lm85.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Copyright (C) 2007, 2008 Jean Delvare <khali@linux-fr.org>
  9. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; if not, write to the Free Software
  20. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/i2c.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/hwmon-vid.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  34. /* Insmod parameters */
  35. I2C_CLIENT_INSMOD_7(lm85b, lm85c, adm1027, adt7463, adt7468, emc6d100,
  36. emc6d102);
  37. /* The LM85 registers */
  38. #define LM85_REG_IN(nr) (0x20 + (nr))
  39. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  40. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  41. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  42. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  43. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  44. /* Fan speeds are LSB, MSB (2 bytes) */
  45. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  46. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  47. #define LM85_REG_PWM(nr) (0x30 + (nr))
  48. #define LM85_REG_COMPANY 0x3e
  49. #define LM85_REG_VERSTEP 0x3f
  50. #define ADT7468_REG_CFG5 0x7c
  51. #define ADT7468_OFF64 0x01
  52. #define IS_ADT7468_OFF64(data) \
  53. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  54. /* These are the recognized values for the above regs */
  55. #define LM85_COMPANY_NATIONAL 0x01
  56. #define LM85_COMPANY_ANALOG_DEV 0x41
  57. #define LM85_COMPANY_SMSC 0x5c
  58. #define LM85_VERSTEP_VMASK 0xf0
  59. #define LM85_VERSTEP_GENERIC 0x60
  60. #define LM85_VERSTEP_GENERIC2 0x70
  61. #define LM85_VERSTEP_LM85C 0x60
  62. #define LM85_VERSTEP_LM85B 0x62
  63. #define LM85_VERSTEP_ADM1027 0x60
  64. #define LM85_VERSTEP_ADT7463 0x62
  65. #define LM85_VERSTEP_ADT7463C 0x6A
  66. #define LM85_VERSTEP_ADT7468_1 0x71
  67. #define LM85_VERSTEP_ADT7468_2 0x72
  68. #define LM85_VERSTEP_EMC6D100_A0 0x60
  69. #define LM85_VERSTEP_EMC6D100_A1 0x61
  70. #define LM85_VERSTEP_EMC6D102 0x65
  71. #define LM85_REG_CONFIG 0x40
  72. #define LM85_REG_ALARM1 0x41
  73. #define LM85_REG_ALARM2 0x42
  74. #define LM85_REG_VID 0x43
  75. /* Automated FAN control */
  76. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  77. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  78. #define LM85_REG_AFAN_SPIKE1 0x62
  79. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  80. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  81. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  82. #define LM85_REG_AFAN_HYST1 0x6d
  83. #define LM85_REG_AFAN_HYST2 0x6e
  84. #define ADM1027_REG_EXTEND_ADC1 0x76
  85. #define ADM1027_REG_EXTEND_ADC2 0x77
  86. #define EMC6D100_REG_ALARM3 0x7d
  87. /* IN5, IN6 and IN7 */
  88. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  89. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  90. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  91. #define EMC6D102_REG_EXTEND_ADC1 0x85
  92. #define EMC6D102_REG_EXTEND_ADC2 0x86
  93. #define EMC6D102_REG_EXTEND_ADC3 0x87
  94. #define EMC6D102_REG_EXTEND_ADC4 0x88
  95. /* Conversions. Rounding and limit checking is only done on the TO_REG
  96. variants. Note that you should be a bit careful with which arguments
  97. these macros are called: arguments may be evaluated more than once.
  98. */
  99. /* IN are scaled acording to built-in resistors */
  100. static const int lm85_scaling[] = { /* .001 Volts */
  101. 2500, 2250, 3300, 5000, 12000,
  102. 3300, 1500, 1800 /*EMC6D100*/
  103. };
  104. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  105. #define INS_TO_REG(n, val) \
  106. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  107. #define INSEXT_FROM_REG(n, val, ext) \
  108. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  109. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  110. /* FAN speed is measured using 90kHz clock */
  111. static inline u16 FAN_TO_REG(unsigned long val)
  112. {
  113. if (!val)
  114. return 0xffff;
  115. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  116. }
  117. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  118. 5400000 / (val))
  119. /* Temperature is reported in .001 degC increments */
  120. #define TEMP_TO_REG(val) \
  121. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  122. #define TEMPEXT_FROM_REG(val, ext) \
  123. SCALE(((val) << 4) + (ext), 16, 1000)
  124. #define TEMP_FROM_REG(val) ((val) * 1000)
  125. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  126. #define PWM_FROM_REG(val) (val)
  127. /* ZONEs have the following parameters:
  128. * Limit (low) temp, 1. degC
  129. * Hysteresis (below limit), 1. degC (0-15)
  130. * Range of speed control, .1 degC (2-80)
  131. * Critical (high) temp, 1. degC
  132. *
  133. * FAN PWMs have the following parameters:
  134. * Reference Zone, 1, 2, 3, etc.
  135. * Spinup time, .05 sec
  136. * PWM value at limit/low temp, 1 count
  137. * PWM Frequency, 1. Hz
  138. * PWM is Min or OFF below limit, flag
  139. * Invert PWM output, flag
  140. *
  141. * Some chips filter the temp, others the fan.
  142. * Filter constant (or disabled) .1 seconds
  143. */
  144. /* These are the zone temperature range encodings in .001 degree C */
  145. static const int lm85_range_map[] = {
  146. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  147. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  148. };
  149. static int RANGE_TO_REG(int range)
  150. {
  151. int i;
  152. /* Find the closest match */
  153. for (i = 0; i < 15; ++i) {
  154. if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
  155. break;
  156. }
  157. return i;
  158. }
  159. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  160. /* These are the PWM frequency encodings */
  161. static const int lm85_freq_map[8] = { /* 1 Hz */
  162. 10, 15, 23, 30, 38, 47, 61, 94
  163. };
  164. static const int adm1027_freq_map[8] = { /* 1 Hz */
  165. 11, 15, 22, 29, 35, 44, 59, 88
  166. };
  167. static int FREQ_TO_REG(const int *map, int freq)
  168. {
  169. int i;
  170. /* Find the closest match */
  171. for (i = 0; i < 7; ++i)
  172. if (freq <= (map[i] + map[i + 1]) / 2)
  173. break;
  174. return i;
  175. }
  176. static int FREQ_FROM_REG(const int *map, u8 reg)
  177. {
  178. return map[reg & 0x07];
  179. }
  180. /* Since we can't use strings, I'm abusing these numbers
  181. * to stand in for the following meanings:
  182. * 1 -- PWM responds to Zone 1
  183. * 2 -- PWM responds to Zone 2
  184. * 3 -- PWM responds to Zone 3
  185. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  186. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  187. * 0 -- PWM is always at 0% (ie, off)
  188. * -1 -- PWM is always at 100%
  189. * -2 -- PWM responds to manual control
  190. */
  191. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  192. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  193. static int ZONE_TO_REG(int zone)
  194. {
  195. int i;
  196. for (i = 0; i <= 7; ++i)
  197. if (zone == lm85_zone_map[i])
  198. break;
  199. if (i > 7) /* Not found. */
  200. i = 3; /* Always 100% */
  201. return i << 5;
  202. }
  203. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  204. #define HYST_FROM_REG(val) ((val) * 1000)
  205. /* Chip sampling rates
  206. *
  207. * Some sensors are not updated more frequently than once per second
  208. * so it doesn't make sense to read them more often than that.
