ttm_tt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /**************************************************************************
  2. *
  3. * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. /*
  28. * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29. */
  30. #include <linux/vmalloc.h>
  31. #include <linux/sched.h>
  32. #include <linux/highmem.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/file.h>
  35. #include <linux/swap.h>
  36. #include "ttm/ttm_module.h"
  37. #include "ttm/ttm_bo_driver.h"
  38. #include "ttm/ttm_placement.h"
  39. static int ttm_tt_swapin(struct ttm_tt *ttm);
  40. #if defined(CONFIG_X86)
  41. static void ttm_tt_clflush_page(struct page *page)
  42. {
  43. uint8_t *page_virtual;
  44. unsigned int i;
  45. if (unlikely(page == NULL))
  46. return;
  47. page_virtual = kmap_atomic(page, KM_USER0);
  48. for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
  49. clflush(page_virtual + i);
  50. kunmap_atomic(page_virtual, KM_USER0);
  51. }
  52. static void ttm_tt_cache_flush_clflush(struct page *pages[],
  53. unsigned long num_pages)
  54. {
  55. unsigned long i;
  56. mb();
  57. for (i = 0; i < num_pages; ++i)
  58. ttm_tt_clflush_page(*pages++);
  59. mb();
  60. }
  61. #elif !defined(__powerpc__)
  62. static void ttm_tt_ipi_handler(void *null)
  63. {
  64. ;
  65. }
  66. #endif
  67. void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
  68. {
  69. #if defined(CONFIG_X86)
  70. if (cpu_has_clflush) {
  71. ttm_tt_cache_flush_clflush(pages, num_pages);
  72. return;
  73. }
  74. #elif defined(__powerpc__)
  75. unsigned long i;
  76. for (i = 0; i < num_pages; ++i) {
  77. if (pages[i]) {
  78. unsigned long start = (unsigned long)page_address(pages[i]);
  79. flush_dcache_range(start, start + PAGE_SIZE);
  80. }
  81. }
  82. #else
  83. if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
  84. printk(KERN_ERR TTM_PFX
  85. "Timed out waiting for drm cache flush.\n");
  86. #endif
  87. }
  88. /**
  89. * Allocates storage for pointers to the pages that back the ttm.
  90. *
  91. * Uses kmalloc if possible. Otherwise falls back to vmalloc.
  92. */
  93. static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
  94. {
  95. unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
  96. ttm->pages = NULL;
  97. if (size <= PAGE_SIZE)
  98. ttm->pages = kzalloc(size, GFP_KERNEL);
  99. if (!ttm->pages) {
  100. ttm->pages = vmalloc_user(size);
  101. if (ttm->pages)
  102. ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
  103. }
  104. }
  105. static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
  106. {
  107. if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
  108. vfree(ttm->pages);
  109. ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
  110. } else {
  111. kfree(ttm->pages);
  112. }
  113. ttm->pages = NULL;
  114. }
  115. static struct page *ttm_tt_alloc_page(unsigned page_flags)
  116. {
  117. if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  118. return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
  119. return alloc_page(GFP_HIGHUSER);
  120. }
  121. static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
  122. {
  123. int write;
  124. int dirty;
  125. struct page *page;
  126. int i;
  127. struct ttm_backend *be = ttm->be;
  128. BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
  129. write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
  130. dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
  131. if (be)
  132. be->func->clear(be);
  133. for (i = 0; i < ttm->num_pages; ++i) {
  134. page = ttm->pages[i];
  135. if (page == NULL)
  136. continue;
  137. if (page == ttm->dummy_read_page) {
  138. BUG_ON(write);
  139. continue;
  140. }
  141. if (write && dirty && !PageReserved(page))
  142. set_page_dirty_lock(page);
  143. ttm->pages[i] = NULL;
  144. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
  145. put_page(page);
  146. }
  147. ttm->state = tt_unpopulated;
  148. ttm->first_himem_page = ttm->num_pages;
