mtdpart.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  9. * added support for read_oob, write_oob
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/list.h>
  16. #include <linux/kmod.h>
  17. #include <linux/mtd/mtd.h>
  18. #include <linux/mtd/partitions.h>
  19. #include <linux/mtd/compatmac.h>
  20. /* Our partition linked list */
  21. static LIST_HEAD(mtd_partitions);
  22. /* Our partition node structure */
  23. struct mtd_part {
  24. struct mtd_info mtd;
  25. struct mtd_info *master;
  26. uint64_t offset;
  27. struct list_head list;
  28. };
  29. /*
  30. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  31. * the pointer to that structure with this macro.
  32. */
  33. #define PART(x) ((struct mtd_part *)(x))
  34. /*
  35. * MTD methods which simply translate the effective address and pass through
  36. * to the _real_ device.
  37. */
  38. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  39. size_t *retlen, u_char *buf)
  40. {
  41. struct mtd_part *part = PART(mtd);
  42. struct mtd_ecc_stats stats;
  43. int res;
  44. stats = part->master->ecc_stats;
  45. if (from >= mtd->size)
  46. len = 0;
  47. else if (from + len > mtd->size)
  48. len = mtd->size - from;
  49. res = part->master->read(part->master, from + part->offset,
  50. len, retlen, buf);
  51. if (unlikely(res)) {
  52. if (res == -EUCLEAN)
  53. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  54. if (res == -EBADMSG)
  55. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  56. }
  57. return res;
  58. }
  59. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  60. size_t *retlen, void **virt, resource_size_t *phys)
  61. {
  62. struct mtd_part *part = PART(mtd);
  63. if (from >= mtd->size)
  64. len = 0;
  65. else if (from + len > mtd->size)
  66. len = mtd->size - from;
  67. return part->master->point (part->master, from + part->offset,
  68. len, retlen, virt, phys);
  69. }
  70. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  71. {
  72. struct mtd_part *part = PART(mtd);
  73. part->master->unpoint(part->master, from + part->offset, len);
  74. }
  75. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  76. unsigned long len,
  77. unsigned long offset,
  78. unsigned long flags)
  79. {
  80. struct mtd_part *part = PART(mtd);
  81. offset += part->offset;
  82. return part->master->get_unmapped_area(part->master, len, offset,
  83. flags);
  84. }
  85. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  86. struct mtd_oob_ops *ops)
  87. {
  88. struct mtd_part *part = PART(mtd);
  89. int res;
  90. if (from >= mtd->size)
  91. return -EINVAL;
  92. if (ops->datbuf && from + ops->len > mtd->size)
  93. return -EINVAL;
  94. res = part->master->read_oob(part->master, from + part->offset, ops);
  95. if (unlikely(res)) {
  96. if (res == -EUCLEAN)
  97. mtd->ecc_stats.corrected++;
  98. if (res == -EBADMSG)
  99. mtd->ecc_stats.failed++;
  100. }
  101. return res;
  102. }
  103. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  104. size_t len, size_t *retlen, u_char *buf)
  105. {
  106. struct mtd_part *part = PART(mtd);
  107. return part->master->read_user_prot_reg(part->master, from,
  108. len, retlen, buf);
  109. }
  110. static int part_get_user_prot_info(struct mtd_info *mtd,
  111. struct otp_info *buf, size_t len)
  112. {
  113. struct mtd_part *part = PART(mtd);
  114. return part->master->get_user_prot_info(part->master, buf, len);
  115. }
  116. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  117. size_t len, size_t *retlen, u_char *buf)
  118. {
  119. struct mtd_part *part = PART(mtd);
  120. return part->master->read_fact_prot_reg(part->master, from,
  121. len, retlen, buf);
  122. }
  123. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  124. size_t len)
  125. {
  126. struct mtd_part *part = PART(mtd);
  127. return part->master->get_fact_prot_info(part->master, buf, len);
  128. }
  129. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  130. size_t *retlen, const u_char *buf)
  131. {
  132. struct mtd_part *part = PART(mtd);
  133. if (!(mtd->flags & MTD_WRITEABLE))
  134. return -EROFS;
  135. if (to >= mtd->size)
  136. len = 0;
  137. else if (to + len > mtd->size)
  138. len = mtd->size - to;
  139. return part->master->write(part->master, to + part->offset,
  140. len, retlen, buf);
  141. }
