i915_gem.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  47. static int i915_gem_evict_something(struct drm_device *dev);
  48. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  49. struct drm_i915_gem_pwrite *args,
  50. struct drm_file *file_priv);
  51. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  52. unsigned long end)
  53. {
  54. drm_i915_private_t *dev_priv = dev->dev_private;
  55. if (start >= end ||
  56. (start & (PAGE_SIZE - 1)) != 0 ||
  57. (end & (PAGE_SIZE - 1)) != 0) {
  58. return -EINVAL;
  59. }
  60. drm_mm_init(&dev_priv->mm.gtt_space, start,
  61. end - start);
  62. dev->gtt_total = (uint32_t) (end - start);
  63. return 0;
  64. }
  65. int
  66. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  67. struct drm_file *file_priv)
  68. {
  69. struct drm_i915_gem_init *args = data;
  70. int ret;
  71. mutex_lock(&dev->struct_mutex);
  72. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  73. mutex_unlock(&dev->struct_mutex);
  74. return ret;
  75. }
  76. int
  77. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  78. struct drm_file *file_priv)
  79. {
  80. struct drm_i915_gem_get_aperture *args = data;
  81. if (!(dev->driver->driver_features & DRIVER_GEM))
  82. return -ENODEV;
  83. args->aper_size = dev->gtt_total;
  84. args->aper_available_size = (args->aper_size -
  85. atomic_read(&dev->pin_memory));
  86. return 0;
  87. }
  88. /**
  89. * Creates a new mm object and returns a handle to it.
  90. */
  91. int
  92. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_create *args = data;
  96. struct drm_gem_object *obj;
  97. int handle, ret;
  98. args->size = roundup(args->size, PAGE_SIZE);
  99. /* Allocate the new object */
  100. obj = drm_gem_object_alloc(dev, args->size);
  101. if (obj == NULL)
  102. return -ENOMEM;
  103. ret = drm_gem_handle_create(file_priv, obj, &handle);
  104. mutex_lock(&dev->struct_mutex);
  105. drm_gem_object_handle_unreference(obj);
  106. mutex_unlock(&dev->struct_mutex);
  107. if (ret)
  108. return ret;
  109. args->handle = handle;
  110. return 0;
  111. }
  112. static inline int
  113. fast_shmem_read(struct page **pages,
  114. loff_t page_base, int page_offset,
  115. char __user *data,
  116. int length)
  117. {
  118. char __iomem *vaddr;
  119. int unwritten;
  120. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  121. if (vaddr == NULL)
  122. return -ENOMEM;
  123. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  124. kunmap_atomic(vaddr, KM_USER0);
  125. if (unwritten)
  126. return -EFAULT;
  127. return 0;
  128. }
  129. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  130. {
  131. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  133. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  134. obj_priv->tiling_mode != I915_TILING_NONE;
  135. }
  136. static inline int
  137. slow_shmem_copy(struct page *dst_page,
  138. int dst_offset,
  139. struct page *src_page,
  140. int src_offset,
  141. int length)
  142. {
  143. char *dst_vaddr, *src_vaddr;
  144. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  145. if (dst_vaddr == NULL)
  146. return -ENOMEM;
  147. src_vaddr = kmap_atomic(src_page, KM_USER1);
  148. if (src_vaddr == NULL) {
  149. kunmap_atomic(dst_vaddr, KM_USER0);
  150. return -ENOMEM;
  151. }
  152. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  153. kunmap_atomic(src_vaddr, KM_USER1);
  154. kunmap_atomic(dst_vaddr, KM_USER0);
  155. return 0;
  156. }
  157. static inline int
  158. slow_shmem_bit17_copy(struct page *gpu_page,
  159. int gpu_offset,
  160. struct page *cpu_page,
  161. int cpu_offset,
  162. int length,
  163. int is_read)
  164. {
  165. char *gpu_vaddr, *cpu_vaddr;
  166. /* Use the unswizzled path if this page isn't affected. */
  167. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  168. if (is_read)
  169. return slow_shmem_copy(cpu_page, cpu_offset,
  170. gpu_page, gpu_offset, length);
  171. else
  172. return slow_shmem_copy(gpu_page, gpu_offset,
  173. cpu_page, cpu_offset, length);
  174. }
  175. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  176. if (gpu_vaddr == NULL)
  177. return -ENOMEM;
  178. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  179. if (cpu_vaddr == NULL) {
  180. kunmap_atomic(gpu_vaddr, KM_USER0);
  181. return -ENOMEM;
  182. }
  183. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  184. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  185. */
  186. while (length > 0) {
  187. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  188. int this_length = min(cacheline_end - gpu_offset, length);
  189. int swizzled_gpu_offset = gpu_offset ^ 64;
  190. if (is_read) {
  191. memcpy(cpu_vaddr + cpu_offset,
  192. gpu_vaddr + swizzled_gpu_offset,
  193. this_length);
  194. } else {
  195. memcpy(gpu_vaddr + swizzled_gpu_offset,
  196. cpu_vaddr + cpu_offset,
  197. this_length);
  198. }
  199. cpu_offset += this_length;
  200. gpu_offset += this_length;
  201. length -= this_length;
  202. }
  203. kunmap_atomic(cpu_vaddr, KM_USER1);
  204. kunmap_atomic(gpu_vaddr, KM_USER0);
  205. return 0;
  206. }
  207. /**
  208. * This is the fast shmem pread path, which attempts to copy_from_user directly
  209. * from the backing pages of the object to the user's address space. On a
  210. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  211. */
  212. static int
  213. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. ssize_t remain;
  219. loff_t offset, page_base;
  220. char __user *user_data;
  221. int page_offset, page_length;
  222. int ret;
  223. user_data = (char __user *) (uintptr_t) args->data_ptr;
  224. remain = args->size;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_object_get_pages(obj);
  227. if (ret != 0)
  228. goto fail_unlock;
  229. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  230. args->size);
  231. if (ret != 0)
  232. goto fail_put_pages;
  233. obj_priv = obj->driver_private;
  234. offset = args->offset;
  235. while (remain > 0) {
  236. /* Operation in this page
  237. *
  238. * page_base = page offset within aperture
  239. * page_offset = offset within page
  240. * page_length = bytes to copy for this page
  241. */
  242. page_base = (offset & ~(PAGE_SIZE-1));
  243. page_offset = offset & (PAGE_SIZE-1);
  244. page_length = remain;
  245. if ((page_offset + remain) > PAGE_SIZE)
  246. page_length = PAGE_SIZE - page_offset;
  247. ret = fast_shmem_read(obj_priv->pages,
  248. page_base, page_offset,
  249. user_data, page_length);
  250. if (ret)
  251. goto fail_put_pages;
  252. remain -= page_length;
  253. user_data += page_length;
  254. offset += page_length;
  255. }
  256. fail_put_pages:
  257. i915_gem_object_put_pages(obj);
  258. fail_unlock:
  259. mutex_unlock(&dev->struct_mutex);
  260. return ret;
  261. }
  262. /**
  263. * This is the fallback shmem pread path, which allocates temporary storage
  264. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  265. * can copy out of the object's backing pages while holding the struct mutex
  266. * and not take page faults.
