input.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. #include <linux/smp_lock.h>
  23. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  24. MODULE_DESCRIPTION("Input core");
  25. MODULE_LICENSE("GPL");
  26. #define INPUT_DEVICES 256
  27. /*
  28. * EV_ABS events which should not be cached are listed here.
  29. */
  30. static unsigned int input_abs_bypass_init_data[] __initdata = {
  31. ABS_MT_TOUCH_MAJOR,
  32. ABS_MT_TOUCH_MINOR,
  33. ABS_MT_WIDTH_MAJOR,
  34. ABS_MT_WIDTH_MINOR,
  35. ABS_MT_ORIENTATION,
  36. ABS_MT_POSITION_X,
  37. ABS_MT_POSITION_Y,
  38. ABS_MT_TOOL_TYPE,
  39. ABS_MT_BLOB_ID,
  40. ABS_MT_TRACKING_ID,
  41. 0
  42. };
  43. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  44. static LIST_HEAD(input_dev_list);
  45. static LIST_HEAD(input_handler_list);
  46. /*
  47. * input_mutex protects access to both input_dev_list and input_handler_list.
  48. * This also causes input_[un]register_device and input_[un]register_handler
  49. * be mutually exclusive which simplifies locking in drivers implementing
  50. * input handlers.
  51. */
  52. static DEFINE_MUTEX(input_mutex);
  53. static struct input_handler *input_table[8];
  54. static inline int is_event_supported(unsigned int code,
  55. unsigned long *bm, unsigned int max)
  56. {
  57. return code <= max && test_bit(code, bm);
  58. }
  59. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  60. {
  61. if (fuzz) {
  62. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  63. return old_val;
  64. if (value > old_val - fuzz && value < old_val + fuzz)
  65. return (old_val * 3 + value) / 4;
  66. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  67. return (old_val + value) / 2;
  68. }
  69. return value;
  70. }
  71. /*
  72. * Pass event through all open handles. This function is called with
  73. * dev->event_lock held and interrupts disabled.
  74. */
  75. static void input_pass_event(struct input_dev *dev,
  76. unsigned int type, unsigned int code, int value)
  77. {
  78. struct input_handle *handle;
  79. rcu_read_lock();
  80. handle = rcu_dereference(dev->grab);
  81. if (handle)
  82. handle->handler->event(handle, type, code, value);
  83. else
  84. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  85. if (handle->open)
  86. handle->handler->event(handle,
  87. type, code, value);
  88. rcu_read_unlock();
  89. }
  90. /*
  91. * Generate software autorepeat event. Note that we take
  92. * dev->event_lock here to avoid racing with input_event
  93. * which may cause keys get "stuck".
  94. */
  95. static void input_repeat_key(unsigned long data)
  96. {
  97. struct input_dev *dev = (void *) data;
  98. unsigned long flags;
  99. spin_lock_irqsave(&dev->event_lock, flags);
  100. if (test_bit(dev->repeat_key, dev->key) &&
  101. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  102. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  103. if (dev->sync) {
  104. /*
  105. * Only send SYN_REPORT if we are not in a middle
  106. * of driver parsing a new hardware packet.
  107. * Otherwise assume that the driver will send
  108. * SYN_REPORT once it's done.
  109. */
  110. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  111. }
  112. if (dev->rep[REP_PERIOD])
  113. mod_timer(&dev->timer, jiffies +
  114. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  115. }
  116. spin_unlock_irqrestore(&dev->event_lock, flags);
  117. }
  118. static void input_start_autorepeat(struct input_dev *dev, int code)
  119. {
  120. if (test_bit(EV_REP, dev->evbit) &&
  121. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  122. dev->timer.data) {
  123. dev->repeat_key = code;
  124. mod_timer(&dev->timer,
  125. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  126. }
  127. }
  128. static void input_stop_autorepeat(struct input_dev *dev)
  129. {
  130. del_timer(&dev->timer);
  131. }
  132. #define INPUT_IGNORE_EVENT 0
  133. #define INPUT_PASS_TO_HANDLERS 1
  134. #define INPUT_PASS_TO_DEVICE 2
  135. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  136. static void input_handle_event(struct input_dev *dev,
  137. unsigned int type, unsigned int code, int value)
  138. {
  139. int disposition = INPUT_IGNORE_EVENT;
  140. switch (type) {
  141. case EV_SYN:
  142. switch (code) {
  143. case SYN_CONFIG:
  144. disposition = INPUT_PASS_TO_ALL;
  145. break;
  146. case SYN_REPORT:
  147. if (!dev->sync) {
  148. dev->sync = 1;
  149. disposition = INPUT_PASS_TO_HANDLERS;
  150. }
  151. break;
  152. case SYN_MT_REPORT:
  153. dev->sync = 0;
  154. disposition = INPUT_PASS_TO_HANDLERS;
  155. break;
  156. }
  157. break;
  158. case EV_KEY:
  159. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  160. !!test_bit(code, dev->key) != value) {
  161. if (value != 2) {
  162. __change_bit(code, dev->key);
  163. if (value)
  164. input_start_autorepeat(dev, code);
  165. else
  166. input_stop_autorepeat(dev);
  167. }
  168. disposition = INPUT_PASS_TO_HANDLERS;
  169. }
  170. break;
  171. case EV_SW:
  172. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  173. !!test_bit(code, dev->sw) != value) {
  174. __change_bit(code, dev->sw);
  175. disposition = INPUT_PASS_TO_HANDLERS;
  176. }
  177. break;
  178. case EV_ABS:
  179. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  180. if (test_bit(code, input_abs_bypass)) {
  181. disposition = INPUT_PASS_TO_HANDLERS;
  182. break;
  183. }
  184. value = input_defuzz_abs_event(value,
  185. dev->abs[code], dev->absfuzz[code]);
  186. if (dev->abs[code] != value) {
  187. dev->abs[code] = value;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. }
  191. break;
  192. case EV_REL:
  193. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  194. disposition = INPUT_PASS_TO_HANDLERS;
  195. break;
  196. case EV_MSC:
  197. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  198. disposition = INPUT_PASS_TO_ALL;
  199. break;
  200. case EV_LED:
  201. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  202. !!test_bit(code, dev->led) != value) {
  203. __change_bit(code, dev->led);
  204. disposition = INPUT_PASS_TO_ALL;
  205. }
  206. break;
  207. case EV_SND:
  208. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  209. if (!!test_bit(code, dev->snd) != !!value)
  210. __change_bit(code, dev->snd);
  211. disposition = INPUT_PASS_TO_ALL;
  212. }
  213. break;
  214. case EV_REP:
  215. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  216. dev->rep[code] = value;
  217. disposition = INPUT_PASS_TO_ALL;
  218. }
  219. break;
  220. case EV_FF:
  221. if (value >= 0)
  222. disposition = INPUT_PASS_TO_ALL;
  223. break;
  224. case EV_PWR:
  225. disposition = INPUT_PASS_TO_ALL;
  226. break;
  227. }
  228. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  229. dev->sync = 0;
  230. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  231. dev->event(dev, type, code, value);
  232. if (disposition & INPUT_PASS_TO_HANDLERS)
  233. input_pass_event(dev, type, code, value);
  234. }
  235. /**
  236. * input_event() - report new input event
  237. * @dev: device that generated the event
  238. * @type: type of the event
  239. * @code: event code
  240. * @value: value of the event
  241. *
  242. * This function should be used by drivers implementing various input
  243. * devices. See also input_inject_event().
