dm.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-uevent.h"
  9. #include <linux/init.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/blkpg.h>
  14. #include <linux/bio.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/mempool.h>
  17. #include <linux/slab.h>
  18. #include <linux/idr.h>
  19. #include <linux/hdreg.h>
  20. #include <trace/events/block.h>
  21. #define DM_MSG_PREFIX "core"
  22. /*
  23. * Cookies are numeric values sent with CHANGE and REMOVE
  24. * uevents while resuming, removing or renaming the device.
  25. */
  26. #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  27. #define DM_COOKIE_LENGTH 24
  28. static const char *_name = DM_NAME;
  29. static unsigned int major = 0;
  30. static unsigned int _major = 0;
  31. static DEFINE_SPINLOCK(_minor_lock);
  32. /*
  33. * For bio-based dm.
  34. * One of these is allocated per bio.
  35. */
  36. struct dm_io {
  37. struct mapped_device *md;
  38. int error;
  39. atomic_t io_count;
  40. struct bio *bio;
  41. unsigned long start_time;
  42. };
  43. /*
  44. * For bio-based dm.
  45. * One of these is allocated per target within a bio. Hopefully
  46. * this will be simplified out one day.
  47. */
  48. struct dm_target_io {
  49. struct dm_io *io;
  50. struct dm_target *ti;
  51. union map_info info;
  52. };
  53. /*
  54. * For request-based dm.
  55. * One of these is allocated per request.
  56. */
  57. struct dm_rq_target_io {
  58. struct mapped_device *md;
  59. struct dm_target *ti;
  60. struct request *orig, clone;
  61. int error;
  62. union map_info info;
  63. };
  64. /*
  65. * For request-based dm.
  66. * One of these is allocated per bio.
  67. */
  68. struct dm_rq_clone_bio_info {
  69. struct bio *orig;
  70. struct dm_rq_target_io *tio;
  71. };
  72. union map_info *dm_get_mapinfo(struct bio *bio)
  73. {
  74. if (bio && bio->bi_private)
  75. return &((struct dm_target_io *)bio->bi_private)->info;
  76. return NULL;
  77. }
  78. union map_info *dm_get_rq_mapinfo(struct request *rq)
  79. {
  80. if (rq && rq->end_io_data)
  81. return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  82. return NULL;
  83. }
  84. EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
  85. #define MINOR_ALLOCED ((void *)-1)
  86. /*
  87. * Bits for the md->flags field.
  88. */
  89. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  90. #define DMF_SUSPENDED 1
  91. #define DMF_FROZEN 2
  92. #define DMF_FREEING 3
  93. #define DMF_DELETING 4
  94. #define DMF_NOFLUSH_SUSPENDING 5
  95. #define DMF_QUEUE_IO_TO_THREAD 6
  96. /*
  97. * Work processed by per-device workqueue.
  98. */
  99. struct mapped_device {
  100. struct rw_semaphore io_lock;
  101. struct mutex suspend_lock;
  102. rwlock_t map_lock;
  103. atomic_t holders;
  104. atomic_t open_count;
  105. unsigned long flags;
  106. struct request_queue *queue;
  107. struct gendisk *disk;
  108. char name[16];
  109. void *interface_ptr;
  110. /*
  111. * A list of ios that arrived while we were suspended.
  112. */
  113. atomic_t pending;
  114. wait_queue_head_t wait;
  115. struct work_struct work;
  116. struct bio_list deferred;
  117. spinlock_t deferred_lock;
  118. /*
  119. * An error from the barrier request currently being processed.
  120. */
  121. int barrier_error;
  122. /*
  123. * Processing queue (flush/barriers)
  124. */
  125. struct workqueue_struct *wq;
  126. /*
  127. * The current mapping.
  128. */
  129. struct dm_table *map;
  130. /*
  131. * io objects are allocated from here.
  132. */
  133. mempool_t *io_pool;
  134. mempool_t *tio_pool;
  135. struct bio_set *bs;
  136. /*
  137. * Event handling.
  138. */
  139. atomic_t event_nr;
  140. wait_queue_head_t eventq;
  141. atomic_t uevent_seq;
  142. struct list_head uevent_list;
  143. spinlock_t uevent_lock; /* Protect access to uevent_list */
  144. /*
  145. * freeze/thaw support require holding onto a super block
  146. */
  147. struct super_block *frozen_sb;
  148. struct block_device *bdev;
  149. /* forced geometry settings */
  150. struct hd_geometry geometry;
  151. /* marker of flush suspend for request-based dm */
  152. struct request suspend_rq;
  153. /* For saving the address of __make_request for request based dm */
  154. make_request_fn *saved_make_request_fn;
  155. /* sysfs handle */
  156. struct kobject kobj;
  157. /* zero-length barrier that will be cloned and submitted to targets */
  158. struct bio barrier_bio;
  159. };
  160. /*
  161. * For mempools pre-allocation at the table loading time.
  162. */
  163. struct dm_md_mempools {
  164. mempool_t *io_pool;
  165. mempool_t *tio_pool;
  166. struct bio_set *bs;
  167. };
  168. #define MIN_IOS 256
  169. static struct kmem_cache *_io_cache;
  170. static struct kmem_cache *_tio_cache;
  171. static struct kmem_cache *_rq_tio_cache;
  172. static struct kmem_cache *_rq_bio_info_cache;
  173. static int __init local_init(void)
  174. {
  175. int r = -ENOMEM;
  176. /* allocate a slab for the dm_ios */
  177. _io_cache = KMEM_CACHE(dm_io, 0);
  178. if (!_io_cache)
  179. return r;
  180. /* allocate a slab for the target ios */
  181. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  182. if (!_tio_cache)
  183. goto out_free_io_cache;
  184. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  185. if (!_rq_tio_cache)
  186. goto out_free_tio_cache;
  187. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  188. if (!_rq_bio_info_cache)
  189. goto out_free_rq_tio_cache;
  190. r = dm_uevent_init();
  191. if (r)
  192. goto out_free_rq_bio_info_cache;
  193. _major = major;
  194. r = register_blkdev(_major, _name);
  195. if (r < 0)
  196. goto out_uevent_exit;
  197. if (!_major)
  198. _major = r;
  199. return 0;
  200. out_uevent_exit:
  201. dm_uevent_exit();
  202. out_free_rq_bio_info_cache:
  203. kmem_cache_destroy(_rq_bio_info_cache);
  204. out_free_rq_tio_cache:
  205. kmem_cache_destroy(_rq_tio_cache);
  206. out_free_tio_cache:
  207. kmem_cache_destroy(_tio_cache);
  208. out_free_io_cache:
  209. kmem_cache_destroy(_io_cache);
  210. return r;
  211. }
  212. static void local_exit(void)
  213. {
  214. kmem_cache_destroy(_rq_bio_info_cache);
  215. kmem_cache_destroy(_rq_tio_cache);
  216. kmem_cache_destroy(_tio_cache);
  217. kmem_cache_destroy(_io_cache);
  218. unregister_blkdev(_major, _name);
  219. dm_uevent_exit();
  220. _major = 0;
  221. DMINFO("cleaned up");
  222. }
  223. static int (*_inits[])(void) __initdata = {
  224. local_init,
  225. dm_target_init,
  226. dm_linear_init,
  227. dm_stripe_init,
  228. dm_kcopyd_init,
  229. dm_interface_init,
  230. };
  231. static void (*_exits[])(void) = {
  232. local_exit,
  233. dm_target_exit,
  234. dm_linear_exit,
  235. dm_stripe_exit,
  236. dm_kcopyd_exit,
  237. dm_interface_exit,
  238. };
  239. static int __init dm_init(void)
  240. {
  241. const int count = ARRAY_SIZE(_inits);
  242. int r, i;
  243. for (i = 0; i < count; i++) {
  244. r = _inits[i]();
  245. if (r)
  246. goto bad;
  247. }
  248. return 0;
  249. bad:
  250. while (i--)
  251. _exits[i]();
  252. return r;
  253. }
  254. static void __exit dm_exit(void)
  255. {
  256. int i = ARRAY_SIZE(_exits);
  257. while (i--)
  258. _exits[i]();
  259. }
  260. /*
  261. * Block device functions
  262. */
  263. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  264. {
  265. struct mapped_device *md;
  266. spin_lock(&_minor_lock);
  267. md = bdev->bd_disk->private_data;
  268. if (!md)
  269. goto out;
  270. if (test_bit(DMF_FREEING, &md->flags) ||
  271. test_bit(DMF_DELETING, &md->flags)) {
  272. md = NULL;
  273. goto out;
  274. }
  275. dm_get(md);
  276. atomic_inc(&md->open_count);
  277. out:
  278. spin_unlock(&_minor_lock);
  279. return md ? 0 : -ENXIO;
  280. }
  281. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  282. {
  283. struct mapped_device *md = disk->private_data;
  284. atomic_dec(&md->open_count);
  285. dm_put(md);
  286. return 0;
  287. }
  288. int dm_open_count(struct mapped_device *md)
  289. {
  290. return atomic_read(&md->open_count);
  291. }
  292. /*
  293. * Guarantees nothing is using the device before it's deleted.