  267. */
  268. static int
  269. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  270. struct drm_i915_gem_pread *args,
  271. struct drm_file *file_priv)
  272. {
  273. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  274. struct mm_struct *mm = current->mm;
  275. struct page **user_pages;
  276. ssize_t remain;
  277. loff_t offset, pinned_pages, i;
  278. loff_t first_data_page, last_data_page, num_pages;
  279. int shmem_page_index, shmem_page_offset;
  280. int data_page_index, data_page_offset;
  281. int page_length;
  282. int ret;
  283. uint64_t data_ptr = args->data_ptr;
  284. int do_bit17_swizzling;
  285. remain = args->size;
  286. /* Pin the user pages containing the data. We can't fault while
  287. * holding the struct mutex, yet we want to hold it while
  288. * dereferencing the user data.
  289. */
  290. first_data_page = data_ptr / PAGE_SIZE;
  291. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  292. num_pages = last_data_page - first_data_page + 1;
  293. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  294. if (user_pages == NULL)
  295. return -ENOMEM;
  296. down_read(&mm->mmap_sem);
  297. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  298. num_pages, 1, 0, user_pages, NULL);
  299. up_read(&mm->mmap_sem);
  300. if (pinned_pages < num_pages) {
  301. ret = -EFAULT;
  302. goto fail_put_user_pages;
  303. }
  304. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  305. mutex_lock(&dev->struct_mutex);
  306. ret = i915_gem_object_get_pages(obj);
  307. if (ret != 0)
  308. goto fail_unlock;
  309. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  310. args->size);
  311. if (ret != 0)
  312. goto fail_put_pages;
  313. obj_priv = obj->driver_private;
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * shmem_page_index = page number within shmem file
  319. * shmem_page_offset = offset within page in shmem file
  320. * data_page_index = page number in get_user_pages return
  321. * data_page_offset = offset with data_page_index page.
  322. * page_length = bytes to copy for this page
  323. */
  324. shmem_page_index = offset / PAGE_SIZE;
  325. shmem_page_offset = offset & ~PAGE_MASK;
  326. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  327. data_page_offset = data_ptr & ~PAGE_MASK;
  328. page_length = remain;
  329. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  330. page_length = PAGE_SIZE - shmem_page_offset;
  331. if ((data_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - data_page_offset;
  333. if (do_bit17_swizzling) {
  334. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  335. shmem_page_offset,
  336. user_pages[data_page_index],
  337. data_page_offset,
  338. page_length,
  339. 1);
  340. } else {
  341. ret = slow_shmem_copy(user_pages[data_page_index],
  342. data_page_offset,
  343. obj_priv->pages[shmem_page_index],
  344. shmem_page_offset,
  345. page_length);
  346. }
  347. if (ret)
  348. goto fail_put_pages;
  349. remain -= page_length;
  350. data_ptr += page_length;
  351. offset += page_length;
  352. }
  353. fail_put_pages:
  354. i915_gem_object_put_pages(obj);
  355. fail_unlock:
  356. mutex_unlock(&dev->struct_mutex);
  357. fail_put_user_pages:
  358. for (i = 0; i < pinned_pages; i++) {
  359. SetPageDirty(user_pages[i]);
  360. page_cache_release(user_pages[i]);
  361. }
  362. drm_free_large(user_pages);
  363. return ret;
  364. }
  365. /**
  366. * Reads data from the object referenced by handle.
  367. *
  368. * On error, the contents of *data are undefined.
  369. */
  370. int
  371. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  372. struct drm_file *file_priv)
  373. {
  374. struct drm_i915_gem_pread *args = data;
  375. struct drm_gem_object *obj;
  376. struct drm_i915_gem_object *obj_priv;
  377. int ret;
  378. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  379. if (obj == NULL)
  380. return -EBADF;
  381. obj_priv = obj->driver_private;
  382. /* Bounds check source.
  383. *
  384. * XXX: This could use review for overflow issues...
  385. */
  386. if (args->offset > obj->size || args->size > obj->size ||
  387. args->offset + args->size > obj->size) {
  388. drm_gem_object_unreference(obj);
  389. return -EINVAL;
  390. }
  391. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  392. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  393. } else {
  394. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  395. if (ret != 0)
  396. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  397. file_priv);
  398. }
  399. drm_gem_object_unreference(obj);
  400. return ret;
  401. }
  402. /* This is the fast write path which cannot handle
  403. * page faults in the source data
  404. */
  405. static inline int
  406. fast_user_write(struct io_mapping *mapping,
  407. loff_t page_base, int page_offset,
  408. char __user *user_data,
  409. int length)
  410. {
  411. char *vaddr_atomic;
  412. unsigned long unwritten;
  413. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  414. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  415. user_data, length);
  416. io_mapping_unmap_atomic(vaddr_atomic);
  417. if (unwritten)
  418. return -EFAULT;
  419. return 0;
  420. }
  421. /* Here's the write path which can sleep for
  422. * page faults
  423. */
  424. static inline int
  425. slow_kernel_write(struct io_mapping *mapping,
  426. loff_t gtt_base, int gtt_offset,
  427. struct page *user_page, int user_offset,
  428. int length)
  429. {
  430. char *src_vaddr, *dst_vaddr;
  431. unsigned long unwritten;
  432. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  433. src_vaddr = kmap_atomic(user_page, KM_USER1);
  434. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  435. src_vaddr + user_offset,
  436. length);
  437. kunmap_atomic(src_vaddr, KM_USER1);
  438. io_mapping_unmap_atomic(dst_vaddr);
  439. if (unwritten)
  440. return -EFAULT;
  441. return 0;
  442. }
  443. static inline int
  444. fast_shmem_write(struct page **pages,
  445. loff_t page_base, int page_offset,
  446. char __user *data,
  447. int length)
  448. {
  449. char __iomem *vaddr;
  450. unsigned long unwritten;
  451. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  452. if (vaddr == NULL)
  453. return -ENOMEM;
  454. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  455. kunmap_atomic(vaddr, KM_USER0);
  456. if (unwritten)
  457. return -EFAULT;
  458. return 0;
  459. }
  460. /**
  461. * This is the fast pwrite path, where we copy the data directly from the
  462. * user into the GTT, uncached.
  463. */
  464. static int
  465. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  466. struct drm_i915_gem_pwrite *args,
  467. struct drm_file *file_priv)
  468. {
  469. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  470. drm_i915_private_t *dev_priv = dev->dev_private;
  471. ssize_t remain;
  472. loff_t offset, page_base;
  473. char __user *user_data;
  474. int page_offset, page_length;
  475. int ret;
  476. user_data = (char __user *) (uintptr_t) args->data_ptr;
  477. remain = args->size;
  478. if (!access_ok(VERIFY_READ, user_data, remain))
  479. return -EFAULT;
  480. mutex_lock(&dev->struct_mutex);
  481. ret = i915_gem_object_pin(obj, 0);
  482. if (ret) {
  483. mutex_unlock(&dev->struct_mutex);
  484. return ret;
  485. }
  486. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  487. if (ret)
  488. goto fail;
  489. obj_priv = obj->driver_private;
  490. offset = obj_priv->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = (offset & ~(PAGE_SIZE-1));
  499. page_offset = offset & (PAGE_SIZE-1);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  504. page_offset, user_data, page_length);
  505. /* If we get a fault while copying data, then (presumably) our
  506. * source page isn't available. Return the error and we'll
  507. * retry in the slow path.
  508. */
  509. if (ret)
  510. goto fail;
  511. remain -= page_length;
  512. user_data += page_length;
  513. offset += page_length;
  514. }
  515. fail:
  516. i915_gem_object_unpin(obj);
  517. mutex_unlock(&dev->struct_mutex);
  518. return ret;
  519. }
  520. /**
  521. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  522. * the memory and maps it using kmap_atomic for copying.
