bnx2.c 200 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.1"
  58. #define DRV_MODULE_RELDATE "May 6, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, 0);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] __devinitdata = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  231. {
  232. u32 diff;
  233. smp_mb();
  234. /* The ring uses 256 indices for 255 entries, one of them
  235. * needs to be skipped.
  236. */
  237. diff = txr->tx_prod - txr->tx_cons;
  238. if (unlikely(diff >= TX_DESC_CNT)) {
  239. diff &= 0xffff;
  240. if (diff == TX_DESC_CNT)
  241. diff = MAX_TX_DESC_CNT;
  242. }
  243. return (bp->tx_ring_size - diff);
  244. }
  245. static u32
  246. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  247. {
  248. u32 val;
  249. spin_lock_bh(&bp->indirect_lock);
  250. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  251. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  252. spin_unlock_bh(&bp->indirect_lock);
  253. return val;
  254. }
  255. static void
  256. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  257. {
  258. spin_lock_bh(&bp->indirect_lock);
  259. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  260. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  261. spin_unlock_bh(&bp->indirect_lock);
  262. }
  263. static void
  264. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  265. {
  266. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  267. }
  268. static u32
  269. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  270. {
  271. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  272. }
  273. static void
  274. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  275. {
  276. offset += cid_addr;
  277. spin_lock_bh(&bp->indirect_lock);
  278. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  279. int i;
  280. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  281. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  282. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  283. for (i = 0; i < 5; i++) {
  284. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  285. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  286. break;
  287. udelay(5);
  288. }
  289. } else {
  290. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  291. REG_WR(bp, BNX2_CTX_DATA, val);
  292. }
  293. spin_unlock_bh(&bp->indirect_lock);
  294. }
  295. #ifdef BCM_CNIC
  296. static int
  297. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  298. {
  299. struct bnx2 *bp = netdev_priv(dev);
  300. struct drv_ctl_io *io = &info->data.io;
  301. switch (info->cmd) {
  302. case DRV_CTL_IO_WR_CMD:
  303. bnx2_reg_wr_ind(bp, io->offset, io->data);
  304. break;
  305. case DRV_CTL_IO_RD_CMD:
  306. io->data = bnx2_reg_rd_ind(bp, io->offset);
  307. break;
  308. case DRV_CTL_CTX_WR_CMD:
  309. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  310. break;
  311. default:
  312. return -EINVAL;
  313. }
  314. return 0;
  315. }
  316. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  317. {
  318. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  319. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  320. int sb_id;
  321. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  322. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  323. bnapi->cnic_present = 0;
  324. sb_id = bp->irq_nvecs;
  325. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  326. } else {
  327. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  328. bnapi->cnic_tag = bnapi->last_status_idx;
  329. bnapi->cnic_present = 1;
  330. sb_id = 0;
  331. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  332. }
  333. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  334. cp->irq_arr[0].status_blk = (void *)
  335. ((unsigned long) bnapi->status_blk.msi +
  336. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  337. cp->irq_arr[0].status_blk_num = sb_id;
  338. cp->num_irq = 1;
  339. }
  340. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  341. void *data)
  342. {
  343. struct bnx2 *bp = netdev_priv(dev);
  344. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  345. if (ops == NULL)
  346. return -EINVAL;
  347. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  348. return -EBUSY;
  349. bp->cnic_data = data;
  350. rcu_assign_pointer(bp->cnic_ops, ops);
  351. cp->num_irq = 0;
  352. cp->drv_state = CNIC_DRV_STATE_REGD;
  353. bnx2_setup_cnic_irq_info(bp);
  354. return 0;
  355. }
  356. static int bnx2_unregister_cnic(struct net_device *dev)
  357. {
  358. struct bnx2 *bp = netdev_priv(dev);
  359. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  360. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  361. cp->drv_state = 0;
  362. bnapi->cnic_present = 0;
  363. rcu_assign_pointer(bp->cnic_ops, NULL);
  364. synchronize_rcu();
  365. return 0;
  366. }
  367. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  368. {
  369. struct bnx2 *bp = netdev_priv(dev);
  370. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  371. cp->drv_owner = THIS_MODULE;
  372. cp->chip_id = bp->chip_id;
  373. cp->pdev = bp->pdev;
  374. cp->io_base = bp->regview;
  375. cp->drv_ctl = bnx2_drv_ctl;
  376. cp->drv_register_cnic = bnx2_register_cnic;
  377. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  378. return cp;
  379. }
  380. EXPORT_SYMBOL(bnx2_cnic_probe);
  381. static void
  382. bnx2_cnic_stop(struct bnx2 *bp)
  383. {
  384. struct cnic_ops *c_ops;
  385. struct cnic_ctl_info info;
  386. rcu_read_lock();
  387. c_ops = rcu_dereference(bp->cnic_ops);
  388. if (c_ops) {
  389. info.cmd = CNIC_CTL_STOP_CMD;
  390. c_ops->cnic_ctl(bp->cnic_data, &info);
  391. }
  392. rcu_read_unlock();
  393. }
  394. static void
  395. bnx2_cnic_start(struct bnx2 *bp)
  396. {
  397. struct cnic_ops *c_ops;
  398. struct cnic_ctl_info info;
  399. rcu_read_lock();
  400. c_ops = rcu_dereference(bp->cnic_ops);
  401. if (c_ops) {
  402. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  403. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  404. bnapi->cnic_tag = bnapi->last_status_idx;
  405. }
  406. info.cmd = CNIC_CTL_START_CMD;
  407. c_ops->cnic_ctl(bp->cnic_data, &info);
  408. }
  409. rcu_read_unlock();
  410. }
  411. #else
  412. static void
  413. bnx2_cnic_stop(struct bnx2 *bp)
  414. {
  415. }
  416. static void
  417. bnx2_cnic_start(struct bnx2 *bp)
  418. {
  419. }
  420. #endif
  421. static int
  422. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  423. {
  424. u32 val1;
  425. int i, ret;
  426. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  427. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  428. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  429. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  430. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  431. udelay(40);
  432. }
  433. val1 = (bp->phy_addr << 21) | (reg << 16) |
  434. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  435. BNX2_EMAC_MDIO_COMM_START_BUSY;
  436. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  437. for (i = 0; i < 50; i++) {
  438. udelay(10);
  439. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  440. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  441. udelay(5);
  442. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  443. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  444. break;
  445. }
  446. }
  447. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  448. *val = 0x0;
  449. ret = -EBUSY;
  450. }
  451. else {
  452. *val = val1;
  453. ret = 0;
  454. }
  455. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  456. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  457. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  458. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  459. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  460. udelay(40);
  461. }
  462. return ret;
  463. }
  464. static int
  465. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  466. {
  467. u32 val1;
  468. int i, ret;
  469. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  470. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  471. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  472. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  473. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  474. udelay(40);
  475. }
  476. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  477. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  478. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  479. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  480. for (i = 0; i < 50; i++) {
  481. udelay(10);
  482. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  483. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  484. udelay(5);
  485. break;
  486. }
  487. }
  488. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  489. ret = -EBUSY;
  490. else
  491. ret = 0;
  492. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  493. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  494. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  495. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  496. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  497. udelay(40);
  498. }
  499. return ret;
  500. }
  501. static void
  502. bnx2_disable_int(struct bnx2 *bp)
  503. {
  504. int i;
  505. struct bnx2_napi *bnapi;
  506. for (i = 0; i < bp->irq_nvecs; i++) {
  507. bnapi = &bp->bnx2_napi[i];
  508. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  509. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  510. }
  511. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  512. }
  513. static void
  514. bnx2_enable_int(struct bnx2 *bp)
  515. {
  516. int i;
  517. struct bnx2_napi *bnapi;
  518. for (i = 0; i < bp->irq_nvecs; i++) {
  519. bnapi = &bp->bnx2_napi[i];
  520. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  521. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  522. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  523. bnapi->last_status_idx);
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. bnapi->last_status_idx);
  527. }
  528. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  529. }
  530. static void
  531. bnx2_disable_int_sync(struct bnx2 *bp)
  532. {
  533. int i;
  534. atomic_inc(&bp->intr_sem);
  535. bnx2_disable_int(bp);
  536. for (i = 0; i < bp->irq_nvecs; i++)
  537. synchronize_irq(bp->irq_tbl[i].vector);
  538. }
  539. static void
  540. bnx2_napi_disable(struct bnx2 *bp)
  541. {
  542. int i;
  543. for (i = 0; i < bp->irq_nvecs; i++)
  544. napi_disable(&bp->bnx2_napi[i].napi);
  545. }
  546. static void
  547. bnx2_napi_enable(struct bnx2 *bp)
  548. {
  549. int i;
  550. for (i = 0; i < bp->irq_nvecs; i++)
  551. napi_enable(&bp->bnx2_napi[i].napi);
  552. }
  553. static void
  554. bnx2_netif_stop(struct bnx2 *bp)
  555. {
  556. bnx2_cnic_stop(bp);
  557. bnx2_disable_int_sync(bp);
  558. if (netif_running(bp->dev)) {
  559. bnx2_napi_disable(bp);
  560. netif_tx_disable(bp->dev);
  561. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  562. }
  563. }
  564. static void
  565. bnx2_netif_start(struct bnx2 *bp)
  566. {
  567. if (atomic_dec_and_test(&bp->intr_sem)) {
  568. if (netif_running(bp->dev)) {
  569. netif_tx_wake_all_queues(bp->dev);
  570. bnx2_napi_enable(bp);
  571. bnx2_enable_int(bp);
  572. bnx2_cnic_start(bp);
  573. }
  574. }
  575. }
  576. static void
  577. bnx2_free_tx_mem(struct bnx2 *bp)
  578. {
  579. int i;
  580. for (i = 0; i < bp->num_tx_rings; i++) {
  581. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  582. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  583. if (txr->tx_desc_ring) {
  584. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  585. txr->tx_desc_ring,
  586. txr->tx_desc_mapping);
  587. txr->tx_desc_ring = NULL;
  588. }
  589. kfree(txr->tx_buf_ring);
  590. txr->tx_buf_ring = NULL;
  591. }
  592. }
  593. static void
  594. bnx2_free_rx_mem(struct bnx2 *bp)
  595. {
  596. int i;
  597. for (i = 0; i < bp->num_rx_rings; i++) {
  598. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  599. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  600. int j;
  601. for (j = 0; j < bp->rx_max_ring; j++) {
  602. if (rxr->rx_desc_ring[j])
  603. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  604. rxr->rx_desc_ring[j],
  605. rxr->rx_desc_mapping[j]);
  606. rxr->rx_desc_ring[j] = NULL;
  607. }
  608. vfree(rxr->rx_buf_ring);
  609. rxr->rx_buf_ring = NULL;
  610. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  611. if (rxr->rx_pg_desc_ring[j])
  612. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  613. rxr->rx_pg_desc_ring[j],
  614. rxr->rx_pg_desc_mapping[j]);
  615. rxr->rx_pg_desc_ring[j] = NULL;
  616. }
  617. vfree(rxr->rx_pg_ring);
  618. rxr->rx_pg_ring = NULL;
  619. }
  620. }
  621. static int
  622. bnx2_alloc_tx_mem(struct bnx2 *bp)
  623. {
  624. int i;
  625. for (i = 0; i < bp->num_tx_rings; i++) {
  626. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  627. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  628. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  629. if (txr->tx_buf_ring == NULL)
  630. return -ENOMEM;
  631. txr->tx_desc_ring =
  632. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  633. &txr->tx_desc_mapping);
  634. if (txr->tx_desc_ring == NULL)
  635. return -ENOMEM;
  636. }
  637. return 0;
  638. }
  639. static int
  640. bnx2_alloc_rx_mem(struct bnx2 *bp)
  641. {
  642. int i;
  643. for (i = 0; i < bp->num_rx_rings; i++) {
  644. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  645. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  646. int j;
  647. rxr->rx_buf_ring =
  648. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  649. if (rxr->rx_buf_ring == NULL)
  650. return -ENOMEM;
  651. memset(rxr->rx_buf_ring, 0,
  652. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  653. for (j = 0; j < bp->rx_max_ring; j++) {
  654. rxr->rx_desc_ring[j] =
  655. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  656. &rxr->rx_desc_mapping[j]);
  657. if (rxr->rx_desc_ring[j] == NULL)
  658. return -ENOMEM;
  659. }
  660. if (bp->rx_pg_ring_size) {
  661. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  662. bp->rx_max_pg_ring);
  663. if (rxr->rx_pg_ring == NULL)
  664. return -ENOMEM;
  665. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  666. bp->rx_max_pg_ring);
  667. }
  668. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  669. rxr->rx_pg_desc_ring[j] =
  670. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  671. &rxr->rx_pg_desc_mapping[j]);
  672. if (rxr->rx_pg_desc_ring[j] == NULL)
  673. return -ENOMEM;
  674. }
  675. }
  676. return 0;
  677. }
  678. static void
  679. bnx2_free_mem(struct bnx2 *bp)
  680. {
  681. int i;
  682. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  683. bnx2_free_tx_mem(bp);
  684. bnx2_free_rx_mem(bp);
  685. for (i = 0; i < bp->ctx_pages; i++) {
  686. if (bp->ctx_blk[i]) {
  687. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  688. bp->ctx_blk[i],
  689. bp->ctx_blk_mapping[i]);
  690. bp->ctx_blk[i] = NULL;
  691. }
  692. }
  693. if (bnapi->status_blk.msi) {
  694. pci_free_consistent(bp->pdev, bp->status_stats_size,
  695. bnapi->status_blk.msi,
  696. bp->status_blk_mapping);
  697. bnapi->status_blk.msi = NULL;
  698. bp->stats_blk = NULL;
  699. }
  700. }
  701. static int
  702. bnx2_alloc_mem(struct bnx2 *bp)
  703. {
  704. int i, status_blk_size, err;
  705. struct bnx2_napi *bnapi;
  706. void *status_blk;
  707. /* Combine status and statistics blocks into one allocation. */
  708. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  709. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  710. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  711. BNX2_SBLK_MSIX_ALIGN_SIZE);
  712. bp->status_stats_size = status_blk_size +
  713. sizeof(struct statistics_block);
  714. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  715. &bp->status_blk_mapping);
  716. if (status_blk == NULL)
  717. goto alloc_mem_err;
  718. memset(status_blk, 0, bp->status_stats_size);
  719. bnapi = &bp->bnx2_napi[0];
  720. bnapi->status_blk.msi = status_blk;
  721. bnapi->hw_tx_cons_ptr =
  722. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  723. bnapi->hw_rx_cons_ptr =
  724. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  725. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  726. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  727. struct status_block_msix *sblk;
  728. bnapi = &bp->bnx2_napi[i];
  729. sblk = (void *) (status_blk +
  730. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  731. bnapi->status_blk.msix = sblk;
  732. bnapi->hw_tx_cons_ptr =
  733. &sblk->status_tx_quick_consumer_index;
  734. bnapi->hw_rx_cons_ptr =
  735. &sblk->status_rx_quick_consumer_index;
  736. bnapi->int_num = i << 24;
  737. }
  738. }
  739. bp->stats_blk = status_blk + status_blk_size;
  740. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  741. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  742. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  743. if (bp->ctx_pages == 0)
  744. bp->ctx_pages = 1;
  745. for (i = 0; i < bp->ctx_pages; i++) {
  746. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  747. BCM_PAGE_SIZE,
  748. &bp->ctx_blk_mapping[i]);
  749. if (bp->ctx_blk[i] == NULL)
  750. goto alloc_mem_err;
  751. }
  752. }
  753. err = bnx2_alloc_rx_mem(bp);
  754. if (err)
  755. goto alloc_mem_err;
  756. err = bnx2_alloc_tx_mem(bp);
  757. if (err)
  758. goto alloc_mem_err;
  759. return 0;
  760. alloc_mem_err:
  761. bnx2_free_mem(bp);
  762. return -ENOMEM;
  763. }
  764. static void
  765. bnx2_report_fw_link(struct bnx2 *bp)
  766. {
  767. u32 fw_link_status = 0;
  768. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  769. return;
  770. if (bp->link_up) {
  771. u32 bmsr;
  772. switch (bp->line_speed) {
  773. case SPEED_10:
  774. if (bp->duplex == DUPLEX_HALF)
  775. fw_link_status = BNX2_LINK_STATUS_10HALF;
  776. else
  777. fw_link_status = BNX2_LINK_STATUS_10FULL;
  778. break;
  779. case SPEED_100:
  780. if (bp->duplex == DUPLEX_HALF)
  781. fw_link_status = BNX2_LINK_STATUS_100HALF;
  782. else
  783. fw_link_status = BNX2_LINK_STATUS_100FULL;
  784. break;
  785. case SPEED_1000:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  790. break;
  791. case SPEED_2500:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  796. break;
  797. }
  798. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  799. if (bp->autoneg) {
  800. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  801. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  803. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  804. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  805. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  806. else
  807. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  808. }
  809. }
  810. else
  811. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  812. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  813. }
  814. static char *
  815. bnx2_xceiver_str(struct bnx2 *bp)
  816. {
  817. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  818. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  819. "Copper"));
  820. }
  821. static void
  822. bnx2_report_link(struct bnx2 *bp)
  823. {
  824. if (bp->link_up) {
  825. netif_carrier_on(bp->dev);
  826. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  827. bnx2_xceiver_str(bp));
  828. printk("%d Mbps ", bp->line_speed);
  829. if (bp->duplex == DUPLEX_FULL)
  830. printk("full duplex");
  831. else
  832. printk("half duplex");
  833. if (bp->flow_ctrl) {
  834. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  835. printk(", receive ");
  836. if (bp->flow_ctrl & FLOW_CTRL_TX)
  837. printk("& transmit ");
  838. }
  839. else {
  840. printk(", transmit ");
  841. }
  842. printk("flow control ON");
  843. }
  844. printk("\n");
  845. }
  846. else {
  847. netif_carrier_off(bp->dev);
  848. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  849. bnx2_xceiver_str(bp));
  850. }
  851. bnx2_report_fw_link(bp);
  852. }
  853. static void
  854. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  855. {
  856. u32 local_adv, remote_adv;
  857. bp->flow_ctrl = 0;
  858. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  859. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  860. if (bp->duplex == DUPLEX_FULL) {
  861. bp->flow_ctrl = bp->req_flow_ctrl;
  862. }
  863. return;
  864. }
  865. if (bp->duplex != DUPLEX_FULL) {
  866. return;
  867. }
  868. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  869. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  870. u32 val;
  871. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  872. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  873. bp->flow_ctrl |= FLOW_CTRL_TX;
  874. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  875. bp->flow_ctrl |= FLOW_CTRL_RX;
  876. return;
  877. }
  878. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  879. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  880. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  881. u32 new_local_adv = 0;
  882. u32 new_remote_adv = 0;
  883. if (local_adv & ADVERTISE_1000XPAUSE)
  884. new_local_adv |= ADVERTISE_PAUSE_CAP;
  885. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  886. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  887. if (remote_adv & ADVERTISE_1000XPAUSE)
  888. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  889. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  890. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  891. local_adv = new_local_adv;
  892. remote_adv = new_remote_adv;
  893. }
  894. /* See Table 28B-3 of 802.3ab-1999 spec. */
  895. if (local_adv & ADVERTISE_PAUSE_CAP) {
  896. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  897. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  898. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  899. }
  900. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  901. bp->flow_ctrl = FLOW_CTRL_RX;
  902. }
  903. }
  904. else {
  905. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  906. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  907. }
  908. }
  909. }
  910. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  911. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  912. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  913. bp->flow_ctrl = FLOW_CTRL_TX;
  914. }
  915. }
  916. }
  917. static int
  918. bnx2_5709s_linkup(struct bnx2 *bp)
  919. {
  920. u32 val, speed;
  921. bp->link_up = 1;
  922. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  923. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  924. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  925. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  926. bp->line_speed = bp->req_line_speed;
  927. bp->duplex = bp->req_duplex;
  928. return 0;
  929. }
  930. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  931. switch (speed) {
  932. case MII_BNX2_GP_TOP_AN_SPEED_10:
  933. bp->line_speed = SPEED_10;
  934. break;
  935. case MII_BNX2_GP_TOP_AN_SPEED_100:
  936. bp->line_speed = SPEED_100;
  937. break;
  938. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  939. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  940. bp->line_speed = SPEED_1000;
  941. break;
  942. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  943. bp->line_speed = SPEED_2500;
  944. break;
  945. }
  946. if (val & MII_BNX2_GP_TOP_AN_FD)
  947. bp->duplex = DUPLEX_FULL;
  948. else
  949. bp->duplex = DUPLEX_HALF;
  950. return 0;
  951. }
  952. static int
  953. bnx2_5708s_linkup(struct bnx2 *bp)
  954. {
  955. u32 val;
  956. bp->link_up = 1;
  957. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  958. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  959. case BCM5708S_1000X_STAT1_SPEED_10:
  960. bp->line_speed = SPEED_10;
  961. break;
  962. case BCM5708S_1000X_STAT1_SPEED_100:
  963. bp->line_speed = SPEED_100;
  964. break;
  965. case BCM5708S_1000X_STAT1_SPEED_1G:
  966. bp->line_speed = SPEED_1000;
  967. break;
  968. case BCM5708S_1000X_STAT1_SPEED_2G5:
  969. bp->line_speed = SPEED_2500;
  970. break;
  971. }
  972. if (val & BCM5708S_1000X_STAT1_FD)
  973. bp->duplex = DUPLEX_FULL;
  974. else
  975. bp->duplex = DUPLEX_HALF;
  976. return 0;
  977. }
  978. static int
  979. bnx2_5706s_linkup(struct bnx2 *bp)
  980. {
  981. u32 bmcr, local_adv, remote_adv, common;
  982. bp->link_up = 1;
  983. bp->line_speed = SPEED_1000;
  984. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  985. if (bmcr & BMCR_FULLDPLX) {
  986. bp->duplex = DUPLEX_FULL;
  987. }
  988. else {
  989. bp->duplex = DUPLEX_HALF;
  990. }
  991. if (!(bmcr & BMCR_ANENABLE)) {
  992. return 0;
  993. }
  994. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  995. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  996. common = local_adv & remote_adv;
  997. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  998. if (common & ADVERTISE_1000XFULL) {
  999. bp->duplex = DUPLEX_FULL;
  1000. }
  1001. else {
  1002. bp->duplex = DUPLEX_HALF;
  1003. }
  1004. }
  1005. return 0;
  1006. }
  1007. static int
  1008. bnx2_copper_linkup(struct bnx2 *bp)
  1009. {
  1010. u32 bmcr;
  1011. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1012. if (bmcr & BMCR_ANENABLE) {
  1013. u32 local_adv, remote_adv, common;
  1014. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1015. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1016. common = local_adv & (remote_adv >> 2);
  1017. if (common & ADVERTISE_1000FULL) {
  1018. bp->line_speed = SPEED_1000;
  1019. bp->duplex = DUPLEX_FULL;
  1020. }
  1021. else if (common & ADVERTISE_1000HALF) {
  1022. bp->line_speed = SPEED_1000;
  1023. bp->duplex = DUPLEX_HALF;
  1024. }
  1025. else {
  1026. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1027. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1028. common = local_adv & remote_adv;
  1029. if (common & ADVERTISE_100FULL) {
  1030. bp->line_speed = SPEED_100;
  1031. bp->duplex = DUPLEX_FULL;
  1032. }
  1033. else if (common & ADVERTISE_100HALF) {
  1034. bp->line_speed = SPEED_100;
  1035. bp->duplex = DUPLEX_HALF;
  1036. }
  1037. else if (common & ADVERTISE_10FULL) {
  1038. bp->line_speed = SPEED_10;
  1039. bp->duplex = DUPLEX_FULL;
  1040. }
  1041. else if (common & ADVERTISE_10HALF) {
  1042. bp->line_speed = SPEED_10;
  1043. bp->duplex = DUPLEX_HALF;
  1044. }
  1045. else {
  1046. bp->line_speed = 0;
  1047. bp->link_up = 0;
  1048. }
  1049. }
  1050. }
  1051. else {
  1052. if (bmcr & BMCR_SPEED100) {
  1053. bp->line_speed = SPEED_100;
  1054. }
  1055. else {
  1056. bp->line_speed = SPEED_10;
  1057. }
  1058. if (bmcr & BMCR_FULLDPLX) {
  1059. bp->duplex = DUPLEX_FULL;
  1060. }
  1061. else {
  1062. bp->duplex = DUPLEX_HALF;
  1063. }
  1064. }
  1065. return 0;