  294. */
  295. int dm_lock_for_deletion(struct mapped_device *md)
  296. {
  297. int r = 0;
  298. spin_lock(&_minor_lock);
  299. if (dm_open_count(md))
  300. r = -EBUSY;
  301. else
  302. set_bit(DMF_DELETING, &md->flags);
  303. spin_unlock(&_minor_lock);
  304. return r;
  305. }
  306. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  307. {
  308. struct mapped_device *md = bdev->bd_disk->private_data;
  309. return dm_get_geometry(md, geo);
  310. }
  311. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  312. unsigned int cmd, unsigned long arg)
  313. {
  314. struct mapped_device *md = bdev->bd_disk->private_data;
  315. struct dm_table *map = dm_get_table(md);
  316. struct dm_target *tgt;
  317. int r = -ENOTTY;
  318. if (!map || !dm_table_get_size(map))
  319. goto out;
  320. /* We only support devices that have a single target */
  321. if (dm_table_get_num_targets(map) != 1)
  322. goto out;
  323. tgt = dm_table_get_target(map, 0);
  324. if (dm_suspended(md)) {
  325. r = -EAGAIN;
  326. goto out;
  327. }
  328. if (tgt->type->ioctl)
  329. r = tgt->type->ioctl(tgt, cmd, arg);
  330. out:
  331. dm_table_put(map);
  332. return r;
  333. }
  334. static struct dm_io *alloc_io(struct mapped_device *md)
  335. {
  336. return mempool_alloc(md->io_pool, GFP_NOIO);
  337. }
  338. static void free_io(struct mapped_device *md, struct dm_io *io)
  339. {
  340. mempool_free(io, md->io_pool);
  341. }
  342. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  343. {
  344. mempool_free(tio, md->tio_pool);
  345. }
  346. static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
  347. {
  348. return mempool_alloc(md->tio_pool, GFP_ATOMIC);
  349. }
  350. static void free_rq_tio(struct dm_rq_target_io *tio)
  351. {
  352. mempool_free(tio, tio->md->tio_pool);
  353. }
  354. static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
  355. {
  356. return mempool_alloc(md->io_pool, GFP_ATOMIC);
  357. }
  358. static void free_bio_info(struct dm_rq_clone_bio_info *info)
  359. {
  360. mempool_free(info, info->tio->md->io_pool);
  361. }
  362. static void start_io_acct(struct dm_io *io)
  363. {
  364. struct mapped_device *md = io->md;
  365. int cpu;
  366. io->start_time = jiffies;
  367. cpu = part_stat_lock();
  368. part_round_stats(cpu, &dm_disk(md)->part0);
  369. part_stat_unlock();
  370. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  371. }
  372. static void end_io_acct(struct dm_io *io)
  373. {
  374. struct mapped_device *md = io->md;
  375. struct bio *bio = io->bio;
  376. unsigned long duration = jiffies - io->start_time;
  377. int pending, cpu;
  378. int rw = bio_data_dir(bio);
  379. cpu = part_stat_lock();
  380. part_round_stats(cpu, &dm_disk(md)->part0);
  381. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  382. part_stat_unlock();
  383. /*
  384. * After this is decremented the bio must not be touched if it is
  385. * a barrier.
  386. */
  387. dm_disk(md)->part0.in_flight = pending =
  388. atomic_dec_return(&md->pending);
  389. /* nudge anyone waiting on suspend queue */
  390. if (!pending)
  391. wake_up(&md->wait);
  392. }
  393. /*
  394. * Add the bio to the list of deferred io.
  395. */
  396. static void queue_io(struct mapped_device *md, struct bio *bio)
  397. {
  398. down_write(&md->io_lock);
  399. spin_lock_irq(&md->deferred_lock);
  400. bio_list_add(&md->deferred, bio);
  401. spin_unlock_irq(&md->deferred_lock);
  402. if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
  403. queue_work(md->wq, &md->work);
  404. up_write(&md->io_lock);
  405. }
  406. /*
  407. * Everyone (including functions in this file), should use this
  408. * function to access the md->map field, and make sure they call
  409. * dm_table_put() when finished.
  410. */
  411. struct dm_table *dm_get_table(struct mapped_device *md)
  412. {
  413. struct dm_table *t;
  414. unsigned long flags;
  415. read_lock_irqsave(&md->map_lock, flags);
  416. t = md->map;
  417. if (t)
  418. dm_table_get(t);
  419. read_unlock_irqrestore(&md->map_lock, flags);
  420. return t;
  421. }
  422. /*
  423. * Get the geometry associated with a dm device
  424. */
  425. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  426. {
  427. *geo = md->geometry;
  428. return 0;
  429. }
  430. /*
  431. * Set the geometry of a device.
  432. */
  433. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  434. {
  435. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  436. if (geo->start > sz) {
  437. DMWARN("Start sector is beyond the geometry limits.");
  438. return -EINVAL;
  439. }
  440. md->geometry = *geo;
  441. return 0;
  442. }
  443. /*-----------------------------------------------------------------
  444. * CRUD START:
  445. * A more elegant soln is in the works that uses the queue
  446. * merge fn, unfortunately there are a couple of changes to
  447. * the block layer that I want to make for this. So in the
  448. * interests of getting something for people to use I give
  449. * you this clearly demarcated crap.
  450. *---------------------------------------------------------------*/
  451. static int __noflush_suspending(struct mapped_device *md)
  452. {
  453. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  454. }
  455. /*
  456. * Decrements the number of outstanding ios that a bio has been
  457. * cloned into, completing the original io if necc.
  458. */
  459. static void dec_pending(struct dm_io *io, int error)
  460. {
  461. unsigned long flags;
  462. int io_error;
  463. struct bio *bio;
  464. struct mapped_device *md = io->md;
  465. /* Push-back supersedes any I/O errors */
  466. if (error && !(io->error > 0 && __noflush_suspending(md)))
  467. io->error = error;
  468. if (atomic_dec_and_test(&io->io_count)) {
  469. if (io->error == DM_ENDIO_REQUEUE) {
  470. /*
  471. * Target requested pushing back the I/O.
  472. */
  473. spin_lock_irqsave(&md->deferred_lock, flags);
  474. if (__noflush_suspending(md)) {
  475. if (!bio_barrier(io->bio))
  476. bio_list_add_head(&md->deferred,
  477. io->bio);
  478. } else
  479. /* noflush suspend was interrupted. */
  480. io->error = -EIO;
  481. spin_unlock_irqrestore(&md->deferred_lock, flags);
  482. }
  483. io_error = io->error;
  484. bio = io->bio;
  485. if (bio_barrier(bio)) {
  486. /*
  487. * There can be just one barrier request so we use
  488. * a per-device variable for error reporting.
  489. * Note that you can't touch the bio after end_io_acct
  490. */
  491. if (!md->barrier_error && io_error != -EOPNOTSUPP)
  492. md->barrier_error = io_error;
  493. end_io_acct(io);
  494. } else {
  495. end_io_acct(io);
  496. if (io_error != DM_ENDIO_REQUEUE) {
  497. trace_block_bio_complete(md->queue, bio);
  498. bio_endio(bio, io_error);
  499. }
  500. }
  501. free_io(md, io);
  502. }
  503. }
  504. static void clone_endio(struct bio *bio, int error)
  505. {
  506. int r = 0;
  507. struct dm_target_io *tio = bio->bi_private;
  508. struct dm_io *io = tio->io;
  509. struct mapped_device *md = tio->io->md;
  510. dm_endio_fn endio = tio->ti->type->end_io;
  511. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  512. error = -EIO;
  513. if (endio) {
  514. r = endio(tio->ti, bio, error, &tio->info);
  515. if (r < 0 || r == DM_ENDIO_REQUEUE)
  516. /*
  517. * error and requeue request are handled
  518. * in dec_pending().
  519. */
  520. error = r;
  521. else if (r == DM_ENDIO_INCOMPLETE)
  522. /* The target will handle the io */
  523. return;
  524. else if (r) {
  525. DMWARN("unimplemented target endio return value: %d", r);
  526. BUG();
  527. }
  528. }
  529. /*
  530. * Store md for cleanup instead of tio which is about to get freed.
  531. */
  532. bio->bi_private = md->bs;
  533. free_tio(md, tio);
  534. bio_put(bio);
  535. dec_pending(io, error);
  536. }
  537. /*
  538. * Partial completion handling for request-based dm
  539. */
  540. static void end_clone_bio(struct bio *clone, int error)
  541. {
  542. struct dm_rq_clone_bio_info *info = clone->bi_private;
  543. struct dm_rq_target_io *tio = info->tio;
  544. struct bio *bio = info->orig;
  545. unsigned int nr_bytes = info->orig->bi_size;
  546. bio_put(clone);
  547. if (tio->error)
  548. /*
  549. * An error has already been detected on the request.
  550. * Once error occurred, just let clone->end_io() handle
  551. * the remainder.
  552. */
  553. return;
  554. else if (error) {
  555. /*
  556. * Don't notice the error to the upper layer yet.
  557. * The error handling decision is made by the target driver,
  558. * when the request is completed.
  559. */
  560. tio->error = error;
  561. return;
  562. }
  563. /*
  564. * I/O for the bio successfully completed.
  565. * Notice the data completion to the upper layer.
  566. */
  567. /*
  568. * bios are processed from the head of the list.
  569. * So the completing bio should always be rq->bio.
  570. * If it's not, something wrong is happening.
  571. */
  572. if (tio->orig->bio != bio)
  573. DMERR("bio completion is going in the middle of the request");
  574. /*
  575. * Update the original request.
  576. * Do not use blk_end_request() here, because it may complete
  577. * the original request before the clone, and break the ordering.
  578. */
  579. blk_update_request(tio->orig, 0, nr_bytes);
  580. }
  581. /*
  582. * Don't touch any member of the md after calling this function because
  583. * the md may be freed in dm_put() at the end of this function.
  584. * Or do dm_get() before calling this function and dm_put() later.