  209. * We cache the results and return the saved data if the driver
  210. * is called again before a second has elapsed.
  211. *
  212. * Also, there is significant configuration data for this chip
  213. * given the automatic PWM fan control that is possible. There
  214. * are about 47 bytes of config data to only 22 bytes of actual
  215. * readings. So, we keep the config data up to date in the cache
  216. * when it is written and only sample it once every 1 *minute*
  217. */
  218. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  219. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  220. /* LM85 can automatically adjust fan speeds based on temperature
  221. * This structure encapsulates an entire Zone config. There are
  222. * three zones (one for each temperature input) on the lm85
  223. */
  224. struct lm85_zone {
  225. s8 limit; /* Low temp limit */
  226. u8 hyst; /* Low limit hysteresis. (0-15) */
  227. u8 range; /* Temp range, encoded */
  228. s8 critical; /* "All fans ON" temp limit */
  229. u8 off_desired; /* Actual "off" temperature specified. Preserved
  230. * to prevent "drift" as other autofan control
  231. * values change.
  232. */
  233. u8 max_desired; /* Actual "max" temperature specified. Preserved
  234. * to prevent "drift" as other autofan control
  235. * values change.
  236. */
  237. };
  238. struct lm85_autofan {
  239. u8 config; /* Register value */
  240. u8 min_pwm; /* Minimum PWM value, encoded */
  241. u8 min_off; /* Min PWM or OFF below "limit", flag */
  242. };
  243. /* For each registered chip, we need to keep some data in memory.
  244. The structure is dynamically allocated. */
  245. struct lm85_data {
  246. struct device *hwmon_dev;
  247. const int *freq_map;
  248. enum chips type;
  249. struct mutex update_lock;
  250. int valid; /* !=0 if following fields are valid */
  251. unsigned long last_reading; /* In jiffies */
  252. unsigned long last_config; /* In jiffies */
  253. u8 in[8]; /* Register value */
  254. u8 in_max[8]; /* Register value */
  255. u8 in_min[8]; /* Register value */
  256. s8 temp[3]; /* Register value */
  257. s8 temp_min[3]; /* Register value */
  258. s8 temp_max[3]; /* Register value */
  259. u16 fan[4]; /* Register value */
  260. u16 fan_min[4]; /* Register value */
  261. u8 pwm[3]; /* Register value */
  262. u8 pwm_freq[3]; /* Register encoding */
  263. u8 temp_ext[3]; /* Decoded values */
  264. u8 in_ext[8]; /* Decoded values */
  265. u8 vid; /* Register value */
  266. u8 vrm; /* VRM version */
  267. u32 alarms; /* Register encoding, combined */
  268. u8 cfg5; /* Config Register 5 on ADT7468 */
  269. struct lm85_autofan autofan[3];
  270. struct lm85_zone zone[3];
  271. };
  272. static int lm85_detect(struct i2c_client *client, int kind,
  273. struct i2c_board_info *info);
  274. static int lm85_probe(struct i2c_client *client,
  275. const struct i2c_device_id *id);
  276. static int lm85_remove(struct i2c_client *client);
  277. static int lm85_read_value(struct i2c_client *client, u8 reg);
  278. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  279. static struct lm85_data *lm85_update_device(struct device *dev);
  280. static const struct i2c_device_id lm85_id[] = {
  281. { "adm1027", adm1027 },
  282. { "adt7463", adt7463 },
  283. { "adt7468", adt7468 },
  284. { "lm85", any_chip },
  285. { "lm85b", lm85b },
  286. { "lm85c", lm85c },
  287. { "emc6d100", emc6d100 },
  288. { "emc6d101", emc6d100 },
  289. { "emc6d102", emc6d102 },
  290. { }
  291. };
  292. MODULE_DEVICE_TABLE(i2c, lm85_id);
  293. static struct i2c_driver lm85_driver = {
  294. .class = I2C_CLASS_HWMON,
  295. .driver = {
  296. .name = "lm85",
  297. },
  298. .probe = lm85_probe,
  299. .remove = lm85_remove,
  300. .id_table = lm85_id,
  301. .detect = lm85_detect,
  302. .address_data = &addr_data,
  303. };
  304. /* 4 Fans */
  305. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  306. char *buf)
  307. {
  308. int nr = to_sensor_dev_attr(attr)->index;
  309. struct lm85_data *data = lm85_update_device(dev);
  310. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  311. }
  312. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  313. char *buf)
  314. {
  315. int nr = to_sensor_dev_attr(attr)->index;
  316. struct lm85_data *data = lm85_update_device(dev);
  317. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  318. }
  319. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  320. const char *buf, size_t count)
  321. {
  322. int nr = to_sensor_dev_attr(attr)->index;
  323. struct i2c_client *client = to_i2c_client(dev);
  324. struct lm85_data *data = i2c_get_clientdata(client);
  325. unsigned long val = simple_strtoul(buf, NULL, 10);
  326. mutex_lock(&data->update_lock);
  327. data->fan_min[nr] = FAN_TO_REG(val);
  328. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  329. mutex_unlock(&data->update_lock);
  330. return count;
  331. }
  332. #define show_fan_offset(offset) \
  333. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  334. show_fan, NULL, offset - 1); \
  335. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  336. show_fan_min, set_fan_min, offset - 1)
  337. show_fan_offset(1);
  338. show_fan_offset(2);
  339. show_fan_offset(3);
  340. show_fan_offset(4);
  341. /* vid, vrm, alarms */
  342. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  343. char *buf)
  344. {
  345. struct lm85_data *data = lm85_update_device(dev);
  346. int vid;
  347. if ((data->type == adt7463 || data->type == adt7468) &&
  348. (data->vid & 0x80)) {
  349. /* 6-pin VID (VRM 10) */
  350. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  351. } else {
  352. /* 5-pin VID (VRM 9) */
  353. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  354. }
  355. return sprintf(buf, "%d\n", vid);
  356. }
  357. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  358. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  359. char *buf)
  360. {
  361. struct lm85_data *data = dev_get_drvdata(dev);
  362. return sprintf(buf, "%ld\n", (long) data->vrm);
  363. }
  364. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  365. const char *buf, size_t count)
  366. {
  367. struct lm85_data *data = dev_get_drvdata(dev);
  368. data->vrm = simple_strtoul(buf, NULL, 10);
  369. return count;
  370. }
  371. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  372. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  373. *attr, char *buf)
  374. {
  375. struct lm85_data *data = lm85_update_device(dev);