  1066. }
  1067. static void
  1068. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1069. {
  1070. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1071. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1072. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1073. val |= 0x02 << 8;
  1074. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1075. u32 lo_water, hi_water;
  1076. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1077. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1078. else
  1079. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1080. if (lo_water >= bp->rx_ring_size)
  1081. lo_water = 0;
  1082. hi_water = bp->rx_ring_size / 4;
  1083. if (hi_water <= lo_water)
  1084. lo_water = 0;
  1085. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1086. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1087. if (hi_water > 0xf)
  1088. hi_water = 0xf;
  1089. else if (hi_water == 0)
  1090. lo_water = 0;
  1091. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1092. }
  1093. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1094. }
  1095. static void
  1096. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1097. {
  1098. int i;
  1099. u32 cid;
  1100. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1101. if (i == 1)
  1102. cid = RX_RSS_CID;
  1103. bnx2_init_rx_context(bp, cid);
  1104. }
  1105. }
  1106. static void
  1107. bnx2_set_mac_link(struct bnx2 *bp)
  1108. {
  1109. u32 val;
  1110. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1111. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1112. (bp->duplex == DUPLEX_HALF)) {
  1113. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1114. }
  1115. /* Configure the EMAC mode register. */
  1116. val = REG_RD(bp, BNX2_EMAC_MODE);
  1117. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1118. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1119. BNX2_EMAC_MODE_25G_MODE);
  1120. if (bp->link_up) {
  1121. switch (bp->line_speed) {
  1122. case SPEED_10:
  1123. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1124. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1125. break;
  1126. }
  1127. /* fall through */
  1128. case SPEED_100:
  1129. val |= BNX2_EMAC_MODE_PORT_MII;
  1130. break;
  1131. case SPEED_2500:
  1132. val |= BNX2_EMAC_MODE_25G_MODE;
  1133. /* fall through */
  1134. case SPEED_1000:
  1135. val |= BNX2_EMAC_MODE_PORT_GMII;
  1136. break;
  1137. }
  1138. }
  1139. else {
  1140. val |= BNX2_EMAC_MODE_PORT_GMII;
  1141. }
  1142. /* Set the MAC to operate in the appropriate duplex mode. */
  1143. if (bp->duplex == DUPLEX_HALF)
  1144. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1145. REG_WR(bp, BNX2_EMAC_MODE, val);
  1146. /* Enable/disable rx PAUSE. */
  1147. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1148. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1149. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1150. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1151. /* Enable/disable tx PAUSE. */
  1152. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1153. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1154. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1155. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1156. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1157. /* Acknowledge the interrupt. */
  1158. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1159. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1160. bnx2_init_all_rx_contexts(bp);
  1161. }
  1162. static void
  1163. bnx2_enable_bmsr1(struct bnx2 *bp)
  1164. {
  1165. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1166. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1167. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1168. MII_BNX2_BLK_ADDR_GP_STATUS);
  1169. }
  1170. static void
  1171. bnx2_disable_bmsr1(struct bnx2 *bp)
  1172. {
  1173. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1174. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1175. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1176. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1177. }
  1178. static int
  1179. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1180. {
  1181. u32 up1;
  1182. int ret = 1;
  1183. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1184. return 0;
  1185. if (bp->autoneg & AUTONEG_SPEED)
  1186. bp->advertising |= ADVERTISED_2500baseX_Full;
  1187. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1188. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1189. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1190. if (!(up1 & BCM5708S_UP1_2G5)) {
  1191. up1 |= BCM5708S_UP1_2G5;
  1192. bnx2_write_phy(bp, bp->mii_up1, up1);
  1193. ret = 0;
  1194. }
  1195. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1196. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1197. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1198. return ret;
  1199. }
  1200. static int
  1201. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1202. {
  1203. u32 up1;
  1204. int ret = 0;
  1205. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1206. return 0;
  1207. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1208. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1209. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1210. if (up1 & BCM5708S_UP1_2G5) {
  1211. up1 &= ~BCM5708S_UP1_2G5;
  1212. bnx2_write_phy(bp, bp->mii_up1, up1);
  1213. ret = 1;
  1214. }
  1215. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1216. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1217. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1218. return ret;
  1219. }
  1220. static void
  1221. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1222. {
  1223. u32 bmcr;
  1224. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1225. return;
  1226. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1227. u32 val;
  1228. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1229. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1230. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1231. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1232. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1233. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1234. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1235. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1236. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1237. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1238. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1239. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1240. }
  1241. if (bp->autoneg & AUTONEG_SPEED) {
  1242. bmcr &= ~BMCR_ANENABLE;
  1243. if (bp->req_duplex == DUPLEX_FULL)
  1244. bmcr |= BMCR_FULLDPLX;
  1245. }
  1246. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1247. }
  1248. static void
  1249. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1250. {
  1251. u32 bmcr;
  1252. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1253. return;
  1254. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1255. u32 val;
  1256. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1257. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1258. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1259. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1260. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1261. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1262. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1263. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1264. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1265. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1266. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1267. }
  1268. if (bp->autoneg & AUTONEG_SPEED)
  1269. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1270. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1271. }
  1272. static void
  1273. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1274. {
  1275. u32 val;
  1276. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1277. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1278. if (start)
  1279. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1280. else
  1281. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1282. }
  1283. static int
  1284. bnx2_set_link(struct bnx2 *bp)
  1285. {
  1286. u32 bmsr;
  1287. u8 link_up;
  1288. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1289. bp->link_up = 1;
  1290. return 0;
  1291. }
  1292. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1293. return 0;
  1294. link_up = bp->link_up;
  1295. bnx2_enable_bmsr1(bp);
  1296. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1297. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1298. bnx2_disable_bmsr1(bp);
  1299. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1300. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1301. u32 val, an_dbg;
  1302. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1303. bnx2_5706s_force_link_dn(bp, 0);
  1304. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1305. }
  1306. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1307. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1308. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1309. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1310. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1311. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1312. bmsr |= BMSR_LSTATUS;
  1313. else
  1314. bmsr &= ~BMSR_LSTATUS;
  1315. }
  1316. if (bmsr & BMSR_LSTATUS) {
  1317. bp->link_up = 1;
  1318. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1319. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1320. bnx2_5706s_linkup(bp);
  1321. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1322. bnx2_5708s_linkup(bp);
  1323. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1324. bnx2_5709s_linkup(bp);
  1325. }
  1326. else {
  1327. bnx2_copper_linkup(bp);
  1328. }
  1329. bnx2_resolve_flow_ctrl(bp);
  1330. }
  1331. else {
  1332. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1333. (bp->autoneg & AUTONEG_SPEED))
  1334. bnx2_disable_forced_2g5(bp);
  1335. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1336. u32 bmcr;
  1337. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1338. bmcr |= BMCR_ANENABLE;
  1339. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1340. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1341. }
  1342. bp->link_up = 0;
  1343. }
  1344. if (bp->link_up != link_up) {
  1345. bnx2_report_link(bp);
  1346. }
  1347. bnx2_set_mac_link(bp);
  1348. return 0;
  1349. }
  1350. static int
  1351. bnx2_reset_phy(struct bnx2 *bp)
  1352. {
  1353. int i;
  1354. u32 reg;
  1355. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1356. #define PHY_RESET_MAX_WAIT 100
  1357. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1358. udelay(10);
  1359. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1360. if (!(reg & BMCR_RESET)) {
  1361. udelay(20);
  1362. break;
  1363. }
  1364. }
  1365. if (i == PHY_RESET_MAX_WAIT) {
  1366. return -EBUSY;
  1367. }
  1368. return 0;
  1369. }
  1370. static u32
  1371. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1372. {
  1373. u32 adv = 0;
  1374. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1375. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1376. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1377. adv = ADVERTISE_1000XPAUSE;
  1378. }
  1379. else {
  1380. adv = ADVERTISE_PAUSE_CAP;
  1381. }
  1382. }
  1383. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1384. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1385. adv = ADVERTISE_1000XPSE_ASYM;
  1386. }
  1387. else {
  1388. adv = ADVERTISE_PAUSE_ASYM;
  1389. }
  1390. }
  1391. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1392. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1393. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1394. }
  1395. else {
  1396. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1397. }
  1398. }
  1399. return adv;
  1400. }
  1401. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1402. static int
  1403. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1404. __releases(&bp->phy_lock)
  1405. __acquires(&bp->phy_lock)
  1406. {
  1407. u32 speed_arg = 0, pause_adv;
  1408. pause_adv = bnx2_phy_get_pause_adv(bp);
  1409. if (bp->autoneg & AUTONEG_SPEED) {
  1410. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1411. if (bp->advertising & ADVERTISED_10baseT_Half)
  1412. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1413. if (bp->advertising & ADVERTISED_10baseT_Full)
  1414. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1415. if (bp->advertising & ADVERTISED_100baseT_Half)
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1417. if (bp->advertising & ADVERTISED_100baseT_Full)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1419. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1421. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1423. } else {
  1424. if (bp->req_line_speed == SPEED_2500)
  1425. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1426. else if (bp->req_line_speed == SPEED_1000)
  1427. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1428. else if (bp->req_line_speed == SPEED_100) {
  1429. if (bp->req_duplex == DUPLEX_FULL)
  1430. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1431. else
  1432. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1433. } else if (bp->req_line_speed == SPEED_10) {
  1434. if (bp->req_duplex == DUPLEX_FULL)
  1435. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1436. else
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1438. }
  1439. }
  1440. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1441. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1442. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1443. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1444. if (port == PORT_TP)
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1446. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1447. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1448. spin_unlock_bh(&bp->phy_lock);
  1449. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1450. spin_lock_bh(&bp->phy_lock);
  1451. return 0;
  1452. }
  1453. static int
  1454. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1455. __releases(&bp->phy_lock)
  1456. __acquires(&bp->phy_lock)
  1457. {
  1458. u32 adv, bmcr;
  1459. u32 new_adv = 0;
  1460. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1461. return (bnx2_setup_remote_phy(bp, port));
  1462. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1463. u32 new_bmcr;
  1464. int force_link_down = 0;
  1465. if (bp->req_line_speed == SPEED_2500) {
  1466. if (!bnx2_test_and_enable_2g5(bp))
  1467. force_link_down = 1;
  1468. } else if (bp->req_line_speed == SPEED_1000) {
  1469. if (bnx2_test_and_disable_2g5(bp))
  1470. force_link_down = 1;
  1471. }
  1472. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1473. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1474. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1475. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1476. new_bmcr |= BMCR_SPEED1000;
  1477. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1478. if (bp->req_line_speed == SPEED_2500)
  1479. bnx2_enable_forced_2g5(bp);
  1480. else if (bp->req_line_speed == SPEED_1000) {
  1481. bnx2_disable_forced_2g5(bp);
  1482. new_bmcr &= ~0x2000;
  1483. }
  1484. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1485. if (bp->req_line_speed == SPEED_2500)
  1486. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1487. else
  1488. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1489. }
  1490. if (bp->req_duplex == DUPLEX_FULL) {
  1491. adv |= ADVERTISE_1000XFULL;
  1492. new_bmcr |= BMCR_FULLDPLX;
  1493. }
  1494. else {
  1495. adv |= ADVERTISE_1000XHALF;
  1496. new_bmcr &= ~BMCR_FULLDPLX;
  1497. }
  1498. if ((new_bmcr != bmcr) || (force_link_down)) {
  1499. /* Force a link down visible on the other side */
  1500. if (bp->link_up) {
  1501. bnx2_write_phy(bp, bp->mii_adv, adv &
  1502. ~(ADVERTISE_1000XFULL |
  1503. ADVERTISE_1000XHALF));
  1504. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1505. BMCR_ANRESTART | BMCR_ANENABLE);
  1506. bp->link_up = 0;
  1507. netif_carrier_off(bp->dev);
  1508. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1509. bnx2_report_link(bp);
  1510. }
  1511. bnx2_write_phy(bp, bp->mii_adv, adv);
  1512. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1513. } else {
  1514. bnx2_resolve_flow_ctrl(bp);
  1515. bnx2_set_mac_link(bp);
  1516. }
  1517. return 0;
  1518. }
  1519. bnx2_test_and_enable_2g5(bp);
  1520. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1521. new_adv |= ADVERTISE_1000XFULL;
  1522. new_adv |= bnx2_phy_get_pause_adv(bp);
  1523. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1524. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1525. bp->serdes_an_pending = 0;
  1526. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1527. /* Force a link down visible on the other side */
  1528. if (bp->link_up) {
  1529. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1530. spin_unlock_bh(&bp->phy_lock);
  1531. msleep(20);
  1532. spin_lock_bh(&bp->phy_lock);
  1533. }
  1534. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1535. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1536. BMCR_ANENABLE);
  1537. /* Speed up link-up time when the link partner
  1538. * does not autonegotiate which is very common
  1539. * in blade servers. Some blade servers use
  1540. * IPMI for kerboard input and it's important
  1541. * to minimize link disruptions. Autoneg. involves
  1542. * exchanging base pages plus 3 next pages and
  1543. * normally completes in about 120 msec.
  1544. */
  1545. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1546. bp->serdes_an_pending = 1;
  1547. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1548. } else {
  1549. bnx2_resolve_flow_ctrl(bp);
  1550. bnx2_set_mac_link(bp);
  1551. }
  1552. return 0;
  1553. }
  1554. #define ETHTOOL_ALL_FIBRE_SPEED \
  1555. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1556. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1557. (ADVERTISED_1000baseT_Full)
  1558. #define ETHTOOL_ALL_COPPER_SPEED \
  1559. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1560. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1561. ADVERTISED_1000baseT_Full)
  1562. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1563. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1564. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1565. static void
  1566. bnx2_set_default_remote_link(struct bnx2 *bp)
  1567. {
  1568. u32 link;
  1569. if (bp->phy_port == PORT_TP)
  1570. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1571. else
  1572. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1573. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1574. bp->req_line_speed = 0;
  1575. bp->autoneg |= AUTONEG_SPEED;
  1576. bp->advertising = ADVERTISED_Autoneg;
  1577. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1578. bp->advertising |= ADVERTISED_10baseT_Half;
  1579. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1580. bp->advertising |= ADVERTISED_10baseT_Full;
  1581. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1582. bp->advertising |= ADVERTISED_100baseT_Half;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1584. bp->advertising |= ADVERTISED_100baseT_Full;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1586. bp->advertising |= ADVERTISED_1000baseT_Full;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1588. bp->advertising |= ADVERTISED_2500baseX_Full;
  1589. } else {
  1590. bp->autoneg = 0;
  1591. bp->advertising = 0;
  1592. bp->req_duplex = DUPLEX_FULL;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1594. bp->req_line_speed = SPEED_10;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1596. bp->req_duplex = DUPLEX_HALF;
  1597. }
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1599. bp->req_line_speed = SPEED_100;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1601. bp->req_duplex = DUPLEX_HALF;
  1602. }
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1604. bp->req_line_speed = SPEED_1000;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1606. bp->req_line_speed = SPEED_2500;
  1607. }
  1608. }
  1609. static void
  1610. bnx2_set_default_link(struct bnx2 *bp)
  1611. {
  1612. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1613. bnx2_set_default_remote_link(bp);
  1614. return;
  1615. }
  1616. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1617. bp->req_line_speed = 0;
  1618. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1619. u32 reg;
  1620. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1621. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1622. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1623. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1624. bp->autoneg = 0;
  1625. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1626. bp->req_duplex = DUPLEX_FULL;
  1627. }
  1628. } else
  1629. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1630. }
  1631. static void
  1632. bnx2_send_heart_beat(struct bnx2 *bp)
  1633. {
  1634. u32 msg;
  1635. u32 addr;
  1636. spin_lock(&bp->indirect_lock);
  1637. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1638. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1639. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1640. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1641. spin_unlock(&bp->indirect_lock);
  1642. }
  1643. static void
  1644. bnx2_remote_phy_event(struct bnx2 *bp)
  1645. {
  1646. u32 msg;
  1647. u8 link_up = bp->link_up;
  1648. u8 old_port;
  1649. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1650. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1651. bnx2_send_heart_beat(bp);
  1652. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1653. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1654. bp->link_up = 0;
  1655. else {
  1656. u32 speed;
  1657. bp->link_up = 1;
  1658. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1659. bp->duplex = DUPLEX_FULL;
  1660. switch (speed) {
  1661. case BNX2_LINK_STATUS_10HALF:
  1662. bp->duplex = DUPLEX_HALF;
  1663. case BNX2_LINK_STATUS_10FULL:
  1664. bp->line_speed = SPEED_10;
  1665. break;
  1666. case BNX2_LINK_STATUS_100HALF:
  1667. bp->duplex = DUPLEX_HALF;
  1668. case BNX2_LINK_STATUS_100BASE_T4:
  1669. case BNX2_LINK_STATUS_100FULL:
  1670. bp->line_speed = SPEED_100;
  1671. break;
  1672. case BNX2_LINK_STATUS_1000HALF:
  1673. bp->duplex = DUPLEX_HALF;
  1674. case BNX2_LINK_STATUS_1000FULL:
  1675. bp->line_speed = SPEED_1000;
  1676. break;
  1677. case BNX2_LINK_STATUS_2500HALF:
  1678. bp->duplex = DUPLEX_HALF;
  1679. case BNX2_LINK_STATUS_2500FULL:
  1680. bp->line_speed = SPEED_2500;
  1681. break;
  1682. default:
  1683. bp->line_speed = 0;
  1684. break;
  1685. }
  1686. bp->flow_ctrl = 0;
  1687. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1688. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1689. if (bp->duplex == DUPLEX_FULL)
  1690. bp->flow_ctrl = bp->req_flow_ctrl;
  1691. } else {
  1692. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1693. bp->flow_ctrl |= FLOW_CTRL_TX;
  1694. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1695. bp->flow_ctrl |= FLOW_CTRL_RX;
  1696. }
  1697. old_port = bp->phy_port;
  1698. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1699. bp->phy_port = PORT_FIBRE;
  1700. else
  1701. bp->phy_port = PORT_TP;
  1702. if (old_port != bp->phy_port)
  1703. bnx2_set_default_link(bp);
  1704. }
  1705. if (bp->link_up != link_up)
  1706. bnx2_report_link(bp);
  1707. bnx2_set_mac_link(bp);
  1708. }
  1709. static int
  1710. bnx2_set_remote_link(struct bnx2 *bp)
  1711. {
  1712. u32 evt_code;
  1713. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1714. switch (evt_code) {
  1715. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1716. bnx2_remote_phy_event(bp);
  1717. break;
  1718. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1719. default:
  1720. bnx2_send_heart_beat(bp);
  1721. break;
  1722. }
  1723. return 0;
  1724. }
  1725. static int
  1726. bnx2_setup_copper_phy(struct bnx2 *bp)
  1727. __releases(&bp->phy_lock)
  1728. __acquires(&bp->phy_lock)
  1729. {
  1730. u32 bmcr;
  1731. u32 new_bmcr;
  1732. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1733. if (bp->autoneg & AUTONEG_SPEED) {
  1734. u32 adv_reg, adv1000_reg;
  1735. u32 new_adv_reg = 0;
  1736. u32 new_adv1000_reg = 0;
  1737. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1738. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1739. ADVERTISE_PAUSE_ASYM);
  1740. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1741. adv1000_reg &= PHY_ALL_1000_SPEED;
  1742. if (bp->advertising & ADVERTISED_10baseT_Half)
  1743. new_adv_reg |= ADVERTISE_10HALF;
  1744. if (bp->advertising & ADVERTISED_10baseT_Full)
  1745. new_adv_reg |= ADVERTISE_10FULL;
  1746. if (bp->advertising & ADVERTISED_100baseT_Half)
  1747. new_adv_reg |= ADVERTISE_100HALF;
  1748. if (bp->advertising & ADVERTISED_100baseT_Full)
  1749. new_adv_reg |= ADVERTISE_100FULL;
  1750. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1751. new_adv1000_reg |= ADVERTISE_1000FULL;
  1752. new_adv_reg |= ADVERTISE_CSMA;
  1753. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1754. if ((adv1000_reg != new_adv1000_reg) ||
  1755. (adv_reg != new_adv_reg) ||
  1756. ((bmcr & BMCR_ANENABLE) == 0)) {
  1757. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1758. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1759. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1760. BMCR_ANENABLE);
  1761. }
  1762. else if (bp->link_up) {
  1763. /* Flow ctrl may have changed from auto to forced */
  1764. /* or vice-versa. */
  1765. bnx2_resolve_flow_ctrl(bp);
  1766. bnx2_set_mac_link(bp);
  1767. }
  1768. return 0;
  1769. }
  1770. new_bmcr = 0;
  1771. if (bp->req_line_speed == SPEED_100) {
  1772. new_bmcr |= BMCR_SPEED100;
  1773. }
  1774. if (bp->req_duplex == DUPLEX_FULL) {
  1775. new_bmcr |= BMCR_FULLDPLX;
  1776. }
  1777. if (new_bmcr != bmcr) {
  1778. u32 bmsr;
  1779. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1780. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1781. if (bmsr & BMSR_LSTATUS) {
  1782. /* Force link down */
  1783. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1784. spin_unlock_bh(&bp->phy_lock);
  1785. msleep(50);
  1786. spin_lock_bh(&bp->phy_lock);
  1787. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1788. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1789. }
  1790. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1791. /* Normally, the new speed is setup after the link has
  1792. * gone down and up again. In some cases, link will not go
  1793. * down so we need to set up the new speed here.