  585. */
  586. static void rq_completed(struct mapped_device *md, int run_queue)
  587. {
  588. int wakeup_waiters = 0;
  589. struct request_queue *q = md->queue;
  590. unsigned long flags;
  591. spin_lock_irqsave(q->queue_lock, flags);
  592. if (!queue_in_flight(q))
  593. wakeup_waiters = 1;
  594. spin_unlock_irqrestore(q->queue_lock, flags);
  595. /* nudge anyone waiting on suspend queue */
  596. if (wakeup_waiters)
  597. wake_up(&md->wait);
  598. if (run_queue)
  599. blk_run_queue(q);
  600. /*
  601. * dm_put() must be at the end of this function. See the comment above
  602. */
  603. dm_put(md);
  604. }
  605. static void dm_unprep_request(struct request *rq)
  606. {
  607. struct request *clone = rq->special;
  608. struct dm_rq_target_io *tio = clone->end_io_data;
  609. rq->special = NULL;
  610. rq->cmd_flags &= ~REQ_DONTPREP;
  611. blk_rq_unprep_clone(clone);
  612. free_rq_tio(tio);
  613. }
  614. /*
  615. * Requeue the original request of a clone.
  616. */
  617. void dm_requeue_unmapped_request(struct request *clone)
  618. {
  619. struct dm_rq_target_io *tio = clone->end_io_data;
  620. struct mapped_device *md = tio->md;
  621. struct request *rq = tio->orig;
  622. struct request_queue *q = rq->q;
  623. unsigned long flags;
  624. dm_unprep_request(rq);
  625. spin_lock_irqsave(q->queue_lock, flags);
  626. if (elv_queue_empty(q))
  627. blk_plug_device(q);
  628. blk_requeue_request(q, rq);
  629. spin_unlock_irqrestore(q->queue_lock, flags);
  630. rq_completed(md, 0);
  631. }
  632. EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
  633. static void __stop_queue(struct request_queue *q)
  634. {
  635. blk_stop_queue(q);
  636. }
  637. static void stop_queue(struct request_queue *q)
  638. {
  639. unsigned long flags;
  640. spin_lock_irqsave(q->queue_lock, flags);
  641. __stop_queue(q);
  642. spin_unlock_irqrestore(q->queue_lock, flags);
  643. }
  644. static void __start_queue(struct request_queue *q)
  645. {
  646. if (blk_queue_stopped(q))
  647. blk_start_queue(q);
  648. }
  649. static void start_queue(struct request_queue *q)
  650. {
  651. unsigned long flags;
  652. spin_lock_irqsave(q->queue_lock, flags);
  653. __start_queue(q);
  654. spin_unlock_irqrestore(q->queue_lock, flags);
  655. }
  656. /*
  657. * Complete the clone and the original request.
  658. * Must be called without queue lock.
  659. */
  660. static void dm_end_request(struct request *clone, int error)
  661. {
  662. struct dm_rq_target_io *tio = clone->end_io_data;
  663. struct mapped_device *md = tio->md;
  664. struct request *rq = tio->orig;
  665. if (blk_pc_request(rq)) {
  666. rq->errors = clone->errors;
  667. rq->resid_len = clone->resid_len;
  668. if (rq->sense)
  669. /*
  670. * We are using the sense buffer of the original
  671. * request.
  672. * So setting the length of the sense data is enough.
  673. */
  674. rq->sense_len = clone->sense_len;
  675. }
  676. BUG_ON(clone->bio);
  677. free_rq_tio(tio);
  678. blk_end_request_all(rq, error);
  679. rq_completed(md, 1);
  680. }
  681. /*
  682. * Request completion handler for request-based dm
  683. */
  684. static void dm_softirq_done(struct request *rq)
  685. {
  686. struct request *clone = rq->completion_data;
  687. struct dm_rq_target_io *tio = clone->end_io_data;
  688. dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
  689. int error = tio->error;
  690. if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
  691. error = rq_end_io(tio->ti, clone, error, &tio->info);
  692. if (error <= 0)
  693. /* The target wants to complete the I/O */
  694. dm_end_request(clone, error);
  695. else if (error == DM_ENDIO_INCOMPLETE)
  696. /* The target will handle the I/O */
  697. return;
  698. else if (error == DM_ENDIO_REQUEUE)
  699. /* The target wants to requeue the I/O */
  700. dm_requeue_unmapped_request(clone);
  701. else {
  702. DMWARN("unimplemented target endio return value: %d", error);
  703. BUG();
  704. }
  705. }
  706. /*
  707. * Complete the clone and the original request with the error status
  708. * through softirq context.
  709. */
  710. static void dm_complete_request(struct request *clone, int error)
  711. {
  712. struct dm_rq_target_io *tio = clone->end_io_data;
  713. struct request *rq = tio->orig;
  714. tio->error = error;
  715. rq->completion_data = clone;
  716. blk_complete_request(rq);
  717. }
  718. /*
  719. * Complete the not-mapped clone and the original request with the error status
  720. * through softirq context.
  721. * Target's rq_end_io() function isn't called.
  722. * This may be used when the target's map_rq() function fails.
  723. */
  724. void dm_kill_unmapped_request(struct request *clone, int error)
  725. {
  726. struct dm_rq_target_io *tio = clone->end_io_data;
  727. struct request *rq = tio->orig;
  728. rq->cmd_flags |= REQ_FAILED;
  729. dm_complete_request(clone, error);
  730. }
  731. EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
  732. /*
  733. * Called with the queue lock held
  734. */
  735. static void end_clone_request(struct request *clone, int error)
  736. {
  737. /*
  738. * For just cleaning up the information of the queue in which
  739. * the clone was dispatched.
  740. * The clone is *NOT* freed actually here because it is alloced from
  741. * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
  742. */
  743. __blk_put_request(clone->q, clone);
  744. /*
  745. * Actual request completion is done in a softirq context which doesn't
  746. * hold the queue lock. Otherwise, deadlock could occur because:
  747. * - another request may be submitted by the upper level driver
  748. * of the stacking during the completion
  749. * - the submission which requires queue lock may be done
  750. * against this queue
  751. */
  752. dm_complete_request(clone, error);
  753. }
  754. static sector_t max_io_len(struct mapped_device *md,
  755. sector_t sector, struct dm_target *ti)
  756. {
  757. sector_t offset = sector - ti->begin;
  758. sector_t len = ti->len - offset;
  759. /*
  760. * Does the target need to split even further ?
  761. */
  762. if (ti->split_io) {
  763. sector_t boundary;
  764. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  765. - offset;
  766. if (len > boundary)
  767. len = boundary;
  768. }
  769. return len;
  770. }
  771. static void __map_bio(struct dm_target *ti, struct bio *clone,
  772. struct dm_target_io *tio)
  773. {
  774. int r;
  775. sector_t sector;
  776. struct mapped_device *md;
  777. clone->bi_end_io = clone_endio;
  778. clone->bi_private = tio;
  779. /*
  780. * Map the clone. If r == 0 we don't need to do
  781. * anything, the target has assumed ownership of
  782. * this io.
  783. */
  784. atomic_inc(&tio->io->io_count);
  785. sector = clone->bi_sector;
  786. r = ti->type->map(ti, clone, &tio->info);
  787. if (r == DM_MAPIO_REMAPPED) {
  788. /* the bio has been remapped so dispatch it */
  789. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  790. tio->io->bio->bi_bdev->bd_dev, sector);
  791. generic_make_request(clone);
  792. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  793. /* error the io and bail out, or requeue it if needed */
  794. md = tio->io->md;
  795. dec_pending(tio->io, r);
  796. /*
  797. * Store bio_set for cleanup.
  798. */
  799. clone->bi_private = md->bs;
  800. bio_put(clone);
  801. free_tio(md, tio);
  802. } else if (r) {
  803. DMWARN("unimplemented target map return value: %d", r);
  804. BUG();
  805. }
  806. }
  807. struct clone_info {
  808. struct mapped_device *md;
  809. struct dm_table *map;
  810. struct bio *bio;
  811. struct dm_io *io;
  812. sector_t sector;
  813. sector_t sector_count;
  814. unsigned short idx;
  815. };
  816. static void dm_bio_destructor(struct bio *bio)
  817. {
  818. struct bio_set *bs = bio->bi_private;
  819. bio_free(bio, bs);
  820. }
  821. /*
  822. * Creates a little bio that is just does part of a bvec.
  823. */
  824. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  825. unsigned short idx, unsigned int offset,
  826. unsigned int len, struct bio_set *bs)
  827. {
  828. struct bio *clone;
  829. struct bio_vec *bv = bio->bi_io_vec + idx;
  830. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  831. clone->bi_destructor = dm_bio_destructor;
  832. *clone->bi_io_vec = *bv;
  833. clone->bi_sector = sector;
  834. clone->bi_bdev = bio->bi_bdev;
  835. clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
  836. clone->bi_vcnt = 1;
  837. clone->bi_size = to_bytes(len);
  838. clone->bi_io_vec->bv_offset = offset;
  839. clone->bi_io_vec->bv_len = clone->bi_size;
  840. clone->bi_flags |= 1 << BIO_CLONED;
  841. if (bio_integrity(bio)) {
  842. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  843. bio_integrity_trim(clone,
  844. bio_sector_offset(bio, idx, offset), len);
  845. }
  846. return clone;
  847. }
  848. /*
  849. * Creates a bio that consists of range of complete bvecs.
