabled and the device is in the bus-off state
  336. */
  337. if (priv->restart_ms)
  338. return -EINVAL;
  339. if (priv->state != CAN_STATE_BUS_OFF)
  340. return -EBUSY;
  341. /* Runs as soon as possible in the timer context */
  342. mod_timer(&priv->restart_timer, jiffies);
  343. return 0;
  344. }
  345. /*
  346. * CAN bus-off
  347. *
  348. * This functions should be called when the device goes bus-off to
  349. * tell the netif layer that no more packets can be sent or received.
  350. * If enabled, a timer is started to trigger bus-off recovery.
  351. */
  352. void can_bus_off(struct net_device *dev)
  353. {
  354. struct can_priv *priv = netdev_priv(dev);
  355. dev_dbg(dev->dev.parent, "bus-off\n");
  356. netif_carrier_off(dev);
  357. priv->can_stats.bus_off++;
  358. if (priv->restart_ms)
  359. mod_timer(&priv->restart_timer,
  360. jiffies + (priv->restart_ms * HZ) / 1000);
  361. }
  362. EXPORT_SYMBOL_GPL(can_bus_off);
  363. static void can_setup(struct net_device *dev)
  364. {
  365. dev->type = ARPHRD_CAN;
  366. dev->mtu = sizeof(struct can_frame);
  367. dev->hard_header_len = 0;
  368. dev->addr_len = 0;
  369. dev->tx_queue_len = 10;
  370. /* New-style flags. */
  371. dev->flags = IFF_NOARP;
  372. dev->features = NETIF_F_NO_CSUM;
  373. }
  374. /*
  375. * Allocate and setup space for the CAN network device
  376. */
  377. struct net_device *alloc_candev(int sizeof_priv)
  378. {
  379. struct net_device *dev;
  380. struct can_priv *priv;
  381. dev = alloc_netdev(sizeof_priv, "can%d", can_setup);
  382. if (!dev)
  383. return NULL;
  384. priv = netdev_priv(dev);
  385. priv->state = CAN_STATE_STOPPED;
  386. init_timer(&priv->restart_timer);
  387. return dev;
  388. }
  389. EXPORT_SYMBOL_GPL(alloc_candev);
  390. /*
  391. * Free space of the CAN network device
  392. */
  393. void free_candev(struct net_device *dev)
  394. {
  395. free_netdev(dev);
  396. }
  397. EXPORT_SYMBOL_GPL(free_candev);
  398. /*
  399. * Common open function when the device gets opened.
  400. *
  401. * This function should be called in the open function of the device
  402. * driver.
  403. */
  404. int open_candev(struct net_device *dev)
  405. {
  406. struct can_priv *priv = netdev_priv(dev);
  407. if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
  408. dev_err(dev->dev.parent, "bit-timing not yet defined\n");
  409. return -EINVAL;
  410. }
  411. /* Switch carrier on if device was stopped while in bus-off state */
  412. if (!netif_carrier_ok(dev))
  413. netif_carrier_on(dev);
  414. setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
  415. return 0;
  416. }
  417. EXPORT_SYMBOL_GPL(open_candev);
  418. /*
  419. * Common close function for cleanup before the device gets closed.
  420. *
  421. * This function should be called in the close function of the device
  422. * driver.