  1794. */
  1795. if (bmsr & BMSR_LSTATUS) {
  1796. bp->line_speed = bp->req_line_speed;
  1797. bp->duplex = bp->req_duplex;
  1798. bnx2_resolve_flow_ctrl(bp);
  1799. bnx2_set_mac_link(bp);
  1800. }
  1801. } else {
  1802. bnx2_resolve_flow_ctrl(bp);
  1803. bnx2_set_mac_link(bp);
  1804. }
  1805. return 0;
  1806. }
  1807. static int
  1808. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1809. __releases(&bp->phy_lock)
  1810. __acquires(&bp->phy_lock)
  1811. {
  1812. if (bp->loopback == MAC_LOOPBACK)
  1813. return 0;
  1814. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1815. return (bnx2_setup_serdes_phy(bp, port));
  1816. }
  1817. else {
  1818. return (bnx2_setup_copper_phy(bp));
  1819. }
  1820. }
  1821. static int
  1822. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1823. {
  1824. u32 val;
  1825. bp->mii_bmcr = MII_BMCR + 0x10;
  1826. bp->mii_bmsr = MII_BMSR + 0x10;
  1827. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1828. bp->mii_adv = MII_ADVERTISE + 0x10;
  1829. bp->mii_lpa = MII_LPA + 0x10;
  1830. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1831. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1832. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1833. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1834. if (reset_phy)
  1835. bnx2_reset_phy(bp);
  1836. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1837. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1838. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1839. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1840. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1841. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1842. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1843. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1844. val |= BCM5708S_UP1_2G5;
  1845. else
  1846. val &= ~BCM5708S_UP1_2G5;
  1847. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1849. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1850. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1851. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1852. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1853. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1854. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1855. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1857. return 0;
  1858. }
  1859. static int
  1860. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1861. {
  1862. u32 val;
  1863. if (reset_phy)
  1864. bnx2_reset_phy(bp);
  1865. bp->mii_up1 = BCM5708S_UP1;
  1866. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1867. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1868. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1869. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1870. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1871. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1872. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1873. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1874. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1875. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1876. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1877. val |= BCM5708S_UP1_2G5;
  1878. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1879. }
  1880. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1881. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1882. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1883. /* increase tx signal amplitude */
  1884. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1885. BCM5708S_BLK_ADDR_TX_MISC);
  1886. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1887. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1888. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1889. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1890. }
  1891. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1892. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1893. if (val) {
  1894. u32 is_backplane;
  1895. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1896. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1897. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1898. BCM5708S_BLK_ADDR_TX_MISC);
  1899. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1900. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1901. BCM5708S_BLK_ADDR_DIG);
  1902. }
  1903. }
  1904. return 0;
  1905. }
  1906. static int
  1907. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1908. {
  1909. if (reset_phy)
  1910. bnx2_reset_phy(bp);
  1911. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1912. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1913. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1914. if (bp->dev->mtu > 1500) {
  1915. u32 val;
  1916. /* Set extended packet length bit */
  1917. bnx2_write_phy(bp, 0x18, 0x7);
  1918. bnx2_read_phy(bp, 0x18, &val);
  1919. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1920. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1921. bnx2_read_phy(bp, 0x1c, &val);
  1922. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1923. }
  1924. else {
  1925. u32 val;
  1926. bnx2_write_phy(bp, 0x18, 0x7);
  1927. bnx2_read_phy(bp, 0x18, &val);
  1928. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1929. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1930. bnx2_read_phy(bp, 0x1c, &val);
  1931. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1932. }
  1933. return 0;
  1934. }
  1935. static int
  1936. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1937. {
  1938. u32 val;
  1939. if (reset_phy)
  1940. bnx2_reset_phy(bp);
  1941. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1942. bnx2_write_phy(bp, 0x18, 0x0c00);
  1943. bnx2_write_phy(bp, 0x17, 0x000a);
  1944. bnx2_write_phy(bp, 0x15, 0x310b);
  1945. bnx2_write_phy(bp, 0x17, 0x201f);
  1946. bnx2_write_phy(bp, 0x15, 0x9506);
  1947. bnx2_write_phy(bp, 0x17, 0x401f);
  1948. bnx2_write_phy(bp, 0x15, 0x14e2);
  1949. bnx2_write_phy(bp, 0x18, 0x0400);
  1950. }
  1951. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1952. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1953. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1954. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1955. val &= ~(1 << 8);
  1956. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1957. }
  1958. if (bp->dev->mtu > 1500) {
  1959. /* Set extended packet length bit */
  1960. bnx2_write_phy(bp, 0x18, 0x7);
  1961. bnx2_read_phy(bp, 0x18, &val);
  1962. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1963. bnx2_read_phy(bp, 0x10, &val);
  1964. bnx2_write_phy(bp, 0x10, val | 0x1);
  1965. }
  1966. else {
  1967. bnx2_write_phy(bp, 0x18, 0x7);
  1968. bnx2_read_phy(bp, 0x18, &val);
  1969. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1970. bnx2_read_phy(bp, 0x10, &val);
  1971. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1972. }
  1973. /* ethernet@wirespeed */
  1974. bnx2_write_phy(bp, 0x18, 0x7007);
  1975. bnx2_read_phy(bp, 0x18, &val);
  1976. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1977. return 0;
  1978. }
  1979. static int
  1980. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1981. __releases(&bp->phy_lock)
  1982. __acquires(&bp->phy_lock)
  1983. {
  1984. u32 val;
  1985. int rc = 0;
  1986. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1987. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1988. bp->mii_bmcr = MII_BMCR;
  1989. bp->mii_bmsr = MII_BMSR;
  1990. bp->mii_bmsr1 = MII_BMSR;
  1991. bp->mii_adv = MII_ADVERTISE;
  1992. bp->mii_lpa = MII_LPA;
  1993. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1994. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1995. goto setup_phy;
  1996. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1997. bp->phy_id = val << 16;
  1998. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1999. bp->phy_id |= val & 0xffff;
  2000. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2001. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2002. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2003. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2004. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2005. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2006. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2007. }
  2008. else {
  2009. rc = bnx2_init_copper_phy(bp, reset_phy);
  2010. }
  2011. setup_phy:
  2012. if (!rc)
  2013. rc = bnx2_setup_phy(bp, bp->phy_port);
  2014. return rc;
  2015. }
  2016. static int
  2017. bnx2_set_mac_loopback(struct bnx2 *bp)
  2018. {
  2019. u32 mac_mode;
  2020. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2021. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2022. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2023. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2024. bp->link_up = 1;
  2025. return 0;
  2026. }
  2027. static int bnx2_test_link(struct bnx2 *);
  2028. static int
  2029. bnx2_set_phy_loopback(struct bnx2 *bp)
  2030. {
  2031. u32 mac_mode;
  2032. int rc, i;
  2033. spin_lock_bh(&bp->phy_lock);
  2034. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2035. BMCR_SPEED1000);
  2036. spin_unlock_bh(&bp->phy_lock);
  2037. if (rc)
  2038. return rc;
  2039. for (i = 0; i < 10; i++) {
  2040. if (bnx2_test_link(bp) == 0)
  2041. break;
  2042. msleep(100);
  2043. }
  2044. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2045. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2046. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2047. BNX2_EMAC_MODE_25G_MODE);
  2048. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2049. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2050. bp->link_up = 1;
  2051. return 0;
  2052. }
  2053. static int
  2054. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2055. {
  2056. int i;
  2057. u32 val;
  2058. bp->fw_wr_seq++;
  2059. msg_data |= bp->fw_wr_seq;
  2060. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2061. if (!ack)
  2062. return 0;
  2063. /* wait for an acknowledgement. */
  2064. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2065. msleep(10);
  2066. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2067. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2068. break;
  2069. }
  2070. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2071. return 0;
  2072. /* If we timed out, inform the firmware that this is the case. */
  2073. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2074. if (!silent)
  2075. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2076. "%x\n", msg_data);
  2077. msg_data &= ~BNX2_DRV_MSG_CODE;
  2078. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2079. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2080. return -EBUSY;
  2081. }
  2082. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2083. return -EIO;
  2084. return 0;
  2085. }
  2086. static int
  2087. bnx2_init_5709_context(struct bnx2 *bp)
  2088. {
  2089. int i, ret = 0;
  2090. u32 val;
  2091. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2092. val |= (BCM_PAGE_BITS - 8) << 16;
  2093. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2094. for (i = 0; i < 10; i++) {
  2095. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2096. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2097. break;
  2098. udelay(2);
  2099. }
  2100. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2101. return -EBUSY;
  2102. for (i = 0; i < bp->ctx_pages; i++) {
  2103. int j;
  2104. if (bp->ctx_blk[i])
  2105. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2106. else
  2107. return -ENOMEM;
  2108. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2109. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2110. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2111. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2112. (u64) bp->ctx_blk_mapping[i] >> 32);
  2113. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2114. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2115. for (j = 0; j < 10; j++) {
  2116. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2117. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2118. break;
  2119. udelay(5);
  2120. }
  2121. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2122. ret = -EBUSY;
  2123. break;
  2124. }
  2125. }
  2126. return ret;
  2127. }
  2128. static void
  2129. bnx2_init_context(struct bnx2 *bp)
  2130. {
  2131. u32 vcid;
  2132. vcid = 96;
  2133. while (vcid) {
  2134. u32 vcid_addr, pcid_addr, offset;
  2135. int i;
  2136. vcid--;
  2137. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2138. u32 new_vcid;
  2139. vcid_addr = GET_PCID_ADDR(vcid);
  2140. if (vcid & 0x8) {
  2141. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2142. }
  2143. else {
  2144. new_vcid = vcid;
  2145. }
  2146. pcid_addr = GET_PCID_ADDR(new_vcid);
  2147. }
  2148. else {
  2149. vcid_addr = GET_CID_ADDR(vcid);
  2150. pcid_addr = vcid_addr;
  2151. }
  2152. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2153. vcid_addr += (i << PHY_CTX_SHIFT);
  2154. pcid_addr += (i << PHY_CTX_SHIFT);
  2155. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2156. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2157. /* Zero out the context. */
  2158. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2159. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2160. }
  2161. }
  2162. }
  2163. static int
  2164. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2165. {
  2166. u16 *good_mbuf;
  2167. u32 good_mbuf_cnt;
  2168. u32 val;
  2169. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2170. if (good_mbuf == NULL) {
  2171. printk(KERN_ERR PFX "Failed to allocate memory in "
  2172. "bnx2_alloc_bad_rbuf\n");
  2173. return -ENOMEM;
  2174. }
  2175. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2176. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2177. good_mbuf_cnt = 0;
  2178. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2179. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2180. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2181. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2182. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2183. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2184. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2185. /* The addresses with Bit 9 set are bad memory blocks. */
  2186. if (!(val & (1 << 9))) {
  2187. good_mbuf[good_mbuf_cnt] = (u16) val;
  2188. good_mbuf_cnt++;
  2189. }
  2190. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2191. }
  2192. /* Free the good ones back to the mbuf pool thus discarding
  2193. * all the bad ones. */
  2194. while (good_mbuf_cnt) {
  2195. good_mbuf_cnt--;
  2196. val = good_mbuf[good_mbuf_cnt];
  2197. val = (val << 9) | val | 1;
  2198. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2199. }
  2200. kfree(good_mbuf);
  2201. return 0;
  2202. }
  2203. static void
  2204. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2205. {
  2206. u32 val;
  2207. val = (mac_addr[0] << 8) | mac_addr[1];
  2208. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2209. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2210. (mac_addr[4] << 8) | mac_addr[5];
  2211. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2212. }
  2213. static inline int
  2214. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2215. {
  2216. dma_addr_t mapping;
  2217. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2218. struct rx_bd *rxbd =
  2219. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2220. struct page *page = alloc_page(GFP_ATOMIC);
  2221. if (!page)
  2222. return -ENOMEM;
  2223. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2224. PCI_DMA_FROMDEVICE);
  2225. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2226. __free_page(page);
  2227. return -EIO;
  2228. }
  2229. rx_pg->page = page;
  2230. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2231. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2232. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2233. return 0;
  2234. }
  2235. static void
  2236. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2237. {
  2238. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2239. struct page *page = rx_pg->page;
  2240. if (!page)
  2241. return;
  2242. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2243. PCI_DMA_FROMDEVICE);
  2244. __free_page(page);
  2245. rx_pg->page = NULL;
  2246. }
  2247. static inline int
  2248. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2249. {
  2250. struct sk_buff *skb;
  2251. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2252. dma_addr_t mapping;
  2253. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2254. unsigned long align;
  2255. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2256. if (skb == NULL) {
  2257. return -ENOMEM;
  2258. }
  2259. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2260. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2261. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2262. PCI_DMA_FROMDEVICE);
  2263. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2264. dev_kfree_skb(skb);
  2265. return -EIO;
  2266. }
  2267. rx_buf->skb = skb;
  2268. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2269. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2270. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2271. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2272. return 0;
  2273. }
  2274. static int
  2275. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2276. {
  2277. struct status_block *sblk = bnapi->status_blk.msi;
  2278. u32 new_link_state, old_link_state;
  2279. int is_set = 1;
  2280. new_link_state = sblk->status_attn_bits & event;
  2281. old_link_state = sblk->status_attn_bits_ack & event;
  2282. if (new_link_state != old_link_state) {
  2283. if (new_link_state)
  2284. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2285. else
  2286. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2287. } else
  2288. is_set = 0;
  2289. return is_set;
  2290. }
  2291. static void
  2292. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2293. {
  2294. spin_lock(&bp->phy_lock);
  2295. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2296. bnx2_set_link(bp);
  2297. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2298. bnx2_set_remote_link(bp);
  2299. spin_unlock(&bp->phy_lock);
  2300. }
  2301. static inline u16
  2302. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2303. {
  2304. u16 cons;
  2305. /* Tell compiler that status block fields can change. */
  2306. barrier();
  2307. cons = *bnapi->hw_tx_cons_ptr;
  2308. barrier();
  2309. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2310. cons++;
  2311. return cons;
  2312. }
  2313. static int
  2314. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2315. {
  2316. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2317. u16 hw_cons, sw_cons, sw_ring_cons;
  2318. int tx_pkt = 0, index;
  2319. struct netdev_queue *txq;
  2320. index = (bnapi - bp->bnx2_napi);
  2321. txq = netdev_get_tx_queue(bp->dev, index);
  2322. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2323. sw_cons = txr->tx_cons;
  2324. while (sw_cons != hw_cons) {
  2325. struct sw_tx_bd *tx_buf;
  2326. struct sk_buff *skb;
  2327. int i, last;
  2328. sw_ring_cons = TX_RING_IDX(sw_cons);
  2329. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2330. skb = tx_buf->skb;
  2331. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2332. prefetch(&skb->end);
  2333. /* partial BD completions possible with TSO packets */
  2334. if (tx_buf->is_gso) {
  2335. u16 last_idx, last_ring_idx;
  2336. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2337. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2338. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2339. last_idx++;
  2340. }
  2341. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2342. break;
  2343. }
  2344. }
  2345. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2346. tx_buf->skb = NULL;
  2347. last = tx_buf->nr_frags;
  2348. for (i = 0; i < last; i++) {
  2349. sw_cons = NEXT_TX_BD(sw_cons);
  2350. }
  2351. sw_cons = NEXT_TX_BD(sw_cons);
  2352. dev_kfree_skb(skb);
  2353. tx_pkt++;
  2354. if (tx_pkt == budget)
  2355. break;
  2356. if (hw_cons == sw_cons)
  2357. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2358. }
  2359. txr->hw_tx_cons = hw_cons;
  2360. txr->tx_cons = sw_cons;
  2361. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2362. * before checking for netif_tx_queue_stopped(). Without the
  2363. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2364. * will miss it and cause the queue to be stopped forever.
  2365. */
  2366. smp_mb();
  2367. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2368. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2369. __netif_tx_lock(txq, smp_processor_id());
  2370. if ((netif_tx_queue_stopped(txq)) &&
  2371. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2372. netif_tx_wake_queue(txq);
  2373. __netif_tx_unlock(txq);
  2374. }
  2375. return tx_pkt;
  2376. }
  2377. static void
  2378. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2379. struct sk_buff *skb, int count)
  2380. {
  2381. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2382. struct rx_bd *cons_bd, *prod_bd;
  2383. int i;
  2384. u16 hw_prod, prod;
  2385. u16 cons = rxr->rx_pg_cons;
  2386. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2387. /* The caller was unable to allocate a new page to replace the
  2388. * last one in the frags array, so we need to recycle that page
  2389. * and then free the skb.
  2390. */
  2391. if (skb) {
  2392. struct page *page;
  2393. struct skb_shared_info *shinfo;
  2394. shinfo = skb_shinfo(skb);
  2395. shinfo->nr_frags--;
  2396. page = shinfo->frags[shinfo->nr_frags].page;
  2397. shinfo->frags[shinfo->nr_frags].page = NULL;
  2398. cons_rx_pg->page = page;
  2399. dev_kfree_skb(skb);
  2400. }
  2401. hw_prod = rxr->rx_pg_prod;
  2402. for (i = 0; i < count; i++) {
  2403. prod = RX_PG_RING_IDX(hw_prod);
  2404. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2405. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2406. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2407. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2408. if (prod != cons) {
  2409. prod_rx_pg->page = cons_rx_pg->page;
  2410. cons_rx_pg->page = NULL;
  2411. pci_unmap_addr_set(prod_rx_pg, mapping,
  2412. pci_unmap_addr(cons_rx_pg, mapping));
  2413. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2414. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2415. }
  2416. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2417. hw_prod = NEXT_RX_BD(hw_prod);
  2418. }
  2419. rxr->rx_pg_prod = hw_prod;
  2420. rxr->rx_pg_cons = cons;
  2421. }
  2422. static inline void
  2423. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2424. struct sk_buff *skb, u16 cons, u16 prod)
  2425. {
  2426. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2427. struct rx_bd *cons_bd, *prod_bd;
  2428. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2429. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2430. pci_dma_sync_single_for_device(bp->pdev,
  2431. pci_unmap_addr(cons_rx_buf, mapping),
  2432. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2433. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2434. prod_rx_buf->skb = skb;
  2435. if (cons == prod)
  2436. return;
  2437. pci_unmap_addr_set(prod_rx_buf, mapping,
  2438. pci_unmap_addr(cons_rx_buf, mapping));
  2439. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2440. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2441. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2442. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2443. }
  2444. static int
  2445. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2446. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2447. u32 ring_idx)
  2448. {
  2449. int err;
  2450. u16 prod = ring_idx & 0xffff;
  2451. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2452. if (unlikely(err)) {
  2453. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2454. if (hdr_len) {
  2455. unsigned int raw_len = len + 4;
  2456. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2457. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2458. }
  2459. return err;
  2460. }
  2461. skb_reserve(skb, BNX2_RX_OFFSET);
  2462. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2463. PCI_DMA_FROMDEVICE);
  2464. if (hdr_len == 0) {
  2465. skb_put(skb, len);
  2466. return 0;
  2467. } else {
  2468. unsigned int i, frag_len, frag_size, pages;
  2469. struct sw_pg *rx_pg;
  2470. u16 pg_cons = rxr->rx_pg_cons;
  2471. u16 pg_prod = rxr->rx_pg_prod;
  2472. frag_size = len + 4 - hdr_len;
  2473. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2474. skb_put(skb, hdr_len);
  2475. for (i = 0; i < pages; i++) {
  2476. dma_addr_t mapping_old;
  2477. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2478. if (unlikely(frag_len <= 4)) {
  2479. unsigned int tail = 4 - frag_len;
  2480. rxr->rx_pg_cons = pg_cons;
  2481. rxr->rx_pg_prod = pg_prod;
  2482. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2483. pages - i);
  2484. skb->len -= tail;
  2485. if (i == 0) {
  2486. skb->tail -= tail;
  2487. } else {
  2488. skb_frag_t *frag =
  2489. &skb_shinfo(skb)->frags[i - 1];
  2490. frag->size -= tail;
  2491. skb->data_len -= tail;
  2492. skb->truesize -= tail;
  2493. }
  2494. return 0;
  2495. }
  2496. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2497. /* Don't unmap yet. If we're unable to allocate a new
  2498. * page, we need to recycle the page and the DMA addr.
  2499. */
  2500. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2501. if (i == pages - 1)
  2502. frag_len -= 4;
  2503. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2504. rx_pg->page = NULL;
  2505. err = bnx2_alloc_rx_page(bp, rxr,
  2506. RX_PG_RING_IDX(pg_prod));
  2507. if (unlikely(err)) {
  2508. rxr->rx_pg_cons = pg_cons;
  2509. rxr->rx_pg_prod = pg_prod;
  2510. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2511. pages - i);
  2512. return err;
  2513. }
  2514. pci_unmap_page(bp->pdev, mapping_old,
  2515. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2516. frag_size -= frag_len;
  2517. skb->data_len += frag_len;
  2518. skb->truesize += frag_len;
  2519. skb->len += frag_len;
  2520. pg_prod = NEXT_RX_BD(pg_prod);
  2521. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2522. }
  2523. rxr->rx_pg_prod = pg_prod;
  2524. rxr->rx_pg_cons = pg_cons;
  2525. }
  2526. return 0;
  2527. }
  2528. static inline u16
  2529. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2530. {
  2531. u16 cons;
  2532. /* Tell compiler that status block fields can change. */
  2533. barrier();
  2534. cons = *bnapi->hw_rx_cons_ptr;
  2535. barrier();
  2536. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2537. cons++;
  2538. return cons;
  2539. }
  2540. static int
  2541. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2542. {
  2543. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2544. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2545. struct l2_fhdr *rx_hdr;
  2546. int rx_pkt = 0, pg_ring_used = 0;
  2547. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2548. sw_cons = rxr->rx_cons;
  2549. sw_prod = rxr->rx_prod;
  2550. /* Memory barrier necessary as speculative reads of the rx
  2551. * buffer can be ahead of the index in the status block
  2552. */
  2553. rmb();
  2554. while (sw_cons != hw_cons) {
  2555. unsigned int len, hdr_len;
  2556. u32 status;
  2557. struct sw_bd *rx_buf;
  2558. struct sk_buff *skb;
  2559. dma_addr_t dma_addr;
  2560. u16 vtag = 0;
  2561. int hw_vlan __maybe_unused = 0;
  2562. sw_ring_cons = RX_RING_IDX(sw_cons);
  2563. sw_ring_prod = RX_RING_IDX(sw_prod);
  2564. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2565. skb = rx_buf->skb;
  2566. rx_buf->skb = NULL;
  2567. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2568. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2569. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2570. PCI_DMA_FROMDEVICE);
  2571. rx_hdr = (struct l2_fhdr *) skb->data;
  2572. len = rx_hdr->l2_fhdr_pkt_len;
  2573. status = rx_hdr->l2_fhdr_status;
  2574. hdr_len = 0;
  2575. if (status & L2_FHDR_STATUS_SPLIT) {
  2576. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2577. pg_ring_used = 1;
  2578. } else if (len > bp->rx_jumbo_thresh) {
  2579. hdr_len = bp->rx_jumbo_thresh;
  2580. pg_ring_used = 1;
  2581. }
  2582. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2583. L2_FHDR_ERRORS_PHY_DECODE |
  2584. L2_FHDR_ERRORS_ALIGNMENT |
  2585. L2_FHDR_ERRORS_TOO_SHORT |
  2586. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2587. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2588. sw_ring_prod);
  2589. if (pg_ring_used) {
  2590. int pages;
  2591. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2592. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2593. }
  2594. goto next_rx;
  2595. }
  2596. len -= 4;
  2597. if (len <= bp->rx_copy_thresh) {
  2598. struct sk_buff *new_skb;
  2599. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2600. if (new_skb == NULL) {
  2601. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2602. sw_ring_prod);
  2603. goto next_rx;
  2604. }
  2605. /* aligned copy */
  2606. skb_copy_from_linear_data_offset(skb,
  2607. BNX2_RX_OFFSET - 6,
  2608. new_skb->data, len + 6);
  2609. skb_reserve(new_skb, 6);
  2610. skb_put(new_skb, len);
  2611. bnx2_reuse_rx_skb(bp, rxr, skb,
  2612. sw_ring_cons, sw_ring_prod);
  2613. skb = new_skb;
  2614. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2615. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2616. goto next_rx;
  2617. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2618. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2619. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2620. #ifdef BCM_VLAN
  2621. if (bp->vlgrp)
  2622. hw_vlan = 1;
  2623. else
  2624. #endif
  2625. {
  2626. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2627. __skb_push(skb, 4);
  2628. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2629. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2630. ve->h_vlan_TCI = htons(vtag);
  2631. len += 4;
  2632. }
  2633. }
  2634. skb->protocol = eth_type_trans(skb, bp->dev);
  2635. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2636. (ntohs(skb->protocol) != 0x8100)) {
  2637. dev_kfree_skb(skb);
  2638. goto next_rx;
  2639. }
  2640. skb->ip_summed = CHECKSUM_NONE;
  2641. if (bp->rx_csum &&
  2642. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2643. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2644. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2645. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2646. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2647. }
  2648. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2649. #ifdef BCM_VLAN
  2650. if (hw_vlan)
  2651. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2652. else
  2653. #endif
  2654. netif_receive_skb(skb);
  2655. rx_pkt++;
  2656. next_rx:
  2657. sw_cons = NEXT_RX_BD(sw_cons);
  2658. sw_prod = NEXT_RX_BD(sw_prod);
  2659. if ((rx_pkt == budget))
  2660. break;
  2661. /* Refresh hw_cons to see if there is new work */
  2662. if (sw_cons == hw_cons) {
  2663. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2664. rmb();
  2665. }
  2666. }
  2667. rxr->rx_cons = sw_cons;
  2668. rxr->rx_prod = sw_prod;
  2669. if (pg_ring_used)
  2670. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2671. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2672. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2673. mmiowb();
  2674. return rx_pkt;
  2675. }
  2676. /* MSI ISR - The only difference between this and the INTx ISR
  2677. * is that the MSI interrupt is always serviced.
  2678. */
  2679. static irqreturn_t
  2680. bnx2_msi(int irq, void *dev_instance)
  2681. {
  2682. struct bnx2_napi *bnapi = dev_instance;
  2683. struct bnx2 *bp = bnapi->bp;
  2684. prefetch(bnapi->status_blk.msi);
  2685. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2686. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2687. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2688. /* Return here if interrupt is disabled. */
  2689. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2690. return IRQ_HANDLED;
  2691. napi_schedule(&bnapi->napi);
  2692. return IRQ_HANDLED;
  2693. }
  2694. static irqreturn_t
  2695. bnx2_msi_1shot(int irq, void *dev_instance)
  2696. {
  2697. struct bnx2_napi *bnapi = dev_instance;
  2698. struct bnx2 *bp = bnapi->bp;
  2699. prefetch(bnapi->status_blk.msi);
  2700. /* Return here if interrupt is disabled. */
  2701. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2702. return IRQ_HANDLED;
  2703. napi_schedule(&bnapi->napi);
  2704. return IRQ_HANDLED;
  2705. }
  2706. static irqreturn_t
  2707. bnx2_interrupt(int irq, void *dev_instance)
  2708. {
  2709. struct bnx2_napi *bnapi = dev_instance;
  2710. struct bnx2 *bp = bnapi->bp;
  2711. struct status_block *sblk = bnapi->status_blk.msi;
  2712. /* When using INTx, it is possible for the interrupt to arrive
  2713. * at the CPU before the status block posted prior to the
  2714. * interrupt. Reading a register will flush the status block.
  2715. * When using MSI, the MSI message will always complete after
  2716. * the status block write.
  2717. */
  2718. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2719. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2720. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2721. return IRQ_NONE;
  2722. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2723. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2724. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2725. /* Read back to deassert IRQ immediately to avoid too many
  2726. * spurious interrupts.