  376. return sprintf(buf, "%u\n", data->alarms);
  377. }
  378. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  379. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  380. char *buf)
  381. {
  382. int nr = to_sensor_dev_attr(attr)->index;
  383. struct lm85_data *data = lm85_update_device(dev);
  384. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  385. }
  386. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  387. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  388. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  389. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  390. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  391. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  392. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  393. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  394. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  395. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  396. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  397. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  398. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  399. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  400. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  401. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  402. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  403. /* pwm */
  404. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  405. char *buf)
  406. {
  407. int nr = to_sensor_dev_attr(attr)->index;
  408. struct lm85_data *data = lm85_update_device(dev);
  409. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  410. }
  411. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int nr = to_sensor_dev_attr(attr)->index;
  415. struct i2c_client *client = to_i2c_client(dev);
  416. struct lm85_data *data = i2c_get_clientdata(client);
  417. long val = simple_strtol(buf, NULL, 10);
  418. mutex_lock(&data->update_lock);
  419. data->pwm[nr] = PWM_TO_REG(val);
  420. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  421. mutex_unlock(&data->update_lock);
  422. return count;
  423. }
  424. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  425. *attr, char *buf)
  426. {
  427. int nr = to_sensor_dev_attr(attr)->index;
  428. struct lm85_data *data = lm85_update_device(dev);
  429. int pwm_zone, enable;
  430. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  431. switch (pwm_zone) {
  432. case -1: /* PWM is always at 100% */
  433. enable = 0;
  434. break;
  435. case 0: /* PWM is always at 0% */
  436. case -2: /* PWM responds to manual control */
  437. enable = 1;
  438. break;
  439. default: /* PWM in automatic mode */
  440. enable = 2;
  441. }
  442. return sprintf(buf, "%d\n", enable);
  443. }
  444. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  445. *attr, const char *buf, size_t count)
  446. {
  447. int nr = to_sensor_dev_attr(attr)->index;
  448. struct i2c_client *client = to_i2c_client(dev);
  449. struct lm85_data *data = i2c_get_clientdata(client);
  450. long val = simple_strtol(buf, NULL, 10);
  451. u8 config;
  452. switch (val) {
  453. case 0:
  454. config = 3;
  455. break;
  456. case 1:
  457. config = 7;
  458. break;
  459. case 2:
  460. /* Here we have to choose arbitrarily one of the 5 possible
  461. configurations; I go for the safest */
  462. config = 6;
  463. break;
  464. default:
  465. return -EINVAL;
  466. }
  467. mutex_lock(&data->update_lock);
  468. data->autofan[nr].config = lm85_read_value(client,
  469. LM85_REG_AFAN_CONFIG(nr));
  470. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  471. | (config << 5);
  472. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  473. data->autofan[nr].config);
  474. mutex_unlock(&data->update_lock);
  475. return count;
  476. }
  477. static ssize_t show_pwm_freq(struct device *dev,
  478. struct device_attribute *attr, char *buf)
  479. {
  480. int nr = to_sensor_dev_attr(attr)->index;
  481. struct lm85_data *data = lm85_update_device(dev);
  482. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->freq_map,
  483. data->pwm_freq[nr]));
  484. }
  485. static ssize_t set_pwm_freq(struct device *dev,
  486. struct device_attribute *attr, const char *buf, size_t count)
  487. {
  488. int nr = to_sensor_dev_attr(attr)->index;
  489. struct i2c_client *client = to_i2c_client(dev);
  490. struct lm85_data *data = i2c_get_clientdata(client);
  491. long val = simple_strtol(buf, NULL, 10);
  492. mutex_lock(&data->update_lock);
  493. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
  494. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  495. (data->zone[nr].range << 4)
  496. | data->pwm_freq[nr]);
  497. mutex_unlock(&data->update_lock);
  498. return count;
  499. }
  500. #define show_pwm_reg(offset) \
  501. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  502. show_pwm, set_pwm, offset - 1); \
  503. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  504. show_pwm_enable, set_pwm_enable, offset - 1); \
  505. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  506. show_pwm_freq, set_pwm_freq, offset - 1)
  507. show_pwm_reg(1);
  508. show_pwm_reg(2);
  509. show_pwm_reg(3);
  510. /* Voltages */
  511. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  512. char *buf)
  513. {
  514. int nr = to_sensor_dev_attr(attr)->index;
  515. struct lm85_data *data = lm85_update_device(dev);
  516. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  517. data->in_ext[nr]));
  518. }
  519. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  520. char *buf)
  521. {
  522. int nr = to_sensor_dev_attr(attr)->index;
  523. struct lm85_data *data = lm85_update_device(dev);
  524. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  525. }
  526. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  527. const char *buf, size_t count)
  528. {
  529. int nr = to_sensor_dev_attr(attr)->index;
  530. struct i2c_client *client = to_i2c_client(dev);
  531. struct lm85_data *data = i2c_get_clientdata(client);
  532. long val = simple_strtol(buf, NULL, 10);
  533. mutex_lock(&data->update_lock);
  534. data->in_min[nr] = INS_TO_REG(nr, val);
  535. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  536. mutex_unlock(&data->update_lock);
  537. return count;
  538. }
  539. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  540. char *buf)
  541. {
  542. int nr = to_sensor_dev_attr(attr)->index;
  543. struct lm85_data *data = lm85_update_device(dev);
  544. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  545. }