  523. *
  524. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  525. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  526. */
  527. static int
  528. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  529. struct drm_i915_gem_pwrite *args,
  530. struct drm_file *file_priv)
  531. {
  532. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  533. drm_i915_private_t *dev_priv = dev->dev_private;
  534. ssize_t remain;
  535. loff_t gtt_page_base, offset;
  536. loff_t first_data_page, last_data_page, num_pages;
  537. loff_t pinned_pages, i;
  538. struct page **user_pages;
  539. struct mm_struct *mm = current->mm;
  540. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  541. int ret;
  542. uint64_t data_ptr = args->data_ptr;
  543. remain = args->size;
  544. /* Pin the user pages containing the data. We can't fault while
  545. * holding the struct mutex, and all of the pwrite implementations
  546. * want to hold it while dereferencing the user data.
  547. */
  548. first_data_page = data_ptr / PAGE_SIZE;
  549. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  550. num_pages = last_data_page - first_data_page + 1;
  551. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  552. if (user_pages == NULL)
  553. return -ENOMEM;
  554. down_read(&mm->mmap_sem);
  555. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  556. num_pages, 0, 0, user_pages, NULL);
  557. up_read(&mm->mmap_sem);
  558. if (pinned_pages < num_pages) {
  559. ret = -EFAULT;
  560. goto out_unpin_pages;
  561. }
  562. mutex_lock(&dev->struct_mutex);
  563. ret = i915_gem_object_pin(obj, 0);
  564. if (ret)
  565. goto out_unlock;
  566. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  567. if (ret)
  568. goto out_unpin_object;
  569. obj_priv = obj->driver_private;
  570. offset = obj_priv->gtt_offset + args->offset;
  571. while (remain > 0) {
  572. /* Operation in this page
  573. *
  574. * gtt_page_base = page offset within aperture
  575. * gtt_page_offset = offset within page in aperture
  576. * data_page_index = page number in get_user_pages return
  577. * data_page_offset = offset with data_page_index page.
  578. * page_length = bytes to copy for this page
  579. */
  580. gtt_page_base = offset & PAGE_MASK;
  581. gtt_page_offset = offset & ~PAGE_MASK;
  582. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  583. data_page_offset = data_ptr & ~PAGE_MASK;
  584. page_length = remain;
  585. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  586. page_length = PAGE_SIZE - gtt_page_offset;
  587. if ((data_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - data_page_offset;
  589. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  590. gtt_page_base, gtt_page_offset,
  591. user_pages[data_page_index],
  592. data_page_offset,
  593. page_length);
  594. /* If we get a fault while copying data, then (presumably) our
  595. * source page isn't available. Return the error and we'll
  596. * retry in the slow path.
  597. */
  598. if (ret)
  599. goto out_unpin_object;
  600. remain -= page_length;
  601. offset += page_length;
  602. data_ptr += page_length;
  603. }
  604. out_unpin_object:
  605. i915_gem_object_unpin(obj);
  606. out_unlock:
  607. mutex_unlock(&dev->struct_mutex);
  608. out_unpin_pages:
  609. for (i = 0; i < pinned_pages; i++)
  610. page_cache_release(user_pages[i]);
  611. drm_free_large(user_pages);
  612. return ret;
  613. }
  614. /**
  615. * This is the fast shmem pwrite path, which attempts to directly
  616. * copy_from_user into the kmapped pages backing the object.
  617. */
  618. static int
  619. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  620. struct drm_i915_gem_pwrite *args,
  621. struct drm_file *file_priv)
  622. {
  623. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  624. ssize_t remain;
  625. loff_t offset, page_base;
  626. char __user *user_data;
  627. int page_offset, page_length;
  628. int ret;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. mutex_lock(&dev->struct_mutex);
  632. ret = i915_gem_object_get_pages(obj);
  633. if (ret != 0)
  634. goto fail_unlock;
  635. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  636. if (ret != 0)
  637. goto fail_put_pages;
  638. obj_priv = obj->driver_private;
  639. offset = args->offset;
  640. obj_priv->dirty = 1;
  641. while (remain > 0) {
  642. /* Operation in this page
  643. *
  644. * page_base = page offset within aperture
  645. * page_offset = offset within page
  646. * page_length = bytes to copy for this page
  647. */
  648. page_base = (offset & ~(PAGE_SIZE-1));
  649. page_offset = offset & (PAGE_SIZE-1);
  650. page_length = remain;
  651. if ((page_offset + remain) > PAGE_SIZE)
  652. page_length = PAGE_SIZE - page_offset;
  653. ret = fast_shmem_write(obj_priv->pages,
  654. page_base, page_offset,
  655. user_data, page_length);
  656. if (ret)
  657. goto fail_put_pages;
  658. remain -= page_length;
  659. user_data += page_length;
  660. offset += page_length;
  661. }
  662. fail_put_pages:
  663. i915_gem_object_put_pages(obj);
  664. fail_unlock:
  665. mutex_unlock(&dev->struct_mutex);
  666. return ret;
  667. }
  668. /**
  669. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  670. * the memory and maps it using kmap_atomic for copying.
  671. *
  672. * This avoids taking mmap_sem for faulting on the user's address while the
  673. * struct_mutex is held.
  674. */
  675. static int
  676. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  677. struct drm_i915_gem_pwrite *args,
  678. struct drm_file *file_priv)
  679. {
  680. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  681. struct mm_struct *mm = current->mm;
  682. struct page **user_pages;
  683. ssize_t remain;
  684. loff_t offset, pinned_pages, i;
  685. loff_t first_data_page, last_data_page, num_pages;
  686. int shmem_page_index, shmem_page_offset;
  687. int data_page_index, data_page_offset;
  688. int page_length;
  689. int ret;
  690. uint64_t data_ptr = args->data_ptr;
  691. int do_bit17_swizzling;
  692. remain = args->size;
  693. /* Pin the user pages containing the data. We can't fault while
  694. * holding the struct mutex, and all of the pwrite implementations
  695. * want to hold it while dereferencing the user data.
  696. */
  697. first_data_page = data_ptr / PAGE_SIZE;
  698. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  699. num_pages = last_data_page - first_data_page + 1;
  700. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  701. if (user_pages == NULL)
  702. return -ENOMEM;
  703. down_read(&mm->mmap_sem);
  704. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  705. num_pages, 0, 0, user_pages, NULL);
  706. up_read(&mm->mmap_sem);
  707. if (pinned_pages < num_pages) {
  708. ret = -EFAULT;
  709. goto fail_put_user_pages;
  710. }
  711. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  712. mutex_lock(&dev->struct_mutex);
  713. ret = i915_gem_object_get_pages(obj);
  714. if (ret != 0)
  715. goto fail_unlock;
  716. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  717. if (ret != 0)
  718. goto fail_put_pages;
  719. obj_priv = obj->driver_private;
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. /* Operation in this page
  724. *
  725. * shmem_page_index = page number within shmem file
  726. * shmem_page_offset = offset within page in shmem file
  727. * data_page_index = page number in get_user_pages return
  728. * data_page_offset = offset with data_page_index page.