  244. */
  245. void input_event(struct input_dev *dev,
  246. unsigned int type, unsigned int code, int value)
  247. {
  248. unsigned long flags;
  249. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  250. spin_lock_irqsave(&dev->event_lock, flags);
  251. add_input_randomness(type, code, value);
  252. input_handle_event(dev, type, code, value);
  253. spin_unlock_irqrestore(&dev->event_lock, flags);
  254. }
  255. }
  256. EXPORT_SYMBOL(input_event);
  257. /**
  258. * input_inject_event() - send input event from input handler
  259. * @handle: input handle to send event through
  260. * @type: type of the event
  261. * @code: event code
  262. * @value: value of the event
  263. *
  264. * Similar to input_event() but will ignore event if device is
  265. * "grabbed" and handle injecting event is not the one that owns
  266. * the device.
  267. */
  268. void input_inject_event(struct input_handle *handle,
  269. unsigned int type, unsigned int code, int value)
  270. {
  271. struct input_dev *dev = handle->dev;
  272. struct input_handle *grab;
  273. unsigned long flags;
  274. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  275. spin_lock_irqsave(&dev->event_lock, flags);
  276. rcu_read_lock();
  277. grab = rcu_dereference(dev->grab);
  278. if (!grab || grab == handle)
  279. input_handle_event(dev, type, code, value);
  280. rcu_read_unlock();
  281. spin_unlock_irqrestore(&dev->event_lock, flags);
  282. }
  283. }
  284. EXPORT_SYMBOL(input_inject_event);
  285. /**
  286. * input_grab_device - grabs device for exclusive use
  287. * @handle: input handle that wants to own the device
  288. *
  289. * When a device is grabbed by an input handle all events generated by
  290. * the device are delivered only to this handle. Also events injected
  291. * by other input handles are ignored while device is grabbed.
  292. */
  293. int input_grab_device(struct input_handle *handle)
  294. {
  295. struct input_dev *dev = handle->dev;
  296. int retval;
  297. retval = mutex_lock_interruptible(&dev->mutex);
  298. if (retval)
  299. return retval;
  300. if (dev->grab) {
  301. retval = -EBUSY;
  302. goto out;
  303. }
  304. rcu_assign_pointer(dev->grab, handle);
  305. synchronize_rcu();
  306. out:
  307. mutex_unlock(&dev->mutex);
  308. return retval;
  309. }
  310. EXPORT_SYMBOL(input_grab_device);
  311. static void __input_release_device(struct input_handle *handle)
  312. {
  313. struct input_dev *dev = handle->dev;
  314. if (dev->grab == handle) {
  315. rcu_assign_pointer(dev->grab, NULL);
  316. /* Make sure input_pass_event() notices that grab is gone */
  317. synchronize_rcu();
  318. list_for_each_entry(handle, &dev->h_list, d_node)
  319. if (handle->open && handle->handler->start)
  320. handle->handler->start(handle);
  321. }
  322. }
  323. /**
  324. * input_release_device - release previously grabbed device
  325. * @handle: input handle that owns the device
  326. *
  327. * Releases previously grabbed device so that other input handles can
  328. * start receiving input events. Upon release all handlers attached
  329. * to the device have their start() method called so they have a change
  330. * to synchronize device state with the rest of the system.
  331. */
  332. void input_release_device(struct input_handle *handle)
  333. {
  334. struct input_dev *dev = handle->dev;
  335. mutex_lock(&dev->mutex);
  336. __input_release_device(handle);
  337. mutex_unlock(&dev->mutex);
  338. }
  339. EXPORT_SYMBOL(input_release_device);
  340. /**
  341. * input_open_device - open input device
  342. * @handle: handle through which device is being accessed
  343. *
  344. * This function should be called by input handlers when they
  345. * want to start receive events from given input device.
  346. */
  347. int input_open_device(struct input_handle *handle)
  348. {
  349. struct input_dev *dev = handle->dev;
  350. int retval;
  351. retval = mutex_lock_interruptible(&dev->mutex);
  352. if (retval)
  353. return retval;
  354. if (dev->going_away) {
  355. retval = -ENODEV;
  356. goto out;
  357. }
  358. handle->open++;
  359. if (!dev->users++ && dev->open)
  360. retval = dev->open(dev);
  361. if (retval) {
  362. dev->users--;
  363. if (!--handle->open) {
  364. /*
  365. * Make sure we are not delivering any more events
  366. * through this handle
  367. */
  368. synchronize_rcu();
  369. }
  370. }
  371. out:
  372. mutex_unlock(&dev->mutex);
  373. return retval;
  374. }
  375. EXPORT_SYMBOL(input_open_device);
  376. int input_flush_device(struct input_handle *handle, struct file *file)
  377. {
  378. struct input_dev *dev = handle->dev;
  379. int retval;
  380. retval = mutex_lock_interruptible(&dev->mutex);
  381. if (retval)
  382. return retval;
  383. if (dev->flush)
  384. retval = dev->flush(dev, file);
  385. mutex_unlock(&dev->mutex);
  386. return retval;
  387. }
  388. EXPORT_SYMBOL(input_flush_device);
  389. /**
  390. * input_close_device - close input device
  391. * @handle: handle through which device is being accessed
  392. *
  393. * This function should be called by input handlers when they
  394. * want to stop receive events from given input device.