  850. */
  851. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  852. unsigned short idx, unsigned short bv_count,
  853. unsigned int len, struct bio_set *bs)
  854. {
  855. struct bio *clone;
  856. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  857. __bio_clone(clone, bio);
  858. clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
  859. clone->bi_destructor = dm_bio_destructor;
  860. clone->bi_sector = sector;
  861. clone->bi_idx = idx;
  862. clone->bi_vcnt = idx + bv_count;
  863. clone->bi_size = to_bytes(len);
  864. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  865. if (bio_integrity(bio)) {
  866. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  867. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  868. bio_integrity_trim(clone,
  869. bio_sector_offset(bio, idx, 0), len);
  870. }
  871. return clone;
  872. }
  873. static struct dm_target_io *alloc_tio(struct clone_info *ci,
  874. struct dm_target *ti)
  875. {
  876. struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
  877. tio->io = ci->io;
  878. tio->ti = ti;
  879. memset(&tio->info, 0, sizeof(tio->info));
  880. return tio;
  881. }
  882. static void __flush_target(struct clone_info *ci, struct dm_target *ti,
  883. unsigned flush_nr)
  884. {
  885. struct dm_target_io *tio = alloc_tio(ci, ti);
  886. struct bio *clone;
  887. tio->info.flush_request = flush_nr;
  888. clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
  889. __bio_clone(clone, ci->bio);
  890. clone->bi_destructor = dm_bio_destructor;
  891. __map_bio(ti, clone, tio);
  892. }
  893. static int __clone_and_map_empty_barrier(struct clone_info *ci)
  894. {
  895. unsigned target_nr = 0, flush_nr;
  896. struct dm_target *ti;
  897. while ((ti = dm_table_get_target(ci->map, target_nr++)))
  898. for (flush_nr = 0; flush_nr < ti->num_flush_requests;
  899. flush_nr++)
  900. __flush_target(ci, ti, flush_nr);
  901. ci->sector_count = 0;
  902. return 0;
  903. }
  904. static int __clone_and_map(struct clone_info *ci)
  905. {
  906. struct bio *clone, *bio = ci->bio;
  907. struct dm_target *ti;
  908. sector_t len = 0, max;
  909. struct dm_target_io *tio;
  910. if (unlikely(bio_empty_barrier(bio)))
  911. return __clone_and_map_empty_barrier(ci);
  912. ti = dm_table_find_target(ci->map, ci->sector);
  913. if (!dm_target_is_valid(ti))
  914. return -EIO;
  915. max = max_io_len(ci->md, ci->sector, ti);
  916. /*
  917. * Allocate a target io object.
  918. */
  919. tio = alloc_tio(ci, ti);
  920. if (ci->sector_count <= max) {
  921. /*
  922. * Optimise for the simple case where we can do all of
  923. * the remaining io with a single clone.
  924. */
  925. clone = clone_bio(bio, ci->sector, ci->idx,
  926. bio->bi_vcnt - ci->idx, ci->sector_count,
  927. ci->md->bs);
  928. __map_bio(ti, clone, tio);
  929. ci->sector_count = 0;
  930. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  931. /*
  932. * There are some bvecs that don't span targets.
  933. * Do as many of these as possible.
  934. */
  935. int i;
  936. sector_t remaining = max;
  937. sector_t bv_len;
  938. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  939. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  940. if (bv_len > remaining)
  941. break;
  942. remaining -= bv_len;
  943. len += bv_len;
  944. }
  945. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  946. ci->md->bs);
  947. __map_bio(ti, clone, tio);
  948. ci->sector += len;
  949. ci->sector_count -= len;
  950. ci->idx = i;
  951. } else {
  952. /*
  953. * Handle a bvec that must be split between two or more targets.
  954. */
  955. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  956. sector_t remaining = to_sector(bv->bv_len);
  957. unsigned int offset = 0;
  958. do {
  959. if (offset) {
  960. ti = dm_table_find_target(ci->map, ci->sector);
  961. if (!dm_target_is_valid(ti))
  962. return -EIO;
  963. max = max_io_len(ci->md, ci->sector, ti);
  964. tio = alloc_tio(ci, ti);
  965. }
  966. len = min(remaining, max);
  967. clone = split_bvec(bio, ci->sector, ci->idx,
  968. bv->bv_offset + offset, len,
  969. ci->md->bs);
  970. __map_bio(ti, clone, tio);
  971. ci->sector += len;
  972. ci->sector_count -= len;
  973. offset += to_bytes(len);
  974. } while (remaining -= len);
  975. ci->idx++;
  976. }
  977. return 0;
  978. }
  979. /*
  980. * Split the bio into several clones and submit it to targets.
  981. */
  982. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  983. {
  984. struct clone_info ci;
  985. int error = 0;
  986. ci.map = dm_get_table(md);
  987. if (unlikely(!ci.map)) {
  988. if (!bio_barrier(bio))
  989. bio_io_error(bio);
  990. else
  991. if (!md->barrier_error)
  992. md->barrier_error = -EIO;
  993. return;
  994. }
  995. ci.md = md;
  996. ci.bio = bio;
  997. ci.io = alloc_io(md);
  998. ci.io->error = 0;
  999. atomic_set(&ci.io->io_count, 1);
  1000. ci.io->bio = bio;
  1001. ci.io->md = md;
  1002. ci.sector = bio->bi_sector;
  1003. ci.sector_count = bio_sectors(bio);
  1004. if (unlikely(bio_empty_barrier(bio)))
  1005. ci.sector_count = 1;
  1006. ci.idx = bio->bi_idx;
  1007. start_io_acct(ci.io);
  1008. while (ci.sector_count && !error)
  1009. error = __clone_and_map(&ci);
  1010. /* drop the extra reference count */
  1011. dec_pending(ci.io, error);
  1012. dm_table_put(ci.map);
  1013. }
  1014. /*-----------------------------------------------------------------
  1015. * CRUD END
  1016. *---------------------------------------------------------------*/
  1017. static int dm_merge_bvec(struct request_queue *q,
  1018. struct bvec_merge_data *bvm,
  1019. struct bio_vec *biovec)
  1020. {
  1021. struct mapped_device *md = q->queuedata;
  1022. struct dm_table *map = dm_get_table(md);
  1023. struct dm_target *ti;
  1024. sector_t max_sectors;
  1025. int max_size = 0;
  1026. if (unlikely(!map))
  1027. goto out;
  1028. ti = dm_table_find_target(map, bvm->bi_sector);
  1029. if (!dm_target_is_valid(ti))
  1030. goto out_table;
  1031. /*
  1032. * Find maximum amount of I/O that won't need splitting
  1033. */
  1034. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  1035. (sector_t) BIO_MAX_SECTORS);
  1036. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  1037. if (max_size < 0)
  1038. max_size = 0;
  1039. /*
  1040. * merge_bvec_fn() returns number of bytes
  1041. * it can accept at this offset
  1042. * max is precomputed maximal io size
  1043. */
  1044. if (max_size && ti->type->merge)
  1045. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  1046. /*
  1047. * If the target doesn't support merge method and some of the devices
  1048. * provided their merge_bvec method (we know this by looking at
  1049. * queue_max_hw_sectors), then we can't allow bios with multiple vector
  1050. * entries. So always set max_size to 0, and the code below allows
  1051. * just one page.
  1052. */
  1053. else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
  1054. max_size = 0;
  1055. out_table:
  1056. dm_table_put(map);
  1057. out:
  1058. /*
  1059. * Always allow an entire first page
  1060. */
  1061. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  1062. max_size = biovec->bv_len;
  1063. return max_size;
  1064. }
  1065. /*
  1066. * The request function that just remaps the bio built up by
  1067. * dm_merge_bvec.
  1068. */
  1069. static int _dm_request(struct request_queue *q, struct bio *bio)
  1070. {
  1071. int rw = bio_data_dir(bio);
  1072. struct mapped_device *md = q->queuedata;
  1073. int cpu;
  1074. down_read(&md->io_lock);
  1075. cpu = part_stat_lock();
  1076. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  1077. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  1078. part_stat_unlock();
  1079. /*
  1080. * If we're suspended or the thread is processing barriers
  1081. * we have to queue this io for later.
  1082. */
  1083. if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
  1084. unlikely(bio_barrier(bio))) {
  1085. up_read(&md->io_lock);
  1086. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
  1087. bio_rw(bio) == READA) {
  1088. bio_io_error(bio);
  1089. return 0;
  1090. }
  1091. queue_io(md, bio);
  1092. return 0;
  1093. }
  1094. __split_and_process_bio(md, bio);
  1095. up_read(&md->io_lock);
  1096. return 0;
  1097. }
  1098. static int dm_make_request(struct request_queue *q, struct bio *bio)
  1099. {
  1100. struct mapped_device *md = q->queuedata;
  1101. if (unlikely(bio_barrier(bio))) {
  1102. bio_endio(bio, -EOPNOTSUPP);
  1103. return 0;
  1104. }
  1105. return md->saved_make_request_fn(q, bio); /* call __make_request() */
  1106. }
  1107. static int dm_request_based(struct mapped_device *md)
  1108. {
  1109. return blk_queue_stackable(md->queue);
  1110. }
  1111. static int dm_request(struct request_queue *q, struct bio *bio)
  1112. {
  1113. struct mapped_device *md = q->queuedata;
  1114. if (dm_request_based(md))
  1115. return dm_make_request(q, bio);
  1116. return _dm_request(q, bio);
  1117. }
  1118. void dm_dispatch_request(struct request *rq)
  1119. {
  1120. int r;
  1121. if (blk_queue_io_stat(rq->q))
  1122. rq->cmd_flags |= REQ_IO_STAT;
  1123. rq->start_time = jiffies;
  1124. r = blk_insert_cloned_request(rq->q, rq);
  1125. if (r)
  1126. dm_complete_request(rq, r);
  1127. }
  1128. EXPORT_SYMBOL_GPL(dm_dispatch_request);
  1129. static void dm_rq_bio_destructor(struct bio *bio)
  1130. {
  1131. struct dm_rq_clone_bio_info *info = bio->bi_private;
  1132. struct mapped_device *md = info->tio->md;
  1133. free_bio_info(info);
  1134. bio_free(bio, md->bs);
  1135. }
  1136. static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
  1137. void *data)
  1138. {
  1139. struct dm_rq_target_io *tio = data;
  1140. struct mapped_device *md = tio->md;
  1141. struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
  1142. if (!info)
  1143. return -ENOMEM;
  1144. info->orig = bio_orig;
  1145. info->tio = tio;
  1146. bio->bi_end_io = end_clone_bio;
  1147. bio->bi_private = info;
  1148. bio->bi_destructor = dm_rq_bio_destructor;
  1149. return 0;
  1150. }
  1151. static int setup_clone(struct request *clone, struct request *rq,
  1152. struct dm_rq_target_io *tio)
  1153. {
  1154. int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
  1155. dm_rq_bio_constructor, tio);
  1156. if (r)
  1157. return r;
  1158. clone->cmd = rq->cmd;
  1159. clone->cmd_len = rq->cmd_len;
  1160. clone->sense = rq->sense;
  1161. clone->buffer = rq->buffer;
  1162. clone->end_io = end_clone_request;
  1163. clone->end_io_data = tio;
  1164. return 0;
  1165. }
  1166. static int dm_rq_flush_suspending(struct mapped_device *md)
  1167. {
  1168. return !md->suspend_rq.special;
  1169. }
  1170. /*
  1171. * Called with the queue lock held.