  142. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  143. size_t *retlen, const u_char *buf)
  144. {
  145. struct mtd_part *part = PART(mtd);
  146. if (!(mtd->flags & MTD_WRITEABLE))
  147. return -EROFS;
  148. if (to >= mtd->size)
  149. len = 0;
  150. else if (to + len > mtd->size)
  151. len = mtd->size - to;
  152. return part->master->panic_write(part->master, to + part->offset,
  153. len, retlen, buf);
  154. }
  155. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  156. struct mtd_oob_ops *ops)
  157. {
  158. struct mtd_part *part = PART(mtd);
  159. if (!(mtd->flags & MTD_WRITEABLE))
  160. return -EROFS;
  161. if (to >= mtd->size)
  162. return -EINVAL;
  163. if (ops->datbuf && to + ops->len > mtd->size)
  164. return -EINVAL;
  165. return part->master->write_oob(part->master, to + part->offset, ops);
  166. }
  167. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  168. size_t len, size_t *retlen, u_char *buf)
  169. {
  170. struct mtd_part *part = PART(mtd);
  171. return part->master->write_user_prot_reg(part->master, from,
  172. len, retlen, buf);
  173. }
  174. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  175. size_t len)
  176. {
  177. struct mtd_part *part = PART(mtd);
  178. return part->master->lock_user_prot_reg(part->master, from, len);
  179. }
  180. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  181. unsigned long count, loff_t to, size_t *retlen)
  182. {
  183. struct mtd_part *part = PART(mtd);
  184. if (!(mtd->flags & MTD_WRITEABLE))
  185. return -EROFS;
  186. return part->master->writev(part->master, vecs, count,
  187. to + part->offset, retlen);
  188. }
  189. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  190. {
  191. struct mtd_part *part = PART(mtd);
  192. int ret;
  193. if (!(mtd->flags & MTD_WRITEABLE))
  194. return -EROFS;
  195. if (instr->addr >= mtd->size)
  196. return -EINVAL;
  197. instr->addr += part->offset;
  198. ret = part->master->erase(part->master, instr);
  199. if (ret) {
  200. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  201. instr->fail_addr -= part->offset;
  202. instr->addr -= part->offset;
  203. }
  204. return ret;
  205. }
  206. void mtd_erase_callback(struct erase_info *instr)
  207. {
  208. if (instr->mtd->erase == part_erase) {
  209. struct mtd_part *part = PART(instr->mtd);
  210. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  211. instr->fail_addr -= part->offset;
  212. instr->addr -= part->offset;
  213. }
  214. if (instr->callback)
  215. instr->callback(instr);
  216. }
  217. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  218. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  219. {
  220. struct mtd_part *part = PART(mtd);
  221. if ((len + ofs) > mtd->size)
  222. return -EINVAL;
  223. return part->master->lock(part->master, ofs + part->offset, len);
  224. }
  225. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  226. {
  227. struct mtd_part *part = PART(mtd);
  228. if ((len + ofs) > mtd->size)
  229. return -EINVAL;
  230. return part->master->unlock(part->master, ofs + part->offset, len);
  231. }
  232. static void part_sync(struct mtd_info *mtd)
  233. {
  234. struct mtd_part *part = PART(mtd);
  235. part->master->sync(part->master);
  236. }
  237. static int part_suspend(struct mtd_info *mtd)
  238. {
  239. struct mtd_part *part = PART(mtd);
  240. return part->master->suspend(part->master);
  241. }
  242. static void part_resume(struct mtd_info *mtd)
  243. {
  244. struct mtd_part *part = PART(mtd);
  245. part->master->resume(part->master);
  246. }
  247. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  248. {
  249. struct mtd_part *part = PART(mtd);
  250. if (ofs >= mtd->size)
  251. return -EINVAL;
  252. ofs += part->offset;
  253. return part->master->block_isbad(part->master, ofs);
  254. }
  255. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  256. {
  257. struct mtd_part *part = PART(mtd);
  258. int res;
  259. if (!(mtd->flags & MTD_WRITEABLE))
  260. return -EROFS;
  261. if (ofs >= mtd->size)
  262. return -EINVAL;
  263. ofs += part->offset;
  264. res = part->master->block_markbad(part->master, ofs);
  265. if (!res)
  266. mtd->ecc_stats.badblocks++;
  267. return res;
  268. }
  269. /*
  270. * This function unregisters and destroy all slave MTD objects which are
  271. * attached to the given master MTD object.