  395. */
  396. void input_close_device(struct input_handle *handle)
  397. {
  398. struct input_dev *dev = handle->dev;
  399. mutex_lock(&dev->mutex);
  400. __input_release_device(handle);
  401. if (!--dev->users && dev->close)
  402. dev->close(dev);
  403. if (!--handle->open) {
  404. /*
  405. * synchronize_rcu() makes sure that input_pass_event()
  406. * completed and that no more input events are delivered
  407. * through this handle
  408. */
  409. synchronize_rcu();
  410. }
  411. mutex_unlock(&dev->mutex);
  412. }
  413. EXPORT_SYMBOL(input_close_device);
  414. /*
  415. * Prepare device for unregistering
  416. */
  417. static void input_disconnect_device(struct input_dev *dev)
  418. {
  419. struct input_handle *handle;
  420. int code;
  421. /*
  422. * Mark device as going away. Note that we take dev->mutex here
  423. * not to protect access to dev->going_away but rather to ensure
  424. * that there are no threads in the middle of input_open_device()
  425. */
  426. mutex_lock(&dev->mutex);
  427. dev->going_away = 1;
  428. mutex_unlock(&dev->mutex);
  429. spin_lock_irq(&dev->event_lock);
  430. /*
  431. * Simulate keyup events for all pressed keys so that handlers
  432. * are not left with "stuck" keys. The driver may continue
  433. * generate events even after we done here but they will not
  434. * reach any handlers.
  435. */
  436. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  437. for (code = 0; code <= KEY_MAX; code++) {
  438. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  439. __test_and_clear_bit(code, dev->key)) {
  440. input_pass_event(dev, EV_KEY, code, 0);
  441. }
  442. }
  443. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  444. }
  445. list_for_each_entry(handle, &dev->h_list, d_node)
  446. handle->open = 0;
  447. spin_unlock_irq(&dev->event_lock);
  448. }
  449. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  450. {
  451. switch (dev->keycodesize) {
  452. case 1:
  453. return ((u8 *)dev->keycode)[scancode];
  454. case 2:
  455. return ((u16 *)dev->keycode)[scancode];
  456. default:
  457. return ((u32 *)dev->keycode)[scancode];
  458. }
  459. }
  460. static int input_default_getkeycode(struct input_dev *dev,
  461. int scancode, int *keycode)
  462. {
  463. if (!dev->keycodesize)
  464. return -EINVAL;
  465. if (scancode >= dev->keycodemax)
  466. return -EINVAL;
  467. *keycode = input_fetch_keycode(dev, scancode);
  468. return 0;
  469. }
  470. static int input_default_setkeycode(struct input_dev *dev,
  471. int scancode, int keycode)
  472. {
  473. int old_keycode;
  474. int i;
  475. if (scancode >= dev->keycodemax)
  476. return -EINVAL;
  477. if (!dev->keycodesize)
  478. return -EINVAL;
  479. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  480. return -EINVAL;
  481. switch (dev->keycodesize) {
  482. case 1: {
  483. u8 *k = (u8 *)dev->keycode;
  484. old_keycode = k[scancode];
  485. k[scancode] = keycode;
  486. break;
  487. }
  488. case 2: {
  489. u16 *k = (u16 *)dev->keycode;
  490. old_keycode = k[scancode];
  491. k[scancode] = keycode;
  492. break;
  493. }
  494. default: {
  495. u32 *k = (u32 *)dev->keycode;
  496. old_keycode = k[scancode];
  497. k[scancode] = keycode;
  498. break;
  499. }
  500. }
  501. clear_bit(old_keycode, dev->keybit);
  502. set_bit(keycode, dev->keybit);
  503. for (i = 0; i < dev->keycodemax; i++) {
  504. if (input_fetch_keycode(dev, i) == old_keycode) {
  505. set_bit(old_keycode, dev->keybit);
  506. break; /* Setting the bit twice is useless, so break */
  507. }
  508. }
  509. return 0;
  510. }
  511. /**
  512. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  513. * @dev: input device which keymap is being queried
  514. * @scancode: scancode (or its equivalent for device in question) for which
  515. * keycode is needed
  516. * @keycode: result
  517. *
  518. * This function should be called by anyone interested in retrieving current
  519. * keymap. Presently keyboard and evdev handlers use it.
  520. */
  521. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  522. {
  523. if (scancode < 0)
  524. return -EINVAL;
  525. return dev->getkeycode(dev, scancode, keycode);
  526. }
  527. EXPORT_SYMBOL(input_get_keycode);
  528. /**
  529. * input_get_keycode - assign new keycode to a given scancode
  530. * @dev: input device which keymap is being updated
  531. * @scancode: scancode (or its equivalent for device in question)
  532. * @keycode: new keycode to be assigned to the scancode
  533. *
  534. * This function should be called by anyone needing to update current
  535. * keymap. Presently keyboard and evdev handlers use it.