  1172. */
  1173. static int dm_prep_fn(struct request_queue *q, struct request *rq)
  1174. {
  1175. struct mapped_device *md = q->queuedata;
  1176. struct dm_rq_target_io *tio;
  1177. struct request *clone;
  1178. if (unlikely(rq == &md->suspend_rq)) {
  1179. if (dm_rq_flush_suspending(md))
  1180. return BLKPREP_OK;
  1181. else
  1182. /* The flush suspend was interrupted */
  1183. return BLKPREP_KILL;
  1184. }
  1185. if (unlikely(rq->special)) {
  1186. DMWARN("Already has something in rq->special.");
  1187. return BLKPREP_KILL;
  1188. }
  1189. tio = alloc_rq_tio(md); /* Only one for each original request */
  1190. if (!tio)
  1191. /* -ENOMEM */
  1192. return BLKPREP_DEFER;
  1193. tio->md = md;
  1194. tio->ti = NULL;
  1195. tio->orig = rq;
  1196. tio->error = 0;
  1197. memset(&tio->info, 0, sizeof(tio->info));
  1198. clone = &tio->clone;
  1199. if (setup_clone(clone, rq, tio)) {
  1200. /* -ENOMEM */
  1201. free_rq_tio(tio);
  1202. return BLKPREP_DEFER;
  1203. }
  1204. rq->special = clone;
  1205. rq->cmd_flags |= REQ_DONTPREP;
  1206. return BLKPREP_OK;
  1207. }
  1208. static void map_request(struct dm_target *ti, struct request *rq,
  1209. struct mapped_device *md)
  1210. {
  1211. int r;
  1212. struct request *clone = rq->special;
  1213. struct dm_rq_target_io *tio = clone->end_io_data;
  1214. /*
  1215. * Hold the md reference here for the in-flight I/O.
  1216. * We can't rely on the reference count by device opener,
  1217. * because the device may be closed during the request completion
  1218. * when all bios are completed.
  1219. * See the comment in rq_completed() too.
  1220. */
  1221. dm_get(md);
  1222. tio->ti = ti;
  1223. r = ti->type->map_rq(ti, clone, &tio->info);
  1224. switch (r) {
  1225. case DM_MAPIO_SUBMITTED:
  1226. /* The target has taken the I/O to submit by itself later */
  1227. break;
  1228. case DM_MAPIO_REMAPPED:
  1229. /* The target has remapped the I/O so dispatch it */
  1230. dm_dispatch_request(clone);
  1231. break;
  1232. case DM_MAPIO_REQUEUE:
  1233. /* The target wants to requeue the I/O */
  1234. dm_requeue_unmapped_request(clone);
  1235. break;
  1236. default:
  1237. if (r > 0) {
  1238. DMWARN("unimplemented target map return value: %d", r);
  1239. BUG();
  1240. }
  1241. /* The target wants to complete the I/O */
  1242. dm_kill_unmapped_request(clone, r);
  1243. break;
  1244. }
  1245. }
  1246. /*
  1247. * q->request_fn for request-based dm.
  1248. * Called with the queue lock held.
  1249. */
  1250. static void dm_request_fn(struct request_queue *q)
  1251. {
  1252. struct mapped_device *md = q->queuedata;
  1253. struct dm_table *map = dm_get_table(md);
  1254. struct dm_target *ti;
  1255. struct request *rq;
  1256. /*
  1257. * For noflush suspend, check blk_queue_stopped() to immediately
  1258. * quit I/O dispatching.
  1259. */
  1260. while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
  1261. rq = blk_peek_request(q);
  1262. if (!rq)
  1263. goto plug_and_out;
  1264. if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
  1265. if (queue_in_flight(q))
  1266. /* Not quiet yet. Wait more */
  1267. goto plug_and_out;
  1268. /* This device should be quiet now */
  1269. __stop_queue(q);
  1270. blk_start_request(rq);
  1271. __blk_end_request_all(rq, 0);
  1272. wake_up(&md->wait);
  1273. goto out;
  1274. }
  1275. ti = dm_table_find_target(map, blk_rq_pos(rq));
  1276. if (ti->type->busy && ti->type->busy(ti))
  1277. goto plug_and_out;
  1278. blk_start_request(rq);
  1279. spin_unlock(q->queue_lock);
  1280. map_request(ti, rq, md);
  1281. spin_lock_irq(q->queue_lock);
  1282. }
  1283. goto out;
  1284. plug_and_out:
  1285. if (!elv_queue_empty(q))
  1286. /* Some requests still remain, retry later */
  1287. blk_plug_device(q);
  1288. out:
  1289. dm_table_put(map);
  1290. return;
  1291. }
  1292. int dm_underlying_device_busy(struct request_queue *q)
  1293. {
  1294. return blk_lld_busy(q);
  1295. }
  1296. EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
  1297. static int dm_lld_busy(struct request_queue *q)
  1298. {
  1299. int r;
  1300. struct mapped_device *md = q->queuedata;
  1301. struct dm_table *map = dm_get_table(md);
  1302. if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
  1303. r = 1;
  1304. else
  1305. r = dm_table_any_busy_target(map);
  1306. dm_table_put(map);
  1307. return r;
  1308. }
  1309. static void dm_unplug_all(struct request_queue *q)
  1310. {
  1311. struct mapped_device *md = q->queuedata;
  1312. struct dm_table *map = dm_get_table(md);
  1313. if (map) {
  1314. if (dm_request_based(md))
  1315. generic_unplug_device(q);
  1316. dm_table_unplug_all(map);
  1317. dm_table_put(map);
  1318. }
  1319. }
  1320. static int dm_any_congested(void *congested_data, int bdi_bits)
  1321. {
  1322. int r = bdi_bits;
  1323. struct mapped_device *md = congested_data;
  1324. struct dm_table *map;
  1325. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1326. map = dm_get_table(md);
  1327. if (map) {
  1328. /*
  1329. * Request-based dm cares about only own queue for
  1330. * the query about congestion status of request_queue
  1331. */
  1332. if (dm_request_based(md))
  1333. r = md->queue->backing_dev_info.state &
  1334. bdi_bits;
  1335. else
  1336. r = dm_table_any_congested(map, bdi_bits);
  1337. dm_table_put(map);
  1338. }
  1339. }
  1340. return r;
  1341. }
  1342. /*-----------------------------------------------------------------
  1343. * An IDR is used to keep track of allocated minor numbers.
  1344. *---------------------------------------------------------------*/
  1345. static DEFINE_IDR(_minor_idr);
  1346. static void free_minor(int minor)
  1347. {
  1348. spin_lock(&_minor_lock);
  1349. idr_remove(&_minor_idr, minor);
  1350. spin_unlock(&_minor_lock);
  1351. }
  1352. /*
  1353. * See if the device with a specific minor # is free.
  1354. */
  1355. static int specific_minor(int minor)
  1356. {
  1357. int r, m;
  1358. if (minor >= (1 << MINORBITS))
  1359. return -EINVAL;
  1360. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1361. if (!r)
  1362. return -ENOMEM;
  1363. spin_lock(&_minor_lock);
  1364. if (idr_find(&_minor_idr, minor)) {
  1365. r = -EBUSY;
  1366. goto out;
  1367. }
  1368. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  1369. if (r)
  1370. goto out;
  1371. if (m != minor) {
  1372. idr_remove(&_minor_idr, m);
  1373. r = -EBUSY;
  1374. goto out;
  1375. }
  1376. out:
  1377. spin_unlock(&_minor_lock);
  1378. return r;
  1379. }
  1380. static int next_free_minor(int *minor)
  1381. {
  1382. int r, m;
  1383. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1384. if (!r)
  1385. return -ENOMEM;
  1386. spin_lock(&_minor_lock);
  1387. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  1388. if (r)
  1389. goto out;
  1390. if (m >= (1 << MINORBITS)) {
  1391. idr_remove(&_minor_idr, m);
  1392. r = -ENOSPC;
  1393. goto out;
  1394. }
  1395. *minor = m;
  1396. out:
  1397. spin_unlock(&_minor_lock);
  1398. return r;
  1399. }
  1400. static struct block_device_operations dm_blk_dops;
  1401. static void dm_wq_work(struct work_struct *work);
  1402. /*
  1403. * Allocate and initialise a blank device with a given minor.
  1404. */
  1405. static struct mapped_device *alloc_dev(int minor)
  1406. {
  1407. int r;
  1408. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  1409. void *old_md;
  1410. if (!md) {
  1411. DMWARN("unable to allocate device, out of memory.");
  1412. return NULL;
  1413. }
  1414. if (!try_module_get(THIS_MODULE))
  1415. goto bad_module_get;
  1416. /* get a minor number for the dev */
  1417. if (minor == DM_ANY_MINOR)
  1418. r = next_free_minor(&minor);
  1419. else
  1420. r = specific_minor(minor);
  1421. if (r < 0)
  1422. goto bad_minor;
  1423. init_rwsem(&md->io_lock);
  1424. mutex_init(&md->suspend_lock);
  1425. spin_lock_init(&md->deferred_lock);
  1426. rwlock_init(&md->map_lock);
  1427. atomic_set(&md->holders, 1);
  1428. atomic_set(&md->open_count, 0);
  1429. atomic_set(&md->event_nr, 0);
  1430. atomic_set(&md->uevent_seq, 0);
  1431. INIT_LIST_HEAD(&md->uevent_list);
  1432. spin_lock_init(&md->uevent_lock);
  1433. md->queue = blk_init_queue(dm_request_fn, NULL);
  1434. if (!md->queue)
  1435. goto bad_queue;
  1436. /*
  1437. * Request-based dm devices cannot be stacked on top of bio-based dm
  1438. * devices. The type of this dm device has not been decided yet,
  1439. * although we initialized the queue using blk_init_queue().