  546. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  547. const char *buf, size_t count)
  548. {
  549. int nr = to_sensor_dev_attr(attr)->index;
  550. struct i2c_client *client = to_i2c_client(dev);
  551. struct lm85_data *data = i2c_get_clientdata(client);
  552. long val = simple_strtol(buf, NULL, 10);
  553. mutex_lock(&data->update_lock);
  554. data->in_max[nr] = INS_TO_REG(nr, val);
  555. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  556. mutex_unlock(&data->update_lock);
  557. return count;
  558. }
  559. #define show_in_reg(offset) \
  560. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  561. show_in, NULL, offset); \
  562. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  563. show_in_min, set_in_min, offset); \
  564. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  565. show_in_max, set_in_max, offset)
  566. show_in_reg(0);
  567. show_in_reg(1);
  568. show_in_reg(2);
  569. show_in_reg(3);
  570. show_in_reg(4);
  571. show_in_reg(5);
  572. show_in_reg(6);
  573. show_in_reg(7);
  574. /* Temps */
  575. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  576. char *buf)
  577. {
  578. int nr = to_sensor_dev_attr(attr)->index;
  579. struct lm85_data *data = lm85_update_device(dev);
  580. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  581. data->temp_ext[nr]));
  582. }
  583. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  584. char *buf)
  585. {
  586. int nr = to_sensor_dev_attr(attr)->index;
  587. struct lm85_data *data = lm85_update_device(dev);
  588. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  589. }
  590. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  591. const char *buf, size_t count)
  592. {
  593. int nr = to_sensor_dev_attr(attr)->index;
  594. struct i2c_client *client = to_i2c_client(dev);
  595. struct lm85_data *data = i2c_get_clientdata(client);
  596. long val = simple_strtol(buf, NULL, 10);
  597. if (IS_ADT7468_OFF64(data))
  598. val += 64;
  599. mutex_lock(&data->update_lock);
  600. data->temp_min[nr] = TEMP_TO_REG(val);
  601. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  602. mutex_unlock(&data->update_lock);
  603. return count;
  604. }
  605. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  606. char *buf)
  607. {
  608. int nr = to_sensor_dev_attr(attr)->index;
  609. struct lm85_data *data = lm85_update_device(dev);
  610. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  611. }
  612. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  613. const char *buf, size_t count)
  614. {
  615. int nr = to_sensor_dev_attr(attr)->index;
  616. struct i2c_client *client = to_i2c_client(dev);
  617. struct lm85_data *data = i2c_get_clientdata(client);
  618. long val = simple_strtol(buf, NULL, 10);
  619. if (IS_ADT7468_OFF64(data))
  620. val += 64;
  621. mutex_lock(&data->update_lock);
  622. data->temp_max[nr] = TEMP_TO_REG(val);
  623. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  624. mutex_unlock(&data->update_lock);
  625. return count;
  626. }
  627. #define show_temp_reg(offset) \
  628. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  629. show_temp, NULL, offset - 1); \
  630. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  631. show_temp_min, set_temp_min, offset - 1); \
  632. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  633. show_temp_max, set_temp_max, offset - 1);
  634. show_temp_reg(1);
  635. show_temp_reg(2);
  636. show_temp_reg(3);
  637. /* Automatic PWM control */
  638. static ssize_t show_pwm_auto_channels(struct device *dev,
  639. struct device_attribute *attr, char *buf)
  640. {
  641. int nr = to_sensor_dev_attr(attr)->index;
  642. struct lm85_data *data = lm85_update_device(dev);
  643. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  644. }
  645. static ssize_t set_pwm_auto_channels(struct device *dev,
  646. struct device_attribute *attr, const char *buf, size_t count)
  647. {
  648. int nr = to_sensor_dev_attr(attr)->index;
  649. struct i2c_client *client = to_i2c_client(dev);
  650. struct lm85_data *data = i2c_get_clientdata(client);
  651. long val = simple_strtol(buf, NULL, 10);
  652. mutex_lock(&data->update_lock);
  653. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  654. | ZONE_TO_REG(val);
  655. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  656. data->autofan[nr].config);
  657. mutex_unlock(&data->update_lock);
  658. return count;
  659. }
  660. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  661. struct device_attribute *attr, char *buf)
  662. {
  663. int nr = to_sensor_dev_attr(attr)->index;
  664. struct lm85_data *data = lm85_update_device(dev);
  665. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  666. }
  667. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  668. struct device_attribute *attr, const char *buf, size_t count)
  669. {
  670. int nr = to_sensor_dev_attr(attr)->index;
  671. struct i2c_client *client = to_i2c_client(dev);
  672. struct lm85_data *data = i2c_get_clientdata(client);
  673. long val = simple_strtol(buf, NULL, 10);
  674. mutex_lock(&data->update_lock);
  675. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  676. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  677. data->autofan[nr].min_pwm);
  678. mutex_unlock(&data->update_lock);
  679. return count;
  680. }
  681. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  682. struct device_attribute *attr, char *buf)
  683. {
  684. int nr = to_sensor_dev_attr(attr)->index;
  685. struct lm85_data *data = lm85_update_device(dev);
  686. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  687. }
  688. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  689. struct device_attribute *attr, const char *buf, size_t count)
  690. {
  691. int nr = to_sensor_dev_attr(attr)->index;
  692. struct i2c_client *client = to_i2c_client(dev);
  693. struct lm85_data *data = i2c_get_clientdata(client);
  694. long val = simple_strtol(buf, NULL, 10);
  695. u8 tmp;
  696. mutex_lock(&data->update_lock);
  697. data->autofan[nr].min_off = val;
  698. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  699. tmp &= ~(0x20 << nr);
  700. if (data->autofan[nr].min_off)
  701. tmp |= 0x20 << nr;
  702. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  703. mutex_unlock(&data->update_lock);
  704. return count;
  705. }
  706. #define pwm_auto(offset) \
  707. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  708. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  709. set_pwm_auto_channels, offset - 1); \