  729. * page_length = bytes to copy for this page
  730. */
  731. shmem_page_index = offset / PAGE_SIZE;
  732. shmem_page_offset = offset & ~PAGE_MASK;
  733. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  734. data_page_offset = data_ptr & ~PAGE_MASK;
  735. page_length = remain;
  736. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  737. page_length = PAGE_SIZE - shmem_page_offset;
  738. if ((data_page_offset + page_length) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - data_page_offset;
  740. if (do_bit17_swizzling) {
  741. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  742. shmem_page_offset,
  743. user_pages[data_page_index],
  744. data_page_offset,
  745. page_length,
  746. 0);
  747. } else {
  748. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  749. shmem_page_offset,
  750. user_pages[data_page_index],
  751. data_page_offset,
  752. page_length);
  753. }
  754. if (ret)
  755. goto fail_put_pages;
  756. remain -= page_length;
  757. data_ptr += page_length;
  758. offset += page_length;
  759. }
  760. fail_put_pages:
  761. i915_gem_object_put_pages(obj);
  762. fail_unlock:
  763. mutex_unlock(&dev->struct_mutex);
  764. fail_put_user_pages:
  765. for (i = 0; i < pinned_pages; i++)
  766. page_cache_release(user_pages[i]);
  767. drm_free_large(user_pages);
  768. return ret;
  769. }
  770. /**
  771. * Writes data to the object referenced by handle.
  772. *
  773. * On error, the contents of the buffer that were to be modified are undefined.
  774. */
  775. int
  776. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  777. struct drm_file *file_priv)
  778. {
  779. struct drm_i915_gem_pwrite *args = data;
  780. struct drm_gem_object *obj;
  781. struct drm_i915_gem_object *obj_priv;
  782. int ret = 0;
  783. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  784. if (obj == NULL)
  785. return -EBADF;
  786. obj_priv = obj->driver_private;
  787. /* Bounds check destination.
  788. *
  789. * XXX: This could use review for overflow issues...
  790. */
  791. if (args->offset > obj->size || args->size > obj->size ||
  792. args->offset + args->size > obj->size) {
  793. drm_gem_object_unreference(obj);
  794. return -EINVAL;
  795. }
  796. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  797. * it would end up going through the fenced access, and we'll get
  798. * different detiling behavior between reading and writing.
  799. * pread/pwrite currently are reading and writing from the CPU
  800. * perspective, requiring manual detiling by the client.
  801. */
  802. if (obj_priv->phys_obj)
  803. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  804. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  805. dev->gtt_total != 0) {
  806. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  807. if (ret == -EFAULT) {
  808. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  809. file_priv);
  810. }
  811. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  812. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  813. } else {
  814. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  815. if (ret == -EFAULT) {
  816. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  817. file_priv);
  818. }
  819. }
  820. #if WATCH_PWRITE
  821. if (ret)
  822. DRM_INFO("pwrite failed %d\n", ret);
  823. #endif
  824. drm_gem_object_unreference(obj);
  825. return ret;
  826. }
  827. /**
  828. * Called when user space prepares to use an object with the CPU, either
  829. * through the mmap ioctl's mapping or a GTT mapping.
  830. */
  831. int
  832. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  833. struct drm_file *file_priv)
  834. {
  835. struct drm_i915_gem_set_domain *args = data;
  836. struct drm_gem_object *obj;
  837. uint32_t read_domains = args->read_domains;
  838. uint32_t write_domain = args->write_domain;
  839. int ret;
  840. if (!(dev->driver->driver_features & DRIVER_GEM))
  841. return -ENODEV;
  842. /* Only handle setting domains to types used by the CPU. */
  843. if (write_domain & I915_GEM_GPU_DOMAINS)
  844. return -EINVAL;
  845. if (read_domains & I915_GEM_GPU_DOMAINS)
  846. return -EINVAL;
  847. /* Having something in the write domain implies it's in the read
  848. * domain, and only that read domain. Enforce that in the request.
  849. */
  850. if (write_domain != 0 && read_domains != write_domain)
  851. return -EINVAL;
  852. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  853. if (obj == NULL)
  854. return -EBADF;
  855. mutex_lock(&dev->struct_mutex);
  856. #if WATCH_BUF
  857. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  858. obj, obj->size, read_domains, write_domain);
  859. #endif
  860. if (read_domains & I915_GEM_DOMAIN_GTT) {
  861. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  862. /* Silently promote "you're not bound, there was nothing to do"
  863. * to success, since the client was just asking us to
  864. * make sure everything was done.
  865. */
  866. if (ret == -EINVAL)
  867. ret = 0;
  868. } else {
  869. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  870. }
  871. drm_gem_object_unreference(obj);
  872. mutex_unlock(&dev->struct_mutex);
  873. return ret;
  874. }
  875. /**
  876. * Called when user space has done writes to this buffer
  877. */
  878. int
  879. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  880. struct drm_file *file_priv)
  881. {
  882. struct drm_i915_gem_sw_finish *args = data;
  883. struct drm_gem_object *obj;
  884. struct drm_i915_gem_object *obj_priv;
  885. int ret = 0;
  886. if (!(dev->driver->driver_features & DRIVER_GEM))
  887. return -ENODEV;
  888. mutex_lock(&dev->struct_mutex);
  889. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  890. if (obj == NULL) {
  891. mutex_unlock(&dev->struct_mutex);
  892. return -EBADF;
  893. }
  894. #if WATCH_BUF
  895. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  896. __func__, args->handle, obj, obj->size);
  897. #endif
  898. obj_priv = obj->driver_private;
  899. /* Pinned buffers may be scanout, so flush the cache */
  900. if (obj_priv->pin_count)
  901. i915_gem_object_flush_cpu_write_domain(obj);
  902. drm_gem_object_unreference(obj);
  903. mutex_unlock(&dev->struct_mutex);
  904. return ret;
  905. }
  906. /**
  907. * Maps the contents of an object, returning the address it is mapped
  908. * into.
  909. *
  910. * While the mapping holds a reference on the contents of the object, it doesn't
  911. * imply a ref on the object itself.
  912. */
  913. int
  914. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  915. struct drm_file *file_priv)
  916. {
  917. struct drm_i915_gem_mmap *args = data;
  918. struct drm_gem_object *obj;
  919. loff_t offset;
  920. unsigned long addr;
  921. if (!(dev->driver->driver_features & DRIVER_GEM))
  922. return -ENODEV;
  923. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  924. if (obj == NULL)
  925. return -EBADF;
  926. offset = args->offset;
  927. down_write(&current->mm->mmap_sem);
  928. addr = do_mmap(obj->filp, 0, args->size,
  929. PROT_READ | PROT_WRITE, MAP_SHARED,
  930. args->offset);
  931. up_write(&current->mm->mmap_sem);
  932. mutex_lock(&dev->struct_mutex);
  933. drm_gem_object_unreference(obj);
  934. mutex_unlock(&dev->struct_mutex);
  935. if (IS_ERR((void *)addr))
  936. return addr;
  937. args->addr_ptr = (uint64_t) addr;
  938. return 0;
  939. }
  940. /**
  941. * i915_gem_fault - fault a page into the GTT
  942. * vma: VMA in question
  943. * vmf: fault info
  944. *
  945. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  946. * from userspace. The fault handler takes care of binding the object to
  947. * the GTT (if needed), allocating and programming a fence register (again,
  948. * only if needed based on whether the old reg is still valid or the object
  949. * is tiled) and inserting a new PTE into the faulting process.
  950. *
  951. * Note that the faulting process may involve evicting existing objects
  952. * from the GTT and/or fence registers to make room. So performance may
  953. * suffer if the GTT working set is large or there are few fence registers
  954. * left.