  2727. */
  2728. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2729. /* Return here if interrupt is shared and is disabled. */
  2730. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2731. return IRQ_HANDLED;
  2732. if (napi_schedule_prep(&bnapi->napi)) {
  2733. bnapi->last_status_idx = sblk->status_idx;
  2734. __napi_schedule(&bnapi->napi);
  2735. }
  2736. return IRQ_HANDLED;
  2737. }
  2738. static inline int
  2739. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2740. {
  2741. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2742. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2743. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2744. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2745. return 1;
  2746. return 0;
  2747. }
  2748. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2749. STATUS_ATTN_BITS_TIMER_ABORT)
  2750. static inline int
  2751. bnx2_has_work(struct bnx2_napi *bnapi)
  2752. {
  2753. struct status_block *sblk = bnapi->status_blk.msi;
  2754. if (bnx2_has_fast_work(bnapi))
  2755. return 1;
  2756. #ifdef BCM_CNIC
  2757. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2758. return 1;
  2759. #endif
  2760. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2761. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2762. return 1;
  2763. return 0;
  2764. }
  2765. static void
  2766. bnx2_chk_missed_msi(struct bnx2 *bp)
  2767. {
  2768. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2769. u32 msi_ctrl;
  2770. if (bnx2_has_work(bnapi)) {
  2771. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2772. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2773. return;
  2774. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2775. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2776. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2777. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2778. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2779. }
  2780. }
  2781. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2782. }
  2783. #ifdef BCM_CNIC
  2784. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2785. {
  2786. struct cnic_ops *c_ops;
  2787. if (!bnapi->cnic_present)
  2788. return;
  2789. rcu_read_lock();
  2790. c_ops = rcu_dereference(bp->cnic_ops);
  2791. if (c_ops)
  2792. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2793. bnapi->status_blk.msi);
  2794. rcu_read_unlock();
  2795. }
  2796. #endif
  2797. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2798. {
  2799. struct status_block *sblk = bnapi->status_blk.msi;
  2800. u32 status_attn_bits = sblk->status_attn_bits;
  2801. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2802. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2803. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2804. bnx2_phy_int(bp, bnapi);
  2805. /* This is needed to take care of transient status
  2806. * during link changes.
  2807. */
  2808. REG_WR(bp, BNX2_HC_COMMAND,
  2809. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2810. REG_RD(bp, BNX2_HC_COMMAND);
  2811. }
  2812. }
  2813. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2814. int work_done, int budget)
  2815. {
  2816. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2817. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2818. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2819. bnx2_tx_int(bp, bnapi, 0);
  2820. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2821. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2822. return work_done;
  2823. }
  2824. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2825. {
  2826. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2827. struct bnx2 *bp = bnapi->bp;
  2828. int work_done = 0;
  2829. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2830. while (1) {
  2831. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2832. if (unlikely(work_done >= budget))
  2833. break;
  2834. bnapi->last_status_idx = sblk->status_idx;
  2835. /* status idx must be read before checking for more work. */
  2836. rmb();
  2837. if (likely(!bnx2_has_fast_work(bnapi))) {
  2838. napi_complete(napi);
  2839. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2840. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2841. bnapi->last_status_idx);
  2842. break;
  2843. }
  2844. }
  2845. return work_done;
  2846. }
  2847. static int bnx2_poll(struct napi_struct *napi, int budget)
  2848. {
  2849. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2850. struct bnx2 *bp = bnapi->bp;
  2851. int work_done = 0;
  2852. struct status_block *sblk = bnapi->status_blk.msi;
  2853. while (1) {
  2854. bnx2_poll_link(bp, bnapi);
  2855. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2856. #ifdef BCM_CNIC
  2857. bnx2_poll_cnic(bp, bnapi);
  2858. #endif
  2859. /* bnapi->last_status_idx is used below to tell the hw how
  2860. * much work has been processed, so we must read it before
  2861. * checking for more work.
  2862. */
  2863. bnapi->last_status_idx = sblk->status_idx;
  2864. if (unlikely(work_done >= budget))
  2865. break;
  2866. rmb();
  2867. if (likely(!bnx2_has_work(bnapi))) {
  2868. napi_complete(napi);
  2869. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2870. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2871. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2872. bnapi->last_status_idx);
  2873. break;
  2874. }
  2875. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2876. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2877. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2878. bnapi->last_status_idx);
  2879. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2880. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2881. bnapi->last_status_idx);
  2882. break;
  2883. }
  2884. }
  2885. return work_done;
  2886. }
  2887. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2888. * from set_multicast.
  2889. */
  2890. static void
  2891. bnx2_set_rx_mode(struct net_device *dev)
  2892. {
  2893. struct bnx2 *bp = netdev_priv(dev);
  2894. u32 rx_mode, sort_mode;
  2895. struct netdev_hw_addr *ha;
  2896. int i;
  2897. if (!netif_running(dev))
  2898. return;
  2899. spin_lock_bh(&bp->phy_lock);
  2900. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2901. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2902. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2903. #ifdef BCM_VLAN
  2904. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2905. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2906. #else
  2907. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2908. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2909. #endif
  2910. if (dev->flags & IFF_PROMISC) {
  2911. /* Promiscuous mode. */
  2912. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2913. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2914. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2915. }
  2916. else if (dev->flags & IFF_ALLMULTI) {
  2917. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2918. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2919. 0xffffffff);
  2920. }
  2921. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2922. }
  2923. else {
  2924. /* Accept one or more multicast(s). */
  2925. struct dev_mc_list *mclist;
  2926. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2927. u32 regidx;
  2928. u32 bit;
  2929. u32 crc;
  2930. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2931. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2932. i++, mclist = mclist->next) {
  2933. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2934. bit = crc & 0xff;
  2935. regidx = (bit & 0xe0) >> 5;
  2936. bit &= 0x1f;
  2937. mc_filter[regidx] |= (1 << bit);
  2938. }
  2939. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2940. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2941. mc_filter[i]);
  2942. }
  2943. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2944. }
  2945. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2946. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2947. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2948. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2949. } else if (!(dev->flags & IFF_PROMISC)) {
  2950. /* Add all entries into to the match filter list */
  2951. i = 0;
  2952. list_for_each_entry(ha, &dev->uc.list, list) {
  2953. bnx2_set_mac_addr(bp, ha->addr,
  2954. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2955. sort_mode |= (1 <<
  2956. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2957. i++;
  2958. }
  2959. }
  2960. if (rx_mode != bp->rx_mode) {
  2961. bp->rx_mode = rx_mode;
  2962. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2963. }
  2964. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2965. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2966. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2967. spin_unlock_bh(&bp->phy_lock);
  2968. }
  2969. static int __devinit
  2970. check_fw_section(const struct firmware *fw,
  2971. const struct bnx2_fw_file_section *section,
  2972. u32 alignment, bool non_empty)
  2973. {
  2974. u32 offset = be32_to_cpu(section->offset);
  2975. u32 len = be32_to_cpu(section->len);
  2976. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2977. return -EINVAL;
  2978. if ((non_empty && len == 0) || len > fw->size - offset ||
  2979. len & (alignment - 1))
  2980. return -EINVAL;
  2981. return 0;
  2982. }
  2983. static int __devinit
  2984. check_mips_fw_entry(const struct firmware *fw,
  2985. const struct bnx2_mips_fw_file_entry *entry)
  2986. {
  2987. if (check_fw_section(fw, &entry->text, 4, true) ||
  2988. check_fw_section(fw, &entry->data, 4, false) ||
  2989. check_fw_section(fw, &entry->rodata, 4, false))
  2990. return -EINVAL;
  2991. return 0;
  2992. }
  2993. static int __devinit
  2994. bnx2_request_firmware(struct bnx2 *bp)
  2995. {
  2996. const char *mips_fw_file, *rv2p_fw_file;
  2997. const struct bnx2_mips_fw_file *mips_fw;
  2998. const struct bnx2_rv2p_fw_file *rv2p_fw;
  2999. int rc;
  3000. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3001. mips_fw_file = FW_MIPS_FILE_09;
  3002. rv2p_fw_file = FW_RV2P_FILE_09;
  3003. } else {
  3004. mips_fw_file = FW_MIPS_FILE_06;
  3005. rv2p_fw_file = FW_RV2P_FILE_06;
  3006. }
  3007. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3008. if (rc) {
  3009. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3010. mips_fw_file);
  3011. return rc;
  3012. }
  3013. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3014. if (rc) {
  3015. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3016. rv2p_fw_file);
  3017. return rc;
  3018. }
  3019. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3020. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3021. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3022. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3023. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3024. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3025. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3026. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3027. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3028. mips_fw_file);
  3029. return -EINVAL;
  3030. }
  3031. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3032. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3033. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3034. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3035. rv2p_fw_file);
  3036. return -EINVAL;
  3037. }
  3038. return 0;
  3039. }
  3040. static u32
  3041. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3042. {
  3043. switch (idx) {
  3044. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3045. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3046. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3047. break;
  3048. }
  3049. return rv2p_code;
  3050. }
  3051. static int
  3052. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3053. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3054. {
  3055. u32 rv2p_code_len, file_offset;
  3056. __be32 *rv2p_code;
  3057. int i;
  3058. u32 val, cmd, addr;
  3059. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3060. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3061. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3062. if (rv2p_proc == RV2P_PROC1) {
  3063. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3064. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3065. } else {
  3066. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3067. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3068. }
  3069. for (i = 0; i < rv2p_code_len; i += 8) {
  3070. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3071. rv2p_code++;
  3072. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3073. rv2p_code++;
  3074. val = (i / 8) | cmd;
  3075. REG_WR(bp, addr, val);
  3076. }
  3077. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3078. for (i = 0; i < 8; i++) {
  3079. u32 loc, code;
  3080. loc = be32_to_cpu(fw_entry->fixup[i]);
  3081. if (loc && ((loc * 4) < rv2p_code_len)) {
  3082. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3083. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3084. code = be32_to_cpu(*(rv2p_code + loc));
  3085. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3086. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3087. val = (loc / 2) | cmd;
  3088. REG_WR(bp, addr, val);
  3089. }
  3090. }
  3091. /* Reset the processor, un-stall is done later. */
  3092. if (rv2p_proc == RV2P_PROC1) {
  3093. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3094. }
  3095. else {
  3096. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3097. }
  3098. return 0;
  3099. }
  3100. static int
  3101. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3102. const struct bnx2_mips_fw_file_entry *fw_entry)
  3103. {
  3104. u32 addr, len, file_offset;
  3105. __be32 *data;
  3106. u32 offset;
  3107. u32 val;
  3108. /* Halt the CPU. */
  3109. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3110. val |= cpu_reg->mode_value_halt;
  3111. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3112. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3113. /* Load the Text area. */
  3114. addr = be32_to_cpu(fw_entry->text.addr);
  3115. len = be32_to_cpu(fw_entry->text.len);
  3116. file_offset = be32_to_cpu(fw_entry->text.offset);
  3117. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3118. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3119. if (len) {
  3120. int j;
  3121. for (j = 0; j < (len / 4); j++, offset += 4)
  3122. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3123. }
  3124. /* Load the Data area. */
  3125. addr = be32_to_cpu(fw_entry->data.addr);
  3126. len = be32_to_cpu(fw_entry->data.len);
  3127. file_offset = be32_to_cpu(fw_entry->data.offset);
  3128. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3129. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3130. if (len) {
  3131. int j;
  3132. for (j = 0; j < (len / 4); j++, offset += 4)
  3133. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3134. }
  3135. /* Load the Read-Only area. */
  3136. addr = be32_to_cpu(fw_entry->rodata.addr);
  3137. len = be32_to_cpu(fw_entry->rodata.len);
  3138. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3139. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3140. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3141. if (len) {
  3142. int j;
  3143. for (j = 0; j < (len / 4); j++, offset += 4)
  3144. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3145. }
  3146. /* Clear the pre-fetch instruction. */
  3147. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3148. val = be32_to_cpu(fw_entry->start_addr);
  3149. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3150. /* Start the CPU. */
  3151. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3152. val &= ~cpu_reg->mode_value_halt;
  3153. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3154. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3155. return 0;
  3156. }
  3157. static int
  3158. bnx2_init_cpus(struct bnx2 *bp)
  3159. {
  3160. const struct bnx2_mips_fw_file *mips_fw =
  3161. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3162. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3163. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3164. int rc;
  3165. /* Initialize the RV2P processor. */
  3166. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3167. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3168. /* Initialize the RX Processor. */
  3169. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3170. if (rc)
  3171. goto init_cpu_err;
  3172. /* Initialize the TX Processor. */
  3173. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3174. if (rc)
  3175. goto init_cpu_err;
  3176. /* Initialize the TX Patch-up Processor. */
  3177. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3178. if (rc)
  3179. goto init_cpu_err;
  3180. /* Initialize the Completion Processor. */
  3181. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3182. if (rc)
  3183. goto init_cpu_err;
  3184. /* Initialize the Command Processor. */
  3185. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3186. init_cpu_err:
  3187. return rc;
  3188. }
  3189. static int
  3190. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3191. {
  3192. u16 pmcsr;
  3193. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3194. switch (state) {
  3195. case PCI_D0: {
  3196. u32 val;
  3197. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3198. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3199. PCI_PM_CTRL_PME_STATUS);
  3200. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3201. /* delay required during transition out of D3hot */
  3202. msleep(20);
  3203. val = REG_RD(bp, BNX2_EMAC_MODE);
  3204. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3205. val &= ~BNX2_EMAC_MODE_MPKT;
  3206. REG_WR(bp, BNX2_EMAC_MODE, val);
  3207. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3208. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3209. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3210. break;
  3211. }
  3212. case PCI_D3hot: {
  3213. int i;
  3214. u32 val, wol_msg;
  3215. if (bp->wol) {
  3216. u32 advertising;
  3217. u8 autoneg;
  3218. autoneg = bp->autoneg;
  3219. advertising = bp->advertising;
  3220. if (bp->phy_port == PORT_TP) {
  3221. bp->autoneg = AUTONEG_SPEED;
  3222. bp->advertising = ADVERTISED_10baseT_Half |
  3223. ADVERTISED_10baseT_Full |
  3224. ADVERTISED_100baseT_Half |
  3225. ADVERTISED_100baseT_Full |
  3226. ADVERTISED_Autoneg;
  3227. }
  3228. spin_lock_bh(&bp->phy_lock);
  3229. bnx2_setup_phy(bp, bp->phy_port);
  3230. spin_unlock_bh(&bp->phy_lock);
  3231. bp->autoneg = autoneg;
  3232. bp->advertising = advertising;
  3233. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3234. val = REG_RD(bp, BNX2_EMAC_MODE);
  3235. /* Enable port mode. */
  3236. val &= ~BNX2_EMAC_MODE_PORT;
  3237. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3238. BNX2_EMAC_MODE_ACPI_RCVD |
  3239. BNX2_EMAC_MODE_MPKT;
  3240. if (bp->phy_port == PORT_TP)
  3241. val |= BNX2_EMAC_MODE_PORT_MII;
  3242. else {
  3243. val |= BNX2_EMAC_MODE_PORT_GMII;
  3244. if (bp->line_speed == SPEED_2500)
  3245. val |= BNX2_EMAC_MODE_25G_MODE;
  3246. }
  3247. REG_WR(bp, BNX2_EMAC_MODE, val);
  3248. /* receive all multicast */
  3249. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3250. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3251. 0xffffffff);
  3252. }
  3253. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3254. BNX2_EMAC_RX_MODE_SORT_MODE);
  3255. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3256. BNX2_RPM_SORT_USER0_MC_EN;
  3257. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3258. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3259. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3260. BNX2_RPM_SORT_USER0_ENA);
  3261. /* Need to enable EMAC and RPM for WOL. */
  3262. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3263. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3264. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3265. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3266. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3267. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3268. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3269. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3270. }
  3271. else {
  3272. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3273. }
  3274. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3275. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3276. 1, 0);
  3277. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3278. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3279. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3280. if (bp->wol)
  3281. pmcsr |= 3;
  3282. }
  3283. else {
  3284. pmcsr |= 3;
  3285. }
  3286. if (bp->wol) {
  3287. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3288. }
  3289. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3290. pmcsr);
  3291. /* No more memory access after this point until
  3292. * device is brought back to D0.
  3293. */
  3294. udelay(50);
  3295. break;
  3296. }
  3297. default:
  3298. return -EINVAL;
  3299. }
  3300. return 0;
  3301. }
  3302. static int
  3303. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3304. {
  3305. u32 val;
  3306. int j;
  3307. /* Request access to the flash interface. */
  3308. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3309. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3310. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3311. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3312. break;
  3313. udelay(5);
  3314. }
  3315. if (j >= NVRAM_TIMEOUT_COUNT)
  3316. return -EBUSY;
  3317. return 0;
  3318. }
  3319. static int
  3320. bnx2_release_nvram_lock(struct bnx2 *bp)
  3321. {
  3322. int j;
  3323. u32 val;
  3324. /* Relinquish nvram interface. */
  3325. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3326. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3327. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3328. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3329. break;
  3330. udelay(5);
  3331. }
  3332. if (j >= NVRAM_TIMEOUT_COUNT)
  3333. return -EBUSY;
  3334. return 0;
  3335. }
  3336. static int
  3337. bnx2_enable_nvram_write(struct bnx2 *bp)
  3338. {
  3339. u32 val;
  3340. val = REG_RD(bp, BNX2_MISC_CFG);
  3341. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3342. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3343. int j;
  3344. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3345. REG_WR(bp, BNX2_NVM_COMMAND,
  3346. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3347. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3348. udelay(5);
  3349. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3350. if (val & BNX2_NVM_COMMAND_DONE)
  3351. break;
  3352. }
  3353. if (j >= NVRAM_TIMEOUT_COUNT)
  3354. return -EBUSY;
  3355. }
  3356. return 0;
  3357. }
  3358. static void
  3359. bnx2_disable_nvram_write(struct bnx2 *bp)
  3360. {
  3361. u32 val;
  3362. val = REG_RD(bp, BNX2_MISC_CFG);
  3363. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3364. }
  3365. static void
  3366. bnx2_enable_nvram_access(struct bnx2 *bp)
  3367. {
  3368. u32 val;
  3369. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3370. /* Enable both bits, even on read. */
  3371. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3372. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3373. }
  3374. static void
  3375. bnx2_disable_nvram_access(struct bnx2 *bp)
  3376. {
  3377. u32 val;
  3378. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3379. /* Disable both bits, even after read. */
  3380. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3381. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3382. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3383. }
  3384. static int
  3385. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3386. {
  3387. u32 cmd;
  3388. int j;
  3389. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3390. /* Buffered flash, no erase needed */
  3391. return 0;
  3392. /* Build an erase command */
  3393. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3394. BNX2_NVM_COMMAND_DOIT;
  3395. /* Need to clear DONE bit separately. */
  3396. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3397. /* Address of the NVRAM to read from. */
  3398. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3399. /* Issue an erase command. */
  3400. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3401. /* Wait for completion. */
  3402. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3403. u32 val;
  3404. udelay(5);
  3405. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3406. if (val & BNX2_NVM_COMMAND_DONE)
  3407. break;
  3408. }
  3409. if (j >= NVRAM_TIMEOUT_COUNT)
  3410. return -EBUSY;
  3411. return 0;
  3412. }
  3413. static int
  3414. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3415. {
  3416. u32 cmd;
  3417. int j;
  3418. /* Build the command word. */
  3419. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3420. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3421. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3422. offset = ((offset / bp->flash_info->page_size) <<
  3423. bp->flash_info->page_bits) +
  3424. (offset % bp->flash_info->page_size);
  3425. }
  3426. /* Need to clear DONE bit separately. */
  3427. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3428. /* Address of the NVRAM to read from. */
  3429. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3430. /* Issue a read command. */
  3431. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3432. /* Wait for completion. */
  3433. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3434. u32 val;
  3435. udelay(5);
  3436. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3437. if (val & BNX2_NVM_COMMAND_DONE) {
  3438. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3439. memcpy(ret_val, &v, 4);
  3440. break;
  3441. }
  3442. }
  3443. if (j >= NVRAM_TIMEOUT_COUNT)
  3444. return -EBUSY;
  3445. return 0;
  3446. }
  3447. static int
  3448. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3449. {
  3450. u32 cmd;
  3451. __be32 val32;
  3452. int j;
  3453. /* Build the command word. */
  3454. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3455. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3456. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3457. offset = ((offset / bp->flash_info->page_size) <<
  3458. bp->flash_info->page_bits) +
  3459. (offset % bp->flash_info->page_size);
  3460. }
  3461. /* Need to clear DONE bit separately. */
  3462. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3463. memcpy(&val32, val, 4);
  3464. /* Write the data. */
  3465. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3466. /* Address of the NVRAM to write to. */
  3467. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3468. /* Issue the write command. */
  3469. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3470. /* Wait for completion. */
  3471. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3472. udelay(5);
  3473. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3474. break;
  3475. }
  3476. if (j >= NVRAM_TIMEOUT_COUNT)
  3477. return -EBUSY;
  3478. return 0;
  3479. }
  3480. static int
  3481. bnx2_init_nvram(struct bnx2 *bp)
  3482. {
  3483. u32 val;
  3484. int j, entry_count, rc = 0;
  3485. struct flash_spec *flash;
  3486. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3487. bp->flash_info = &flash_5709;
  3488. goto get_flash_size;
  3489. }
  3490. /* Determine the selected interface. */
  3491. val = REG_RD(bp, BNX2_NVM_CFG1);
  3492. entry_count = ARRAY_SIZE(flash_table);
  3493. if (val & 0x40000000) {
  3494. /* Flash interface has been reconfigured */
  3495. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3496. j++, flash++) {
  3497. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3498. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3499. bp->flash_info = flash;
  3500. break;
  3501. }
  3502. }
  3503. }
  3504. else {
  3505. u32 mask;
  3506. /* Not yet been reconfigured */
  3507. if (val & (1 << 23))
  3508. mask = FLASH_BACKUP_STRAP_MASK;
  3509. else
  3510. mask = FLASH_STRAP_MASK;
  3511. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3512. j++, flash++) {
  3513. if ((val & mask) == (flash->strapping & mask)) {
  3514. bp->flash_info = flash;
  3515. /* Request access to the flash interface. */
  3516. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3517. return rc;
  3518. /* Enable access to flash interface */
  3519. bnx2_enable_nvram_access(bp);
  3520. /* Reconfigure the flash interface */
  3521. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3522. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3523. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3524. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3525. /* Disable access to flash interface */
  3526. bnx2_disable_nvram_access(bp);
  3527. bnx2_release_nvram_lock(bp);
  3528. break;
  3529. }
  3530. }
  3531. } /* if (val & 0x40000000) */
  3532. if (j == entry_count) {
  3533. bp->flash_info = NULL;
  3534. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3535. return -ENODEV;
  3536. }
  3537. get_flash_size:
  3538. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3539. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3540. if (val)
  3541. bp->flash_size = val;
  3542. else
  3543. bp->flash_size = bp->flash_info->total_size;
  3544. return rc;
  3545. }
  3546. static int
  3547. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3548. int buf_size)
  3549. {
  3550. int rc = 0;
  3551. u32 cmd_flags, offset32, len32, extra;
  3552. if (buf_size == 0)
  3553. return 0;
  3554. /* Request access to the flash interface. */
  3555. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3556. return rc;
  3557. /* Enable access to flash interface */
  3558. bnx2_enable_nvram_access(bp);
  3559. len32 = buf_size;
  3560. offset32 = offset;
  3561. extra = 0;
  3562. cmd_flags = 0;
  3563. if (offset32 & 3) {
  3564. u8 buf[4];
  3565. u32 pre_len;
  3566. offset32 &= ~3;
  3567. pre_len = 4 - (offset & 3);
  3568. if (pre_len >= len32) {
  3569. pre_len = len32;
  3570. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3571. BNX2_NVM_COMMAND_LAST;
  3572. }
  3573. else {
  3574. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3575. }
  3576. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3577. if (rc)
  3578. return rc;
  3579. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3580. offset32 += 4;
  3581. ret_buf += pre_len;
  3582. len32 -= pre_len;
  3583. }
  3584. if (len32 & 3) {
  3585. extra = 4 - (len32 & 3);
  3586. len32 = (len32 + 4) & ~3;
  3587. }
  3588. if (len32 == 4) {
  3589. u8 buf[4];
  3590. if (cmd_flags)
  3591. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3592. else
  3593. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3594. BNX2_NVM_COMMAND_LAST;
  3595. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3596. memcpy(ret_buf, buf, 4 - extra);
  3597. }
  3598. else if (len32 > 0) {
  3599. u8 buf[4];
  3600. /* Read the first word. */
  3601. if (cmd_flags)
  3602. cmd_flags = 0;
  3603. else
  3604. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3605. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3606. /* Advance to the next dword. */
  3607. offset32 += 4;
  3608. ret_buf += 4;
  3609. len32 -= 4;
  3610. while (len32 > 4 && rc == 0) {
  3611. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3612. /* Advance to the next dword. */
  3613. offset32 += 4;
  3614. ret_buf += 4;
  3615. len32 -= 4;
  3616. }
  3617. if (rc)
  3618. return rc;
  3619. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3620. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3621. memcpy(ret_buf, buf, 4 - extra);
  3622. }
  3623. /* Disable access to flash interface */
  3624. bnx2_disable_nvram_access(bp);
  3625. bnx2_release_nvram_lock(bp);
  3626. return rc;
  3627. }
  3628. static int
  3629. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3630. int buf_size)
  3631. {
  3632. u32 written, offset32, len32;
  3633. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3634. int rc = 0;
  3635. int align_start, align_end;
  3636. buf = data_buf;
  3637. offset32 = offset;
  3638. len32 = buf_size;
  3639. align_start = align_end = 0;
  3640. if ((align_start = (offset32 & 3))) {
  3641. offset32 &= ~3;
  3642. len32 += align_start;
  3643. if (len32 < 4)
  3644. len32 = 4;
  3645. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3646. return rc;
  3647. }
  3648. if (len32 & 3) {
  3649. align_end = 4 - (len32 & 3);
  3650. len32 += align_end;
  3651. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3652. return rc;
  3653. }
  3654. if (align_start || align_end) {
  3655. align_buf = kmalloc(len32, GFP_KERNEL);
  3656. if (align_buf == NULL)
  3657. return -ENOMEM;
  3658. if (align_start) {
  3659. memcpy(align_buf, start, 4);
  3660. }
  3661. if (align_end) {
  3662. memcpy(align_buf + len32 - 4, end, 4);
  3663. }
  3664. memcpy(align_buf + align_start, data_buf, buf_size);
  3665. buf = align_buf;
  3666. }
  3667. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3668. flash_buffer = kmalloc(264, GFP_KERNEL);
  3669. if (flash_buffer == NULL) {
  3670. rc = -ENOMEM;
  3671. goto nvram_write_end;
  3672. }
  3673. }
  3674. written = 0;
  3675. while ((written < len32) && (rc == 0)) {
  3676. u32 page_start, page_end, data_start, data_end;
  3677. u32 addr, cmd_flags;
  3678. int i;
  3679. /* Find the page_start addr */
  3680. page_start = offset32 + written;
  3681. page_start -= (page_start % bp->flash_info->page_size);
  3682. /* Find the page_end addr */
  3683. page_end = page_start + bp->flash_info->page_size;
  3684. /* Find the data_start addr */
  3685. data_start = (written == 0) ? offset32 : page_start;
  3686. /* Find the data_end addr */
  3687. data_end = (page_end > offset32 + len32) ?