  710. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  711. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  712. set_pwm_auto_pwm_min, offset - 1); \
  713. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  714. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  715. set_pwm_auto_pwm_minctl, offset - 1)
  716. pwm_auto(1);
  717. pwm_auto(2);
  718. pwm_auto(3);
  719. /* Temperature settings for automatic PWM control */
  720. static ssize_t show_temp_auto_temp_off(struct device *dev,
  721. struct device_attribute *attr, char *buf)
  722. {
  723. int nr = to_sensor_dev_attr(attr)->index;
  724. struct lm85_data *data = lm85_update_device(dev);
  725. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  726. HYST_FROM_REG(data->zone[nr].hyst));
  727. }
  728. static ssize_t set_temp_auto_temp_off(struct device *dev,
  729. struct device_attribute *attr, const char *buf, size_t count)
  730. {
  731. int nr = to_sensor_dev_attr(attr)->index;
  732. struct i2c_client *client = to_i2c_client(dev);
  733. struct lm85_data *data = i2c_get_clientdata(client);
  734. int min;
  735. long val = simple_strtol(buf, NULL, 10);
  736. mutex_lock(&data->update_lock);
  737. min = TEMP_FROM_REG(data->zone[nr].limit);
  738. data->zone[nr].off_desired = TEMP_TO_REG(val);
  739. data->zone[nr].hyst = HYST_TO_REG(min - val);
  740. if (nr == 0 || nr == 1) {
  741. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  742. (data->zone[0].hyst << 4)
  743. | data->zone[1].hyst);
  744. } else {
  745. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  746. (data->zone[2].hyst << 4));
  747. }
  748. mutex_unlock(&data->update_lock);
  749. return count;
  750. }
  751. static ssize_t show_temp_auto_temp_min(struct device *dev,
  752. struct device_attribute *attr, char *buf)
  753. {
  754. int nr = to_sensor_dev_attr(attr)->index;
  755. struct lm85_data *data = lm85_update_device(dev);
  756. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  757. }
  758. static ssize_t set_temp_auto_temp_min(struct device *dev,
  759. struct device_attribute *attr, const char *buf, size_t count)
  760. {
  761. int nr = to_sensor_dev_attr(attr)->index;
  762. struct i2c_client *client = to_i2c_client(dev);
  763. struct lm85_data *data = i2c_get_clientdata(client);
  764. long val = simple_strtol(buf, NULL, 10);
  765. mutex_lock(&data->update_lock);
  766. data->zone[nr].limit = TEMP_TO_REG(val);
  767. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  768. data->zone[nr].limit);
  769. /* Update temp_auto_max and temp_auto_range */
  770. data->zone[nr].range = RANGE_TO_REG(
  771. TEMP_FROM_REG(data->zone[nr].max_desired) -
  772. TEMP_FROM_REG(data->zone[nr].limit));
  773. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  774. ((data->zone[nr].range & 0x0f) << 4)
  775. | (data->pwm_freq[nr] & 0x07));
  776. /* Update temp_auto_hyst and temp_auto_off */
  777. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  778. data->zone[nr].limit) - TEMP_FROM_REG(
  779. data->zone[nr].off_desired));
  780. if (nr == 0 || nr == 1) {
  781. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  782. (data->zone[0].hyst << 4)
  783. | data->zone[1].hyst);
  784. } else {
  785. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  786. (data->zone[2].hyst << 4));
  787. }
  788. mutex_unlock(&data->update_lock);
  789. return count;
  790. }
  791. static ssize_t show_temp_auto_temp_max(struct device *dev,
  792. struct device_attribute *attr, char *buf)
  793. {
  794. int nr = to_sensor_dev_attr(attr)->index;
  795. struct lm85_data *data = lm85_update_device(dev);
  796. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  797. RANGE_FROM_REG(data->zone[nr].range));
  798. }
  799. static ssize_t set_temp_auto_temp_max(struct device *dev,
  800. struct device_attribute *attr, const char *buf, size_t count)
  801. {
  802. int nr = to_sensor_dev_attr(attr)->index;
  803. struct i2c_client *client = to_i2c_client(dev);
  804. struct lm85_data *data = i2c_get_clientdata(client);
  805. int min;
  806. long val = simple_strtol(buf, NULL, 10);
  807. mutex_lock(&data->update_lock);
  808. min = TEMP_FROM_REG(data->zone[nr].limit);
  809. data->zone[nr].max_desired = TEMP_TO_REG(val);
  810. data->zone[nr].range = RANGE_TO_REG(
  811. val - min);
  812. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  813. ((data->zone[nr].range & 0x0f) << 4)
  814. | (data->pwm_freq[nr] & 0x07));
  815. mutex_unlock(&data->update_lock);
  816. return count;
  817. }
  818. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  819. struct device_attribute *attr, char *buf)
  820. {
  821. int nr = to_sensor_dev_attr(attr)->index;
  822. struct lm85_data *data = lm85_update_device(dev);
  823. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  824. }
  825. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  826. struct device_attribute *attr, const char *buf, size_t count)
  827. {
  828. int nr = to_sensor_dev_attr(attr)->index;
  829. struct i2c_client *client = to_i2c_client(dev);
  830. struct lm85_data *data = i2c_get_clientdata(client);
  831. long val = simple_strtol(buf, NULL, 10);
  832. mutex_lock(&data->update_lock);
  833. data->zone[nr].critical = TEMP_TO_REG(val);
  834. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  835. data->zone[nr].critical);
  836. mutex_unlock(&data->update_lock);
  837. return count;
  838. }
  839. #define temp_auto(offset) \
  840. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  841. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  842. set_temp_auto_temp_off, offset - 1); \
  843. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  844. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  845. set_temp_auto_temp_min, offset - 1); \
  846. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  847. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  848. set_temp_auto_temp_max, offset - 1); \
  849. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  850. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  851. set_temp_auto_temp_crit, offset - 1);
  852. temp_auto(1);
  853. temp_auto(2);
  854. temp_auto(3);
  855. static struct attribute *lm85_attributes[] = {
  856. &sensor_dev_attr_fan1_input.dev_attr.attr,
  857. &sensor_dev_attr_fan2_input.dev_attr.attr,
  858. &sensor_dev_attr_fan3_input.dev_attr.attr,
  859. &sensor_dev_attr_fan4_input.dev_attr.attr,
  860. &sensor_dev_attr_fan1_min.dev_attr.attr,
  861. &sensor_dev_attr_fan2_min.dev_attr.attr,
  862. &sensor_dev_attr_fan3_min.dev_attr.attr,