  955. */
  956. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  957. {
  958. struct drm_gem_object *obj = vma->vm_private_data;
  959. struct drm_device *dev = obj->dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  962. pgoff_t page_offset;
  963. unsigned long pfn;
  964. int ret = 0;
  965. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  966. /* We don't use vmf->pgoff since that has the fake offset */
  967. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  968. PAGE_SHIFT;
  969. /* Now bind it into the GTT if needed */
  970. mutex_lock(&dev->struct_mutex);
  971. if (!obj_priv->gtt_space) {
  972. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  973. if (ret) {
  974. mutex_unlock(&dev->struct_mutex);
  975. return VM_FAULT_SIGBUS;
  976. }
  977. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  978. if (ret) {
  979. mutex_unlock(&dev->struct_mutex);
  980. return VM_FAULT_SIGBUS;
  981. }
  982. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  983. }
  984. /* Need a new fence register? */
  985. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  986. obj_priv->tiling_mode != I915_TILING_NONE) {
  987. ret = i915_gem_object_get_fence_reg(obj);
  988. if (ret) {
  989. mutex_unlock(&dev->struct_mutex);
  990. return VM_FAULT_SIGBUS;
  991. }
  992. }
  993. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  994. page_offset;
  995. /* Finally, remap it using the new GTT offset */
  996. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  997. mutex_unlock(&dev->struct_mutex);
  998. switch (ret) {
  999. case -ENOMEM:
  1000. case -EAGAIN:
  1001. return VM_FAULT_OOM;
  1002. case -EFAULT:
  1003. case -EINVAL:
  1004. return VM_FAULT_SIGBUS;
  1005. default:
  1006. return VM_FAULT_NOPAGE;
  1007. }
  1008. }
  1009. /**
  1010. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1011. * @obj: obj in question
  1012. *
  1013. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1014. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1015. * up the object based on the offset and sets up the various memory mapping
  1016. * structures.
  1017. *
  1018. * This routine allocates and attaches a fake offset for @obj.
  1019. */
  1020. static int
  1021. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1022. {
  1023. struct drm_device *dev = obj->dev;
  1024. struct drm_gem_mm *mm = dev->mm_private;
  1025. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1026. struct drm_map_list *list;
  1027. struct drm_local_map *map;
  1028. int ret = 0;
  1029. /* Set the object up for mmap'ing */
  1030. list = &obj->map_list;
  1031. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1032. if (!list->map)
  1033. return -ENOMEM;
  1034. map = list->map;
  1035. map->type = _DRM_GEM;
  1036. map->size = obj->size;
  1037. map->handle = obj;
  1038. /* Get a DRM GEM mmap offset allocated... */
  1039. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1040. obj->size / PAGE_SIZE, 0, 0);
  1041. if (!list->file_offset_node) {
  1042. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1043. ret = -ENOMEM;
  1044. goto out_free_list;
  1045. }
  1046. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1047. obj->size / PAGE_SIZE, 0);
  1048. if (!list->file_offset_node) {
  1049. ret = -ENOMEM;
  1050. goto out_free_list;
  1051. }
  1052. list->hash.key = list->file_offset_node->start;
  1053. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1054. DRM_ERROR("failed to add to map hash\n");
  1055. goto out_free_mm;
  1056. }
  1057. /* By now we should be all set, any drm_mmap request on the offset
  1058. * below will get to our mmap & fault handler */
  1059. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1060. return 0;
  1061. out_free_mm:
  1062. drm_mm_put_block(list->file_offset_node);
  1063. out_free_list:
  1064. kfree(list->map);
  1065. return ret;
  1066. }
  1067. /**
  1068. * i915_gem_release_mmap - remove physical page mappings
  1069. * @obj: obj in question
  1070. *
  1071. * Preserve the reservation of the mmaping with the DRM core code, but
  1072. * relinquish ownership of the pages back to the system.
  1073. *
  1074. * It is vital that we remove the page mapping if we have mapped a tiled
  1075. * object through the GTT and then lose the fence register due to
  1076. * resource pressure. Similarly if the object has been moved out of the
  1077. * aperture, than pages mapped into userspace must be revoked. Removing the
  1078. * mapping will then trigger a page fault on the next user access, allowing
  1079. * fixup by i915_gem_fault().
  1080. */
  1081. void
  1082. i915_gem_release_mmap(struct drm_gem_object *obj)
  1083. {
  1084. struct drm_device *dev = obj->dev;
  1085. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1086. if (dev->dev_mapping)
  1087. unmap_mapping_range(dev->dev_mapping,
  1088. obj_priv->mmap_offset, obj->size, 1);
  1089. }
  1090. static void
  1091. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1092. {
  1093. struct drm_device *dev = obj->dev;
  1094. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1095. struct drm_gem_mm *mm = dev->mm_private;
  1096. struct drm_map_list *list;
  1097. list = &obj->map_list;
  1098. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1099. if (list->file_offset_node) {
  1100. drm_mm_put_block(list->file_offset_node);
  1101. list->file_offset_node = NULL;
  1102. }
  1103. if (list->map) {
  1104. kfree(list->map);
  1105. list->map = NULL;
  1106. }
  1107. obj_priv->mmap_offset = 0;
  1108. }
  1109. /**
  1110. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1111. * @obj: object to check
  1112. *
  1113. * Return the required GTT alignment for an object, taking into account
  1114. * potential fence register mapping if needed.
  1115. */
  1116. static uint32_t
  1117. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1118. {
  1119. struct drm_device *dev = obj->dev;
  1120. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1121. int start, i;
  1122. /*
  1123. * Minimum alignment is 4k (GTT page size), but might be greater
  1124. * if a fence register is needed for the object.
  1125. */
  1126. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1127. return 4096;
  1128. /*
  1129. * Previous chips need to be aligned to the size of the smallest
  1130. * fence register that can contain the object.
  1131. */
  1132. if (IS_I9XX(dev))
  1133. start = 1024*1024;
  1134. else
  1135. start = 512*1024;
  1136. for (i = start; i < obj->size; i <<= 1)
  1137. ;
  1138. return i;
  1139. }
  1140. /**
  1141. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1142. * @dev: DRM device
  1143. * @data: GTT mapping ioctl data
  1144. * @file_priv: GEM object info
  1145. *
  1146. * Simply returns the fake offset to userspace so it can mmap it.
  1147. * The mmap call will end up in drm_gem_mmap(), which will set things
  1148. * up so we can get faults in the handler above.
  1149. *
  1150. * The fault handler will take care of binding the object into the GTT
  1151. * (since it may have been evicted to make room for something), allocating
  1152. * a fence register, and mapping the appropriate aperture address into
  1153. * userspace.
  1154. */
  1155. int
  1156. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1157. struct drm_file *file_priv)
  1158. {
  1159. struct drm_i915_gem_mmap_gtt *args = data;
  1160. struct drm_i915_private *dev_priv = dev->dev_private;
  1161. struct drm_gem_object *obj;
  1162. struct drm_i915_gem_object *obj_priv;
  1163. int ret;
  1164. if (!(dev->driver->driver_features & DRIVER_GEM))
  1165. return -ENODEV;
  1166. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1167. if (obj == NULL)
  1168. return -EBADF;
  1169. mutex_lock(&dev->struct_mutex);
  1170. obj_priv = obj->driver_private;
  1171. if (!obj_priv->mmap_offset) {
  1172. ret = i915_gem_create_mmap_offset(obj);
  1173. if (ret) {
  1174. drm_gem_object_unreference(obj);
  1175. mutex_unlock(&dev->struct_mutex);
  1176. return ret;
  1177. }
  1178. }
  1179. args->offset = obj_priv->mmap_offset;
  1180. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1181. /* Make sure the alignment is correct for fence regs etc */
  1182. if (obj_priv->agp_mem &&
  1183. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1184. drm_gem_object_unreference(obj);
  1185. mutex_unlock(&dev->struct_mutex);
  1186. return -EINVAL;
  1187. }
  1188. /*
  1189. * Pull it into the GTT so that we have a page list (makes the
  1190. * initial fault faster and any subsequent flushing possible).