  149. ttm->last_lomem_page = -1;
  150. }
  151. static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
  152. {
  153. struct page *p;
  154. struct ttm_bo_device *bdev = ttm->bdev;
  155. struct ttm_mem_global *mem_glob = bdev->mem_glob;
  156. int ret;
  157. while (NULL == (p = ttm->pages[index])) {
  158. p = ttm_tt_alloc_page(ttm->page_flags);
  159. if (!p)
  160. return NULL;
  161. if (PageHighMem(p)) {
  162. ret =
  163. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  164. false, false, true);
  165. if (unlikely(ret != 0))
  166. goto out_err;
  167. ttm->pages[--ttm->first_himem_page] = p;
  168. } else {
  169. ret =
  170. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  171. false, false, false);
  172. if (unlikely(ret != 0))
  173. goto out_err;
  174. ttm->pages[++ttm->last_lomem_page] = p;
  175. }
  176. }
  177. return p;
  178. out_err:
  179. put_page(p);
  180. return NULL;
  181. }
  182. struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
  183. {
  184. int ret;
  185. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  186. ret = ttm_tt_swapin(ttm);
  187. if (unlikely(ret != 0))
  188. return NULL;
  189. }
  190. return __ttm_tt_get_page(ttm, index);
  191. }
  192. int ttm_tt_populate(struct ttm_tt *ttm)
  193. {
  194. struct page *page;
  195. unsigned long i;
  196. struct ttm_backend *be;
  197. int ret;
  198. if (ttm->state != tt_unpopulated)
  199. return 0;
  200. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  201. ret = ttm_tt_swapin(ttm);
  202. if (unlikely(ret != 0))
  203. return ret;
  204. }
  205. be = ttm->be;
  206. for (i = 0; i < ttm->num_pages; ++i) {
  207. page = __ttm_tt_get_page(ttm, i);
  208. if (!page)
  209. return -ENOMEM;
  210. }
  211. be->func->populate(be, ttm->num_pages, ttm->pages,
  212. ttm->dummy_read_page);
  213. ttm->state = tt_unbound;
  214. return 0;
  215. }
  216. #ifdef CONFIG_X86
  217. static inline int ttm_tt_set_page_caching(struct page *p,
  218. enum ttm_caching_state c_state)
  219. {
  220. if (PageHighMem(p))
  221. return 0;
  222. switch (c_state) {
  223. case tt_cached:
  224. return set_pages_wb(p, 1);
  225. case tt_wc:
  226. return set_memory_wc((unsigned long) page_address(p), 1);
  227. default:
  228. return set_pages_uc(p, 1);
  229. }
  230. }
  231. #else /* CONFIG_X86 */
  232. static inline int ttm_tt_set_page_caching(struct page *p,
  233. enum ttm_caching_state c_state)
  234. {
  235. return 0;
  236. }
  237. #endif /* CONFIG_X86 */
  238. /*
  239. * Change caching policy for the linear kernel map
  240. * for range of pages in a ttm.
  241. */
  242. static int ttm_tt_set_caching(struct ttm_tt *ttm,
  243. enum ttm_caching_state c_state)
  244. {
  245. int i, j;
  246. struct page *cur_page;
  247. int ret;
  248. if (ttm->caching_state == c_state)
  249. return 0;
  250. if (c_state != tt_cached) {
  251. ret = ttm_tt_populate(ttm);
  252. if (unlikely(ret != 0))
  253. return ret;
  254. }
  255. if (ttm->caching_state == tt_cached)
  256. ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
  257. for (i = 0; i < ttm->num_pages; ++i) {
  258. cur_page = ttm->pages[i];
  259. if (likely(cur_page != NULL)) {
  260. ret = ttm_tt_set_page_caching(cur_page, c_state);
  261. if (unlikely(ret != 0))
  262. goto out_err;
  263. }
  264. }
  265. ttm->caching_state = c_state;
  266. return 0;
  267. out_err:
  268. for (j = 0; j < i; ++j) {
  269. cur_page = ttm->pages[j];
  270. if (likely(cur_page != NULL)) {
  271. (void)ttm_tt_set_page_caching(cur_page,
  272. ttm->caching_state);
  273. }
  274. }
  275. return ret;
  276. }
  277. int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
  278. {
  279. enum ttm_caching_state state;
  280. if (placement & TTM_PL_FLAG_WC)
  281. state = tt_wc;
  282. else if (placement & TTM_PL_FLAG_UNCACHED)
  283. state = tt_uncached;
  284. else
  285. state = tt_cached;
  286. return ttm_tt_set_caching(ttm, state);
  287. }
  288. static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
  289. {
  290. int i;
  291. struct page *cur_page;