  536. */
  537. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  538. {
  539. unsigned long flags;
  540. int old_keycode;
  541. int retval;
  542. if (scancode < 0)
  543. return -EINVAL;
  544. if (keycode < 0 || keycode > KEY_MAX)
  545. return -EINVAL;
  546. spin_lock_irqsave(&dev->event_lock, flags);
  547. retval = dev->getkeycode(dev, scancode, &old_keycode);
  548. if (retval)
  549. goto out;
  550. retval = dev->setkeycode(dev, scancode, keycode);
  551. if (retval)
  552. goto out;
  553. /*
  554. * Simulate keyup event if keycode is not present
  555. * in the keymap anymore
  556. */
  557. if (test_bit(EV_KEY, dev->evbit) &&
  558. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  559. __test_and_clear_bit(old_keycode, dev->key)) {
  560. input_pass_event(dev, EV_KEY, old_keycode, 0);
  561. if (dev->sync)
  562. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  563. }
  564. out:
  565. spin_unlock_irqrestore(&dev->event_lock, flags);
  566. return retval;
  567. }
  568. EXPORT_SYMBOL(input_set_keycode);
  569. #define MATCH_BIT(bit, max) \
  570. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  571. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  572. break; \
  573. if (i != BITS_TO_LONGS(max)) \
  574. continue;
  575. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  576. struct input_dev *dev)
  577. {
  578. int i;
  579. for (; id->flags || id->driver_info; id++) {
  580. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  581. if (id->bustype != dev->id.bustype)
  582. continue;
  583. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  584. if (id->vendor != dev->id.vendor)
  585. continue;
  586. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  587. if (id->product != dev->id.product)
  588. continue;
  589. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  590. if (id->version != dev->id.version)
  591. continue;
  592. MATCH_BIT(evbit, EV_MAX);
  593. MATCH_BIT(keybit, KEY_MAX);
  594. MATCH_BIT(relbit, REL_MAX);
  595. MATCH_BIT(absbit, ABS_MAX);
  596. MATCH_BIT(mscbit, MSC_MAX);
  597. MATCH_BIT(ledbit, LED_MAX);
  598. MATCH_BIT(sndbit, SND_MAX);
  599. MATCH_BIT(ffbit, FF_MAX);
  600. MATCH_BIT(swbit, SW_MAX);
  601. return id;
  602. }
  603. return NULL;
  604. }
  605. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  606. {
  607. const struct input_device_id *id;
  608. int error;
  609. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  610. return -ENODEV;
  611. id = input_match_device(handler->id_table, dev);
  612. if (!id)
  613. return -ENODEV;
  614. error = handler->connect(handler, dev, id);
  615. if (error && error != -ENODEV)
  616. printk(KERN_ERR
  617. "input: failed to attach handler %s to device %s, "
  618. "error: %d\n",
  619. handler->name, kobject_name(&dev->dev.kobj), error);
  620. return error;
  621. }
  622. #ifdef CONFIG_PROC_FS
  623. static struct proc_dir_entry *proc_bus_input_dir;
  624. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  625. static int input_devices_state;
  626. static inline void input_wakeup_procfs_readers(void)
  627. {
  628. input_devices_state++;
  629. wake_up(&input_devices_poll_wait);
  630. }
  631. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  632. {
  633. poll_wait(file, &input_devices_poll_wait, wait);
  634. if (file->f_version != input_devices_state) {
  635. file->f_version = input_devices_state;
  636. return POLLIN | POLLRDNORM;
  637. }
  638. return 0;
  639. }
  640. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  641. {
  642. if (mutex_lock_interruptible(&input_mutex))
  643. return NULL;
  644. return seq_list_start(&input_dev_list, *pos);
  645. }
  646. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  647. {
  648. return seq_list_next(v, &input_dev_list, pos);
  649. }
  650. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  651. {
  652. mutex_unlock(&input_mutex);
  653. }
  654. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  655. unsigned long *bitmap, int max)
  656. {
  657. int i;
  658. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  659. if (bitmap[i])
  660. break;
  661. seq_printf(seq, "B: %s=", name);
  662. for (; i >= 0; i--)
  663. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  664. seq_putc(seq, '\n');
  665. }
  666. static int input_devices_seq_show(struct seq_file *seq, void *v)
  667. {
  668. struct input_dev *dev = container_of(v, struct input_dev, node);
  669. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  670. struct input_handle *handle;
  671. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  672. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  673. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  674. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  675. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  676. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  677. seq_printf(seq, "H: Handlers=");
  678. list_for_each_entry(handle, &dev->h_list, d_node)
  679. seq_printf(seq, "%s ", handle->name);
  680. seq_putc(seq, '\n');
  681. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  682. if (test_bit(EV_KEY, dev->evbit))
  683. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  684. if (test_bit(EV_REL, dev->evbit))
  685. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  686. if (test_bit(EV_ABS, dev->evbit))
  687. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  688. if (test_bit(EV_MSC, dev->evbit))
  689. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  690. if (test_bit(EV_LED, dev->evbit))
  691. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  692. if (test_bit(EV_SND, dev->evbit))
  693. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  694. if (test_bit(EV_FF, dev->evbit))
  695. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  696. if (test_bit(EV_SW, dev->evbit))
  697. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  698. seq_putc(seq, '\n');
  699. kfree(path);
  700. return 0;
  701. }
  702. static const struct seq_operations input_devices_seq_ops = {
  703. .start = input_devices_seq_start,
  704. .next = input_devices_seq_next,
  705. .stop = input_devices_seq_stop,
  706. .show = input_devices_seq_show,
  707. };
  708. static int input_proc_devices_open(struct inode *inode, struct file *file)
  709. {
  710. return seq_open(file, &input_devices_seq_ops);
  711. }
  712. static const struct file_operations input_devices_fileops = {
  713. .owner = THIS_MODULE,
  714. .open = input_proc_devices_open,
  715. .poll = input_proc_devices_poll,
  716. .read = seq_read,
  717. .llseek = seq_lseek,
  718. .release = seq_release,