  1191. */
  1192. if (!obj_priv->agp_mem) {
  1193. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1194. if (ret) {
  1195. drm_gem_object_unreference(obj);
  1196. mutex_unlock(&dev->struct_mutex);
  1197. return ret;
  1198. }
  1199. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1200. }
  1201. drm_gem_object_unreference(obj);
  1202. mutex_unlock(&dev->struct_mutex);
  1203. return 0;
  1204. }
  1205. void
  1206. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1207. {
  1208. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1209. int page_count = obj->size / PAGE_SIZE;
  1210. int i;
  1211. BUG_ON(obj_priv->pages_refcount == 0);
  1212. if (--obj_priv->pages_refcount != 0)
  1213. return;
  1214. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1215. i915_gem_object_save_bit_17_swizzle(obj);
  1216. for (i = 0; i < page_count; i++)
  1217. if (obj_priv->pages[i] != NULL) {
  1218. if (obj_priv->dirty)
  1219. set_page_dirty(obj_priv->pages[i]);
  1220. mark_page_accessed(obj_priv->pages[i]);
  1221. page_cache_release(obj_priv->pages[i]);
  1222. }
  1223. obj_priv->dirty = 0;
  1224. drm_free_large(obj_priv->pages);
  1225. obj_priv->pages = NULL;
  1226. }
  1227. static void
  1228. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1229. {
  1230. struct drm_device *dev = obj->dev;
  1231. drm_i915_private_t *dev_priv = dev->dev_private;
  1232. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1233. /* Add a reference if we're newly entering the active list. */
  1234. if (!obj_priv->active) {
  1235. drm_gem_object_reference(obj);
  1236. obj_priv->active = 1;
  1237. }
  1238. /* Move from whatever list we were on to the tail of execution. */
  1239. spin_lock(&dev_priv->mm.active_list_lock);
  1240. list_move_tail(&obj_priv->list,
  1241. &dev_priv->mm.active_list);
  1242. spin_unlock(&dev_priv->mm.active_list_lock);
  1243. obj_priv->last_rendering_seqno = seqno;
  1244. }
  1245. static void
  1246. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1247. {
  1248. struct drm_device *dev = obj->dev;
  1249. drm_i915_private_t *dev_priv = dev->dev_private;
  1250. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1251. BUG_ON(!obj_priv->active);
  1252. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1253. obj_priv->last_rendering_seqno = 0;
  1254. }
  1255. static void
  1256. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1257. {
  1258. struct drm_device *dev = obj->dev;
  1259. drm_i915_private_t *dev_priv = dev->dev_private;
  1260. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1261. i915_verify_inactive(dev, __FILE__, __LINE__);
  1262. if (obj_priv->pin_count != 0)
  1263. list_del_init(&obj_priv->list);
  1264. else
  1265. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1266. obj_priv->last_rendering_seqno = 0;
  1267. if (obj_priv->active) {
  1268. obj_priv->active = 0;
  1269. drm_gem_object_unreference(obj);
  1270. }
  1271. i915_verify_inactive(dev, __FILE__, __LINE__);
  1272. }
  1273. /**
  1274. * Creates a new sequence number, emitting a write of it to the status page
  1275. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1276. *
  1277. * Must be called with struct_lock held.
  1278. *
  1279. * Returned sequence numbers are nonzero on success.
  1280. */
  1281. static uint32_t
  1282. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1283. uint32_t flush_domains)
  1284. {
  1285. drm_i915_private_t *dev_priv = dev->dev_private;
  1286. struct drm_i915_file_private *i915_file_priv = NULL;
  1287. struct drm_i915_gem_request *request;
  1288. uint32_t seqno;
  1289. int was_empty;
  1290. RING_LOCALS;
  1291. if (file_priv != NULL)
  1292. i915_file_priv = file_priv->driver_priv;
  1293. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1294. if (request == NULL)
  1295. return 0;
  1296. /* Grab the seqno we're going to make this request be, and bump the
  1297. * next (skipping 0 so it can be the reserved no-seqno value).
  1298. */
  1299. seqno = dev_priv->mm.next_gem_seqno;
  1300. dev_priv->mm.next_gem_seqno++;
  1301. if (dev_priv->mm.next_gem_seqno == 0)
  1302. dev_priv->mm.next_gem_seqno++;
  1303. BEGIN_LP_RING(4);
  1304. OUT_RING(MI_STORE_DWORD_INDEX);
  1305. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1306. OUT_RING(seqno);
  1307. OUT_RING(MI_USER_INTERRUPT);
  1308. ADVANCE_LP_RING();
  1309. DRM_DEBUG("%d\n", seqno);
  1310. request->seqno = seqno;
  1311. request->emitted_jiffies = jiffies;
  1312. was_empty = list_empty(&dev_priv->mm.request_list);
  1313. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1314. if (i915_file_priv) {
  1315. list_add_tail(&request->client_list,
  1316. &i915_file_priv->mm.request_list);
  1317. } else {
  1318. INIT_LIST_HEAD(&request->client_list);
  1319. }
  1320. /* Associate any objects on the flushing list matching the write
  1321. * domain we're flushing with our flush.
  1322. */
  1323. if (flush_domains != 0) {
  1324. struct drm_i915_gem_object *obj_priv, *next;
  1325. list_for_each_entry_safe(obj_priv, next,
  1326. &dev_priv->mm.flushing_list, list) {
  1327. struct drm_gem_object *obj = obj_priv->obj;
  1328. if ((obj->write_domain & flush_domains) ==
  1329. obj->write_domain) {
  1330. obj->write_domain = 0;
  1331. i915_gem_object_move_to_active(obj, seqno);
  1332. }
  1333. }
  1334. }
  1335. if (was_empty && !dev_priv->mm.suspended)
  1336. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1337. return seqno;
  1338. }
  1339. /**
  1340. * Command execution barrier
  1341. *
  1342. * Ensures that all commands in the ring are finished
  1343. * before signalling the CPU
  1344. */
  1345. static uint32_t
  1346. i915_retire_commands(struct drm_device *dev)
  1347. {
  1348. drm_i915_private_t *dev_priv = dev->dev_private;
  1349. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1350. uint32_t flush_domains = 0;
  1351. RING_LOCALS;
  1352. /* The sampler always gets flushed on i965 (sigh) */
  1353. if (IS_I965G(dev))
  1354. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1355. BEGIN_LP_RING(2);
  1356. OUT_RING(cmd);
  1357. OUT_RING(0); /* noop */
  1358. ADVANCE_LP_RING();
  1359. return flush_domains;
  1360. }
  1361. /**
  1362. * Moves buffers associated only with the given active seqno from the active
  1363. * to inactive list, potentially freeing them.
  1364. */
  1365. static void
  1366. i915_gem_retire_request(struct drm_device *dev,
  1367. struct drm_i915_gem_request *request)
  1368. {
  1369. drm_i915_private_t *dev_priv = dev->dev_private;
  1370. /* Move any buffers on the active list that are no longer referenced
  1371. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1372. */
  1373. spin_lock(&dev_priv->mm.active_list_lock);
  1374. while (!list_empty(&dev_priv->mm.active_list)) {
  1375. struct drm_gem_object *obj;
  1376. struct drm_i915_gem_object *obj_priv;
  1377. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1378. struct drm_i915_gem_object,
  1379. list);
  1380. obj = obj_priv->obj;
  1381. /* If the seqno being retired doesn't match the oldest in the
  1382. * list, then the oldest in the list must still be newer than
  1383. * this seqno.