  3688. (offset32 + len32) : page_end;
  3689. /* Request access to the flash interface. */
  3690. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3691. goto nvram_write_end;
  3692. /* Enable access to flash interface */
  3693. bnx2_enable_nvram_access(bp);
  3694. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3695. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3696. int j;
  3697. /* Read the whole page into the buffer
  3698. * (non-buffer flash only) */
  3699. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3700. if (j == (bp->flash_info->page_size - 4)) {
  3701. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3702. }
  3703. rc = bnx2_nvram_read_dword(bp,
  3704. page_start + j,
  3705. &flash_buffer[j],
  3706. cmd_flags);
  3707. if (rc)
  3708. goto nvram_write_end;
  3709. cmd_flags = 0;
  3710. }
  3711. }
  3712. /* Enable writes to flash interface (unlock write-protect) */
  3713. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3714. goto nvram_write_end;
  3715. /* Loop to write back the buffer data from page_start to
  3716. * data_start */
  3717. i = 0;
  3718. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3719. /* Erase the page */
  3720. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3721. goto nvram_write_end;
  3722. /* Re-enable the write again for the actual write */
  3723. bnx2_enable_nvram_write(bp);
  3724. for (addr = page_start; addr < data_start;
  3725. addr += 4, i += 4) {
  3726. rc = bnx2_nvram_write_dword(bp, addr,
  3727. &flash_buffer[i], cmd_flags);
  3728. if (rc != 0)
  3729. goto nvram_write_end;
  3730. cmd_flags = 0;
  3731. }
  3732. }
  3733. /* Loop to write the new data from data_start to data_end */
  3734. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3735. if ((addr == page_end - 4) ||
  3736. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3737. (addr == data_end - 4))) {
  3738. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3739. }
  3740. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3741. cmd_flags);
  3742. if (rc != 0)
  3743. goto nvram_write_end;
  3744. cmd_flags = 0;
  3745. buf += 4;
  3746. }
  3747. /* Loop to write back the buffer data from data_end
  3748. * to page_end */
  3749. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3750. for (addr = data_end; addr < page_end;
  3751. addr += 4, i += 4) {
  3752. if (addr == page_end-4) {
  3753. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3754. }
  3755. rc = bnx2_nvram_write_dword(bp, addr,
  3756. &flash_buffer[i], cmd_flags);
  3757. if (rc != 0)
  3758. goto nvram_write_end;
  3759. cmd_flags = 0;
  3760. }
  3761. }
  3762. /* Disable writes to flash interface (lock write-protect) */
  3763. bnx2_disable_nvram_write(bp);
  3764. /* Disable access to flash interface */
  3765. bnx2_disable_nvram_access(bp);
  3766. bnx2_release_nvram_lock(bp);
  3767. /* Increment written */
  3768. written += data_end - data_start;
  3769. }
  3770. nvram_write_end:
  3771. kfree(flash_buffer);
  3772. kfree(align_buf);
  3773. return rc;
  3774. }
  3775. static void
  3776. bnx2_init_fw_cap(struct bnx2 *bp)
  3777. {
  3778. u32 val, sig = 0;
  3779. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3780. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3781. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3782. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3783. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3784. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3785. return;
  3786. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3787. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3788. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3789. }
  3790. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3791. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3792. u32 link;
  3793. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3794. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3795. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3796. bp->phy_port = PORT_FIBRE;
  3797. else
  3798. bp->phy_port = PORT_TP;
  3799. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3800. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3801. }
  3802. if (netif_running(bp->dev) && sig)
  3803. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3804. }
  3805. static void
  3806. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3807. {
  3808. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3809. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3810. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3811. }
  3812. static int
  3813. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3814. {
  3815. u32 val;
  3816. int i, rc = 0;
  3817. u8 old_port;
  3818. /* Wait for the current PCI transaction to complete before
  3819. * issuing a reset. */
  3820. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3821. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3822. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3823. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3824. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3825. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3826. udelay(5);
  3827. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3828. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3829. /* Deposit a driver reset signature so the firmware knows that
  3830. * this is a soft reset. */
  3831. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3832. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3833. /* Do a dummy read to force the chip to complete all current transaction
  3834. * before we issue a reset. */
  3835. val = REG_RD(bp, BNX2_MISC_ID);
  3836. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3837. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3838. REG_RD(bp, BNX2_MISC_COMMAND);
  3839. udelay(5);
  3840. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3841. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3842. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3843. } else {
  3844. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3845. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3846. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3847. /* Chip reset. */
  3848. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3849. /* Reading back any register after chip reset will hang the
  3850. * bus on 5706 A0 and A1. The msleep below provides plenty
  3851. * of margin for write posting.
  3852. */
  3853. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3854. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3855. msleep(20);
  3856. /* Reset takes approximate 30 usec */
  3857. for (i = 0; i < 10; i++) {
  3858. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3859. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3860. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3861. break;
  3862. udelay(10);
  3863. }
  3864. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3865. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3866. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3867. return -EBUSY;
  3868. }
  3869. }
  3870. /* Make sure byte swapping is properly configured. */
  3871. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3872. if (val != 0x01020304) {
  3873. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3874. return -ENODEV;
  3875. }
  3876. /* Wait for the firmware to finish its initialization. */
  3877. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3878. if (rc)
  3879. return rc;
  3880. spin_lock_bh(&bp->phy_lock);
  3881. old_port = bp->phy_port;
  3882. bnx2_init_fw_cap(bp);
  3883. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3884. old_port != bp->phy_port)
  3885. bnx2_set_default_remote_link(bp);
  3886. spin_unlock_bh(&bp->phy_lock);
  3887. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3888. /* Adjust the voltage regular to two steps lower. The default
  3889. * of this register is 0x0000000e. */
  3890. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3891. /* Remove bad rbuf memory from the free pool. */
  3892. rc = bnx2_alloc_bad_rbuf(bp);
  3893. }
  3894. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3895. bnx2_setup_msix_tbl(bp);
  3896. return rc;
  3897. }
  3898. static int
  3899. bnx2_init_chip(struct bnx2 *bp)
  3900. {
  3901. u32 val, mtu;
  3902. int rc, i;
  3903. /* Make sure the interrupt is not active. */
  3904. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3905. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3906. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3907. #ifdef __BIG_ENDIAN
  3908. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3909. #endif
  3910. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3911. DMA_READ_CHANS << 12 |
  3912. DMA_WRITE_CHANS << 16;
  3913. val |= (0x2 << 20) | (1 << 11);
  3914. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3915. val |= (1 << 23);
  3916. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3917. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3918. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3919. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3920. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3921. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3922. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3923. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3924. }
  3925. if (bp->flags & BNX2_FLAG_PCIX) {
  3926. u16 val16;
  3927. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3928. &val16);
  3929. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3930. val16 & ~PCI_X_CMD_ERO);
  3931. }
  3932. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3933. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3934. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3935. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3936. /* Initialize context mapping and zero out the quick contexts. The
  3937. * context block must have already been enabled. */
  3938. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3939. rc = bnx2_init_5709_context(bp);
  3940. if (rc)
  3941. return rc;
  3942. } else
  3943. bnx2_init_context(bp);
  3944. if ((rc = bnx2_init_cpus(bp)) != 0)
  3945. return rc;
  3946. bnx2_init_nvram(bp);
  3947. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3948. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3949. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3950. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3951. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3952. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3953. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3954. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3955. }
  3956. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3957. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3958. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3959. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3960. val = (BCM_PAGE_BITS - 8) << 24;
  3961. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3962. /* Configure page size. */
  3963. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3964. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3965. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3966. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3967. val = bp->mac_addr[0] +
  3968. (bp->mac_addr[1] << 8) +
  3969. (bp->mac_addr[2] << 16) +
  3970. bp->mac_addr[3] +
  3971. (bp->mac_addr[4] << 8) +
  3972. (bp->mac_addr[5] << 16);
  3973. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3974. /* Program the MTU. Also include 4 bytes for CRC32. */
  3975. mtu = bp->dev->mtu;
  3976. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3977. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3978. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3979. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3980. if (mtu < 1500)
  3981. mtu = 1500;
  3982. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3983. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3984. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3985. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3986. bp->bnx2_napi[i].last_status_idx = 0;
  3987. bp->idle_chk_status_idx = 0xffff;
  3988. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3989. /* Set up how to generate a link change interrupt. */
  3990. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3991. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3992. (u64) bp->status_blk_mapping & 0xffffffff);
  3993. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3994. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3995. (u64) bp->stats_blk_mapping & 0xffffffff);
  3996. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3997. (u64) bp->stats_blk_mapping >> 32);
  3998. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3999. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4000. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4001. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4002. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4003. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4004. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4005. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4006. REG_WR(bp, BNX2_HC_COM_TICKS,
  4007. (bp->com_ticks_int << 16) | bp->com_ticks);
  4008. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4009. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4010. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  4011. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4012. else
  4013. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4014. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4015. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4016. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4017. else {
  4018. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4019. BNX2_HC_CONFIG_COLLECT_STATS;
  4020. }
  4021. if (bp->irq_nvecs > 1) {
  4022. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4023. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4024. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4025. }
  4026. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4027. val |= BNX2_HC_CONFIG_ONE_SHOT;
  4028. REG_WR(bp, BNX2_HC_CONFIG, val);
  4029. for (i = 1; i < bp->irq_nvecs; i++) {
  4030. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4031. BNX2_HC_SB_CONFIG_1;
  4032. REG_WR(bp, base,
  4033. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4034. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4035. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4036. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4037. (bp->tx_quick_cons_trip_int << 16) |
  4038. bp->tx_quick_cons_trip);
  4039. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4040. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4041. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4042. (bp->rx_quick_cons_trip_int << 16) |
  4043. bp->rx_quick_cons_trip);
  4044. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4045. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4046. }
  4047. /* Clear internal stats counters. */
  4048. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4049. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4050. /* Initialize the receive filter. */
  4051. bnx2_set_rx_mode(bp->dev);
  4052. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4053. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4054. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4055. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4056. }
  4057. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4058. 1, 0);
  4059. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4060. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4061. udelay(20);
  4062. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4063. return rc;
  4064. }
  4065. static void
  4066. bnx2_clear_ring_states(struct bnx2 *bp)
  4067. {
  4068. struct bnx2_napi *bnapi;
  4069. struct bnx2_tx_ring_info *txr;
  4070. struct bnx2_rx_ring_info *rxr;
  4071. int i;
  4072. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4073. bnapi = &bp->bnx2_napi[i];
  4074. txr = &bnapi->tx_ring;
  4075. rxr = &bnapi->rx_ring;
  4076. txr->tx_cons = 0;
  4077. txr->hw_tx_cons = 0;
  4078. rxr->rx_prod_bseq = 0;
  4079. rxr->rx_prod = 0;
  4080. rxr->rx_cons = 0;
  4081. rxr->rx_pg_prod = 0;
  4082. rxr->rx_pg_cons = 0;
  4083. }
  4084. }
  4085. static void
  4086. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4087. {
  4088. u32 val, offset0, offset1, offset2, offset3;
  4089. u32 cid_addr = GET_CID_ADDR(cid);
  4090. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4091. offset0 = BNX2_L2CTX_TYPE_XI;
  4092. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4093. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4094. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4095. } else {
  4096. offset0 = BNX2_L2CTX_TYPE;
  4097. offset1 = BNX2_L2CTX_CMD_TYPE;
  4098. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4099. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4100. }
  4101. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4102. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4103. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4104. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4105. val = (u64) txr->tx_desc_mapping >> 32;
  4106. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4107. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4108. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4109. }
  4110. static void
  4111. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4112. {
  4113. struct tx_bd *txbd;
  4114. u32 cid = TX_CID;
  4115. struct bnx2_napi *bnapi;
  4116. struct bnx2_tx_ring_info *txr;
  4117. bnapi = &bp->bnx2_napi[ring_num];
  4118. txr = &bnapi->tx_ring;
  4119. if (ring_num == 0)
  4120. cid = TX_CID;
  4121. else
  4122. cid = TX_TSS_CID + ring_num - 1;
  4123. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4124. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4125. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4126. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4127. txr->tx_prod = 0;
  4128. txr->tx_prod_bseq = 0;
  4129. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4130. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4131. bnx2_init_tx_context(bp, cid, txr);
  4132. }
  4133. static void
  4134. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4135. int num_rings)
  4136. {
  4137. int i;
  4138. struct rx_bd *rxbd;
  4139. for (i = 0; i < num_rings; i++) {
  4140. int j;
  4141. rxbd = &rx_ring[i][0];
  4142. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4143. rxbd->rx_bd_len = buf_size;
  4144. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4145. }
  4146. if (i == (num_rings - 1))
  4147. j = 0;
  4148. else
  4149. j = i + 1;
  4150. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4151. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4152. }
  4153. }
  4154. static void
  4155. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4156. {
  4157. int i;
  4158. u16 prod, ring_prod;
  4159. u32 cid, rx_cid_addr, val;
  4160. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4161. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4162. if (ring_num == 0)
  4163. cid = RX_CID;
  4164. else
  4165. cid = RX_RSS_CID + ring_num - 1;
  4166. rx_cid_addr = GET_CID_ADDR(cid);
  4167. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4168. bp->rx_buf_use_size, bp->rx_max_ring);
  4169. bnx2_init_rx_context(bp, cid);
  4170. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4171. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4172. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4173. }
  4174. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4175. if (bp->rx_pg_ring_size) {
  4176. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4177. rxr->rx_pg_desc_mapping,
  4178. PAGE_SIZE, bp->rx_max_pg_ring);
  4179. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4180. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4181. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4182. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4183. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4184. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4185. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4186. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4187. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4188. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4189. }
  4190. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4191. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4192. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4193. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4194. ring_prod = prod = rxr->rx_pg_prod;
  4195. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4196. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4197. break;
  4198. prod = NEXT_RX_BD(prod);
  4199. ring_prod = RX_PG_RING_IDX(prod);
  4200. }
  4201. rxr->rx_pg_prod = prod;
  4202. ring_prod = prod = rxr->rx_prod;
  4203. for (i = 0; i < bp->rx_ring_size; i++) {
  4204. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4205. break;
  4206. prod = NEXT_RX_BD(prod);
  4207. ring_prod = RX_RING_IDX(prod);
  4208. }
  4209. rxr->rx_prod = prod;
  4210. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4211. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4212. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4213. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4214. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4215. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4216. }
  4217. static void
  4218. bnx2_init_all_rings(struct bnx2 *bp)
  4219. {
  4220. int i;
  4221. u32 val;
  4222. bnx2_clear_ring_states(bp);
  4223. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4224. for (i = 0; i < bp->num_tx_rings; i++)
  4225. bnx2_init_tx_ring(bp, i);
  4226. if (bp->num_tx_rings > 1)
  4227. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4228. (TX_TSS_CID << 7));
  4229. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4230. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4231. for (i = 0; i < bp->num_rx_rings; i++)
  4232. bnx2_init_rx_ring(bp, i);
  4233. if (bp->num_rx_rings > 1) {
  4234. u32 tbl_32;
  4235. u8 *tbl = (u8 *) &tbl_32;
  4236. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4237. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4238. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4239. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4240. if ((i % 4) == 3)
  4241. bnx2_reg_wr_ind(bp,
  4242. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4243. cpu_to_be32(tbl_32));
  4244. }
  4245. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4246. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4247. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4248. }
  4249. }
  4250. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4251. {
  4252. u32 max, num_rings = 1;
  4253. while (ring_size > MAX_RX_DESC_CNT) {
  4254. ring_size -= MAX_RX_DESC_CNT;
  4255. num_rings++;
  4256. }
  4257. /* round to next power of 2 */
  4258. max = max_size;
  4259. while ((max & num_rings) == 0)
  4260. max >>= 1;
  4261. if (num_rings != max)
  4262. max <<= 1;
  4263. return max;
  4264. }
  4265. static void
  4266. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4267. {
  4268. u32 rx_size, rx_space, jumbo_size;
  4269. /* 8 for CRC and VLAN */
  4270. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4271. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4272. sizeof(struct skb_shared_info);
  4273. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4274. bp->rx_pg_ring_size = 0;
  4275. bp->rx_max_pg_ring = 0;
  4276. bp->rx_max_pg_ring_idx = 0;
  4277. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4278. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4279. jumbo_size = size * pages;
  4280. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4281. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4282. bp->rx_pg_ring_size = jumbo_size;
  4283. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4284. MAX_RX_PG_RINGS);
  4285. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4286. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4287. bp->rx_copy_thresh = 0;
  4288. }
  4289. bp->rx_buf_use_size = rx_size;
  4290. /* hw alignment */
  4291. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4292. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4293. bp->rx_ring_size = size;
  4294. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4295. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4296. }
  4297. static void
  4298. bnx2_free_tx_skbs(struct bnx2 *bp)
  4299. {
  4300. int i;
  4301. for (i = 0; i < bp->num_tx_rings; i++) {
  4302. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4303. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4304. int j;
  4305. if (txr->tx_buf_ring == NULL)
  4306. continue;
  4307. for (j = 0; j < TX_DESC_CNT; ) {
  4308. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4309. struct sk_buff *skb = tx_buf->skb;
  4310. if (skb == NULL) {
  4311. j++;
  4312. continue;
  4313. }
  4314. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4315. tx_buf->skb = NULL;
  4316. j += skb_shinfo(skb)->nr_frags + 1;
  4317. dev_kfree_skb(skb);
  4318. }
  4319. }
  4320. }
  4321. static void
  4322. bnx2_free_rx_skbs(struct bnx2 *bp)
  4323. {
  4324. int i;
  4325. for (i = 0; i < bp->num_rx_rings; i++) {
  4326. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4327. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4328. int j;
  4329. if (rxr->rx_buf_ring == NULL)
  4330. return;
  4331. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4332. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4333. struct sk_buff *skb = rx_buf->skb;
  4334. if (skb == NULL)
  4335. continue;
  4336. pci_unmap_single(bp->pdev,
  4337. pci_unmap_addr(rx_buf, mapping),
  4338. bp->rx_buf_use_size,
  4339. PCI_DMA_FROMDEVICE);
  4340. rx_buf->skb = NULL;
  4341. dev_kfree_skb(skb);
  4342. }
  4343. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4344. bnx2_free_rx_page(bp, rxr, j);
  4345. }
  4346. }
  4347. static void
  4348. bnx2_free_skbs(struct bnx2 *bp)
  4349. {
  4350. bnx2_free_tx_skbs(bp);
  4351. bnx2_free_rx_skbs(bp);
  4352. }
  4353. static int
  4354. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4355. {
  4356. int rc;
  4357. rc = bnx2_reset_chip(bp, reset_code);
  4358. bnx2_free_skbs(bp);
  4359. if (rc)
  4360. return rc;
  4361. if ((rc = bnx2_init_chip(bp)) != 0)
  4362. return rc;
  4363. bnx2_init_all_rings(bp);
  4364. return 0;
  4365. }
  4366. static int
  4367. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4368. {
  4369. int rc;
  4370. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4371. return rc;
  4372. spin_lock_bh(&bp->phy_lock);
  4373. bnx2_init_phy(bp, reset_phy);
  4374. bnx2_set_link(bp);
  4375. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4376. bnx2_remote_phy_event(bp);
  4377. spin_unlock_bh(&bp->phy_lock);
  4378. return 0;
  4379. }
  4380. static int
  4381. bnx2_shutdown_chip(struct bnx2 *bp)
  4382. {
  4383. u32 reset_code;
  4384. if (bp->flags & BNX2_FLAG_NO_WOL)
  4385. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4386. else if (bp->wol)
  4387. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4388. else
  4389. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4390. return bnx2_reset_chip(bp, reset_code);
  4391. }
  4392. static int
  4393. bnx2_test_registers(struct bnx2 *bp)
  4394. {
  4395. int ret;
  4396. int i, is_5709;
  4397. static const struct {
  4398. u16 offset;
  4399. u16 flags;
  4400. #define BNX2_FL_NOT_5709 1
  4401. u32 rw_mask;
  4402. u32 ro_mask;
  4403. } reg_tbl[] = {
  4404. { 0x006c, 0, 0x00000000, 0x0000003f },
  4405. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4406. { 0x0094, 0, 0x00000000, 0x00000000 },
  4407. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4408. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4409. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4410. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4411. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4412. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4413. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4414. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4415. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4416. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4417. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4418. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4419. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4420. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4421. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4422. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4423. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4424. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4425. { 0x1000, 0, 0x00000000, 0x00000001 },
  4426. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4427. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4428. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4429. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4430. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4431. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4432. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4433. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4434. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4435. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4436. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4437. { 0x1800, 0, 0x00000000, 0x00000001 },
  4438. { 0x1804, 0, 0x00000000, 0x00000003 },
  4439. { 0x2800, 0, 0x00000000, 0x00000001 },
  4440. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4441. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4442. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4443. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4444. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4445. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4446. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4447. { 0x2840, 0, 0x00000000, 0xffffffff },
  4448. { 0x2844, 0, 0x00000000, 0xffffffff },
  4449. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4450. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4451. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4452. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4453. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4454. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4455. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4456. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4457. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4458. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4459. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4460. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4461. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4462. { 0x5004, 0, 0x00000000, 0x0000007f },