  292. struct ttm_backend *be = ttm->be;
  293. if (be)
  294. be->func->clear(be);
  295. (void)ttm_tt_set_caching(ttm, tt_cached);
  296. for (i = 0; i < ttm->num_pages; ++i) {
  297. cur_page = ttm->pages[i];
  298. ttm->pages[i] = NULL;
  299. if (cur_page) {
  300. if (page_count(cur_page) != 1)
  301. printk(KERN_ERR TTM_PFX
  302. "Erroneous page count. "
  303. "Leaking pages.\n");
  304. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
  305. PageHighMem(cur_page));
  306. __free_page(cur_page);
  307. }
  308. }
  309. ttm->state = tt_unpopulated;
  310. ttm->first_himem_page = ttm->num_pages;
  311. ttm->last_lomem_page = -1;
  312. }
  313. void ttm_tt_destroy(struct ttm_tt *ttm)
  314. {
  315. struct ttm_backend *be;
  316. if (unlikely(ttm == NULL))
  317. return;
  318. be = ttm->be;
  319. if (likely(be != NULL)) {
  320. be->func->destroy(be);
  321. ttm->be = NULL;
  322. }
  323. if (likely(ttm->pages != NULL)) {
  324. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  325. ttm_tt_free_user_pages(ttm);
  326. else
  327. ttm_tt_free_alloced_pages(ttm);
  328. ttm_tt_free_page_directory(ttm);
  329. }
  330. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
  331. ttm->swap_storage)
  332. fput(ttm->swap_storage);
  333. kfree(ttm);
  334. }
  335. int ttm_tt_set_user(struct ttm_tt *ttm,
  336. struct task_struct *tsk,
  337. unsigned long start, unsigned long num_pages)
  338. {
  339. struct mm_struct *mm = tsk->mm;
  340. int ret;
  341. int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
  342. struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
  343. BUG_ON(num_pages != ttm->num_pages);
  344. BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
  345. /**
  346. * Account user pages as lowmem pages for now.
  347. */
  348. ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
  349. false, false, false);
  350. if (unlikely(ret != 0))
  351. return ret;
  352. down_read(&mm->mmap_sem);
  353. ret = get_user_pages(tsk, mm, start, num_pages,
  354. write, 0, ttm->pages, NULL);
  355. up_read(&mm->mmap_sem);
  356. if (ret != num_pages && write) {
  357. ttm_tt_free_user_pages(ttm);
  358. ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
  359. return -ENOMEM;
  360. }
  361. ttm->tsk = tsk;
  362. ttm->start = start;
  363. ttm->state = tt_unbound;
  364. return 0;
  365. }
  366. struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
  367. uint32_t page_flags, struct page *dummy_read_page)
  368. {
  369. struct ttm_bo_driver *bo_driver = bdev->driver;
  370. struct ttm_tt *ttm;
  371. if (!bo_driver)
  372. return NULL;
  373. ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
  374. if (!ttm)
  375. return NULL;
  376. ttm->bdev = bdev;
  377. ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  378. ttm->first_himem_page = ttm->num_pages;
  379. ttm->last_lomem_page = -1;
  380. ttm->caching_state = tt_cached;
  381. ttm->page_flags = page_flags;
  382. ttm->dummy_read_page = dummy_read_page;
  383. ttm_tt_alloc_page_directory(ttm);
  384. if (!ttm->pages) {
  385. ttm_tt_destroy(ttm);
  386. printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
  387. return NULL;
  388. }
  389. ttm->be = bo_driver->create_ttm_backend_entry(bdev);
  390. if (!ttm->be) {
  391. ttm_tt_destroy(ttm);
  392. printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
  393. return NULL;
  394. }
  395. ttm->state = tt_unpopulated;
  396. return ttm;
  397. }
  398. void ttm_tt_unbind(struct ttm_tt *ttm)
  399. {
  400. int ret;
  401. struct ttm_backend *be = ttm->be;
  402. if (ttm->state == tt_bound) {
  403. ret = be->func->unbind(be);
  404. BUG_ON(ret);
  405. ttm->state = tt_unbound;
  406. }
  407. }
  408. int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  409. {
  410. int ret = 0;
  411. struct ttm_backend *be;
  412. if (!ttm)
  413. return -EINVAL;
  414. if (ttm->state == tt_bound)
  415. return 0;
  416. be = ttm->be;
  417. ret = ttm_tt_populate(ttm);
  418. if (ret)
  419. return ret;
  420. ret = be->func->bind(be, bo_mem);