  272. */
  273. int del_mtd_partitions(struct mtd_info *master)
  274. {
  275. struct mtd_part *slave, *next;
  276. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  277. if (slave->master == master) {
  278. list_del(&slave->list);
  279. del_mtd_device(&slave->mtd);
  280. kfree(slave);
  281. }
  282. return 0;
  283. }
  284. EXPORT_SYMBOL(del_mtd_partitions);
  285. static struct mtd_part *add_one_partition(struct mtd_info *master,
  286. const struct mtd_partition *part, int partno,
  287. uint64_t cur_offset)
  288. {
  289. struct mtd_part *slave;
  290. /* allocate the partition structure */
  291. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  292. if (!slave) {
  293. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  294. master->name);
  295. del_mtd_partitions(master);
  296. return NULL;
  297. }
  298. list_add(&slave->list, &mtd_partitions);
  299. /* set up the MTD object for this partition */
  300. slave->mtd.type = master->type;
  301. slave->mtd.flags = master->flags & ~part->mask_flags;
  302. slave->mtd.size = part->size;
  303. slave->mtd.writesize = master->writesize;
  304. slave->mtd.oobsize = master->oobsize;
  305. slave->mtd.oobavail = master->oobavail;
  306. slave->mtd.subpage_sft = master->subpage_sft;
  307. slave->mtd.name = part->name;
  308. slave->mtd.owner = master->owner;
  309. slave->mtd.backing_dev_info = master->backing_dev_info;
  310. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  311. * to have the same data be in two different partitions.
  312. */
  313. slave->mtd.dev.parent = master->dev.parent;
  314. slave->mtd.read = part_read;
  315. slave->mtd.write = part_write;
  316. if (master->panic_write)
  317. slave->mtd.panic_write = part_panic_write;
  318. if (master->point && master->unpoint) {
  319. slave->mtd.point = part_point;
  320. slave->mtd.unpoint = part_unpoint;
  321. }
  322. if (master->get_unmapped_area)
  323. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  324. if (master->read_oob)
  325. slave->mtd.read_oob = part_read_oob;
  326. if (master->write_oob)
  327. slave->mtd.write_oob = part_write_oob;
  328. if (master->read_user_prot_reg)
  329. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  330. if (master->read_fact_prot_reg)
  331. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  332. if (master->write_user_prot_reg)
  333. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  334. if (master->lock_user_prot_reg)
  335. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  336. if (master->get_user_prot_info)
  337. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  338. if (master->get_fact_prot_info)
  339. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  340. if (master->sync)
  341. slave->mtd.sync = part_sync;
  342. if (!partno && !master->dev.class && master->suspend && master->resume) {
  343. slave->mtd.suspend = part_suspend;
  344. slave->mtd.resume = part_resume;
  345. }
  346. if (master->writev)
  347. slave->mtd.writev = part_writev;
  348. if (master->lock)
  349. slave->mtd.lock = part_lock;
  350. if (master->unlock)
  351. slave->mtd.unlock = part_unlock;
  352. if (master->block_isbad)
  353. slave->mtd.block_isbad = part_block_isbad;
  354. if (master->block_markbad)
  355. slave->mtd.block_markbad = part_block_markbad;
  356. slave->mtd.erase = part_erase;
  357. slave->master = master;
  358. slave->offset = part->offset;
  359. if (slave->offset == MTDPART_OFS_APPEND)
  360. slave->offset = cur_offset;
  361. if (slave->offset == MTDPART_OFS_NXTBLK) {
  362. slave->offset = cur_offset;
  363. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  364. /* Round up to next erasesize */
  365. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  366. printk(KERN_NOTICE "Moving partition %d: "
  367. "0x%012llx -> 0x%012llx\n", partno,
  368. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  369. }
  370. }
  371. if (slave->mtd.size == MTDPART_SIZ_FULL)
  372. slave->mtd.size = master->size - slave->offset;
  373. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  374. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  375. /* let's do some sanity checks */
  376. if (slave->offset >= master->size) {
  377. /* let's register it anyway to preserve ordering */
  378. slave->offset = 0;
  379. slave->mtd.size = 0;
  380. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  381. part->name);
  382. goto out_register;
  383. }
  384. if (slave->offset + slave->mtd.size > master->size) {
  385. slave->mtd.size = master->size - slave->offset;
  386. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  387. part->name, master->name, (unsigned long long)slave->mtd.size);