  1440. * The type is decided at the first table loading time.
  1441. * To prevent problematic device stacking, clear the queue flag
  1442. * for request stacking support until then.
  1443. *
  1444. * This queue is new, so no concurrency on the queue_flags.
  1445. */
  1446. queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
  1447. md->saved_make_request_fn = md->queue->make_request_fn;
  1448. md->queue->queuedata = md;
  1449. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  1450. md->queue->backing_dev_info.congested_data = md;
  1451. blk_queue_make_request(md->queue, dm_request);
  1452. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  1453. md->queue->unplug_fn = dm_unplug_all;
  1454. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  1455. blk_queue_softirq_done(md->queue, dm_softirq_done);
  1456. blk_queue_prep_rq(md->queue, dm_prep_fn);
  1457. blk_queue_lld_busy(md->queue, dm_lld_busy);
  1458. md->disk = alloc_disk(1);
  1459. if (!md->disk)
  1460. goto bad_disk;
  1461. atomic_set(&md->pending, 0);
  1462. init_waitqueue_head(&md->wait);
  1463. INIT_WORK(&md->work, dm_wq_work);
  1464. init_waitqueue_head(&md->eventq);
  1465. md->disk->major = _major;
  1466. md->disk->first_minor = minor;
  1467. md->disk->fops = &dm_blk_dops;
  1468. md->disk->queue = md->queue;
  1469. md->disk->private_data = md;
  1470. sprintf(md->disk->disk_name, "dm-%d", minor);
  1471. add_disk(md->disk);
  1472. format_dev_t(md->name, MKDEV(_major, minor));
  1473. md->wq = create_singlethread_workqueue("kdmflush");
  1474. if (!md->wq)
  1475. goto bad_thread;
  1476. md->bdev = bdget_disk(md->disk, 0);
  1477. if (!md->bdev)
  1478. goto bad_bdev;
  1479. /* Populate the mapping, nobody knows we exist yet */
  1480. spin_lock(&_minor_lock);
  1481. old_md = idr_replace(&_minor_idr, md, minor);
  1482. spin_unlock(&_minor_lock);
  1483. BUG_ON(old_md != MINOR_ALLOCED);
  1484. return md;
  1485. bad_bdev:
  1486. destroy_workqueue(md->wq);
  1487. bad_thread:
  1488. put_disk(md->disk);
  1489. bad_disk:
  1490. blk_cleanup_queue(md->queue);
  1491. bad_queue:
  1492. free_minor(minor);
  1493. bad_minor:
  1494. module_put(THIS_MODULE);
  1495. bad_module_get:
  1496. kfree(md);
  1497. return NULL;
  1498. }
  1499. static void unlock_fs(struct mapped_device *md);
  1500. static void free_dev(struct mapped_device *md)
  1501. {
  1502. int minor = MINOR(disk_devt(md->disk));
  1503. unlock_fs(md);
  1504. bdput(md->bdev);
  1505. destroy_workqueue(md->wq);
  1506. if (md->tio_pool)
  1507. mempool_destroy(md->tio_pool);
  1508. if (md->io_pool)
  1509. mempool_destroy(md->io_pool);
  1510. if (md->bs)
  1511. bioset_free(md->bs);
  1512. blk_integrity_unregister(md->disk);
  1513. del_gendisk(md->disk);
  1514. free_minor(minor);
  1515. spin_lock(&_minor_lock);
  1516. md->disk->private_data = NULL;
  1517. spin_unlock(&_minor_lock);
  1518. put_disk(md->disk);
  1519. blk_cleanup_queue(md->queue);
  1520. module_put(THIS_MODULE);
  1521. kfree(md);
  1522. }
  1523. static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
  1524. {
  1525. struct dm_md_mempools *p;
  1526. if (md->io_pool && md->tio_pool && md->bs)
  1527. /* the md already has necessary mempools */
  1528. goto out;
  1529. p = dm_table_get_md_mempools(t);
  1530. BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
  1531. md->io_pool = p->io_pool;
  1532. p->io_pool = NULL;
  1533. md->tio_pool = p->tio_pool;
  1534. p->tio_pool = NULL;
  1535. md->bs = p->bs;
  1536. p->bs = NULL;
  1537. out:
  1538. /* mempool bind completed, now no need any mempools in the table */
  1539. dm_table_free_md_mempools(t);
  1540. }
  1541. /*
  1542. * Bind a table to the device.
  1543. */
  1544. static void event_callback(void *context)
  1545. {
  1546. unsigned long flags;
  1547. LIST_HEAD(uevents);
  1548. struct mapped_device *md = (struct mapped_device *) context;
  1549. spin_lock_irqsave(&md->uevent_lock, flags);
  1550. list_splice_init(&md->uevent_list, &uevents);
  1551. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1552. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1553. atomic_inc(&md->event_nr);
  1554. wake_up(&md->eventq);
  1555. }
  1556. static void __set_size(struct mapped_device *md, sector_t size)
  1557. {
  1558. set_capacity(md->disk, size);
  1559. mutex_lock(&md->bdev->bd_inode->i_mutex);
  1560. i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1561. mutex_unlock(&md->bdev->bd_inode->i_mutex);
  1562. }
  1563. static int __bind(struct mapped_device *md, struct dm_table *t,
  1564. struct queue_limits *limits)
  1565. {
  1566. struct request_queue *q = md->queue;
  1567. sector_t size;
  1568. unsigned long flags;
  1569. size = dm_table_get_size(t);
  1570. /*
  1571. * Wipe any geometry if the size of the table changed.
  1572. */
  1573. if (size != get_capacity(md->disk))
  1574. memset(&md->geometry, 0, sizeof(md->geometry));
  1575. __set_size(md, size);
  1576. if (!size) {
  1577. dm_table_destroy(t);
  1578. return 0;
  1579. }
  1580. dm_table_event_callback(t, event_callback, md);
  1581. /*
  1582. * The queue hasn't been stopped yet, if the old table type wasn't
  1583. * for request-based during suspension. So stop it to prevent
  1584. * I/O mapping before resume.
  1585. * This must be done before setting the queue restrictions,
  1586. * because request-based dm may be run just after the setting.
  1587. */
  1588. if (dm_table_request_based(t) && !blk_queue_stopped(q))
  1589. stop_queue(q);
  1590. __bind_mempools(md, t);
  1591. write_lock_irqsave(&md->map_lock, flags);
  1592. md->map = t;
  1593. dm_table_set_restrictions(t, q, limits);
  1594. write_unlock_irqrestore(&md->map_lock, flags);
  1595. return 0;
  1596. }
  1597. static void __unbind(struct mapped_device *md)
  1598. {
  1599. struct dm_table *map = md->map;
  1600. unsigned long flags;
  1601. if (!map)
  1602. return;
  1603. dm_table_event_callback(map, NULL, NULL);
  1604. write_lock_irqsave(&md->map_lock, flags);
  1605. md->map = NULL;
  1606. write_unlock_irqrestore(&md->map_lock, flags);
  1607. dm_table_destroy(map);
  1608. }
  1609. /*
  1610. * Constructor for a new device.