  1384. */
  1385. if (obj_priv->last_rendering_seqno != request->seqno)
  1386. goto out;
  1387. #if WATCH_LRU
  1388. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1389. __func__, request->seqno, obj);
  1390. #endif
  1391. if (obj->write_domain != 0)
  1392. i915_gem_object_move_to_flushing(obj);
  1393. else {
  1394. /* Take a reference on the object so it won't be
  1395. * freed while the spinlock is held. The list
  1396. * protection for this spinlock is safe when breaking
  1397. * the lock like this since the next thing we do
  1398. * is just get the head of the list again.
  1399. */
  1400. drm_gem_object_reference(obj);
  1401. i915_gem_object_move_to_inactive(obj);
  1402. spin_unlock(&dev_priv->mm.active_list_lock);
  1403. drm_gem_object_unreference(obj);
  1404. spin_lock(&dev_priv->mm.active_list_lock);
  1405. }
  1406. }
  1407. out:
  1408. spin_unlock(&dev_priv->mm.active_list_lock);
  1409. }
  1410. /**
  1411. * Returns true if seq1 is later than seq2.
  1412. */
  1413. static int
  1414. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1415. {
  1416. return (int32_t)(seq1 - seq2) >= 0;
  1417. }
  1418. uint32_t
  1419. i915_get_gem_seqno(struct drm_device *dev)
  1420. {
  1421. drm_i915_private_t *dev_priv = dev->dev_private;
  1422. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1423. }
  1424. /**
  1425. * This function clears the request list as sequence numbers are passed.
  1426. */
  1427. void
  1428. i915_gem_retire_requests(struct drm_device *dev)
  1429. {
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. uint32_t seqno;
  1432. if (!dev_priv->hw_status_page)
  1433. return;
  1434. seqno = i915_get_gem_seqno(dev);
  1435. while (!list_empty(&dev_priv->mm.request_list)) {
  1436. struct drm_i915_gem_request *request;
  1437. uint32_t retiring_seqno;
  1438. request = list_first_entry(&dev_priv->mm.request_list,
  1439. struct drm_i915_gem_request,
  1440. list);
  1441. retiring_seqno = request->seqno;
  1442. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1443. dev_priv->mm.wedged) {
  1444. i915_gem_retire_request(dev, request);
  1445. list_del(&request->list);
  1446. list_del(&request->client_list);
  1447. kfree(request);
  1448. } else
  1449. break;
  1450. }
  1451. }
  1452. void
  1453. i915_gem_retire_work_handler(struct work_struct *work)
  1454. {
  1455. drm_i915_private_t *dev_priv;
  1456. struct drm_device *dev;
  1457. dev_priv = container_of(work, drm_i915_private_t,
  1458. mm.retire_work.work);
  1459. dev = dev_priv->dev;
  1460. mutex_lock(&dev->struct_mutex);
  1461. i915_gem_retire_requests(dev);
  1462. if (!dev_priv->mm.suspended &&
  1463. !list_empty(&dev_priv->mm.request_list))
  1464. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1465. mutex_unlock(&dev->struct_mutex);
  1466. }
  1467. /**
  1468. * Waits for a sequence number to be signaled, and cleans up the
  1469. * request and object lists appropriately for that event.
  1470. */
  1471. static int
  1472. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1473. {
  1474. drm_i915_private_t *dev_priv = dev->dev_private;
  1475. u32 ier;
  1476. int ret = 0;
  1477. BUG_ON(seqno == 0);
  1478. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1479. if (IS_IGDNG(dev))
  1480. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1481. else
  1482. ier = I915_READ(IER);
  1483. if (!ier) {
  1484. DRM_ERROR("something (likely vbetool) disabled "
  1485. "interrupts, re-enabling\n");
  1486. i915_driver_irq_preinstall(dev);
  1487. i915_driver_irq_postinstall(dev);
  1488. }
  1489. dev_priv->mm.waiting_gem_seqno = seqno;
  1490. i915_user_irq_get(dev);
  1491. ret = wait_event_interruptible(dev_priv->irq_queue,
  1492. i915_seqno_passed(i915_get_gem_seqno(dev),
  1493. seqno) ||
  1494. dev_priv->mm.wedged);
  1495. i915_user_irq_put(dev);
  1496. dev_priv->mm.waiting_gem_seqno = 0;
  1497. }
  1498. if (dev_priv->mm.wedged)
  1499. ret = -EIO;
  1500. if (ret && ret != -ERESTARTSYS)
  1501. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1502. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1503. /* Directly dispatch request retiring. While we have the work queue
  1504. * to handle this, the waiter on a request often wants an associated
  1505. * buffer to have made it to the inactive list, and we would need
  1506. * a separate wait queue to handle that.
  1507. */
  1508. if (ret == 0)
  1509. i915_gem_retire_requests(dev);
  1510. return ret;
  1511. }
  1512. static void
  1513. i915_gem_flush(struct drm_device *dev,
  1514. uint32_t invalidate_domains,
  1515. uint32_t flush_domains)
  1516. {
  1517. drm_i915_private_t *dev_priv = dev->dev_private;
  1518. uint32_t cmd;
  1519. RING_LOCALS;
  1520. #if WATCH_EXEC
  1521. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1522. invalidate_domains, flush_domains);
  1523. #endif
  1524. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1525. drm_agp_chipset_flush(dev);
  1526. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1527. /*
  1528. * read/write caches:
  1529. *
  1530. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1531. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1532. * also flushed at 2d versus 3d pipeline switches.
  1533. *
  1534. * read-only caches:
  1535. *
  1536. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1537. * MI_READ_FLUSH is set, and is always flushed on 965.
  1538. *
  1539. * I915_GEM_DOMAIN_COMMAND may not exist?
  1540. *
  1541. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1542. * invalidated when MI_EXE_FLUSH is set.
  1543. *
  1544. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1545. * invalidated with every MI_FLUSH.
  1546. *
  1547. * TLBs:
  1548. *
  1549. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1550. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1551. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1552. * are flushed at any MI_FLUSH.
  1553. */
  1554. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1555. if ((invalidate_domains|flush_domains) &
  1556. I915_GEM_DOMAIN_RENDER)
  1557. cmd &= ~MI_NO_WRITE_FLUSH;
  1558. if (!IS_I965G(dev)) {
  1559. /*
  1560. * On the 965, the sampler cache always gets flushed
  1561. * and this bit is reserved.
  1562. */
  1563. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1564. cmd |= MI_READ_FLUSH;
  1565. }
  1566. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1567. cmd |= MI_EXE_FLUSH;
  1568. #if WATCH_EXEC
  1569. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1570. #endif
  1571. BEGIN_LP_RING(2);
  1572. OUT_RING(cmd);
  1573. OUT_RING(0); /* noop */
  1574. ADVANCE_LP_RING();
  1575. }
  1576. }
  1577. /**
  1578. * Ensures that all rendering to the object has completed and the object is
  1579. * safe to unbind from the GTT or access from the CPU.
  1580. */
  1581. static int
  1582. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1583. {
  1584. struct drm_device *dev = obj->dev;
  1585. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1586. int ret;
  1587. /* This function only exists to support waiting for existing rendering,
  1588. * not for emitting required flushes.
  1589. */
  1590. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1591. /* If there is rendering queued on the buffer being evicted, wait for
  1592. * it.