  4463. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4464. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4465. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4466. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4467. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4468. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4469. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4470. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4471. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4472. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4473. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4474. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4475. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4476. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4477. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4478. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4479. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4480. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4481. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4482. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4483. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4484. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4485. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4486. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4487. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4488. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4489. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4490. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4491. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4492. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4493. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4494. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4495. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4496. { 0xffff, 0, 0x00000000, 0x00000000 },
  4497. };
  4498. ret = 0;
  4499. is_5709 = 0;
  4500. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4501. is_5709 = 1;
  4502. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4503. u32 offset, rw_mask, ro_mask, save_val, val;
  4504. u16 flags = reg_tbl[i].flags;
  4505. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4506. continue;
  4507. offset = (u32) reg_tbl[i].offset;
  4508. rw_mask = reg_tbl[i].rw_mask;
  4509. ro_mask = reg_tbl[i].ro_mask;
  4510. save_val = readl(bp->regview + offset);
  4511. writel(0, bp->regview + offset);
  4512. val = readl(bp->regview + offset);
  4513. if ((val & rw_mask) != 0) {
  4514. goto reg_test_err;
  4515. }
  4516. if ((val & ro_mask) != (save_val & ro_mask)) {
  4517. goto reg_test_err;
  4518. }
  4519. writel(0xffffffff, bp->regview + offset);
  4520. val = readl(bp->regview + offset);
  4521. if ((val & rw_mask) != rw_mask) {
  4522. goto reg_test_err;
  4523. }
  4524. if ((val & ro_mask) != (save_val & ro_mask)) {
  4525. goto reg_test_err;
  4526. }
  4527. writel(save_val, bp->regview + offset);
  4528. continue;
  4529. reg_test_err:
  4530. writel(save_val, bp->regview + offset);
  4531. ret = -ENODEV;
  4532. break;
  4533. }
  4534. return ret;
  4535. }
  4536. static int
  4537. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4538. {
  4539. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4540. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4541. int i;
  4542. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4543. u32 offset;
  4544. for (offset = 0; offset < size; offset += 4) {
  4545. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4546. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4547. test_pattern[i]) {
  4548. return -ENODEV;
  4549. }
  4550. }
  4551. }
  4552. return 0;
  4553. }
  4554. static int
  4555. bnx2_test_memory(struct bnx2 *bp)
  4556. {
  4557. int ret = 0;
  4558. int i;
  4559. static struct mem_entry {
  4560. u32 offset;
  4561. u32 len;
  4562. } mem_tbl_5706[] = {
  4563. { 0x60000, 0x4000 },
  4564. { 0xa0000, 0x3000 },
  4565. { 0xe0000, 0x4000 },
  4566. { 0x120000, 0x4000 },
  4567. { 0x1a0000, 0x4000 },
  4568. { 0x160000, 0x4000 },
  4569. { 0xffffffff, 0 },
  4570. },
  4571. mem_tbl_5709[] = {
  4572. { 0x60000, 0x4000 },
  4573. { 0xa0000, 0x3000 },
  4574. { 0xe0000, 0x4000 },
  4575. { 0x120000, 0x4000 },
  4576. { 0x1a0000, 0x4000 },
  4577. { 0xffffffff, 0 },
  4578. };
  4579. struct mem_entry *mem_tbl;
  4580. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4581. mem_tbl = mem_tbl_5709;
  4582. else
  4583. mem_tbl = mem_tbl_5706;
  4584. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4585. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4586. mem_tbl[i].len)) != 0) {
  4587. return ret;
  4588. }
  4589. }
  4590. return ret;
  4591. }
  4592. #define BNX2_MAC_LOOPBACK 0
  4593. #define BNX2_PHY_LOOPBACK 1
  4594. static int
  4595. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4596. {
  4597. unsigned int pkt_size, num_pkts, i;
  4598. struct sk_buff *skb, *rx_skb;
  4599. unsigned char *packet;
  4600. u16 rx_start_idx, rx_idx;
  4601. dma_addr_t map;
  4602. struct tx_bd *txbd;
  4603. struct sw_bd *rx_buf;
  4604. struct l2_fhdr *rx_hdr;
  4605. int ret = -ENODEV;
  4606. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4607. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4608. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4609. tx_napi = bnapi;
  4610. txr = &tx_napi->tx_ring;
  4611. rxr = &bnapi->rx_ring;
  4612. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4613. bp->loopback = MAC_LOOPBACK;
  4614. bnx2_set_mac_loopback(bp);
  4615. }
  4616. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4617. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4618. return 0;
  4619. bp->loopback = PHY_LOOPBACK;
  4620. bnx2_set_phy_loopback(bp);
  4621. }
  4622. else
  4623. return -EINVAL;
  4624. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4625. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4626. if (!skb)
  4627. return -ENOMEM;
  4628. packet = skb_put(skb, pkt_size);
  4629. memcpy(packet, bp->dev->dev_addr, 6);
  4630. memset(packet + 6, 0x0, 8);
  4631. for (i = 14; i < pkt_size; i++)
  4632. packet[i] = (unsigned char) (i & 0xff);
  4633. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4634. dev_kfree_skb(skb);
  4635. return -EIO;
  4636. }
  4637. map = skb_shinfo(skb)->dma_head;
  4638. REG_WR(bp, BNX2_HC_COMMAND,
  4639. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4640. REG_RD(bp, BNX2_HC_COMMAND);
  4641. udelay(5);
  4642. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4643. num_pkts = 0;
  4644. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4645. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4646. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4647. txbd->tx_bd_mss_nbytes = pkt_size;
  4648. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4649. num_pkts++;
  4650. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4651. txr->tx_prod_bseq += pkt_size;
  4652. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4653. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4654. udelay(100);
  4655. REG_WR(bp, BNX2_HC_COMMAND,
  4656. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4657. REG_RD(bp, BNX2_HC_COMMAND);
  4658. udelay(5);
  4659. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4660. dev_kfree_skb(skb);
  4661. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4662. goto loopback_test_done;
  4663. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4664. if (rx_idx != rx_start_idx + num_pkts) {
  4665. goto loopback_test_done;
  4666. }
  4667. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4668. rx_skb = rx_buf->skb;
  4669. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4670. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4671. pci_dma_sync_single_for_cpu(bp->pdev,
  4672. pci_unmap_addr(rx_buf, mapping),
  4673. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4674. if (rx_hdr->l2_fhdr_status &
  4675. (L2_FHDR_ERRORS_BAD_CRC |
  4676. L2_FHDR_ERRORS_PHY_DECODE |
  4677. L2_FHDR_ERRORS_ALIGNMENT |
  4678. L2_FHDR_ERRORS_TOO_SHORT |
  4679. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4680. goto loopback_test_done;
  4681. }
  4682. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4683. goto loopback_test_done;
  4684. }
  4685. for (i = 14; i < pkt_size; i++) {
  4686. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4687. goto loopback_test_done;
  4688. }
  4689. }
  4690. ret = 0;
  4691. loopback_test_done:
  4692. bp->loopback = 0;
  4693. return ret;
  4694. }
  4695. #define BNX2_MAC_LOOPBACK_FAILED 1
  4696. #define BNX2_PHY_LOOPBACK_FAILED 2
  4697. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4698. BNX2_PHY_LOOPBACK_FAILED)
  4699. static int
  4700. bnx2_test_loopback(struct bnx2 *bp)
  4701. {
  4702. int rc = 0;
  4703. if (!netif_running(bp->dev))
  4704. return BNX2_LOOPBACK_FAILED;
  4705. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4706. spin_lock_bh(&bp->phy_lock);
  4707. bnx2_init_phy(bp, 1);
  4708. spin_unlock_bh(&bp->phy_lock);
  4709. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4710. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4711. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4712. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4713. return rc;
  4714. }
  4715. #define NVRAM_SIZE 0x200
  4716. #define CRC32_RESIDUAL 0xdebb20e3
  4717. static int
  4718. bnx2_test_nvram(struct bnx2 *bp)
  4719. {
  4720. __be32 buf[NVRAM_SIZE / 4];
  4721. u8 *data = (u8 *) buf;
  4722. int rc = 0;
  4723. u32 magic, csum;
  4724. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4725. goto test_nvram_done;
  4726. magic = be32_to_cpu(buf[0]);
  4727. if (magic != 0x669955aa) {
  4728. rc = -ENODEV;
  4729. goto test_nvram_done;
  4730. }
  4731. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4732. goto test_nvram_done;
  4733. csum = ether_crc_le(0x100, data);
  4734. if (csum != CRC32_RESIDUAL) {
  4735. rc = -ENODEV;
  4736. goto test_nvram_done;
  4737. }
  4738. csum = ether_crc_le(0x100, data + 0x100);
  4739. if (csum != CRC32_RESIDUAL) {
  4740. rc = -ENODEV;
  4741. }
  4742. test_nvram_done:
  4743. return rc;
  4744. }
  4745. static int
  4746. bnx2_test_link(struct bnx2 *bp)
  4747. {
  4748. u32 bmsr;
  4749. if (!netif_running(bp->dev))
  4750. return -ENODEV;
  4751. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4752. if (bp->link_up)
  4753. return 0;
  4754. return -ENODEV;
  4755. }
  4756. spin_lock_bh(&bp->phy_lock);
  4757. bnx2_enable_bmsr1(bp);
  4758. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4759. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4760. bnx2_disable_bmsr1(bp);
  4761. spin_unlock_bh(&bp->phy_lock);
  4762. if (bmsr & BMSR_LSTATUS) {
  4763. return 0;
  4764. }
  4765. return -ENODEV;
  4766. }
  4767. static int
  4768. bnx2_test_intr(struct bnx2 *bp)
  4769. {
  4770. int i;
  4771. u16 status_idx;
  4772. if (!netif_running(bp->dev))
  4773. return -ENODEV;
  4774. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4775. /* This register is not touched during run-time. */
  4776. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4777. REG_RD(bp, BNX2_HC_COMMAND);
  4778. for (i = 0; i < 10; i++) {
  4779. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4780. status_idx) {
  4781. break;
  4782. }
  4783. msleep_interruptible(10);
  4784. }
  4785. if (i < 10)
  4786. return 0;
  4787. return -ENODEV;
  4788. }
  4789. /* Determining link for parallel detection. */
  4790. static int
  4791. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4792. {
  4793. u32 mode_ctl, an_dbg, exp;
  4794. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4795. return 0;
  4796. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4797. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4798. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4799. return 0;
  4800. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4801. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4802. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4803. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4804. return 0;
  4805. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4806. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4807. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4808. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4809. return 0;
  4810. return 1;
  4811. }
  4812. static void
  4813. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4814. {
  4815. int check_link = 1;
  4816. spin_lock(&bp->phy_lock);
  4817. if (bp->serdes_an_pending) {
  4818. bp->serdes_an_pending--;
  4819. check_link = 0;
  4820. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4821. u32 bmcr;
  4822. bp->current_interval = BNX2_TIMER_INTERVAL;
  4823. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4824. if (bmcr & BMCR_ANENABLE) {
  4825. if (bnx2_5706_serdes_has_link(bp)) {
  4826. bmcr &= ~BMCR_ANENABLE;
  4827. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4828. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4829. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4830. }
  4831. }
  4832. }
  4833. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4834. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4835. u32 phy2;
  4836. bnx2_write_phy(bp, 0x17, 0x0f01);
  4837. bnx2_read_phy(bp, 0x15, &phy2);
  4838. if (phy2 & 0x20) {
  4839. u32 bmcr;
  4840. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4841. bmcr |= BMCR_ANENABLE;
  4842. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4843. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4844. }
  4845. } else
  4846. bp->current_interval = BNX2_TIMER_INTERVAL;
  4847. if (check_link) {
  4848. u32 val;
  4849. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4850. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4851. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4852. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4853. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4854. bnx2_5706s_force_link_dn(bp, 1);
  4855. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4856. } else
  4857. bnx2_set_link(bp);
  4858. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4859. bnx2_set_link(bp);
  4860. }
  4861. spin_unlock(&bp->phy_lock);
  4862. }
  4863. static void
  4864. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4865. {
  4866. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4867. return;
  4868. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4869. bp->serdes_an_pending = 0;
  4870. return;
  4871. }
  4872. spin_lock(&bp->phy_lock);
  4873. if (bp->serdes_an_pending)
  4874. bp->serdes_an_pending--;
  4875. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4876. u32 bmcr;
  4877. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4878. if (bmcr & BMCR_ANENABLE) {
  4879. bnx2_enable_forced_2g5(bp);
  4880. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4881. } else {
  4882. bnx2_disable_forced_2g5(bp);
  4883. bp->serdes_an_pending = 2;
  4884. bp->current_interval = BNX2_TIMER_INTERVAL;
  4885. }
  4886. } else
  4887. bp->current_interval = BNX2_TIMER_INTERVAL;
  4888. spin_unlock(&bp->phy_lock);
  4889. }
  4890. static void
  4891. bnx2_timer(unsigned long data)
  4892. {
  4893. struct bnx2 *bp = (struct bnx2 *) data;
  4894. if (!netif_running(bp->dev))
  4895. return;
  4896. if (atomic_read(&bp->intr_sem) != 0)
  4897. goto bnx2_restart_timer;
  4898. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4899. BNX2_FLAG_USING_MSI)
  4900. bnx2_chk_missed_msi(bp);
  4901. bnx2_send_heart_beat(bp);
  4902. bp->stats_blk->stat_FwRxDrop =
  4903. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4904. /* workaround occasional corrupted counters */
  4905. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4906. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4907. BNX2_HC_COMMAND_STATS_NOW);
  4908. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4909. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4910. bnx2_5706_serdes_timer(bp);
  4911. else
  4912. bnx2_5708_serdes_timer(bp);
  4913. }
  4914. bnx2_restart_timer:
  4915. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4916. }
  4917. static int
  4918. bnx2_request_irq(struct bnx2 *bp)
  4919. {
  4920. unsigned long flags;
  4921. struct bnx2_irq *irq;
  4922. int rc = 0, i;
  4923. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4924. flags = 0;
  4925. else
  4926. flags = IRQF_SHARED;
  4927. for (i = 0; i < bp->irq_nvecs; i++) {
  4928. irq = &bp->irq_tbl[i];
  4929. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4930. &bp->bnx2_napi[i]);
  4931. if (rc)
  4932. break;
  4933. irq->requested = 1;
  4934. }
  4935. return rc;
  4936. }
  4937. static void
  4938. bnx2_free_irq(struct bnx2 *bp)
  4939. {
  4940. struct bnx2_irq *irq;
  4941. int i;
  4942. for (i = 0; i < bp->irq_nvecs; i++) {
  4943. irq = &bp->irq_tbl[i];
  4944. if (irq->requested)
  4945. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4946. irq->requested = 0;
  4947. }
  4948. if (bp->flags & BNX2_FLAG_USING_MSI)
  4949. pci_disable_msi(bp->pdev);
  4950. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4951. pci_disable_msix(bp->pdev);
  4952. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4953. }
  4954. static void
  4955. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4956. {
  4957. int i, rc;
  4958. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4959. struct net_device *dev = bp->dev;
  4960. const int len = sizeof(bp->irq_tbl[0].name);
  4961. bnx2_setup_msix_tbl(bp);
  4962. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4963. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4964. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4965. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4966. msix_ent[i].entry = i;
  4967. msix_ent[i].vector = 0;
  4968. }
  4969. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4970. if (rc != 0)
  4971. return;
  4972. bp->irq_nvecs = msix_vecs;
  4973. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4974. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4975. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4976. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4977. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4978. }
  4979. }
  4980. static void
  4981. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4982. {
  4983. int cpus = num_online_cpus();
  4984. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4985. bp->irq_tbl[0].handler = bnx2_interrupt;
  4986. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4987. bp->irq_nvecs = 1;
  4988. bp->irq_tbl[0].vector = bp->pdev->irq;
  4989. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  4990. bnx2_enable_msix(bp, msix_vecs);
  4991. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  4992. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  4993. if (pci_enable_msi(bp->pdev) == 0) {
  4994. bp->flags |= BNX2_FLAG_USING_MSI;
  4995. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4996. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  4997. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  4998. } else
  4999. bp->irq_tbl[0].handler = bnx2_msi;
  5000. bp->irq_tbl[0].vector = bp->pdev->irq;
  5001. }
  5002. }
  5003. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5004. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5005. bp->num_rx_rings = bp->irq_nvecs;
  5006. }
  5007. /* Called with rtnl_lock */
  5008. static int
  5009. bnx2_open(struct net_device *dev)
  5010. {
  5011. struct bnx2 *bp = netdev_priv(dev);
  5012. int rc;
  5013. netif_carrier_off(dev);
  5014. bnx2_set_power_state(bp, PCI_D0);
  5015. bnx2_disable_int(bp);
  5016. bnx2_setup_int_mode(bp, disable_msi);
  5017. bnx2_napi_enable(bp);
  5018. rc = bnx2_alloc_mem(bp);
  5019. if (rc)
  5020. goto open_err;
  5021. rc = bnx2_request_irq(bp);
  5022. if (rc)
  5023. goto open_err;
  5024. rc = bnx2_init_nic(bp, 1);
  5025. if (rc)
  5026. goto open_err;
  5027. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5028. atomic_set(&bp->intr_sem, 0);
  5029. bnx2_enable_int(bp);
  5030. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5031. /* Test MSI to make sure it is working
  5032. * If MSI test fails, go back to INTx mode
  5033. */
  5034. if (bnx2_test_intr(bp) != 0) {
  5035. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5036. " using MSI, switching to INTx mode. Please"
  5037. " report this failure to the PCI maintainer"
  5038. " and include system chipset information.\n",
  5039. bp->dev->name);
  5040. bnx2_disable_int(bp);
  5041. bnx2_free_irq(bp);
  5042. bnx2_setup_int_mode(bp, 1);
  5043. rc = bnx2_init_nic(bp, 0);
  5044. if (!rc)
  5045. rc = bnx2_request_irq(bp);
  5046. if (rc) {
  5047. del_timer_sync(&bp->timer);
  5048. goto open_err;
  5049. }
  5050. bnx2_enable_int(bp);
  5051. }
  5052. }
  5053. if (bp->flags & BNX2_FLAG_USING_MSI)
  5054. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5055. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5056. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5057. netif_tx_start_all_queues(dev);
  5058. return 0;
  5059. open_err:
  5060. bnx2_napi_disable(bp);
  5061. bnx2_free_skbs(bp);
  5062. bnx2_free_irq(bp);
  5063. bnx2_free_mem(bp);
  5064. return rc;
  5065. }
  5066. static void
  5067. bnx2_reset_task(struct work_struct *work)
  5068. {
  5069. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5070. if (!netif_running(bp->dev))
  5071. return;
  5072. bnx2_netif_stop(bp);
  5073. bnx2_init_nic(bp, 1);
  5074. atomic_set(&bp->intr_sem, 1);
  5075. bnx2_netif_start(bp);
  5076. }
  5077. static void
  5078. bnx2_tx_timeout(struct net_device *dev)
  5079. {
  5080. struct bnx2 *bp = netdev_priv(dev);
  5081. /* This allows the netif to be shutdown gracefully before resetting */
  5082. schedule_work(&bp->reset_task);
  5083. }
  5084. #ifdef BCM_VLAN
  5085. /* Called with rtnl_lock */
  5086. static void
  5087. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5088. {
  5089. struct bnx2 *bp = netdev_priv(dev);
  5090. bnx2_netif_stop(bp);
  5091. bp->vlgrp = vlgrp;
  5092. bnx2_set_rx_mode(dev);
  5093. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5094. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5095. bnx2_netif_start(bp);
  5096. }
  5097. #endif
  5098. /* Called with netif_tx_lock.
  5099. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5100. * netif_wake_queue().
  5101. */
  5102. static int
  5103. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5104. {
  5105. struct bnx2 *bp = netdev_priv(dev);
  5106. dma_addr_t mapping;
  5107. struct tx_bd *txbd;
  5108. struct sw_tx_bd *tx_buf;
  5109. u32 len, vlan_tag_flags, last_frag, mss;
  5110. u16 prod, ring_prod;
  5111. int i;
  5112. struct bnx2_napi *bnapi;
  5113. struct bnx2_tx_ring_info *txr;
  5114. struct netdev_queue *txq;
  5115. struct skb_shared_info *sp;
  5116. /* Determine which tx ring we will be placed on */
  5117. i = skb_get_queue_mapping(skb);
  5118. bnapi = &bp->bnx2_napi[i];
  5119. txr = &bnapi->tx_ring;
  5120. txq = netdev_get_tx_queue(dev, i);
  5121. if (unlikely(bnx2_tx_avail(bp, txr) <
  5122. (skb_shinfo(skb)->nr_frags + 1))) {
  5123. netif_tx_stop_queue(txq);
  5124. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5125. dev->name);
  5126. return NETDEV_TX_BUSY;
  5127. }
  5128. len = skb_headlen(skb);
  5129. prod = txr->tx_prod;
  5130. ring_prod = TX_RING_IDX(prod);
  5131. vlan_tag_flags = 0;
  5132. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5133. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5134. }
  5135. #ifdef BCM_VLAN
  5136. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5137. vlan_tag_flags |=
  5138. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5139. }
  5140. #endif
  5141. if ((mss = skb_shinfo(skb)->gso_size)) {
  5142. u32 tcp_opt_len;
  5143. struct iphdr *iph;
  5144. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5145. tcp_opt_len = tcp_optlen(skb);
  5146. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5147. u32 tcp_off = skb_transport_offset(skb) -
  5148. sizeof(struct ipv6hdr) - ETH_HLEN;
  5149. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5150. TX_BD_FLAGS_SW_FLAGS;
  5151. if (likely(tcp_off == 0))
  5152. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5153. else {
  5154. tcp_off >>= 3;
  5155. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5156. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5157. ((tcp_off & 0x10) <<
  5158. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5159. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5160. }
  5161. } else {
  5162. iph = ip_hdr(skb);
  5163. if (tcp_opt_len || (iph->ihl > 5)) {
  5164. vlan_tag_flags |= ((iph->ihl - 5) +
  5165. (tcp_opt_len >> 2)) << 8;
  5166. }
  5167. }
  5168. } else
  5169. mss = 0;
  5170. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5171. dev_kfree_skb(skb);
  5172. return NETDEV_TX_OK;
  5173. }
  5174. sp = skb_shinfo(skb);
  5175. mapping = sp->dma_head;
  5176. tx_buf = &txr->tx_buf_ring[ring_prod];
  5177. tx_buf->skb = skb;
  5178. txbd = &txr->tx_desc_ring[ring_prod];
  5179. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5180. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5181. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5182. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5183. last_frag = skb_shinfo(skb)->nr_frags;
  5184. tx_buf->nr_frags = last_frag;
  5185. tx_buf->is_gso = skb_is_gso(skb);
  5186. for (i = 0; i < last_frag; i++) {
  5187. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5188. prod = NEXT_TX_BD(prod);
  5189. ring_prod = TX_RING_IDX(prod);
  5190. txbd = &txr->tx_desc_ring[ring_prod];
  5191. len = frag->size;
  5192. mapping = sp->dma_maps[i];
  5193. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5194. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5195. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5196. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5197. }
  5198. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5199. prod = NEXT_TX_BD(prod);
  5200. txr->tx_prod_bseq += skb->len;
  5201. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5202. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5203. mmiowb();
  5204. txr->tx_prod = prod;
  5205. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5206. netif_tx_stop_queue(txq);
  5207. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5208. netif_tx_wake_queue(txq);
  5209. }
  5210. return NETDEV_TX_OK;
  5211. }
  5212. /* Called with rtnl_lock */
  5213. static int
  5214. bnx2_close(struct net_device *dev)
  5215. {
  5216. struct bnx2 *bp = netdev_priv(dev);
  5217. cancel_work_sync(&bp->reset_task);
  5218. bnx2_disable_int_sync(bp);
  5219. bnx2_napi_disable(bp);
  5220. del_timer_sync(&bp->timer);
  5221. bnx2_shutdown_chip(bp);
  5222. bnx2_free_irq(bp);
  5223. bnx2_free_skbs(bp);
  5224. bnx2_free_mem(bp);
  5225. bp->link_up = 0;
  5226. netif_carrier_off(bp->dev);
  5227. bnx2_set_power_state(bp, PCI_D3hot);
  5228. return 0;
  5229. }
  5230. #define GET_NET_STATS64(ctr) \
  5231. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5232. (unsigned long) (ctr##_lo)
  5233. #define GET_NET_STATS32(ctr) \
  5234. (ctr##_lo)
  5235. #if (BITS_PER_LONG == 64)
  5236. #define GET_NET_STATS GET_NET_STATS64
  5237. #else
  5238. #define GET_NET_STATS GET_NET_STATS32
  5239. #endif
  5240. static struct net_device_stats *
  5241. bnx2_get_stats(struct net_device *dev)
  5242. {
  5243. struct bnx2 *bp = netdev_priv(dev);
  5244. struct statistics_block *stats_blk = bp->stats_blk;
  5245. struct net_device_stats *net_stats = &dev->stats;
  5246. if (bp->stats_blk == NULL) {
  5247. return net_stats;
  5248. }
  5249. net_stats->rx_packets =
  5250. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5251. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5252. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5253. net_stats->tx_packets =
  5254. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5255. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5256. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5257. net_stats->rx_bytes =
  5258. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5259. net_stats->tx_bytes =
  5260. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5261. net_stats->multicast =
  5262. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5263. net_stats->collisions =
  5264. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5265. net_stats->rx_length_errors =
  5266. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5267. stats_blk->stat_EtherStatsOverrsizePkts);
  5268. net_stats->rx_over_errors =
  5269. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  5270. net_stats->rx_frame_errors =
  5271. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5272. net_stats->rx_crc_errors =
  5273. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5274. net_stats->rx_errors = net_stats->rx_length_errors +
  5275. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5276. net_stats->rx_crc_errors;
  5277. net_stats->tx_aborted_errors =
  5278. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5279. stats_blk->stat_Dot3StatsLateCollisions);
  5280. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5281. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5282. net_stats->tx_carrier_errors = 0;
  5283. else {
  5284. net_stats->tx_carrier_errors =
  5285. (unsigned long)
  5286. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5287. }
  5288. net_stats->tx_errors =
  5289. (unsigned long)
  5290. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5291. +
  5292. net_stats->tx_aborted_errors +
  5293. net_stats->tx_carrier_errors;
  5294. net_stats->rx_missed_errors =
  5295. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  5296. stats_blk->stat_FwRxDrop);
  5297. return net_stats;
  5298. }
  5299. /* All ethtool functions called with rtnl_lock */
  5300. static int
  5301. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5302. {
  5303. struct bnx2 *bp = netdev_priv(dev);
  5304. int support_serdes = 0, support_copper = 0;
  5305. cmd->supported = SUPPORTED_Autoneg;
  5306. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5307. support_serdes = 1;
  5308. support_copper = 1;
  5309. } else if (bp->phy_port == PORT_FIBRE)
  5310. support_serdes = 1;
  5311. else
  5312. support_copper = 1;
  5313. if (support_serdes) {
  5314. cmd->supported |= SUPPORTED_1000baseT_Full |
  5315. SUPPORTED_FIBRE;
  5316. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5317. cmd->supported |= SUPPORTED_2500baseX_Full;
  5318. }
  5319. if (support_copper) {
  5320. cmd->supported |= SUPPORTED_10baseT_Half |
  5321. SUPPORTED_10baseT_Full |
  5322. SUPPORTED_100baseT_Half |
  5323. SUPPORTED_100baseT_Full |
  5324. SUPPORTED_1000baseT_Full |
  5325. SUPPORTED_TP;
  5326. }
  5327. spin_lock_bh(&bp->phy_lock);
  5328. cmd->port = bp->phy_port;
  5329. cmd->advertising = bp->advertising;
  5330. if (bp->autoneg & AUTONEG_SPEED) {
  5331. cmd->autoneg = AUTONEG_ENABLE;
  5332. }
  5333. else {
  5334. cmd->autoneg = AUTONEG_DISABLE;
  5335. }
  5336. if (netif_carrier_ok(dev)) {
  5337. cmd->speed = bp->line_speed;
  5338. cmd->duplex = bp->duplex;
  5339. }
  5340. else {
  5341. cmd->speed = -1;
  5342. cmd->duplex = -1;
  5343. }
  5344. spin_unlock_bh(&bp->phy_lock);
  5345. cmd->transceiver = XCVR_INTERNAL;
  5346. cmd->phy_address = bp->phy_addr;
  5347. return 0;
  5348. }
  5349. static int
  5350. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5351. {
  5352. struct bnx2 *bp = netdev_priv(dev);
  5353. u8 autoneg = bp->autoneg;
  5354. u8 req_duplex = bp->req_duplex;
  5355. u16 req_line_speed = bp->req_line_speed;
  5356. u32 advertising = bp->advertising;
  5357. int err = -EINVAL;
  5358. spin_lock_bh(&bp->phy_lock);
  5359. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5360. goto err_out_unlock;
  5361. if (cmd->port != bp->phy_port &&
  5362. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5363. goto err_out_unlock;
  5364. /* If device is down, we can store the settings only if the user
  5365. * is setting the currently active port.