  388. }
  389. if (master->numeraseregions > 1) {
  390. /* Deal with variable erase size stuff */
  391. int i, max = master->numeraseregions;
  392. u64 end = slave->offset + slave->mtd.size;
  393. struct mtd_erase_region_info *regions = master->eraseregions;
  394. /* Find the first erase regions which is part of this
  395. * partition. */
  396. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  397. ;
  398. /* The loop searched for the region _behind_ the first one */
  399. i--;
  400. /* Pick biggest erasesize */
  401. for (; i < max && regions[i].offset < end; i++) {
  402. if (slave->mtd.erasesize < regions[i].erasesize) {
  403. slave->mtd.erasesize = regions[i].erasesize;
  404. }
  405. }
  406. BUG_ON(slave->mtd.erasesize == 0);
  407. } else {
  408. /* Single erase size */
  409. slave->mtd.erasesize = master->erasesize;
  410. }
  411. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  412. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  413. /* Doesn't start on a boundary of major erase size */
  414. /* FIXME: Let it be writable if it is on a boundary of
  415. * _minor_ erase size though */
  416. slave->mtd.flags &= ~MTD_WRITEABLE;
  417. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  418. part->name);
  419. }
  420. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  421. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  422. slave->mtd.flags &= ~MTD_WRITEABLE;
  423. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  424. part->name);
  425. }
  426. slave->mtd.ecclayout = master->ecclayout;
  427. if (master->block_isbad) {
  428. uint64_t offs = 0;
  429. while (offs < slave->mtd.size) {
  430. if (master->block_isbad(master,
  431. offs + slave->offset))
  432. slave->mtd.ecc_stats.badblocks++;
  433. offs += slave->mtd.erasesize;
  434. }
  435. }
  436. out_register:
  437. /* register our partition */
  438. add_mtd_device(&slave->mtd);
  439. return slave;
  440. }
  441. /*
  442. * This function, given a master MTD object and a partition table, creates
  443. * and registers slave MTD objects which are bound to the master according to
  444. * the partition definitions.
  445. *
  446. * We don't register the master, or expect the caller to have done so,
  447. * for reasons of data integrity.
  448. */
  449. int add_mtd_partitions(struct mtd_info *master,
  450. const struct mtd_partition *parts,
  451. int nbparts)
  452. {
  453. struct mtd_part *slave;
  454. uint64_t cur_offset = 0;
  455. int i;
  456. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  457. for (i = 0; i < nbparts; i++) {
  458. slave = add_one_partition(master, parts + i, i, cur_offset);
  459. if (!slave)
  460. return -ENOMEM;
  461. cur_offset = slave->offset + slave->mtd.size;
  462. }
  463. return 0;
  464. }
  465. EXPORT_SYMBOL(add_mtd_partitions);
  466. static DEFINE_SPINLOCK(part_parser_lock);
  467. static LIST_HEAD(part_parsers);
  468. static struct mtd_part_parser *get_partition_parser(const char *name)
  469. {
  470. struct mtd_part_parser *p, *ret = NULL;
  471. spin_lock(&part_parser_lock);
  472. list_for_each_entry(p, &part_parsers, list)
  473. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  474. ret = p;
  475. break;
  476. }
  477. spin_unlock(&part_parser_lock);
  478. return ret;
  479. }
  480. int register_mtd_parser(struct mtd_part_parser *p)
  481. {
  482. spin_lock(&part_parser_lock);
  483. list_add(&p->list, &part_parsers);
  484. spin_unlock(&part_parser_lock);
  485. return 0;
  486. }
  487. EXPORT_SYMBOL_GPL(register_mtd_parser);
  488. int deregister_mtd_parser(struct mtd_part_parser *p)
  489. {
  490. spin_lock(&part_parser_lock);
  491. list_del(&p->list);
  492. spin_unlock(&part_parser_lock);
  493. return 0;
  494. }
  495. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  496. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  497. struct mtd_partition **pparts, unsigned long origin)
  498. {
  499. struct mtd_part_parser *parser;
  500. int ret = 0;
  501. for ( ; ret <= 0 && *types; types++) {
  502. parser = get_partition_parser(*types);
  503. if (!parser && !request_module("%s", *types))
  504. parser = get_partition_parser(*types);
  505. if (!parser) {
  506. printk(KERN_NOTICE "%s partition parsing not available\n",
  507. *types);
  508. continue;
  509. }
  510. ret = (*parser->parse_fn)(master, pparts, origin);
  511. if (ret > 0) {
  512. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  513. ret, parser->name, master->name);
  514. }
  515. put_partition_parser(parser);
  516. }
  517. return ret;
  518. }
  519. EXPORT_SYMBOL_GPL(parse_mtd_partitions);