  719. };
  720. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  721. {
  722. if (mutex_lock_interruptible(&input_mutex))
  723. return NULL;
  724. seq->private = (void *)(unsigned long)*pos;
  725. return seq_list_start(&input_handler_list, *pos);
  726. }
  727. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  728. {
  729. seq->private = (void *)(unsigned long)(*pos + 1);
  730. return seq_list_next(v, &input_handler_list, pos);
  731. }
  732. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  733. {
  734. mutex_unlock(&input_mutex);
  735. }
  736. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  737. {
  738. struct input_handler *handler = container_of(v, struct input_handler, node);
  739. seq_printf(seq, "N: Number=%ld Name=%s",
  740. (unsigned long)seq->private, handler->name);
  741. if (handler->fops)
  742. seq_printf(seq, " Minor=%d", handler->minor);
  743. seq_putc(seq, '\n');
  744. return 0;
  745. }
  746. static const struct seq_operations input_handlers_seq_ops = {
  747. .start = input_handlers_seq_start,
  748. .next = input_handlers_seq_next,
  749. .stop = input_handlers_seq_stop,
  750. .show = input_handlers_seq_show,
  751. };
  752. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  753. {
  754. return seq_open(file, &input_handlers_seq_ops);
  755. }
  756. static const struct file_operations input_handlers_fileops = {
  757. .owner = THIS_MODULE,
  758. .open = input_proc_handlers_open,
  759. .read = seq_read,
  760. .llseek = seq_lseek,
  761. .release = seq_release,
  762. };
  763. static int __init input_proc_init(void)
  764. {
  765. struct proc_dir_entry *entry;
  766. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  767. if (!proc_bus_input_dir)
  768. return -ENOMEM;
  769. entry = proc_create("devices", 0, proc_bus_input_dir,
  770. &input_devices_fileops);
  771. if (!entry)
  772. goto fail1;
  773. entry = proc_create("handlers", 0, proc_bus_input_dir,
  774. &input_handlers_fileops);
  775. if (!entry)
  776. goto fail2;
  777. return 0;
  778. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  779. fail1: remove_proc_entry("bus/input", NULL);
  780. return -ENOMEM;
  781. }
  782. static void input_proc_exit(void)
  783. {
  784. remove_proc_entry("devices", proc_bus_input_dir);
  785. remove_proc_entry("handlers", proc_bus_input_dir);
  786. remove_proc_entry("bus/input", NULL);
  787. }
  788. #else /* !CONFIG_PROC_FS */
  789. static inline void input_wakeup_procfs_readers(void) { }
  790. static inline int input_proc_init(void) { return 0; }
  791. static inline void input_proc_exit(void) { }
  792. #endif
  793. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  794. static ssize_t input_dev_show_##name(struct device *dev, \
  795. struct device_attribute *attr, \
  796. char *buf) \
  797. { \
  798. struct input_dev *input_dev = to_input_dev(dev); \
  799. \
  800. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  801. input_dev->name ? input_dev->name : ""); \
  802. } \
  803. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  804. INPUT_DEV_STRING_ATTR_SHOW(name);
  805. INPUT_DEV_STRING_ATTR_SHOW(phys);
  806. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  807. static int input_print_modalias_bits(char *buf, int size,
  808. char name, unsigned long *bm,
  809. unsigned int min_bit, unsigned int max_bit)
  810. {
  811. int len = 0, i;
  812. len += snprintf(buf, max(size, 0), "%c", name);
  813. for (i = min_bit; i < max_bit; i++)
  814. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  815. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  816. return len;
  817. }
  818. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  819. int add_cr)
  820. {
  821. int len;
  822. len = snprintf(buf, max(size, 0),
  823. "input:b%04Xv%04Xp%04Xe%04X-",
  824. id->id.bustype, id->id.vendor,
  825. id->id.product, id->id.version);
  826. len += input_print_modalias_bits(buf + len, size - len,
  827. 'e', id->evbit, 0, EV_MAX);
  828. len += input_print_modalias_bits(buf + len, size - len,
  829. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  830. len += input_print_modalias_bits(buf + len, size - len,
  831. 'r', id->relbit, 0, REL_MAX);
  832. len += input_print_modalias_bits(buf + len, size - len,
  833. 'a', id->absbit, 0, ABS_MAX);
  834. len += input_print_modalias_bits(buf + len, size - len,
  835. 'm', id->mscbit, 0, MSC_MAX);
  836. len += input_print_modalias_bits(buf + len, size - len,
  837. 'l', id->ledbit, 0, LED_MAX);
  838. len += input_print_modalias_bits(buf + len, size - len,
  839. 's', id->sndbit, 0, SND_MAX);
  840. len += input_print_modalias_bits(buf + len, size - len,
  841. 'f', id->ffbit, 0, FF_MAX);
  842. len += input_print_modalias_bits(buf + len, size - len,
  843. 'w', id->swbit, 0, SW_MAX);
  844. if (add_cr)
  845. len += snprintf(buf + len, max(size - len, 0), "\n");
  846. return len;
  847. }
  848. static ssize_t input_dev_show_modalias(struct device *dev,
  849. struct device_attribute *attr,
  850. char *buf)
  851. {
  852. struct input_dev *id = to_input_dev(dev);
  853. ssize_t len;
  854. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  855. return min_t(int, len, PAGE_SIZE);
  856. }
  857. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  858. static struct attribute *input_dev_attrs[] = {
  859. &dev_attr_name.attr,
  860. &dev_attr_phys.attr,
  861. &dev_attr_uniq.attr,
  862. &dev_attr_modalias.attr,
  863. NULL
  864. };
  865. static struct attribute_group input_dev_attr_group = {
  866. .attrs = input_dev_attrs,
  867. };
  868. #define INPUT_DEV_ID_ATTR(name) \
  869. static ssize_t input_dev_show_id_##name(struct device *dev, \
  870. struct device_attribute *attr, \
  871. char *buf) \
  872. { \
  873. struct input_dev *input_dev = to_input_dev(dev); \
  874. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  875. } \
  876. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  877. INPUT_DEV_ID_ATTR(bustype);
  878. INPUT_DEV_ID_ATTR(vendor);
  879. INPUT_DEV_ID_ATTR(product);
  880. INPUT_DEV_ID_ATTR(version);
  881. static struct attribute *input_dev_id_attrs[] = {
  882. &dev_attr_bustype.attr,
  883. &dev_attr_vendor.attr,
  884. &dev_attr_product.attr,
  885. &dev_attr_version.attr,
  886. NULL
  887. };
  888. static struct attribute_group input_dev_id_attr_group = {
  889. .name = "id",
  890. .attrs = input_dev_id_attrs,
  891. };
  892. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  893. int max, int add_cr)
  894. {
  895. int i;
  896. int len = 0;
  897. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  898. if (bitmap[i])
  899. break;