  5366. */
  5367. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5368. goto err_out_unlock;
  5369. if (cmd->autoneg == AUTONEG_ENABLE) {
  5370. autoneg |= AUTONEG_SPEED;
  5371. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5372. /* allow advertising 1 speed */
  5373. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5374. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5375. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5376. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5377. if (cmd->port == PORT_FIBRE)
  5378. goto err_out_unlock;
  5379. advertising = cmd->advertising;
  5380. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5381. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5382. (cmd->port == PORT_TP))
  5383. goto err_out_unlock;
  5384. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5385. advertising = cmd->advertising;
  5386. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5387. goto err_out_unlock;
  5388. else {
  5389. if (cmd->port == PORT_FIBRE)
  5390. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5391. else
  5392. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5393. }
  5394. advertising |= ADVERTISED_Autoneg;
  5395. }
  5396. else {
  5397. if (cmd->port == PORT_FIBRE) {
  5398. if ((cmd->speed != SPEED_1000 &&
  5399. cmd->speed != SPEED_2500) ||
  5400. (cmd->duplex != DUPLEX_FULL))
  5401. goto err_out_unlock;
  5402. if (cmd->speed == SPEED_2500 &&
  5403. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5404. goto err_out_unlock;
  5405. }
  5406. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5407. goto err_out_unlock;
  5408. autoneg &= ~AUTONEG_SPEED;
  5409. req_line_speed = cmd->speed;
  5410. req_duplex = cmd->duplex;
  5411. advertising = 0;
  5412. }
  5413. bp->autoneg = autoneg;
  5414. bp->advertising = advertising;
  5415. bp->req_line_speed = req_line_speed;
  5416. bp->req_duplex = req_duplex;
  5417. err = 0;
  5418. /* If device is down, the new settings will be picked up when it is
  5419. * brought up.
  5420. */
  5421. if (netif_running(dev))
  5422. err = bnx2_setup_phy(bp, cmd->port);
  5423. err_out_unlock:
  5424. spin_unlock_bh(&bp->phy_lock);
  5425. return err;
  5426. }
  5427. static void
  5428. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5429. {
  5430. struct bnx2 *bp = netdev_priv(dev);
  5431. strcpy(info->driver, DRV_MODULE_NAME);
  5432. strcpy(info->version, DRV_MODULE_VERSION);
  5433. strcpy(info->bus_info, pci_name(bp->pdev));
  5434. strcpy(info->fw_version, bp->fw_version);
  5435. }
  5436. #define BNX2_REGDUMP_LEN (32 * 1024)
  5437. static int
  5438. bnx2_get_regs_len(struct net_device *dev)
  5439. {
  5440. return BNX2_REGDUMP_LEN;
  5441. }
  5442. static void
  5443. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5444. {
  5445. u32 *p = _p, i, offset;
  5446. u8 *orig_p = _p;
  5447. struct bnx2 *bp = netdev_priv(dev);
  5448. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5449. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5450. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5451. 0x1040, 0x1048, 0x1080, 0x10a4,
  5452. 0x1400, 0x1490, 0x1498, 0x14f0,
  5453. 0x1500, 0x155c, 0x1580, 0x15dc,
  5454. 0x1600, 0x1658, 0x1680, 0x16d8,
  5455. 0x1800, 0x1820, 0x1840, 0x1854,
  5456. 0x1880, 0x1894, 0x1900, 0x1984,
  5457. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5458. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5459. 0x2000, 0x2030, 0x23c0, 0x2400,
  5460. 0x2800, 0x2820, 0x2830, 0x2850,
  5461. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5462. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5463. 0x4080, 0x4090, 0x43c0, 0x4458,
  5464. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5465. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5466. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5467. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5468. 0x6800, 0x6848, 0x684c, 0x6860,
  5469. 0x6888, 0x6910, 0x8000 };
  5470. regs->version = 0;
  5471. memset(p, 0, BNX2_REGDUMP_LEN);
  5472. if (!netif_running(bp->dev))
  5473. return;
  5474. i = 0;
  5475. offset = reg_boundaries[0];
  5476. p += offset;
  5477. while (offset < BNX2_REGDUMP_LEN) {
  5478. *p++ = REG_RD(bp, offset);
  5479. offset += 4;
  5480. if (offset == reg_boundaries[i + 1]) {
  5481. offset = reg_boundaries[i + 2];
  5482. p = (u32 *) (orig_p + offset);
  5483. i += 2;
  5484. }
  5485. }
  5486. }
  5487. static void
  5488. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5489. {
  5490. struct bnx2 *bp = netdev_priv(dev);
  5491. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5492. wol->supported = 0;
  5493. wol->wolopts = 0;
  5494. }
  5495. else {
  5496. wol->supported = WAKE_MAGIC;
  5497. if (bp->wol)
  5498. wol->wolopts = WAKE_MAGIC;
  5499. else
  5500. wol->wolopts = 0;
  5501. }
  5502. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5503. }
  5504. static int
  5505. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5506. {
  5507. struct bnx2 *bp = netdev_priv(dev);
  5508. if (wol->wolopts & ~WAKE_MAGIC)
  5509. return -EINVAL;
  5510. if (wol->wolopts & WAKE_MAGIC) {
  5511. if (bp->flags & BNX2_FLAG_NO_WOL)
  5512. return -EINVAL;
  5513. bp->wol = 1;
  5514. }
  5515. else {
  5516. bp->wol = 0;
  5517. }
  5518. return 0;
  5519. }
  5520. static int
  5521. bnx2_nway_reset(struct net_device *dev)
  5522. {
  5523. struct bnx2 *bp = netdev_priv(dev);
  5524. u32 bmcr;
  5525. if (!netif_running(dev))
  5526. return -EAGAIN;
  5527. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5528. return -EINVAL;
  5529. }
  5530. spin_lock_bh(&bp->phy_lock);
  5531. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5532. int rc;
  5533. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5534. spin_unlock_bh(&bp->phy_lock);
  5535. return rc;
  5536. }
  5537. /* Force a link down visible on the other side */
  5538. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5539. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5540. spin_unlock_bh(&bp->phy_lock);
  5541. msleep(20);
  5542. spin_lock_bh(&bp->phy_lock);
  5543. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5544. bp->serdes_an_pending = 1;
  5545. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5546. }
  5547. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5548. bmcr &= ~BMCR_LOOPBACK;
  5549. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5550. spin_unlock_bh(&bp->phy_lock);
  5551. return 0;
  5552. }
  5553. static u32
  5554. bnx2_get_link(struct net_device *dev)
  5555. {
  5556. struct bnx2 *bp = netdev_priv(dev);
  5557. return bp->link_up;
  5558. }
  5559. static int
  5560. bnx2_get_eeprom_len(struct net_device *dev)
  5561. {
  5562. struct bnx2 *bp = netdev_priv(dev);
  5563. if (bp->flash_info == NULL)
  5564. return 0;
  5565. return (int) bp->flash_size;
  5566. }
  5567. static int
  5568. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5569. u8 *eebuf)
  5570. {
  5571. struct bnx2 *bp = netdev_priv(dev);
  5572. int rc;
  5573. if (!netif_running(dev))
  5574. return -EAGAIN;
  5575. /* parameters already validated in ethtool_get_eeprom */
  5576. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5577. return rc;
  5578. }
  5579. static int
  5580. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5581. u8 *eebuf)
  5582. {
  5583. struct bnx2 *bp = netdev_priv(dev);
  5584. int rc;
  5585. if (!netif_running(dev))
  5586. return -EAGAIN;
  5587. /* parameters already validated in ethtool_set_eeprom */
  5588. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5589. return rc;
  5590. }
  5591. static int
  5592. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5593. {
  5594. struct bnx2 *bp = netdev_priv(dev);
  5595. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5596. coal->rx_coalesce_usecs = bp->rx_ticks;
  5597. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5598. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5599. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5600. coal->tx_coalesce_usecs = bp->tx_ticks;
  5601. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5602. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5603. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5604. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5605. return 0;
  5606. }
  5607. static int
  5608. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5609. {
  5610. struct bnx2 *bp = netdev_priv(dev);
  5611. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5612. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5613. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5614. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5615. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5616. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5617. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5618. if (bp->rx_quick_cons_trip_int > 0xff)
  5619. bp->rx_quick_cons_trip_int = 0xff;
  5620. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5621. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5622. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5623. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5624. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5625. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5626. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5627. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5628. 0xff;
  5629. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5630. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  5631. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5632. bp->stats_ticks = USEC_PER_SEC;
  5633. }
  5634. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5635. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5636. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5637. if (netif_running(bp->dev)) {
  5638. bnx2_netif_stop(bp);
  5639. bnx2_init_nic(bp, 0);
  5640. bnx2_netif_start(bp);
  5641. }
  5642. return 0;
  5643. }
  5644. static void
  5645. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5646. {
  5647. struct bnx2 *bp = netdev_priv(dev);
  5648. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5649. ering->rx_mini_max_pending = 0;
  5650. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5651. ering->rx_pending = bp->rx_ring_size;
  5652. ering->rx_mini_pending = 0;
  5653. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5654. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5655. ering->tx_pending = bp->tx_ring_size;
  5656. }
  5657. static int
  5658. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5659. {
  5660. if (netif_running(bp->dev)) {
  5661. bnx2_netif_stop(bp);
  5662. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5663. bnx2_free_skbs(bp);
  5664. bnx2_free_mem(bp);
  5665. }
  5666. bnx2_set_rx_ring_size(bp, rx);
  5667. bp->tx_ring_size = tx;
  5668. if (netif_running(bp->dev)) {
  5669. int rc;
  5670. rc = bnx2_alloc_mem(bp);
  5671. if (rc)
  5672. return rc;
  5673. bnx2_init_nic(bp, 0);
  5674. bnx2_netif_start(bp);
  5675. }
  5676. return 0;
  5677. }
  5678. static int
  5679. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5680. {
  5681. struct bnx2 *bp = netdev_priv(dev);
  5682. int rc;
  5683. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5684. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5685. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5686. return -EINVAL;
  5687. }
  5688. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5689. return rc;
  5690. }
  5691. static void
  5692. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5693. {
  5694. struct bnx2 *bp = netdev_priv(dev);
  5695. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5696. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5697. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5698. }
  5699. static int
  5700. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5701. {
  5702. struct bnx2 *bp = netdev_priv(dev);
  5703. bp->req_flow_ctrl = 0;
  5704. if (epause->rx_pause)
  5705. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5706. if (epause->tx_pause)
  5707. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5708. if (epause->autoneg) {
  5709. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5710. }
  5711. else {
  5712. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5713. }
  5714. if (netif_running(dev)) {
  5715. spin_lock_bh(&bp->phy_lock);
  5716. bnx2_setup_phy(bp, bp->phy_port);
  5717. spin_unlock_bh(&bp->phy_lock);
  5718. }
  5719. return 0;
  5720. }
  5721. static u32
  5722. bnx2_get_rx_csum(struct net_device *dev)
  5723. {
  5724. struct bnx2 *bp = netdev_priv(dev);
  5725. return bp->rx_csum;
  5726. }
  5727. static int
  5728. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5729. {
  5730. struct bnx2 *bp = netdev_priv(dev);
  5731. bp->rx_csum = data;
  5732. return 0;
  5733. }
  5734. static int
  5735. bnx2_set_tso(struct net_device *dev, u32 data)
  5736. {
  5737. struct bnx2 *bp = netdev_priv(dev);
  5738. if (data) {
  5739. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5740. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5741. dev->features |= NETIF_F_TSO6;
  5742. } else
  5743. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5744. NETIF_F_TSO_ECN);
  5745. return 0;
  5746. }
  5747. #define BNX2_NUM_STATS 46
  5748. static struct {
  5749. char string[ETH_GSTRING_LEN];
  5750. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  5751. { "rx_bytes" },
  5752. { "rx_error_bytes" },
  5753. { "tx_bytes" },
  5754. { "tx_error_bytes" },
  5755. { "rx_ucast_packets" },
  5756. { "rx_mcast_packets" },
  5757. { "rx_bcast_packets" },
  5758. { "tx_ucast_packets" },
  5759. { "tx_mcast_packets" },
  5760. { "tx_bcast_packets" },
  5761. { "tx_mac_errors" },
  5762. { "tx_carrier_errors" },
  5763. { "rx_crc_errors" },
  5764. { "rx_align_errors" },
  5765. { "tx_single_collisions" },
  5766. { "tx_multi_collisions" },
  5767. { "tx_deferred" },
  5768. { "tx_excess_collisions" },
  5769. { "tx_late_collisions" },
  5770. { "tx_total_collisions" },
  5771. { "rx_fragments" },
  5772. { "rx_jabbers" },
  5773. { "rx_undersize_packets" },
  5774. { "rx_oversize_packets" },
  5775. { "rx_64_byte_packets" },
  5776. { "rx_65_to_127_byte_packets" },
  5777. { "rx_128_to_255_byte_packets" },
  5778. { "rx_256_to_511_byte_packets" },
  5779. { "rx_512_to_1023_byte_packets" },
  5780. { "rx_1024_to_1522_byte_packets" },
  5781. { "rx_1523_to_9022_byte_packets" },
  5782. { "tx_64_byte_packets" },
  5783. { "tx_65_to_127_byte_packets" },
  5784. { "tx_128_to_255_byte_packets" },
  5785. { "tx_256_to_511_byte_packets" },
  5786. { "tx_512_to_1023_byte_packets" },
  5787. { "tx_1024_to_1522_byte_packets" },
  5788. { "tx_1523_to_9022_byte_packets" },
  5789. { "rx_xon_frames" },
  5790. { "rx_xoff_frames" },
  5791. { "tx_xon_frames" },
  5792. { "tx_xoff_frames" },
  5793. { "rx_mac_ctrl_frames" },
  5794. { "rx_filtered_packets" },
  5795. { "rx_discards" },
  5796. { "rx_fw_discards" },
  5797. };
  5798. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5799. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5800. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5801. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5802. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5803. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5804. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5805. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5806. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5807. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5808. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5809. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5810. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5811. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5812. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5813. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5814. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5815. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5816. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5817. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5818. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5819. STATS_OFFSET32(stat_EtherStatsCollisions),
  5820. STATS_OFFSET32(stat_EtherStatsFragments),
  5821. STATS_OFFSET32(stat_EtherStatsJabbers),
  5822. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5823. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5824. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5825. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5826. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5827. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5828. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5829. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5830. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5831. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5832. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5833. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5834. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5835. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5836. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5837. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5838. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5839. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5840. STATS_OFFSET32(stat_OutXonSent),
  5841. STATS_OFFSET32(stat_OutXoffSent),
  5842. STATS_OFFSET32(stat_MacControlFramesReceived),
  5843. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5844. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5845. STATS_OFFSET32(stat_FwRxDrop),
  5846. };
  5847. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5848. * skipped because of errata.