  863. &sensor_dev_attr_fan4_min.dev_attr.attr,
  864. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  865. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  866. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  867. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  868. &sensor_dev_attr_pwm1.dev_attr.attr,
  869. &sensor_dev_attr_pwm2.dev_attr.attr,
  870. &sensor_dev_attr_pwm3.dev_attr.attr,
  871. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  872. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  873. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  874. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  875. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  876. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  877. &sensor_dev_attr_in0_input.dev_attr.attr,
  878. &sensor_dev_attr_in1_input.dev_attr.attr,
  879. &sensor_dev_attr_in2_input.dev_attr.attr,
  880. &sensor_dev_attr_in3_input.dev_attr.attr,
  881. &sensor_dev_attr_in0_min.dev_attr.attr,
  882. &sensor_dev_attr_in1_min.dev_attr.attr,
  883. &sensor_dev_attr_in2_min.dev_attr.attr,
  884. &sensor_dev_attr_in3_min.dev_attr.attr,
  885. &sensor_dev_attr_in0_max.dev_attr.attr,
  886. &sensor_dev_attr_in1_max.dev_attr.attr,
  887. &sensor_dev_attr_in2_max.dev_attr.attr,
  888. &sensor_dev_attr_in3_max.dev_attr.attr,
  889. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  890. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  891. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  892. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  893. &sensor_dev_attr_temp1_input.dev_attr.attr,
  894. &sensor_dev_attr_temp2_input.dev_attr.attr,
  895. &sensor_dev_attr_temp3_input.dev_attr.attr,
  896. &sensor_dev_attr_temp1_min.dev_attr.attr,
  897. &sensor_dev_attr_temp2_min.dev_attr.attr,
  898. &sensor_dev_attr_temp3_min.dev_attr.attr,
  899. &sensor_dev_attr_temp1_max.dev_attr.attr,
  900. &sensor_dev_attr_temp2_max.dev_attr.attr,
  901. &sensor_dev_attr_temp3_max.dev_attr.attr,
  902. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  903. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  904. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  905. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  906. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  907. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  908. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  909. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  910. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  911. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  912. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  913. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  914. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  915. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  916. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  917. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  918. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  919. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  920. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  921. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  922. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  923. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  924. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  925. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  926. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  927. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  928. &dev_attr_vrm.attr,
  929. &dev_attr_cpu0_vid.attr,
  930. &dev_attr_alarms.attr,
  931. NULL
  932. };
  933. static const struct attribute_group lm85_group = {
  934. .attrs = lm85_attributes,
  935. };
  936. static struct attribute *lm85_attributes_in4[] = {
  937. &sensor_dev_attr_in4_input.dev_attr.attr,
  938. &sensor_dev_attr_in4_min.dev_attr.attr,
  939. &sensor_dev_attr_in4_max.dev_attr.attr,
  940. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  941. NULL
  942. };
  943. static const struct attribute_group lm85_group_in4 = {
  944. .attrs = lm85_attributes_in4,
  945. };
  946. static struct attribute *lm85_attributes_in567[] = {
  947. &sensor_dev_attr_in5_input.dev_attr.attr,
  948. &sensor_dev_attr_in6_input.dev_attr.attr,
  949. &sensor_dev_attr_in7_input.dev_attr.attr,
  950. &sensor_dev_attr_in5_min.dev_attr.attr,
  951. &sensor_dev_attr_in6_min.dev_attr.attr,
  952. &sensor_dev_attr_in7_min.dev_attr.attr,
  953. &sensor_dev_attr_in5_max.dev_attr.attr,
  954. &sensor_dev_attr_in6_max.dev_attr.attr,
  955. &sensor_dev_attr_in7_max.dev_attr.attr,
  956. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  957. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  958. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  959. NULL
  960. };
  961. static const struct attribute_group lm85_group_in567 = {
  962. .attrs = lm85_attributes_in567,
  963. };
  964. static void lm85_init_client(struct i2c_client *client)
  965. {
  966. int value;
  967. /* Start monitoring if needed */
  968. value = lm85_read_value(client, LM85_REG_CONFIG);
  969. if (!(value & 0x01)) {
  970. dev_info(&client->dev, "Starting monitoring\n");
  971. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  972. }
  973. /* Warn about unusual configuration bits */
  974. if (value & 0x02)
  975. dev_warn(&client->dev, "Device configuration is locked\n");
  976. if (!(value & 0x04))
  977. dev_warn(&client->dev, "Device is not ready\n");
  978. }
  979. /* Return 0 if detection is successful, -ENODEV otherwise */
  980. static int lm85_detect(struct i2c_client *client, int kind,
  981. struct i2c_board_info *info)
  982. {
  983. struct i2c_adapter *adapter = client->adapter;
  984. int address = client->addr;
  985. const char *type_name;
  986. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  987. /* We need to be able to do byte I/O */
  988. return -ENODEV;
  989. }
  990. /* If auto-detecting, determine the chip type */
  991. if (kind < 0) {
  992. int company = lm85_read_value(client, LM85_REG_COMPANY);
  993. int verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  994. dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
  995. "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  996. address, company, verstep);
  997. /* All supported chips have the version in common */
  998. if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
  999. (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
  1000. dev_dbg(&adapter->dev, "Autodetection failed: "