  900. for (; i >= 0; i--)
  901. len += snprintf(buf + len, max(buf_size - len, 0),
  902. "%lx%s", bitmap[i], i > 0 ? " " : "");
  903. if (add_cr)
  904. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  905. return len;
  906. }
  907. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  908. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  909. struct device_attribute *attr, \
  910. char *buf) \
  911. { \
  912. struct input_dev *input_dev = to_input_dev(dev); \
  913. int len = input_print_bitmap(buf, PAGE_SIZE, \
  914. input_dev->bm##bit, ev##_MAX, 1); \
  915. return min_t(int, len, PAGE_SIZE); \
  916. } \
  917. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  918. INPUT_DEV_CAP_ATTR(EV, ev);
  919. INPUT_DEV_CAP_ATTR(KEY, key);
  920. INPUT_DEV_CAP_ATTR(REL, rel);
  921. INPUT_DEV_CAP_ATTR(ABS, abs);
  922. INPUT_DEV_CAP_ATTR(MSC, msc);
  923. INPUT_DEV_CAP_ATTR(LED, led);
  924. INPUT_DEV_CAP_ATTR(SND, snd);
  925. INPUT_DEV_CAP_ATTR(FF, ff);
  926. INPUT_DEV_CAP_ATTR(SW, sw);
  927. static struct attribute *input_dev_caps_attrs[] = {
  928. &dev_attr_ev.attr,
  929. &dev_attr_key.attr,
  930. &dev_attr_rel.attr,
  931. &dev_attr_abs.attr,
  932. &dev_attr_msc.attr,
  933. &dev_attr_led.attr,
  934. &dev_attr_snd.attr,
  935. &dev_attr_ff.attr,
  936. &dev_attr_sw.attr,
  937. NULL
  938. };
  939. static struct attribute_group input_dev_caps_attr_group = {
  940. .name = "capabilities",
  941. .attrs = input_dev_caps_attrs,
  942. };
  943. static struct attribute_group *input_dev_attr_groups[] = {
  944. &input_dev_attr_group,
  945. &input_dev_id_attr_group,
  946. &input_dev_caps_attr_group,
  947. NULL
  948. };
  949. static void input_dev_release(struct device *device)
  950. {
  951. struct input_dev *dev = to_input_dev(device);
  952. input_ff_destroy(dev);
  953. kfree(dev);
  954. module_put(THIS_MODULE);
  955. }
  956. /*
  957. * Input uevent interface - loading event handlers based on
  958. * device bitfields.
  959. */
  960. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  961. const char *name, unsigned long *bitmap, int max)
  962. {
  963. int len;
  964. if (add_uevent_var(env, "%s=", name))
  965. return -ENOMEM;
  966. len = input_print_bitmap(&env->buf[env->buflen - 1],
  967. sizeof(env->buf) - env->buflen,
  968. bitmap, max, 0);
  969. if (len >= (sizeof(env->buf) - env->buflen))
  970. return -ENOMEM;
  971. env->buflen += len;
  972. return 0;
  973. }
  974. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  975. struct input_dev *dev)
  976. {
  977. int len;
  978. if (add_uevent_var(env, "MODALIAS="))
  979. return -ENOMEM;
  980. len = input_print_modalias(&env->buf[env->buflen - 1],
  981. sizeof(env->buf) - env->buflen,
  982. dev, 0);
  983. if (len >= (sizeof(env->buf) - env->buflen))
  984. return -ENOMEM;
  985. env->buflen += len;
  986. return 0;
  987. }
  988. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  989. do { \
  990. int err = add_uevent_var(env, fmt, val); \
  991. if (err) \
  992. return err; \
  993. } while (0)
  994. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  995. do { \
  996. int err = input_add_uevent_bm_var(env, name, bm, max); \
  997. if (err) \
  998. return err; \
  999. } while (0)
  1000. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1001. do { \
  1002. int err = input_add_uevent_modalias_var(env, dev); \
  1003. if (err) \
  1004. return err; \
  1005. } while (0)
  1006. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1007. {
  1008. struct input_dev *dev = to_input_dev(device);
  1009. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1010. dev->id.bustype, dev->id.vendor,
  1011. dev->id.product, dev->id.version);
  1012. if (dev->name)
  1013. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1014. if (dev->phys)
  1015. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1016. if (dev->uniq)
  1017. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1018. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1019. if (test_bit(EV_KEY, dev->evbit))
  1020. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1021. if (test_bit(EV_REL, dev->evbit))
  1022. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1023. if (test_bit(EV_ABS, dev->evbit))
  1024. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1025. if (test_bit(EV_MSC, dev->evbit))
  1026. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1027. if (test_bit(EV_LED, dev->evbit))
  1028. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1029. if (test_bit(EV_SND, dev->evbit))
  1030. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1031. if (test_bit(EV_FF, dev->evbit))
  1032. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1033. if (test_bit(EV_SW, dev->evbit))
  1034. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1035. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1036. return 0;
  1037. }
  1038. static struct device_type input_dev_type = {
  1039. .groups = input_dev_attr_groups,
  1040. .release = input_dev_release,
  1041. .uevent = input_dev_uevent,
  1042. };
  1043. static char *input_nodename(struct device *dev)
  1044. {
  1045. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1046. }
  1047. struct class input_class = {
  1048. .name = "input",
  1049. .nodename = input_nodename,
  1050. };
  1051. EXPORT_SYMBOL_GPL(input_class);
  1052. /**
  1053. * input_allocate_device - allocate memory for new input device
  1054. *
  1055. * Returns prepared struct input_dev or NULL.
  1056. *
  1057. * NOTE: Use input_free_device() to free devices that have not been
  1058. * registered; input_unregister_device() should be used for already
  1059. * registered devices.
  1060. */
  1061. struct input_dev *input_allocate_device(void)
  1062. {
  1063. struct input_dev *dev;
  1064. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1065. if (dev) {
  1066. dev->dev.type = &input_dev_type;
  1067. dev->dev.class = &input_class;
  1068. device_initialize(&dev->dev);
  1069. mutex_init(&dev->mutex);
  1070. spin_lock_init(&dev->event_lock);
  1071. INIT_LIST_HEAD(&dev->h_list);
  1072. INIT_LIST_HEAD(&dev->node);
  1073. __module_get(THIS_MODULE);
  1074. }
  1075. return dev;
  1076. }
  1077. EXPORT_SYMBOL(input_allocate_device);
  1078. /**
  1079. * input_free_device - free memory occupied by input_dev structure
  1080. * @dev: input device to free
  1081. *
  1082. * This function should only be used if input_register_device()
  1083. * was not called yet or if it failed. Once device was registered
  1084. * use input_unregister_device() and memory will be freed once last
  1085. * reference to the device is dropped.