  5849. */
  5850. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5851. 8,0,8,8,8,8,8,8,8,8,
  5852. 4,0,4,4,4,4,4,4,4,4,
  5853. 4,4,4,4,4,4,4,4,4,4,
  5854. 4,4,4,4,4,4,4,4,4,4,
  5855. 4,4,4,4,4,4,
  5856. };
  5857. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5858. 8,0,8,8,8,8,8,8,8,8,
  5859. 4,4,4,4,4,4,4,4,4,4,
  5860. 4,4,4,4,4,4,4,4,4,4,
  5861. 4,4,4,4,4,4,4,4,4,4,
  5862. 4,4,4,4,4,4,
  5863. };
  5864. #define BNX2_NUM_TESTS 6
  5865. static struct {
  5866. char string[ETH_GSTRING_LEN];
  5867. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5868. { "register_test (offline)" },
  5869. { "memory_test (offline)" },
  5870. { "loopback_test (offline)" },
  5871. { "nvram_test (online)" },
  5872. { "interrupt_test (online)" },
  5873. { "link_test (online)" },
  5874. };
  5875. static int
  5876. bnx2_get_sset_count(struct net_device *dev, int sset)
  5877. {
  5878. switch (sset) {
  5879. case ETH_SS_TEST:
  5880. return BNX2_NUM_TESTS;
  5881. case ETH_SS_STATS:
  5882. return BNX2_NUM_STATS;
  5883. default:
  5884. return -EOPNOTSUPP;
  5885. }
  5886. }
  5887. static void
  5888. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5889. {
  5890. struct bnx2 *bp = netdev_priv(dev);
  5891. bnx2_set_power_state(bp, PCI_D0);
  5892. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5893. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5894. int i;
  5895. bnx2_netif_stop(bp);
  5896. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5897. bnx2_free_skbs(bp);
  5898. if (bnx2_test_registers(bp) != 0) {
  5899. buf[0] = 1;
  5900. etest->flags |= ETH_TEST_FL_FAILED;
  5901. }
  5902. if (bnx2_test_memory(bp) != 0) {
  5903. buf[1] = 1;
  5904. etest->flags |= ETH_TEST_FL_FAILED;
  5905. }
  5906. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5907. etest->flags |= ETH_TEST_FL_FAILED;
  5908. if (!netif_running(bp->dev))
  5909. bnx2_shutdown_chip(bp);
  5910. else {
  5911. bnx2_init_nic(bp, 1);
  5912. bnx2_netif_start(bp);
  5913. }
  5914. /* wait for link up */
  5915. for (i = 0; i < 7; i++) {
  5916. if (bp->link_up)
  5917. break;
  5918. msleep_interruptible(1000);
  5919. }
  5920. }
  5921. if (bnx2_test_nvram(bp) != 0) {
  5922. buf[3] = 1;
  5923. etest->flags |= ETH_TEST_FL_FAILED;
  5924. }
  5925. if (bnx2_test_intr(bp) != 0) {
  5926. buf[4] = 1;
  5927. etest->flags |= ETH_TEST_FL_FAILED;
  5928. }
  5929. if (bnx2_test_link(bp) != 0) {
  5930. buf[5] = 1;
  5931. etest->flags |= ETH_TEST_FL_FAILED;
  5932. }
  5933. if (!netif_running(bp->dev))
  5934. bnx2_set_power_state(bp, PCI_D3hot);
  5935. }
  5936. static void
  5937. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5938. {
  5939. switch (stringset) {
  5940. case ETH_SS_STATS:
  5941. memcpy(buf, bnx2_stats_str_arr,
  5942. sizeof(bnx2_stats_str_arr));
  5943. break;
  5944. case ETH_SS_TEST:
  5945. memcpy(buf, bnx2_tests_str_arr,
  5946. sizeof(bnx2_tests_str_arr));
  5947. break;
  5948. }
  5949. }
  5950. static void
  5951. bnx2_get_ethtool_stats(struct net_device *dev,
  5952. struct ethtool_stats *stats, u64 *buf)
  5953. {
  5954. struct bnx2 *bp = netdev_priv(dev);
  5955. int i;
  5956. u32 *hw_stats = (u32 *) bp->stats_blk;
  5957. u8 *stats_len_arr = NULL;
  5958. if (hw_stats == NULL) {
  5959. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5960. return;
  5961. }
  5962. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5963. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5964. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5965. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5966. stats_len_arr = bnx2_5706_stats_len_arr;
  5967. else
  5968. stats_len_arr = bnx2_5708_stats_len_arr;
  5969. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5970. if (stats_len_arr[i] == 0) {
  5971. /* skip this counter */
  5972. buf[i] = 0;
  5973. continue;
  5974. }
  5975. if (stats_len_arr[i] == 4) {
  5976. /* 4-byte counter */
  5977. buf[i] = (u64)
  5978. *(hw_stats + bnx2_stats_offset_arr[i]);
  5979. continue;
  5980. }
  5981. /* 8-byte counter */
  5982. buf[i] = (((u64) *(hw_stats +
  5983. bnx2_stats_offset_arr[i])) << 32) +
  5984. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5985. }
  5986. }
  5987. static int
  5988. bnx2_phys_id(struct net_device *dev, u32 data)
  5989. {
  5990. struct bnx2 *bp = netdev_priv(dev);
  5991. int i;
  5992. u32 save;
  5993. bnx2_set_power_state(bp, PCI_D0);
  5994. if (data == 0)
  5995. data = 2;
  5996. save = REG_RD(bp, BNX2_MISC_CFG);
  5997. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  5998. for (i = 0; i < (data * 2); i++) {
  5999. if ((i % 2) == 0) {
  6000. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6001. }
  6002. else {
  6003. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6004. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6005. BNX2_EMAC_LED_100MB_OVERRIDE |
  6006. BNX2_EMAC_LED_10MB_OVERRIDE |
  6007. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6008. BNX2_EMAC_LED_TRAFFIC);
  6009. }
  6010. msleep_interruptible(500);
  6011. if (signal_pending(current))
  6012. break;
  6013. }
  6014. REG_WR(bp, BNX2_EMAC_LED, 0);
  6015. REG_WR(bp, BNX2_MISC_CFG, save);
  6016. if (!netif_running(dev))
  6017. bnx2_set_power_state(bp, PCI_D3hot);
  6018. return 0;
  6019. }
  6020. static int
  6021. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6022. {
  6023. struct bnx2 *bp = netdev_priv(dev);
  6024. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6025. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6026. else
  6027. return (ethtool_op_set_tx_csum(dev, data));
  6028. }
  6029. static const struct ethtool_ops bnx2_ethtool_ops = {
  6030. .get_settings = bnx2_get_settings,
  6031. .set_settings = bnx2_set_settings,
  6032. .get_drvinfo = bnx2_get_drvinfo,
  6033. .get_regs_len = bnx2_get_regs_len,
  6034. .get_regs = bnx2_get_regs,
  6035. .get_wol = bnx2_get_wol,
  6036. .set_wol = bnx2_set_wol,
  6037. .nway_reset = bnx2_nway_reset,
  6038. .get_link = bnx2_get_link,
  6039. .get_eeprom_len = bnx2_get_eeprom_len,
  6040. .get_eeprom = bnx2_get_eeprom,
  6041. .set_eeprom = bnx2_set_eeprom,
  6042. .get_coalesce = bnx2_get_coalesce,
  6043. .set_coalesce = bnx2_set_coalesce,
  6044. .get_ringparam = bnx2_get_ringparam,
  6045. .set_ringparam = bnx2_set_ringparam,
  6046. .get_pauseparam = bnx2_get_pauseparam,
  6047. .set_pauseparam = bnx2_set_pauseparam,
  6048. .get_rx_csum = bnx2_get_rx_csum,
  6049. .set_rx_csum = bnx2_set_rx_csum,
  6050. .set_tx_csum = bnx2_set_tx_csum,
  6051. .set_sg = ethtool_op_set_sg,
  6052. .set_tso = bnx2_set_tso,
  6053. .self_test = bnx2_self_test,
  6054. .get_strings = bnx2_get_strings,
  6055. .phys_id = bnx2_phys_id,
  6056. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6057. .get_sset_count = bnx2_get_sset_count,
  6058. };
  6059. /* Called with rtnl_lock */
  6060. static int
  6061. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6062. {
  6063. struct mii_ioctl_data *data = if_mii(ifr);
  6064. struct bnx2 *bp = netdev_priv(dev);
  6065. int err;
  6066. switch(cmd) {
  6067. case SIOCGMIIPHY:
  6068. data->phy_id = bp->phy_addr;
  6069. /* fallthru */
  6070. case SIOCGMIIREG: {
  6071. u32 mii_regval;
  6072. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6073. return -EOPNOTSUPP;
  6074. if (!netif_running(dev))
  6075. return -EAGAIN;
  6076. spin_lock_bh(&bp->phy_lock);
  6077. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6078. spin_unlock_bh(&bp->phy_lock);
  6079. data->val_out = mii_regval;
  6080. return err;
  6081. }
  6082. case SIOCSMIIREG:
  6083. if (!capable(CAP_NET_ADMIN))
  6084. return -EPERM;
  6085. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6086. return -EOPNOTSUPP;
  6087. if (!netif_running(dev))
  6088. return -EAGAIN;
  6089. spin_lock_bh(&bp->phy_lock);
  6090. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6091. spin_unlock_bh(&bp->phy_lock);
  6092. return err;
  6093. default:
  6094. /* do nothing */
  6095. break;
  6096. }
  6097. return -EOPNOTSUPP;
  6098. }
  6099. /* Called with rtnl_lock */
  6100. static int
  6101. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6102. {
  6103. struct sockaddr *addr = p;
  6104. struct bnx2 *bp = netdev_priv(dev);
  6105. if (!is_valid_ether_addr(addr->sa_data))
  6106. return -EINVAL;
  6107. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6108. if (netif_running(dev))
  6109. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6110. return 0;
  6111. }
  6112. /* Called with rtnl_lock */
  6113. static int
  6114. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6115. {
  6116. struct bnx2 *bp = netdev_priv(dev);
  6117. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6118. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6119. return -EINVAL;
  6120. dev->mtu = new_mtu;
  6121. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6122. }
  6123. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6124. static void
  6125. poll_bnx2(struct net_device *dev)
  6126. {
  6127. struct bnx2 *bp = netdev_priv(dev);
  6128. int i;
  6129. for (i = 0; i < bp->irq_nvecs; i++) {
  6130. disable_irq(bp->irq_tbl[i].vector);
  6131. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6132. enable_irq(bp->irq_tbl[i].vector);
  6133. }
  6134. }
  6135. #endif
  6136. static void __devinit
  6137. bnx2_get_5709_media(struct bnx2 *bp)
  6138. {
  6139. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6140. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6141. u32 strap;
  6142. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6143. return;
  6144. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6145. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6146. return;
  6147. }
  6148. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6149. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6150. else
  6151. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6152. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6153. switch (strap) {
  6154. case 0x4:
  6155. case 0x5:
  6156. case 0x6:
  6157. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6158. return;
  6159. }
  6160. } else {
  6161. switch (strap) {
  6162. case 0x1:
  6163. case 0x2:
  6164. case 0x4:
  6165. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6166. return;
  6167. }
  6168. }
  6169. }
  6170. static void __devinit
  6171. bnx2_get_pci_speed(struct bnx2 *bp)
  6172. {
  6173. u32 reg;
  6174. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6175. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6176. u32 clkreg;
  6177. bp->flags |= BNX2_FLAG_PCIX;
  6178. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6179. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6180. switch (clkreg) {
  6181. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6182. bp->bus_speed_mhz = 133;
  6183. break;
  6184. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6185. bp->bus_speed_mhz = 100;
  6186. break;
  6187. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6188. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6189. bp->bus_speed_mhz = 66;
  6190. break;
  6191. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6192. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6193. bp->bus_speed_mhz = 50;
  6194. break;
  6195. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6196. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6197. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6198. bp->bus_speed_mhz = 33;
  6199. break;
  6200. }
  6201. }
  6202. else {
  6203. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6204. bp->bus_speed_mhz = 66;
  6205. else
  6206. bp->bus_speed_mhz = 33;
  6207. }
  6208. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6209. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6210. }
  6211. static int __devinit
  6212. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6213. {
  6214. struct bnx2 *bp;
  6215. unsigned long mem_len;
  6216. int rc, i, j;
  6217. u32 reg;
  6218. u64 dma_mask, persist_dma_mask;
  6219. SET_NETDEV_DEV(dev, &pdev->dev);
  6220. bp = netdev_priv(dev);
  6221. bp->flags = 0;
  6222. bp->phy_flags = 0;
  6223. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6224. rc = pci_enable_device(pdev);
  6225. if (rc) {
  6226. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6227. goto err_out;
  6228. }
  6229. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6230. dev_err(&pdev->dev,
  6231. "Cannot find PCI device base address, aborting.\n");
  6232. rc = -ENODEV;
  6233. goto err_out_disable;
  6234. }
  6235. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6236. if (rc) {
  6237. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6238. goto err_out_disable;
  6239. }
  6240. pci_set_master(pdev);
  6241. pci_save_state(pdev);
  6242. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6243. if (bp->pm_cap == 0) {
  6244. dev_err(&pdev->dev,
  6245. "Cannot find power management capability, aborting.\n");
  6246. rc = -EIO;
  6247. goto err_out_release;
  6248. }
  6249. bp->dev = dev;
  6250. bp->pdev = pdev;
  6251. spin_lock_init(&bp->phy_lock);
  6252. spin_lock_init(&bp->indirect_lock);
  6253. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6254. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6255. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6256. dev->mem_end = dev->mem_start + mem_len;
  6257. dev->irq = pdev->irq;
  6258. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6259. if (!bp->regview) {
  6260. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6261. rc = -ENOMEM;
  6262. goto err_out_release;
  6263. }
  6264. /* Configure byte swap and enable write to the reg_window registers.
  6265. * Rely on CPU to do target byte swapping on big endian systems
  6266. * The chip's target access swapping will not swap all accesses
  6267. */
  6268. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6269. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6270. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6271. bnx2_set_power_state(bp, PCI_D0);
  6272. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6273. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6274. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6275. dev_err(&pdev->dev,
  6276. "Cannot find PCIE capability, aborting.\n");
  6277. rc = -EIO;
  6278. goto err_out_unmap;
  6279. }
  6280. bp->flags |= BNX2_FLAG_PCIE;
  6281. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6282. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6283. } else {
  6284. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6285. if (bp->pcix_cap == 0) {
  6286. dev_err(&pdev->dev,
  6287. "Cannot find PCIX capability, aborting.\n");
  6288. rc = -EIO;
  6289. goto err_out_unmap;
  6290. }
  6291. }
  6292. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6293. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6294. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6295. }
  6296. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6297. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6298. bp->flags |= BNX2_FLAG_MSI_CAP;
  6299. }
  6300. /* 5708 cannot support DMA addresses > 40-bit. */
  6301. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6302. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6303. else
  6304. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6305. /* Configure DMA attributes. */
  6306. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6307. dev->features |= NETIF_F_HIGHDMA;
  6308. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6309. if (rc) {
  6310. dev_err(&pdev->dev,
  6311. "pci_set_consistent_dma_mask failed, aborting.\n");
  6312. goto err_out_unmap;
  6313. }
  6314. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6315. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6316. goto err_out_unmap;
  6317. }
  6318. if (!(bp->flags & BNX2_FLAG_PCIE))
  6319. bnx2_get_pci_speed(bp);
  6320. /* 5706A0 may falsely detect SERR and PERR. */
  6321. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6322. reg = REG_RD(bp, PCI_COMMAND);
  6323. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6324. REG_WR(bp, PCI_COMMAND, reg);
  6325. }
  6326. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6327. !(bp->flags & BNX2_FLAG_PCIX)) {
  6328. dev_err(&pdev->dev,
  6329. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6330. goto err_out_unmap;
  6331. }
  6332. bnx2_init_nvram(bp);
  6333. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6334. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6335. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6336. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6337. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6338. } else
  6339. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6340. /* Get the permanent MAC address. First we need to make sure the
  6341. * firmware is actually running.
  6342. */
  6343. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6344. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6345. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6346. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6347. rc = -ENODEV;
  6348. goto err_out_unmap;
  6349. }
  6350. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6351. for (i = 0, j = 0; i < 3; i++) {
  6352. u8 num, k, skip0;
  6353. num = (u8) (reg >> (24 - (i * 8)));
  6354. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6355. if (num >= k || !skip0 || k == 1) {
  6356. bp->fw_version[j++] = (num / k) + '0';
  6357. skip0 = 0;
  6358. }
  6359. }
  6360. if (i != 2)
  6361. bp->fw_version[j++] = '.';
  6362. }
  6363. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6364. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6365. bp->wol = 1;
  6366. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6367. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6368. for (i = 0; i < 30; i++) {
  6369. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6370. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6371. break;
  6372. msleep(10);
  6373. }
  6374. }
  6375. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6376. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6377. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6378. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6379. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6380. bp->fw_version[j++] = ' ';
  6381. for (i = 0; i < 3; i++) {
  6382. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6383. reg = swab32(reg);
  6384. memcpy(&bp->fw_version[j], &reg, 4);
  6385. j += 4;
  6386. }
  6387. }
  6388. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6389. bp->mac_addr[0] = (u8) (reg >> 8);
  6390. bp->mac_addr[1] = (u8) reg;
  6391. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6392. bp->mac_addr[2] = (u8) (reg >> 24);
  6393. bp->mac_addr[3] = (u8) (reg >> 16);
  6394. bp->mac_addr[4] = (u8) (reg >> 8);
  6395. bp->mac_addr[5] = (u8) reg;
  6396. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6397. bnx2_set_rx_ring_size(bp, 255);
  6398. bp->rx_csum = 1;
  6399. bp->tx_quick_cons_trip_int = 20;
  6400. bp->tx_quick_cons_trip = 20;
  6401. bp->tx_ticks_int = 80;
  6402. bp->tx_ticks = 80;
  6403. bp->rx_quick_cons_trip_int = 6;
  6404. bp->rx_quick_cons_trip = 6;
  6405. bp->rx_ticks_int = 18;
  6406. bp->rx_ticks = 18;
  6407. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6408. bp->current_interval = BNX2_TIMER_INTERVAL;
  6409. bp->phy_addr = 1;
  6410. /* Disable WOL support if we are running on a SERDES chip. */
  6411. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6412. bnx2_get_5709_media(bp);
  6413. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6414. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6415. bp->phy_port = PORT_TP;
  6416. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6417. bp->phy_port = PORT_FIBRE;
  6418. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6419. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6420. bp->flags |= BNX2_FLAG_NO_WOL;
  6421. bp->wol = 0;
  6422. }
  6423. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6424. /* Don't do parallel detect on this board because of
  6425. * some board problems. The link will not go down
  6426. * if we do parallel detect.
  6427. */
  6428. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6429. pdev->subsystem_device == 0x310c)
  6430. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6431. } else {
  6432. bp->phy_addr = 2;
  6433. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6434. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6435. }
  6436. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6437. CHIP_NUM(bp) == CHIP_NUM_5708)
  6438. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6439. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6440. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6441. CHIP_REV(bp) == CHIP_REV_Bx))
  6442. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6443. bnx2_init_fw_cap(bp);
  6444. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6445. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6446. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6447. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6448. bp->flags |= BNX2_FLAG_NO_WOL;
  6449. bp->wol = 0;
  6450. }
  6451. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6452. bp->tx_quick_cons_trip_int =
  6453. bp->tx_quick_cons_trip;
  6454. bp->tx_ticks_int = bp->tx_ticks;
  6455. bp->rx_quick_cons_trip_int =
  6456. bp->rx_quick_cons_trip;
  6457. bp->rx_ticks_int = bp->rx_ticks;
  6458. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6459. bp->com_ticks_int = bp->com_ticks;
  6460. bp->cmd_ticks_int = bp->cmd_ticks;
  6461. }
  6462. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6463. *
  6464. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6465. * with byte enables disabled on the unused 32-bit word. This is legal
  6466. * but causes problems on the AMD 8132 which will eventually stop
  6467. * responding after a while.
  6468. *
  6469. * AMD believes this incompatibility is unique to the 5706, and
  6470. * prefers to locally disable MSI rather than globally disabling it.
  6471. */
  6472. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6473. struct pci_dev *amd_8132 = NULL;
  6474. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6475. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6476. amd_8132))) {
  6477. if (amd_8132->revision >= 0x10 &&
  6478. amd_8132->revision <= 0x13) {
  6479. disable_msi = 1;
  6480. pci_dev_put(amd_8132);
  6481. break;
  6482. }
  6483. }
  6484. }
  6485. bnx2_set_default_link(bp);
  6486. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6487. init_timer(&bp->timer);
  6488. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6489. bp->timer.data = (unsigned long) bp;
  6490. bp->timer.function = bnx2_timer;
  6491. return 0;
  6492. err_out_unmap:
  6493. if (bp->regview) {
  6494. iounmap(bp->regview);
  6495. bp->regview = NULL;
  6496. }
  6497. err_out_release:
  6498. pci_release_regions(pdev);
  6499. err_out_disable:
  6500. pci_disable_device(pdev);
  6501. pci_set_drvdata(pdev, NULL);
  6502. err_out:
  6503. return rc;
  6504. }
  6505. static char * __devinit
  6506. bnx2_bus_string(struct bnx2 *bp, char *str)
  6507. {
  6508. char *s = str;
  6509. if (bp->flags & BNX2_FLAG_PCIE) {
  6510. s += sprintf(s, "PCI Express");
  6511. } else {
  6512. s += sprintf(s, "PCI");
  6513. if (bp->flags & BNX2_FLAG_PCIX)
  6514. s += sprintf(s, "-X");
  6515. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6516. s += sprintf(s, " 32-bit");
  6517. else
  6518. s += sprintf(s, " 64-bit");
  6519. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6520. }
  6521. return str;
  6522. }
  6523. static void __devinit
  6524. bnx2_init_napi(struct bnx2 *bp)
  6525. {
  6526. int i;
  6527. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6528. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6529. int (*poll)(struct napi_struct *, int);
  6530. if (i == 0)
  6531. poll = bnx2_poll;
  6532. else
  6533. poll = bnx2_poll_msix;
  6534. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6535. bnapi->bp = bp;
  6536. }
  6537. }
  6538. static const struct net_device_ops bnx2_netdev_ops = {
  6539. .ndo_open = bnx2_open,
  6540. .ndo_start_xmit = bnx2_start_xmit,
  6541. .ndo_stop = bnx2_close,
  6542. .ndo_get_stats = bnx2_get_stats,
  6543. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6544. .ndo_do_ioctl = bnx2_ioctl,
  6545. .ndo_validate_addr = eth_validate_addr,
  6546. .ndo_set_mac_address = bnx2_change_mac_addr,
  6547. .ndo_change_mtu = bnx2_change_mtu,
  6548. .ndo_tx_timeout = bnx2_tx_timeout,
  6549. #ifdef BCM_VLAN
  6550. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6551. #endif
  6552. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6553. .ndo_poll_controller = poll_bnx2,
  6554. #endif
  6555. };
  6556. static int __devinit
  6557. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6558. {
  6559. static int version_printed = 0;
  6560. struct net_device *dev = NULL;
  6561. struct bnx2 *bp;
  6562. int rc;
  6563. char str[40];
  6564. if (version_printed++ == 0)
  6565. printk(KERN_INFO "%s", version);
  6566. /* dev zeroed in init_etherdev */
  6567. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6568. if (!dev)
  6569. return -ENOMEM;
  6570. rc = bnx2_init_board(pdev, dev);
  6571. if (rc < 0) {
  6572. free_netdev(dev);
  6573. return rc;
  6574. }
  6575. dev->netdev_ops = &bnx2_netdev_ops;
  6576. dev->watchdog_timeo = TX_TIMEOUT;
  6577. dev->ethtool_ops = &bnx2_ethtool_ops;
  6578. bp = netdev_priv(dev);
  6579. bnx2_init_napi(bp);
  6580. pci_set_drvdata(pdev, dev);
  6581. rc = bnx2_request_firmware(bp);
  6582. if (rc)
  6583. goto error;
  6584. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6585. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6586. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6587. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6588. dev->features |= NETIF_F_IPV6_CSUM;
  6589. #ifdef BCM_VLAN
  6590. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6591. #endif
  6592. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6593. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6594. dev->features |= NETIF_F_TSO6;
  6595. if ((rc = register_netdev(dev))) {
  6596. dev_err(&pdev->dev, "Cannot register net device\n");
  6597. goto error;
  6598. }
  6599. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6600. "IRQ %d, node addr %pM\n",
  6601. dev->name,
  6602. board_info[ent->driver_data].name,
  6603. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6604. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6605. bnx2_bus_string(bp, str),
  6606. dev->base_addr,
  6607. bp->pdev->irq, dev->dev_addr);
  6608. return 0;
  6609. error:
  6610. if (bp->mips_firmware)
  6611. release_firmware(bp->mips_firmware);
  6612. if (bp->rv2p_firmware)
  6613. release_firmware(bp->rv2p_firmware);
  6614. if (bp->regview)
  6615. iounmap(bp->regview);
  6616. pci_release_regions(pdev);
  6617. pci_disable_device(pdev);
  6618. pci_set_drvdata(pdev, NULL);
  6619. free_netdev(dev);
  6620. return rc;
  6621. }
  6622. static void __devexit
  6623. bnx2_remove_one(struct pci_dev *pdev)
  6624. {
  6625. struct net_device *dev = pci_get_drvdata(pdev);
  6626. struct bnx2 *bp = netdev_priv(dev);
  6627. flush_scheduled_work();
  6628. unregister_netdev(dev);
  6629. if (bp->mips_firmware)
  6630. release_firmware(bp->mips_firmware);
  6631. if (bp->rv2p_firmware)
  6632. release_firmware(bp->rv2p_firmware);
  6633. if (bp->regview)
  6634. iounmap(bp->regview);
  6635. free_netdev(dev);
  6636. pci_release_regions(pdev);
  6637. pci_disable_device(pdev);
  6638. pci_set_drvdata(pdev, NULL);
  6639. }
  6640. static int
  6641. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6642. {
  6643. struct net_device *dev = pci_get_drvdata(pdev);
  6644. struct bnx2 *bp = netdev_priv(dev);
  6645. /* PCI register 4 needs to be saved whether netif_running() or not.
  6646. * MSI address and data need to be saved if using MSI and
  6647. * netif_running().
  6648. */
  6649. pci_save_state(pdev);
  6650. if (!netif_running(dev))
  6651. return 0;
  6652. flush_scheduled_work();
  6653. bnx2_netif_stop(bp);
  6654. netif_device_detach(dev);
  6655. del_timer_sync(&bp->timer);
  6656. bnx2_shutdown_chip(bp);
  6657. bnx2_free_skbs(bp);
  6658. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6659. return 0;
  6660. }
  6661. static int
  6662. bnx2_resume(struct pci_dev *pdev)
  6663. {
  6664. struct net_device *dev = pci_get_drvdata(pdev);
  6665. struct bnx2 *bp = netdev_priv(dev);
  6666. pci_restore_state(pdev);
  6667. if (!netif_running(dev))
  6668. return 0;
  6669. bnx2_set_power_state(bp, PCI_D0);
  6670. netif_device_attach(dev);
  6671. bnx2_init_nic(bp, 1);
  6672. bnx2_netif_start(bp);
  6673. return 0;
  6674. }
  6675. /**
  6676. * bnx2_io_error_detected - called when PCI error is detected
  6677. * @pdev: Pointer to PCI device
  6678. * @state: The current pci connection state
  6679. *
  6680. * This function is called after a PCI bus error affecting
  6681. * this device has been detected.
  6682. */
  6683. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6684. pci_channel_state_t state)
  6685. {
  6686. struct net_device *dev = pci_get_drvdata(pdev);
  6687. struct bnx2 *bp = netdev_priv(dev);
  6688. rtnl_lock();
  6689. netif_device_detach(dev);
  6690. if (netif_running(dev)) {
  6691. bnx2_netif_stop(bp);
  6692. del_timer_sync(&bp->timer);
  6693. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6694. }
  6695. pci_disable_device(pdev);
  6696. rtnl_unlock();
  6697. /* Request a slot slot reset. */
  6698. return PCI_ERS_RESULT_NEED_RESET;
  6699. }
  6700. /**
  6701. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6702. * @pdev: Pointer to PCI device
  6703. *
  6704. * Restart the card from scratch, as if from a cold-boot.
  6705. */
  6706. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6707. {
  6708. struct net_device *dev = pci_get_drvdata(pdev);
  6709. struct bnx2 *bp = netdev_priv(dev);
  6710. rtnl_lock();
  6711. if (pci_enable_device(pdev)) {
  6712. dev_err(&pdev->dev,
  6713. "Cannot re-enable PCI device after reset.\n");
  6714. rtnl_unlock();
  6715. return PCI_ERS_RESULT_DISCONNECT;
  6716. }
  6717. pci_set_master(pdev);
  6718. pci_restore_state(pdev);
  6719. if (netif_running(dev)) {
  6720. bnx2_set_power_state(bp, PCI_D0);
  6721. bnx2_init_nic(bp, 1);
  6722. }
  6723. rtnl_unlock();
  6724. return PCI_ERS_RESULT_RECOVERED;
  6725. }
  6726. /**
  6727. * bnx2_io_resume - called when traffic can start flowing again.
  6728. * @pdev: Pointer to PCI device
  6729. *
  6730. * This callback is called when the error recovery driver tells us that
  6731. * its OK to resume normal operation.
  6732. */
  6733. static void bnx2_io_resume(struct pci_dev *pdev)
  6734. {
  6735. struct net_device *dev = pci_get_drvdata(pdev);
  6736. struct bnx2 *bp = netdev_priv(dev);
  6737. rtnl_lock();
  6738. if (netif_running(dev))
  6739. bnx2_netif_start(bp);
  6740. netif_device_attach(dev);
  6741. rtnl_unlock();
  6742. }
  6743. static struct pci_error_handlers bnx2_err_handler = {
  6744. .error_detected = bnx2_io_error_detected,
  6745. .slot_reset = bnx2_io_slot_reset,
  6746. .resume = bnx2_io_resume,
  6747. };
  6748. static struct pci_driver bnx2_pci_driver = {
  6749. .name = DRV_MODULE_NAME,
  6750. .id_table = bnx2_pci_tbl,
  6751. .probe = bnx2_init_one,
  6752. .remove = __devexit_p(bnx2_remove_one),
  6753. .suspend = bnx2_suspend,
  6754. .resume = bnx2_resume,
  6755. .err_handler = &bnx2_err_handler,
  6756. };
  6757. static int __init bnx2_init(void)
  6758. {
  6759. return pci_register_driver(&bnx2_pci_driver);
  6760. }
  6761. static void __exit bnx2_cleanup(void)
  6762. {
  6763. pci_unregister_driver(&bnx2_pci_driver);
  6764. }
  6765. module_init(bnx2_init);
  6766. module_exit(bnx2_cleanup);