  1001. "unsupported version\n");
  1002. return -ENODEV;
  1003. }
  1004. kind = any_chip;
  1005. /* Now, refine the detection */
  1006. if (company == LM85_COMPANY_NATIONAL) {
  1007. switch (verstep) {
  1008. case LM85_VERSTEP_LM85C:
  1009. kind = lm85c;
  1010. break;
  1011. case LM85_VERSTEP_LM85B:
  1012. kind = lm85b;
  1013. break;
  1014. }
  1015. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1016. switch (verstep) {
  1017. case LM85_VERSTEP_ADM1027:
  1018. kind = adm1027;
  1019. break;
  1020. case LM85_VERSTEP_ADT7463:
  1021. case LM85_VERSTEP_ADT7463C:
  1022. kind = adt7463;
  1023. break;
  1024. case LM85_VERSTEP_ADT7468_1:
  1025. case LM85_VERSTEP_ADT7468_2:
  1026. kind = adt7468;
  1027. break;
  1028. }
  1029. } else if (company == LM85_COMPANY_SMSC) {
  1030. switch (verstep) {
  1031. case LM85_VERSTEP_EMC6D100_A0:
  1032. case LM85_VERSTEP_EMC6D100_A1:
  1033. /* Note: we can't tell a '100 from a '101 */
  1034. kind = emc6d100;
  1035. break;
  1036. case LM85_VERSTEP_EMC6D102:
  1037. kind = emc6d102;
  1038. break;
  1039. }
  1040. } else {
  1041. dev_dbg(&adapter->dev, "Autodetection failed: "
  1042. "unknown vendor\n");
  1043. return -ENODEV;
  1044. }
  1045. }
  1046. switch (kind) {
  1047. case lm85b:
  1048. type_name = "lm85b";
  1049. break;
  1050. case lm85c:
  1051. type_name = "lm85c";
  1052. break;
  1053. case adm1027:
  1054. type_name = "adm1027";
  1055. break;
  1056. case adt7463:
  1057. type_name = "adt7463";
  1058. break;
  1059. case adt7468:
  1060. type_name = "adt7468";
  1061. break;
  1062. case emc6d100:
  1063. type_name = "emc6d100";
  1064. break;
  1065. case emc6d102:
  1066. type_name = "emc6d102";
  1067. break;
  1068. default:
  1069. type_name = "lm85";
  1070. }
  1071. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1072. return 0;
  1073. }
  1074. static int lm85_probe(struct i2c_client *client,
  1075. const struct i2c_device_id *id)
  1076. {
  1077. struct lm85_data *data;
  1078. int err;
  1079. data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
  1080. if (!data)
  1081. return -ENOMEM;
  1082. i2c_set_clientdata(client, data);
  1083. data->type = id->driver_data;
  1084. mutex_init(&data->update_lock);
  1085. /* Fill in the chip specific driver values */
  1086. switch (data->type) {
  1087. case adm1027:
  1088. case adt7463:
  1089. case emc6d100:
  1090. case emc6d102:
  1091. data->freq_map = adm1027_freq_map;
  1092. break;
  1093. default:
  1094. data->freq_map = lm85_freq_map;
  1095. }
  1096. /* Set the VRM version */
  1097. data->vrm = vid_which_vrm();
  1098. /* Initialize the LM85 chip */
  1099. lm85_init_client(client);
  1100. /* Register sysfs hooks */
  1101. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1102. if (err)
  1103. goto err_kfree;
  1104. /* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1105. as a sixth digital VID input rather than an analog input. */
  1106. data->vid = lm85_read_value(client, LM85_REG_VID);
  1107. if (!((data->type == adt7463 || data->type == adt7468) &&
  1108. (data->vid & 0x80)))
  1109. if ((err = sysfs_create_group(&client->dev.kobj,
  1110. &lm85_group_in4)))
  1111. goto err_remove_files;
  1112. /* The EMC6D100 has 3 additional voltage inputs */
  1113. if (data->type == emc6d100)
  1114. if ((err = sysfs_create_group(&client->dev.kobj,
  1115. &lm85_group_in567)))
  1116. goto err_remove_files;
  1117. data->hwmon_dev = hwmon_device_register(&client->dev);
  1118. if (IS_ERR(data->hwmon_dev)) {
  1119. err = PTR_ERR(data->hwmon_dev);
  1120. goto err_remove_files;
  1121. }
  1122. return 0;
  1123. /* Error out and cleanup code */
  1124. err_remove_files:
  1125. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1126. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1127. if (data->type == emc6d100)
  1128. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1129. err_kfree:
  1130. kfree(data);
  1131. return err;
  1132. }
  1133. static int lm85_remove(struct i2c_client *client)
  1134. {
  1135. struct lm85_data *data = i2c_get_clientdata(client);
  1136. hwmon_device_unregister(data->hwmon_dev);
  1137. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1138. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1139. if (data->type == emc6d100)
  1140. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1141. kfree(data);
  1142. return 0;
  1143. }
  1144. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1145. {
  1146. int res;
  1147. /* What size location is it? */
  1148. switch (reg) {
  1149. case LM85_REG_FAN(0): /* Read WORD data */
  1150. case LM85_REG_FAN(1):
  1151. case LM85_REG_FAN(2):
  1152. case LM85_REG_FAN(3):
  1153. case LM85_REG_FAN_MIN(0):
  1154. case LM85_REG_FAN_MIN(1):
  1155. case LM85_REG_FAN_MIN(2):
  1156. case LM85_REG_FAN_MIN(3):
  1157. case LM85_REG_ALARM1: /* Read both bytes at once */
  1158. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1159. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1160. break;
  1161. default: /* Read BYTE data */
  1162. res = i2c_smbus_read_byte_data(client, reg);
  1163. break;
  1164. }
  1165. return res;
  1166. }
  1167. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1168. {
  1169. switch (reg) {
  1170. case LM85_REG_FAN(0): /* Write WORD data */
  1171. case LM85_REG_FAN(1):
  1172. case LM85_REG_FAN(2):
  1173. case LM85_REG_FAN(3):
  1174. case LM85_REG_FAN_MIN(0):
  1175. case LM85_REG_FAN_MIN(1):
  1176. case LM85_REG_FAN_MIN(2):
  1177. case LM85_REG_FAN_MIN(3):
  1178. /* NOTE: ALARM is read only, so not included here */
  1179. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1180. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1181. break;
  1182. default: /* Write BYTE data */
  1183. i2c_smbus_write_byte_data(client, reg, value);
  1184. break;
  1185. }
  1186. }
  1187. static struct lm85_data *lm85_update_device(struct device *dev)
  1188. {
  1189. struct i2c_client *client = to_i2c_client(dev);
  1190. struct lm85_data *data = i2c_get_clientdata(client);
  1191. int i;
  1192. mutex_lock(&data->update_lock);
  1193. if (!data->valid ||
  1194. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1195. /* Things that change quickly */
  1196. dev_dbg(&client->dev, "Reading sensor values\n");
  1197. /* Have to read extended bits first to "freeze" the
  1198. * more significant bits that are read later.
  1199. * There are 2 additional resolution bits per channel and we
  1200. * have room for 4, so we shift them to the left.