  1611. */
  1612. int dm_create(int minor, struct mapped_device **result)
  1613. {
  1614. struct mapped_device *md;
  1615. md = alloc_dev(minor);
  1616. if (!md)
  1617. return -ENXIO;
  1618. dm_sysfs_init(md);
  1619. *result = md;
  1620. return 0;
  1621. }
  1622. static struct mapped_device *dm_find_md(dev_t dev)
  1623. {
  1624. struct mapped_device *md;
  1625. unsigned minor = MINOR(dev);
  1626. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1627. return NULL;
  1628. spin_lock(&_minor_lock);
  1629. md = idr_find(&_minor_idr, minor);
  1630. if (md && (md == MINOR_ALLOCED ||
  1631. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1632. test_bit(DMF_FREEING, &md->flags))) {
  1633. md = NULL;
  1634. goto out;
  1635. }
  1636. out:
  1637. spin_unlock(&_minor_lock);
  1638. return md;
  1639. }
  1640. struct mapped_device *dm_get_md(dev_t dev)
  1641. {
  1642. struct mapped_device *md = dm_find_md(dev);
  1643. if (md)
  1644. dm_get(md);
  1645. return md;
  1646. }
  1647. void *dm_get_mdptr(struct mapped_device *md)
  1648. {
  1649. return md->interface_ptr;
  1650. }
  1651. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1652. {
  1653. md->interface_ptr = ptr;
  1654. }
  1655. void dm_get(struct mapped_device *md)
  1656. {
  1657. atomic_inc(&md->holders);
  1658. }
  1659. const char *dm_device_name(struct mapped_device *md)
  1660. {
  1661. return md->name;
  1662. }
  1663. EXPORT_SYMBOL_GPL(dm_device_name);
  1664. void dm_put(struct mapped_device *md)
  1665. {
  1666. struct dm_table *map;
  1667. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1668. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1669. map = dm_get_table(md);
  1670. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1671. MINOR(disk_devt(dm_disk(md))));
  1672. set_bit(DMF_FREEING, &md->flags);
  1673. spin_unlock(&_minor_lock);
  1674. if (!dm_suspended(md)) {
  1675. dm_table_presuspend_targets(map);
  1676. dm_table_postsuspend_targets(map);
  1677. }
  1678. dm_sysfs_exit(md);
  1679. dm_table_put(map);
  1680. __unbind(md);
  1681. free_dev(md);
  1682. }
  1683. }
  1684. EXPORT_SYMBOL_GPL(dm_put);
  1685. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1686. {
  1687. int r = 0;
  1688. DECLARE_WAITQUEUE(wait, current);
  1689. struct request_queue *q = md->queue;
  1690. unsigned long flags;
  1691. dm_unplug_all(md->queue);
  1692. add_wait_queue(&md->wait, &wait);
  1693. while (1) {
  1694. set_current_state(interruptible);
  1695. smp_mb();
  1696. if (dm_request_based(md)) {
  1697. spin_lock_irqsave(q->queue_lock, flags);
  1698. if (!queue_in_flight(q) && blk_queue_stopped(q)) {
  1699. spin_unlock_irqrestore(q->queue_lock, flags);
  1700. break;
  1701. }
  1702. spin_unlock_irqrestore(q->queue_lock, flags);
  1703. } else if (!atomic_read(&md->pending))
  1704. break;
  1705. if (interruptible == TASK_INTERRUPTIBLE &&
  1706. signal_pending(current)) {
  1707. r = -EINTR;
  1708. break;
  1709. }
  1710. io_schedule();
  1711. }
  1712. set_current_state(TASK_RUNNING);
  1713. remove_wait_queue(&md->wait, &wait);
  1714. return r;
  1715. }
  1716. static void dm_flush(struct mapped_device *md)
  1717. {
  1718. dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
  1719. bio_init(&md->barrier_bio);
  1720. md->barrier_bio.bi_bdev = md->bdev;
  1721. md->barrier_bio.bi_rw = WRITE_BARRIER;
  1722. __split_and_process_bio(md, &md->barrier_bio);
  1723. dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
  1724. }
  1725. static void process_barrier(struct mapped_device *md, struct bio *bio)
  1726. {
  1727. md->barrier_error = 0;
  1728. dm_flush(md);
  1729. if (!bio_empty_barrier(bio)) {
  1730. __split_and_process_bio(md, bio);
  1731. dm_flush(md);
  1732. }
  1733. if (md->barrier_error != DM_ENDIO_REQUEUE)
  1734. bio_endio(bio, md->barrier_error);
  1735. else {
  1736. spin_lock_irq(&md->deferred_lock);
  1737. bio_list_add_head(&md->deferred, bio);
  1738. spin_unlock_irq(&md->deferred_lock);
  1739. }
  1740. }
  1741. /*
  1742. * Process the deferred bios
  1743. */
  1744. static void dm_wq_work(struct work_struct *work)
  1745. {
  1746. struct mapped_device *md = container_of(work, struct mapped_device,
  1747. work);
  1748. struct bio *c;
  1749. down_write(&md->io_lock);
  1750. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1751. spin_lock_irq(&md->deferred_lock);
  1752. c = bio_list_pop(&md->deferred);
  1753. spin_unlock_irq(&md->deferred_lock);
  1754. if (!c) {
  1755. clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1756. break;
  1757. }
  1758. up_write(&md->io_lock);
  1759. if (dm_request_based(md))
  1760. generic_make_request(c);
  1761. else {
  1762. if (bio_barrier(c))
  1763. process_barrier(md, c);
  1764. else
  1765. __split_and_process_bio(md, c);
  1766. }
  1767. down_write(&md->io_lock);
  1768. }
  1769. up_write(&md->io_lock);
  1770. }
  1771. static void dm_queue_flush(struct mapped_device *md)
  1772. {
  1773. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1774. smp_mb__after_clear_bit();
  1775. queue_work(md->wq, &md->work);
  1776. }
  1777. /*
  1778. * Swap in a new table (destroying old one).
  1779. */
  1780. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1781. {
  1782. struct queue_limits limits;
  1783. int r = -EINVAL;
  1784. mutex_lock(&md->suspend_lock);
  1785. /* device must be suspended */
  1786. if (!dm_suspended(md))
  1787. goto out;
  1788. r = dm_calculate_queue_limits(table, &limits);
  1789. if (r)
  1790. goto out;
  1791. /* cannot change the device type, once a table is bound */
  1792. if (md->map &&
  1793. (dm_table_get_type(md->map) != dm_table_get_type(table))) {
  1794. DMWARN("can't change the device type after a table is bound");
  1795. goto out;
  1796. }
  1797. /*
  1798. * It is enought that blk_queue_ordered() is called only once when
  1799. * the first bio-based table is bound.
  1800. *
  1801. * This setting should be moved to alloc_dev() when request-based dm
  1802. * supports barrier.
  1803. */
  1804. if (!md->map && dm_table_bio_based(table))
  1805. blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
  1806. __unbind(md);
  1807. r = __bind(md, table, &limits);
  1808. out:
  1809. mutex_unlock(&md->suspend_lock);
  1810. return r;
  1811. }
  1812. static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
  1813. {
  1814. md->suspend_rq.special = (void *)0x1;
  1815. }
  1816. static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
  1817. {
  1818. struct request_queue *q = md->queue;
  1819. unsigned long flags;
  1820. spin_lock_irqsave(q->queue_lock, flags);
  1821. if (!noflush)
  1822. dm_rq_invalidate_suspend_marker(md);
  1823. __start_queue(q);
  1824. spin_unlock_irqrestore(q->queue_lock, flags);
  1825. }
  1826. static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
  1827. {
  1828. struct request *rq = &md->suspend_rq;
  1829. struct request_queue *q = md->queue;
  1830. if (noflush)
  1831. stop_queue(q);
  1832. else {
  1833. blk_rq_init(q, rq);
  1834. blk_insert_request(q, rq, 0, NULL);
  1835. }
  1836. }
  1837. static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
  1838. {
  1839. int r = 1;
  1840. struct request *rq = &md->suspend_rq;
  1841. struct request_queue *q = md->queue;
  1842. unsigned long flags;
  1843. if (noflush)
  1844. return r;
  1845. /* The marker must be protected by queue lock if it is in use */
  1846. spin_lock_irqsave(q->queue_lock, flags);
  1847. if (unlikely(rq->ref_count)) {
  1848. /*
  1849. * This can happen, when the previous flush suspend was
  1850. * interrupted, the marker is still in the queue and
  1851. * this flush suspend has been invoked, because we don't
  1852. * remove the marker at the time of suspend interruption.
  1853. * We have only one marker per mapped_device, so we can't
  1854. * start another flush suspend while it is in use.
  1855. */
  1856. BUG_ON(!rq->special); /* The marker should be invalidated */
  1857. DMWARN("Invalidating the previous flush suspend is still in"
  1858. " progress. Please retry later.");
  1859. r = 0;
  1860. }
  1861. spin_unlock_irqrestore(q->queue_lock, flags);
  1862. return r;
  1863. }
  1864. /*
  1865. * Functions to lock and unlock any filesystem running on the
  1866. * device.
  1867. */
  1868. static int lock_fs(struct mapped_device *md)
  1869. {
  1870. int r;
  1871. WARN_ON(md->frozen_sb);
  1872. md->frozen_sb = freeze_bdev(md->bdev);
  1873. if (IS_ERR(md->frozen_sb)) {
  1874. r = PTR_ERR(md->frozen_sb);
  1875. md->frozen_sb = NULL;
  1876. return r;
  1877. }
  1878. set_bit(DMF_FROZEN, &md->flags);
  1879. return 0;
  1880. }
  1881. static void unlock_fs(struct mapped_device *md)
  1882. {
  1883. if (!test_bit(DMF_FROZEN, &md->flags))
  1884. return;
  1885. thaw_bdev(md->bdev, md->frozen_sb);
  1886. md->frozen_sb = NULL;
  1887. clear_bit(DMF_FROZEN, &md->flags);
  1888. }
  1889. /*
  1890. * We need to be able to change a mapping table under a mounted
  1891. * filesystem. For example we might want to move some data in
  1892. * the background. Before the table can be swapped with
  1893. * dm_bind_table, dm_suspend must be called to flush any in
  1894. * flight bios and ensure that any further io gets deferred.
  1895. */
  1896. /*
  1897. * Suspend mechanism in request-based dm.
  1898. *
  1899. * After the suspend starts, further incoming requests are kept in
  1900. * the request_queue and deferred.
  1901. * Remaining requests in the request_queue at the start of suspend are flushed
  1902. * if it is flush suspend.
  1903. * The suspend completes when the following conditions have been satisfied,
  1904. * so wait for it:
  1905. * 1. q->in_flight is 0 (which means no in_flight request)
  1906. * 2. queue has been stopped (which means no request dispatching)
  1907. *
  1908. *
  1909. * Noflush suspend
  1910. * ---------------
  1911. * Noflush suspend doesn't need to dispatch remaining requests.
  1912. * So stop the queue immediately. Then, wait for all in_flight requests
  1913. * to be completed or requeued.
  1914. *
  1915. * To abort noflush suspend, start the queue.
  1916. *
  1917. *
  1918. * Flush suspend
  1919. * -------------
  1920. * Flush suspend needs to dispatch remaining requests. So stop the queue
  1921. * after the remaining requests are completed. (Requeued request must be also
  1922. * re-dispatched and completed. Until then, we can't stop the queue.)
  1923. *
  1924. * During flushing the remaining requests, further incoming requests are also
  1925. * inserted to the same queue. To distinguish which requests are to be
  1926. * flushed, we insert a marker request to the queue at the time of starting
  1927. * flush suspend, like a barrier.
  1928. * The dispatching is blocked when the marker is found on the top of the queue.