  1086. *
  1087. * Device should be allocated by input_allocate_device().
  1088. *
  1089. * NOTE: If there are references to the input device then memory
  1090. * will not be freed until last reference is dropped.
  1091. */
  1092. void input_free_device(struct input_dev *dev)
  1093. {
  1094. if (dev)
  1095. input_put_device(dev);
  1096. }
  1097. EXPORT_SYMBOL(input_free_device);
  1098. /**
  1099. * input_set_capability - mark device as capable of a certain event
  1100. * @dev: device that is capable of emitting or accepting event
  1101. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1102. * @code: event code
  1103. *
  1104. * In addition to setting up corresponding bit in appropriate capability
  1105. * bitmap the function also adjusts dev->evbit.
  1106. */
  1107. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1108. {
  1109. switch (type) {
  1110. case EV_KEY:
  1111. __set_bit(code, dev->keybit);
  1112. break;
  1113. case EV_REL:
  1114. __set_bit(code, dev->relbit);
  1115. break;
  1116. case EV_ABS:
  1117. __set_bit(code, dev->absbit);
  1118. break;
  1119. case EV_MSC:
  1120. __set_bit(code, dev->mscbit);
  1121. break;
  1122. case EV_SW:
  1123. __set_bit(code, dev->swbit);
  1124. break;
  1125. case EV_LED:
  1126. __set_bit(code, dev->ledbit);
  1127. break;
  1128. case EV_SND:
  1129. __set_bit(code, dev->sndbit);
  1130. break;
  1131. case EV_FF:
  1132. __set_bit(code, dev->ffbit);
  1133. break;
  1134. case EV_PWR:
  1135. /* do nothing */
  1136. break;
  1137. default:
  1138. printk(KERN_ERR
  1139. "input_set_capability: unknown type %u (code %u)\n",
  1140. type, code);
  1141. dump_stack();
  1142. return;
  1143. }
  1144. __set_bit(type, dev->evbit);
  1145. }
  1146. EXPORT_SYMBOL(input_set_capability);
  1147. /**
  1148. * input_register_device - register device with input core
  1149. * @dev: device to be registered
  1150. *
  1151. * This function registers device with input core. The device must be
  1152. * allocated with input_allocate_device() and all it's capabilities
  1153. * set up before registering.
  1154. * If function fails the device must be freed with input_free_device().
  1155. * Once device has been successfully registered it can be unregistered
  1156. * with input_unregister_device(); input_free_device() should not be
  1157. * called in this case.
  1158. */
  1159. int input_register_device(struct input_dev *dev)
  1160. {
  1161. static atomic_t input_no = ATOMIC_INIT(0);
  1162. struct input_handler *handler;
  1163. const char *path;
  1164. int error;
  1165. __set_bit(EV_SYN, dev->evbit);
  1166. /*
  1167. * If delay and period are pre-set by the driver, then autorepeating
  1168. * is handled by the driver itself and we don't do it in input.c.
  1169. */
  1170. init_timer(&dev->timer);
  1171. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1172. dev->timer.data = (long) dev;
  1173. dev->timer.function = input_repeat_key;
  1174. dev->rep[REP_DELAY] = 250;
  1175. dev->rep[REP_PERIOD] = 33;
  1176. }
  1177. if (!dev->getkeycode)
  1178. dev->getkeycode = input_default_getkeycode;
  1179. if (!dev->setkeycode)
  1180. dev->setkeycode = input_default_setkeycode;
  1181. dev_set_name(&dev->dev, "input%ld",
  1182. (unsigned long) atomic_inc_return(&input_no) - 1);
  1183. error = device_add(&dev->dev);
  1184. if (error)
  1185. return error;
  1186. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1187. printk(KERN_INFO "input: %s as %s\n",
  1188. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1189. kfree(path);
  1190. error = mutex_lock_interruptible(&input_mutex);
  1191. if (error) {
  1192. device_del(&dev->dev);
  1193. return error;
  1194. }
  1195. list_add_tail(&dev->node, &input_dev_list);
  1196. list_for_each_entry(handler, &input_handler_list, node)
  1197. input_attach_handler(dev, handler);
  1198. input_wakeup_procfs_readers();
  1199. mutex_unlock(&input_mutex);
  1200. return 0;
  1201. }
  1202. EXPORT_SYMBOL(input_register_device);
  1203. /**
  1204. * input_unregister_device - unregister previously registered device
  1205. * @dev: device to be unregistered
  1206. *
  1207. * This function unregisters an input device. Once device is unregistered
  1208. * the caller should not try to access it as it may get freed at any moment.
  1209. */
  1210. void input_unregister_device(struct input_dev *dev)
  1211. {
  1212. struct input_handle *handle, *next;
  1213. input_disconnect_device(dev);
  1214. mutex_lock(&input_mutex);
  1215. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1216. handle->handler->disconnect(handle);
  1217. WARN_ON(!list_empty(&dev->h_list));
  1218. del_timer_sync(&dev->timer);
  1219. list_del_init(&dev->node);
  1220. input_wakeup_procfs_readers();
  1221. mutex_unlock(&input_mutex);
  1222. device_unregister(&dev->dev);
  1223. }
  1224. EXPORT_SYMBOL(input_unregister_device);
  1225. /**
  1226. * input_register_handler - register a new input handler
  1227. * @handler: handler to be registered
  1228. *
  1229. * This function registers a new input handler (interface) for input
  1230. * devices in the system and attaches it to all input devices that
  1231. * are compatible with the handler.