  1201. */
  1202. if (data->type == adm1027 || data->type == adt7463 ||
  1203. data->type == adt7468) {
  1204. int ext1 = lm85_read_value(client,
  1205. ADM1027_REG_EXTEND_ADC1);
  1206. int ext2 = lm85_read_value(client,
  1207. ADM1027_REG_EXTEND_ADC2);
  1208. int val = (ext1 << 8) + ext2;
  1209. for (i = 0; i <= 4; i++)
  1210. data->in_ext[i] =
  1211. ((val >> (i * 2)) & 0x03) << 2;
  1212. for (i = 0; i <= 2; i++)
  1213. data->temp_ext[i] =
  1214. (val >> ((i + 4) * 2)) & 0x0c;
  1215. }
  1216. data->vid = lm85_read_value(client, LM85_REG_VID);
  1217. for (i = 0; i <= 3; ++i) {
  1218. data->in[i] =
  1219. lm85_read_value(client, LM85_REG_IN(i));
  1220. data->fan[i] =
  1221. lm85_read_value(client, LM85_REG_FAN(i));
  1222. }
  1223. if (!((data->type == adt7463 || data->type == adt7468) &&
  1224. (data->vid & 0x80))) {
  1225. data->in[4] = lm85_read_value(client,
  1226. LM85_REG_IN(4));
  1227. }
  1228. if (data->type == adt7468)
  1229. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  1230. for (i = 0; i <= 2; ++i) {
  1231. data->temp[i] =
  1232. lm85_read_value(client, LM85_REG_TEMP(i));
  1233. data->pwm[i] =
  1234. lm85_read_value(client, LM85_REG_PWM(i));
  1235. if (IS_ADT7468_OFF64(data))
  1236. data->temp[i] -= 64;
  1237. }
  1238. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1239. if (data->type == emc6d100) {
  1240. /* Three more voltage sensors */
  1241. for (i = 5; i <= 7; ++i) {
  1242. data->in[i] = lm85_read_value(client,
  1243. EMC6D100_REG_IN(i));
  1244. }
  1245. /* More alarm bits */
  1246. data->alarms |= lm85_read_value(client,
  1247. EMC6D100_REG_ALARM3) << 16;
  1248. } else if (data->type == emc6d102) {
  1249. /* Have to read LSB bits after the MSB ones because
  1250. the reading of the MSB bits has frozen the
  1251. LSBs (backward from the ADM1027).
  1252. */
  1253. int ext1 = lm85_read_value(client,
  1254. EMC6D102_REG_EXTEND_ADC1);
  1255. int ext2 = lm85_read_value(client,
  1256. EMC6D102_REG_EXTEND_ADC2);
  1257. int ext3 = lm85_read_value(client,
  1258. EMC6D102_REG_EXTEND_ADC3);
  1259. int ext4 = lm85_read_value(client,
  1260. EMC6D102_REG_EXTEND_ADC4);
  1261. data->in_ext[0] = ext3 & 0x0f;
  1262. data->in_ext[1] = ext4 & 0x0f;
  1263. data->in_ext[2] = ext4 >> 4;
  1264. data->in_ext[3] = ext3 >> 4;
  1265. data->in_ext[4] = ext2 >> 4;
  1266. data->temp_ext[0] = ext1 & 0x0f;
  1267. data->temp_ext[1] = ext2 & 0x0f;
  1268. data->temp_ext[2] = ext1 >> 4;
  1269. }
  1270. data->last_reading = jiffies;
  1271. } /* last_reading */
  1272. if (!data->valid ||
  1273. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1274. /* Things that don't change often */
  1275. dev_dbg(&client->dev, "Reading config values\n");
  1276. for (i = 0; i <= 3; ++i) {
  1277. data->in_min[i] =
  1278. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1279. data->in_max[i] =
  1280. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1281. data->fan_min[i] =
  1282. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1283. }
  1284. if (!((data->type == adt7463 || data->type == adt7468) &&
  1285. (data->vid & 0x80))) {
  1286. data->in_min[4] = lm85_read_value(client,
  1287. LM85_REG_IN_MIN(4));
  1288. data->in_max[4] = lm85_read_value(client,
  1289. LM85_REG_IN_MAX(4));
  1290. }
  1291. if (data->type == emc6d100) {
  1292. for (i = 5; i <= 7; ++i) {
  1293. data->in_min[i] = lm85_read_value(client,
  1294. EMC6D100_REG_IN_MIN(i));
  1295. data->in_max[i] = lm85_read_value(client,
  1296. EMC6D100_REG_IN_MAX(i));
  1297. }
  1298. }
  1299. for (i = 0; i <= 2; ++i) {
  1300. int val;
  1301. data->temp_min[i] =
  1302. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1303. data->temp_max[i] =
  1304. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1305. data->autofan[i].config =
  1306. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1307. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1308. data->pwm_freq[i] = val & 0x07;
  1309. data->zone[i].range = val >> 4;
  1310. data->autofan[i].min_pwm =
  1311. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1312. data->zone[i].limit =
  1313. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1314. data->zone[i].critical =
  1315. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1316. if (IS_ADT7468_OFF64(data)) {
  1317. data->temp_min[i] -= 64;
  1318. data->temp_max[i] -= 64;
  1319. data->zone[i].limit -= 64;
  1320. data->zone[i].critical -= 64;
  1321. }
  1322. }
  1323. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1324. data->autofan[0].min_off = (i & 0x20) != 0;
  1325. data->autofan[1].min_off = (i & 0x40) != 0;
  1326. data->autofan[2].min_off = (i & 0x80) != 0;
  1327. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1328. data->zone[0].hyst = i >> 4;
  1329. data->zone[1].hyst = i & 0x0f;
  1330. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1331. data->zone[2].hyst = i >> 4;
  1332. data->last_config = jiffies;
  1333. } /* last_config */
  1334. data->valid = 1;
  1335. mutex_unlock(&data->update_lock);
  1336. return data;
  1337. }
  1338. static int __init sm_lm85_init(void)
  1339. {
  1340. return i2c_add_driver(&lm85_driver);
  1341. }
  1342. static void __exit sm_lm85_exit(void)
  1343. {
  1344. i2c_del_driver(&lm85_driver);
  1345. }
  1346. MODULE_LICENSE("GPL");
  1347. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1348. "Margit Schubert-While <margitsw@t-online.de>, "
  1349. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1350. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1351. module_init(sm_lm85_init);
  1352. module_exit(sm_lm85_exit);