  423. */
  424. void close_candev(struct net_device *dev)
  425. {
  426. struct can_priv *priv = netdev_priv(dev);
  427. if (del_timer_sync(&priv->restart_timer))
  428. dev_put(dev);
  429. can_flush_echo_skb(dev);
  430. }
  431. EXPORT_SYMBOL_GPL(close_candev);
  432. /*
  433. * CAN netlink interface
  434. */
  435. static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
  436. [IFLA_CAN_STATE] = { .type = NLA_U32 },
  437. [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
  438. [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
  439. [IFLA_CAN_RESTART] = { .type = NLA_U32 },
  440. [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
  441. [IFLA_CAN_BITTIMING_CONST]
  442. = { .len = sizeof(struct can_bittiming_const) },
  443. [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
  444. };
  445. static int can_changelink(struct net_device *dev,
  446. struct nlattr *tb[], struct nlattr *data[])
  447. {
  448. struct can_priv *priv = netdev_priv(dev);
  449. int err;
  450. /* We need synchronization with dev->stop() */
  451. ASSERT_RTNL();
  452. if (data[IFLA_CAN_CTRLMODE]) {
  453. struct can_ctrlmode *cm;
  454. /* Do not allow changing controller mode while running */
  455. if (dev->flags & IFF_UP)
  456. return -EBUSY;
  457. cm = nla_data(data[IFLA_CAN_CTRLMODE]);
  458. priv->ctrlmode &= ~cm->mask;
  459. priv->ctrlmode |= cm->flags;
  460. }
  461. if (data[IFLA_CAN_BITTIMING]) {
  462. struct can_bittiming bt;
  463. /* Do not allow changing bittiming while running */
  464. if (dev->flags & IFF_UP)
  465. return -EBUSY;
  466. memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
  467. if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
  468. return -EINVAL;
  469. err = can_get_bittiming(dev, &bt);
  470. if (err)
  471. return err;
  472. memcpy(&priv->bittiming, &bt, sizeof(bt));
  473. if (priv->do_set_bittiming) {
  474. /* Finally, set the bit-timing registers */
  475. err = priv->do_set_bittiming(dev);
  476. if (err)
  477. return err;
  478. }
  479. }
  480. if (data[IFLA_CAN_RESTART_MS]) {
  481. /* Do not allow changing restart delay while running */
  482. if (dev->flags & IFF_UP)
  483. return -EBUSY;
  484. priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
  485. }
  486. if (data[IFLA_CAN_RESTART]) {
  487. /* Do not allow a restart while not running */
  488. if (!(dev->flags & IFF_UP))
  489. return -EINVAL;
  490. err = can_restart_now(dev);
  491. if (err)
  492. return err;
  493. }
  494. return 0;
  495. }
  496. static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
  497. {
  498. struct can_priv *priv = netdev_priv(dev);
  499. struct can_ctrlmode cm = {.flags = priv->ctrlmode};
  500. enum can_state state = priv->state;
  501. if (priv->do_get_state)
  502. priv->do_get_state(dev, &state);
  503. NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
  504. NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
  505. NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
  506. NLA_PUT(skb, IFLA_CAN_BITTIMING,
  507. sizeof(priv->bittiming), &priv->bittiming);
  508. NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
  509. if (priv->bittiming_const)
  510. NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
  511. sizeof(*priv->bittiming_const), priv->bittiming_const);
  512. return 0;
  513. nla_put_failure:
  514. return -EMSGSIZE;
  515. }
  516. static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
  517. {
  518. struct can_priv *priv = netdev_priv(dev);
  519. NLA_PUT(skb, IFLA_INFO_XSTATS,
  520. sizeof(priv->can_stats), &priv->can_stats);
  521. return 0;
  522. nla_put_failure:
  523. return -EMSGSIZE;
  524. }
  525. static struct rtnl_link_ops can_link_ops __read_mostly = {
  526. .kind = "can",
  527. .maxtype = IFLA_CAN_MAX,
  528. .policy = can_policy,
  529. .setup = can_setup,
  530. .changelink = can_changelink,
  531. .fill_info = can_fill_info,
  532. .fill_xstats = can_fill_xstats,
  533. };
  534. /*
  535. * Register the CAN network device
  536. */
  537. int register_candev(struct net_device *dev)
  538. {
  539. dev->rtnl_link_ops = &can_link_ops;
  540. return register_netdev(dev);
  541. }
  542. EXPORT_SYMBOL_GPL(register_candev);
  543. /*
  544. * Unregister the CAN network device
  545. */
  546. void unregister_candev(struct net_device *dev)
  547. {
  548. unregister_netdev(dev);
  549. }
  550. EXPORT_SYMBOL_GPL(unregister_candev);
  551. static __init int can_dev_init(void)
  552. {
  553. int err;
  554. err = rtnl_link_register(&can_link_ops);
  555. if (!err)
  556. printk(KERN_INFO MOD_DESC "\n");
  557. return err;
  558. }
  559. module_init(can_dev_init);
  560. static __exit void can_dev_exit(void)
  561. {
  562. rtnl_link_unregister(&can_link_ops);
  563. }
  564. module_exit(can_dev_exit);
  565. MODULE_ALIAS_RTNL_LINK("can");