  421. if (ret) {
  422. printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
  423. return ret;
  424. }
  425. ttm->state = tt_bound;
  426. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  427. ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
  428. return 0;
  429. }
  430. EXPORT_SYMBOL(ttm_tt_bind);
  431. static int ttm_tt_swapin(struct ttm_tt *ttm)
  432. {
  433. struct address_space *swap_space;
  434. struct file *swap_storage;
  435. struct page *from_page;
  436. struct page *to_page;
  437. void *from_virtual;
  438. void *to_virtual;
  439. int i;
  440. int ret;
  441. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  442. ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
  443. ttm->num_pages);
  444. if (unlikely(ret != 0))
  445. return ret;
  446. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  447. return 0;
  448. }
  449. swap_storage = ttm->swap_storage;
  450. BUG_ON(swap_storage == NULL);
  451. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  452. for (i = 0; i < ttm->num_pages; ++i) {
  453. from_page = read_mapping_page(swap_space, i, NULL);
  454. if (IS_ERR(from_page))
  455. goto out_err;
  456. to_page = __ttm_tt_get_page(ttm, i);
  457. if (unlikely(to_page == NULL))
  458. goto out_err;
  459. preempt_disable();
  460. from_virtual = kmap_atomic(from_page, KM_USER0);
  461. to_virtual = kmap_atomic(to_page, KM_USER1);
  462. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  463. kunmap_atomic(to_virtual, KM_USER1);
  464. kunmap_atomic(from_virtual, KM_USER0);
  465. preempt_enable();
  466. page_cache_release(from_page);
  467. }
  468. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
  469. fput(swap_storage);
  470. ttm->swap_storage = NULL;
  471. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  472. return 0;
  473. out_err:
  474. ttm_tt_free_alloced_pages(ttm);
  475. return -ENOMEM;
  476. }
  477. int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
  478. {
  479. struct address_space *swap_space;
  480. struct file *swap_storage;
  481. struct page *from_page;
  482. struct page *to_page;
  483. void *from_virtual;
  484. void *to_virtual;
  485. int i;
  486. BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
  487. BUG_ON(ttm->caching_state != tt_cached);
  488. /*
  489. * For user buffers, just unpin the pages, as there should be
  490. * vma references.
  491. */
  492. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  493. ttm_tt_free_user_pages(ttm);
  494. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  495. ttm->swap_storage = NULL;
  496. return 0;
  497. }
  498. if (!persistant_swap_storage) {
  499. swap_storage = shmem_file_setup("ttm swap",
  500. ttm->num_pages << PAGE_SHIFT,
  501. 0);
  502. if (unlikely(IS_ERR(swap_storage))) {
  503. printk(KERN_ERR "Failed allocating swap storage.\n");
  504. return -ENOMEM;
  505. }
  506. } else
  507. swap_storage = persistant_swap_storage;
  508. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  509. for (i = 0; i < ttm->num_pages; ++i) {
  510. from_page = ttm->pages[i];
  511. if (unlikely(from_page == NULL))
  512. continue;
  513. to_page = read_mapping_page(swap_space, i, NULL);
  514. if (unlikely(to_page == NULL))
  515. goto out_err;
  516. preempt_disable();
  517. from_virtual = kmap_atomic(from_page, KM_USER0);
  518. to_virtual = kmap_atomic(to_page, KM_USER1);
  519. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  520. kunmap_atomic(to_virtual, KM_USER1);
  521. kunmap_atomic(from_virtual, KM_USER0);
  522. preempt_enable();
  523. set_page_dirty(to_page);
  524. mark_page_accessed(to_page);
  525. page_cache_release(to_page);
  526. }
  527. ttm_tt_free_alloced_pages(ttm);
  528. ttm->swap_storage = swap_storage;
  529. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  530. if (persistant_swap_storage)
  531. ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
  532. return 0;
  533. out_err:
  534. if (!persistant_swap_storage)
  535. fput(swap_storage);
  536. return -ENOMEM;
  537. }