  1232. */
  1233. int input_register_handler(struct input_handler *handler)
  1234. {
  1235. struct input_dev *dev;
  1236. int retval;
  1237. retval = mutex_lock_interruptible(&input_mutex);
  1238. if (retval)
  1239. return retval;
  1240. INIT_LIST_HEAD(&handler->h_list);
  1241. if (handler->fops != NULL) {
  1242. if (input_table[handler->minor >> 5]) {
  1243. retval = -EBUSY;
  1244. goto out;
  1245. }
  1246. input_table[handler->minor >> 5] = handler;
  1247. }
  1248. list_add_tail(&handler->node, &input_handler_list);
  1249. list_for_each_entry(dev, &input_dev_list, node)
  1250. input_attach_handler(dev, handler);
  1251. input_wakeup_procfs_readers();
  1252. out:
  1253. mutex_unlock(&input_mutex);
  1254. return retval;
  1255. }
  1256. EXPORT_SYMBOL(input_register_handler);
  1257. /**
  1258. * input_unregister_handler - unregisters an input handler
  1259. * @handler: handler to be unregistered
  1260. *
  1261. * This function disconnects a handler from its input devices and
  1262. * removes it from lists of known handlers.
  1263. */
  1264. void input_unregister_handler(struct input_handler *handler)
  1265. {
  1266. struct input_handle *handle, *next;
  1267. mutex_lock(&input_mutex);
  1268. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1269. handler->disconnect(handle);
  1270. WARN_ON(!list_empty(&handler->h_list));
  1271. list_del_init(&handler->node);
  1272. if (handler->fops != NULL)
  1273. input_table[handler->minor >> 5] = NULL;
  1274. input_wakeup_procfs_readers();
  1275. mutex_unlock(&input_mutex);
  1276. }
  1277. EXPORT_SYMBOL(input_unregister_handler);
  1278. /**
  1279. * input_register_handle - register a new input handle
  1280. * @handle: handle to register
  1281. *
  1282. * This function puts a new input handle onto device's
  1283. * and handler's lists so that events can flow through
  1284. * it once it is opened using input_open_device().
  1285. *
  1286. * This function is supposed to be called from handler's
  1287. * connect() method.
  1288. */
  1289. int input_register_handle(struct input_handle *handle)
  1290. {
  1291. struct input_handler *handler = handle->handler;
  1292. struct input_dev *dev = handle->dev;
  1293. int error;
  1294. /*
  1295. * We take dev->mutex here to prevent race with
  1296. * input_release_device().
  1297. */
  1298. error = mutex_lock_interruptible(&dev->mutex);
  1299. if (error)
  1300. return error;
  1301. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1302. mutex_unlock(&dev->mutex);
  1303. /*
  1304. * Since we are supposed to be called from ->connect()
  1305. * which is mutually exclusive with ->disconnect()
  1306. * we can't be racing with input_unregister_handle()
  1307. * and so separate lock is not needed here.
  1308. */
  1309. list_add_tail(&handle->h_node, &handler->h_list);
  1310. if (handler->start)
  1311. handler->start(handle);
  1312. return 0;
  1313. }
  1314. EXPORT_SYMBOL(input_register_handle);
  1315. /**
  1316. * input_unregister_handle - unregister an input handle
  1317. * @handle: handle to unregister
  1318. *
  1319. * This function removes input handle from device's
  1320. * and handler's lists.
  1321. *
  1322. * This function is supposed to be called from handler's
  1323. * disconnect() method.
  1324. */
  1325. void input_unregister_handle(struct input_handle *handle)
  1326. {
  1327. struct input_dev *dev = handle->dev;
  1328. list_del_init(&handle->h_node);
  1329. /*
  1330. * Take dev->mutex to prevent race with input_release_device().
  1331. */
  1332. mutex_lock(&dev->mutex);
  1333. list_del_rcu(&handle->d_node);
  1334. mutex_unlock(&dev->mutex);
  1335. synchronize_rcu();
  1336. }
  1337. EXPORT_SYMBOL(input_unregister_handle);
  1338. static int input_open_file(struct inode *inode, struct file *file)
  1339. {
  1340. struct input_handler *handler;
  1341. const struct file_operations *old_fops, *new_fops = NULL;
  1342. int err;
  1343. lock_kernel();
  1344. /* No load-on-demand here? */
  1345. handler = input_table[iminor(inode) >> 5];
  1346. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1347. err = -ENODEV;
  1348. goto out;
  1349. }
  1350. /*
  1351. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1352. * not "no device". Oh, well...
  1353. */
  1354. if (!new_fops->open) {
  1355. fops_put(new_fops);
  1356. err = -ENODEV;
  1357. goto out;
  1358. }
  1359. old_fops = file->f_op;
  1360. file->f_op = new_fops;
  1361. err = new_fops->open(inode, file);
  1362. if (err) {
  1363. fops_put(file->f_op);
  1364. file->f_op = fops_get(old_fops);
  1365. }
  1366. fops_put(old_fops);
  1367. out:
  1368. unlock_kernel();
  1369. return err;
  1370. }
  1371. static const struct file_operations input_fops = {
  1372. .owner = THIS_MODULE,
  1373. .open = input_open_file,
  1374. };
  1375. static void __init input_init_abs_bypass(void)
  1376. {
  1377. const unsigned int *p;
  1378. for (p = input_abs_bypass_init_data; *p; p++)
  1379. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1380. }
  1381. static int __init input_init(void)
  1382. {
  1383. int err;
  1384. input_init_abs_bypass();
  1385. err = class_register(&input_class);
  1386. if (err) {
  1387. printk(KERN_ERR "input: unable to register input_dev class\n");
  1388. return err;
  1389. }
  1390. err = input_proc_init();
  1391. if (err)
  1392. goto fail1;
  1393. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1394. if (err) {
  1395. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1396. goto fail2;
  1397. }
  1398. return 0;
  1399. fail2: input_proc_exit();
  1400. fail1: class_unregister(&input_class);
  1401. return err;
  1402. }
  1403. static void __exit input_exit(void)
  1404. {
  1405. input_proc_exit();
  1406. unregister_chrdev(INPUT_MAJOR, "input");
  1407. class_unregister(&input_class);
  1408. }
  1409. subsys_initcall(input_init);
  1410. module_exit(input_exit);