  1929. * And the queue is stopped when all in_flight requests are completed, since
  1930. * that means the remaining requests are completely flushed.
  1931. * Then, the marker is removed from the queue.
  1932. *
  1933. * To abort flush suspend, we also need to take care of the marker, not only
  1934. * starting the queue.
  1935. * We don't remove the marker forcibly from the queue since it's against
  1936. * the block-layer manner. Instead, we put a invalidated mark on the marker.
  1937. * When the invalidated marker is found on the top of the queue, it is
  1938. * immediately removed from the queue, so it doesn't block dispatching.
  1939. * Because we have only one marker per mapped_device, we can't start another
  1940. * flush suspend until the invalidated marker is removed from the queue.
  1941. * So fail and return with -EBUSY in such a case.
  1942. */
  1943. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1944. {
  1945. struct dm_table *map = NULL;
  1946. int r = 0;
  1947. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1948. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1949. mutex_lock(&md->suspend_lock);
  1950. if (dm_suspended(md)) {
  1951. r = -EINVAL;
  1952. goto out_unlock;
  1953. }
  1954. if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
  1955. r = -EBUSY;
  1956. goto out_unlock;
  1957. }
  1958. map = dm_get_table(md);
  1959. /*
  1960. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1961. * This flag is cleared before dm_suspend returns.
  1962. */
  1963. if (noflush)
  1964. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1965. /* This does not get reverted if there's an error later. */
  1966. dm_table_presuspend_targets(map);
  1967. /*
  1968. * Flush I/O to the device. noflush supersedes do_lockfs,
  1969. * because lock_fs() needs to flush I/Os.
  1970. */
  1971. if (!noflush && do_lockfs) {
  1972. r = lock_fs(md);
  1973. if (r)
  1974. goto out;
  1975. }
  1976. /*
  1977. * Here we must make sure that no processes are submitting requests
  1978. * to target drivers i.e. no one may be executing
  1979. * __split_and_process_bio. This is called from dm_request and
  1980. * dm_wq_work.
  1981. *
  1982. * To get all processes out of __split_and_process_bio in dm_request,
  1983. * we take the write lock. To prevent any process from reentering
  1984. * __split_and_process_bio from dm_request, we set
  1985. * DMF_QUEUE_IO_TO_THREAD.
  1986. *
  1987. * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
  1988. * and call flush_workqueue(md->wq). flush_workqueue will wait until
  1989. * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
  1990. * further calls to __split_and_process_bio from dm_wq_work.
  1991. */
  1992. down_write(&md->io_lock);
  1993. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1994. set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1995. up_write(&md->io_lock);
  1996. flush_workqueue(md->wq);
  1997. if (dm_request_based(md))
  1998. dm_rq_start_suspend(md, noflush);
  1999. /*
  2000. * At this point no more requests are entering target request routines.
  2001. * We call dm_wait_for_completion to wait for all existing requests
  2002. * to finish.
  2003. */
  2004. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  2005. down_write(&md->io_lock);
  2006. if (noflush)
  2007. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  2008. up_write(&md->io_lock);
  2009. /* were we interrupted ? */
  2010. if (r < 0) {
  2011. dm_queue_flush(md);
  2012. if (dm_request_based(md))
  2013. dm_rq_abort_suspend(md, noflush);
  2014. unlock_fs(md);
  2015. goto out; /* pushback list is already flushed, so skip flush */
  2016. }
  2017. /*
  2018. * If dm_wait_for_completion returned 0, the device is completely
  2019. * quiescent now. There is no request-processing activity. All new
  2020. * requests are being added to md->deferred list.
  2021. */
  2022. dm_table_postsuspend_targets(map);
  2023. set_bit(DMF_SUSPENDED, &md->flags);
  2024. out:
  2025. dm_table_put(map);
  2026. out_unlock:
  2027. mutex_unlock(&md->suspend_lock);
  2028. return r;
  2029. }
  2030. int dm_resume(struct mapped_device *md)
  2031. {
  2032. int r = -EINVAL;
  2033. struct dm_table *map = NULL;
  2034. mutex_lock(&md->suspend_lock);
  2035. if (!dm_suspended(md))
  2036. goto out;
  2037. map = dm_get_table(md);
  2038. if (!map || !dm_table_get_size(map))
  2039. goto out;
  2040. r = dm_table_resume_targets(map);
  2041. if (r)
  2042. goto out;
  2043. dm_queue_flush(md);
  2044. /*
  2045. * Flushing deferred I/Os must be done after targets are resumed
  2046. * so that mapping of targets can work correctly.
  2047. * Request-based dm is queueing the deferred I/Os in its request_queue.
  2048. */
  2049. if (dm_request_based(md))
  2050. start_queue(md->queue);
  2051. unlock_fs(md);
  2052. clear_bit(DMF_SUSPENDED, &md->flags);
  2053. dm_table_unplug_all(map);
  2054. r = 0;
  2055. out:
  2056. dm_table_put(map);
  2057. mutex_unlock(&md->suspend_lock);
  2058. return r;
  2059. }
  2060. /*-----------------------------------------------------------------
  2061. * Event notification.
  2062. *---------------------------------------------------------------*/
  2063. void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
  2064. unsigned cookie)
  2065. {
  2066. char udev_cookie[DM_COOKIE_LENGTH];
  2067. char *envp[] = { udev_cookie, NULL };
  2068. if (!cookie)
  2069. kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
  2070. else {
  2071. snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
  2072. DM_COOKIE_ENV_VAR_NAME, cookie);
  2073. kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
  2074. }
  2075. }
  2076. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  2077. {
  2078. return atomic_add_return(1, &md->uevent_seq);
  2079. }
  2080. uint32_t dm_get_event_nr(struct mapped_device *md)
  2081. {
  2082. return atomic_read(&md->event_nr);
  2083. }
  2084. int dm_wait_event(struct mapped_device *md, int event_nr)
  2085. {
  2086. return wait_event_interruptible(md->eventq,
  2087. (event_nr != atomic_read(&md->event_nr)));
  2088. }
  2089. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  2090. {
  2091. unsigned long flags;
  2092. spin_lock_irqsave(&md->uevent_lock, flags);
  2093. list_add(elist, &md->uevent_list);
  2094. spin_unlock_irqrestore(&md->uevent_lock, flags);
  2095. }
  2096. /*
  2097. * The gendisk is only valid as long as you have a reference
  2098. * count on 'md'.
  2099. */
  2100. struct gendisk *dm_disk(struct mapped_device *md)
  2101. {
  2102. return md->disk;
  2103. }
  2104. struct kobject *dm_kobject(struct mapped_device *md)
  2105. {
  2106. return &md->kobj;
  2107. }
  2108. /*
  2109. * struct mapped_device should not be exported outside of dm.c
  2110. * so use this check to verify that kobj is part of md structure
  2111. */
  2112. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  2113. {
  2114. struct mapped_device *md;
  2115. md = container_of(kobj, struct mapped_device, kobj);
  2116. if (&md->kobj != kobj)
  2117. return NULL;
  2118. if (test_bit(DMF_FREEING, &md->flags) ||
  2119. test_bit(DMF_DELETING, &md->flags))
  2120. return NULL;
  2121. dm_get(md);
  2122. return md;
  2123. }
  2124. int dm_suspended(struct mapped_device *md)
  2125. {
  2126. return test_bit(DMF_SUSPENDED, &md->flags);
  2127. }
  2128. int dm_noflush_suspending(struct dm_target *ti)
  2129. {
  2130. struct mapped_device *md = dm_table_get_md(ti->table);
  2131. int r = __noflush_suspending(md);
  2132. dm_put(md);
  2133. return r;
  2134. }
  2135. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  2136. struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
  2137. {
  2138. struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
  2139. if (!pools)
  2140. return NULL;
  2141. pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
  2142. mempool_create_slab_pool(MIN_IOS, _io_cache) :
  2143. mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
  2144. if (!pools->io_pool)
  2145. goto free_pools_and_out;
  2146. pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
  2147. mempool_create_slab_pool(MIN_IOS, _tio_cache) :
  2148. mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
  2149. if (!pools->tio_pool)
  2150. goto free_io_pool_and_out;
  2151. pools->bs = (type == DM_TYPE_BIO_BASED) ?
  2152. bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
  2153. if (!pools->bs)
  2154. goto free_tio_pool_and_out;
  2155. return pools;
  2156. free_tio_pool_and_out:
  2157. mempool_destroy(pools->tio_pool);
  2158. free_io_pool_and_out:
  2159. mempool_destroy(pools->io_pool);
  2160. free_pools_and_out:
  2161. kfree(pools);
  2162. return NULL;
  2163. }
  2164. void dm_free_md_mempools(struct dm_md_mempools *pools)
  2165. {
  2166. if (!pools)
  2167. return;
  2168. if (pools->io_pool)
  2169. mempool_destroy(pools->io_pool);
  2170. if (pools->tio_pool)
  2171. mempool_destroy(pools->tio_pool);
  2172. if (pools->bs)
  2173. bioset_free(pools->bs);
  2174. kfree(pools);
  2175. }
  2176. static struct block_device_operations dm_blk_dops = {
  2177. .open = dm_blk_open,
  2178. .release = dm_blk_close,
  2179. .ioctl = dm_blk_ioctl,
  2180. .getgeo = dm_blk_getgeo,
  2181. .owner = THIS_MODULE
  2182. };
  2183. EXPORT_SYMBOL(dm_get_mapinfo);
  2184. /*
  2185. * module hooks
  2186. */
  2187. module_init(dm_init);
  2188. module_exit(dm_exit);
  2189. module_param(major, uint, 0);
  2190. MODULE_PARM_DESC(major, "The major number of the device mapper");
  2191. MODULE_DESCRIPTION(DM_NAME " driver");
  2192. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2193. MODULE_LICENSE("GPL");