  1593. */
  1594. if (obj_priv->active) {
  1595. #if WATCH_BUF
  1596. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1597. __func__, obj, obj_priv->last_rendering_seqno);
  1598. #endif
  1599. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1600. if (ret != 0)
  1601. return ret;
  1602. }
  1603. return 0;
  1604. }
  1605. /**
  1606. * Unbinds an object from the GTT aperture.
  1607. */
  1608. int
  1609. i915_gem_object_unbind(struct drm_gem_object *obj)
  1610. {
  1611. struct drm_device *dev = obj->dev;
  1612. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1613. int ret = 0;
  1614. #if WATCH_BUF
  1615. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1616. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1617. #endif
  1618. if (obj_priv->gtt_space == NULL)
  1619. return 0;
  1620. if (obj_priv->pin_count != 0) {
  1621. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1622. return -EINVAL;
  1623. }
  1624. /* Move the object to the CPU domain to ensure that
  1625. * any possible CPU writes while it's not in the GTT
  1626. * are flushed when we go to remap it. This will
  1627. * also ensure that all pending GPU writes are finished
  1628. * before we unbind.
  1629. */
  1630. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1631. if (ret) {
  1632. if (ret != -ERESTARTSYS)
  1633. DRM_ERROR("set_domain failed: %d\n", ret);
  1634. return ret;
  1635. }
  1636. if (obj_priv->agp_mem != NULL) {
  1637. drm_unbind_agp(obj_priv->agp_mem);
  1638. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1639. obj_priv->agp_mem = NULL;
  1640. }
  1641. BUG_ON(obj_priv->active);
  1642. /* blow away mappings if mapped through GTT */
  1643. i915_gem_release_mmap(obj);
  1644. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1645. i915_gem_clear_fence_reg(obj);
  1646. i915_gem_object_put_pages(obj);
  1647. if (obj_priv->gtt_space) {
  1648. atomic_dec(&dev->gtt_count);
  1649. atomic_sub(obj->size, &dev->gtt_memory);
  1650. drm_mm_put_block(obj_priv->gtt_space);
  1651. obj_priv->gtt_space = NULL;
  1652. }
  1653. /* Remove ourselves from the LRU list if present. */
  1654. if (!list_empty(&obj_priv->list))
  1655. list_del_init(&obj_priv->list);
  1656. return 0;
  1657. }
  1658. static int
  1659. i915_gem_evict_something(struct drm_device *dev)
  1660. {
  1661. drm_i915_private_t *dev_priv = dev->dev_private;
  1662. struct drm_gem_object *obj;
  1663. struct drm_i915_gem_object *obj_priv;
  1664. int ret = 0;
  1665. for (;;) {
  1666. /* If there's an inactive buffer available now, grab it
  1667. * and be done.
  1668. */
  1669. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1670. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1671. struct drm_i915_gem_object,
  1672. list);
  1673. obj = obj_priv->obj;
  1674. BUG_ON(obj_priv->pin_count != 0);
  1675. #if WATCH_LRU
  1676. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1677. #endif
  1678. BUG_ON(obj_priv->active);
  1679. /* Wait on the rendering and unbind the buffer. */
  1680. ret = i915_gem_object_unbind(obj);
  1681. break;
  1682. }
  1683. /* If we didn't get anything, but the ring is still processing
  1684. * things, wait for one of those things to finish and hopefully
  1685. * leave us a buffer to evict.
  1686. */
  1687. if (!list_empty(&dev_priv->mm.request_list)) {
  1688. struct drm_i915_gem_request *request;
  1689. request = list_first_entry(&dev_priv->mm.request_list,
  1690. struct drm_i915_gem_request,
  1691. list);
  1692. ret = i915_wait_request(dev, request->seqno);
  1693. if (ret)
  1694. break;
  1695. /* if waiting caused an object to become inactive,
  1696. * then loop around and wait for it. Otherwise, we
  1697. * assume that waiting freed and unbound something,
  1698. * so there should now be some space in the GTT
  1699. */
  1700. if (!list_empty(&dev_priv->mm.inactive_list))
  1701. continue;
  1702. break;
  1703. }
  1704. /* If we didn't have anything on the request list but there
  1705. * are buffers awaiting a flush, emit one and try again.
  1706. * When we wait on it, those buffers waiting for that flush
  1707. * will get moved to inactive.
  1708. */
  1709. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1710. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1711. struct drm_i915_gem_object,
  1712. list);
  1713. obj = obj_priv->obj;
  1714. i915_gem_flush(dev,
  1715. obj->write_domain,
  1716. obj->write_domain);
  1717. i915_add_request(dev, NULL, obj->write_domain);
  1718. obj = NULL;
  1719. continue;
  1720. }
  1721. DRM_ERROR("inactive empty %d request empty %d "
  1722. "flushing empty %d\n",
  1723. list_empty(&dev_priv->mm.inactive_list),
  1724. list_empty(&dev_priv->mm.request_list),
  1725. list_empty(&dev_priv->mm.flushing_list));
  1726. /* If we didn't do any of the above, there's nothing to be done
  1727. * and we just can't fit it in.
  1728. */
  1729. return -ENOSPC;
  1730. }
  1731. return ret;
  1732. }
  1733. static int
  1734. i915_gem_evict_everything(struct drm_device *dev)
  1735. {
  1736. int ret;
  1737. for (;;) {
  1738. ret = i915_gem_evict_something(dev);
  1739. if (ret != 0)
  1740. break;
  1741. }
  1742. if (ret == -ENOSPC)
  1743. return 0;
  1744. return ret;
  1745. }
  1746. int
  1747. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1748. {
  1749. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1750. int page_count, i;
  1751. struct address_space *mapping;
  1752. struct inode *inode;
  1753. struct page *page;
  1754. int ret;
  1755. if (obj_priv->pages_refcount++ != 0)
  1756. return 0;
  1757. /* Get the list of pages out of our struct file. They'll be pinned
  1758. * at this point until we release them.
  1759. */
  1760. page_count = obj->size / PAGE_SIZE;
  1761. BUG_ON(obj_priv->pages != NULL);
  1762. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1763. if (obj_priv->pages == NULL) {
  1764. DRM_ERROR("Faled to allocate page list\n");
  1765. obj_priv->pages_refcount--;
  1766. return -ENOMEM;
  1767. }
  1768. inode = obj->filp->f_path.dentry->d_inode;
  1769. mapping = inode->i_mapping;
  1770. for (i = 0; i < page_count; i++) {
  1771. page = read_mapping_page(mapping, i, NULL);
  1772. if (IS_ERR(page)) {
  1773. ret = PTR_ERR(page);
  1774. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1775. i915_gem_object_put_pages(obj);
  1776. return ret;
  1777. }
  1778. obj_priv->pages[i] = page;
  1779. }
  1780. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1781. i915_gem_object_do_bit_17_swizzle(obj);
  1782. return 0;
  1783. }
  1784. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1785. {
  1786. struct drm_gem_object *obj = reg->obj;
  1787. struct drm_device *dev = obj->dev;
  1788. drm_i915_private_t *dev_priv = dev->dev_private;
  1789. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1790. int regnum = obj_priv->fence_reg;
  1791. uint64_t val;
  1792. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1793. 0xfffff000) << 32;
  1794. val |= obj_priv->gtt_offset & 0xfffff000;
  1795. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1796. if (obj_priv->tiling_mode == I915_TILING_Y)
  1797. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1798. val |= I965_FENCE_REG_VALID;
  1799. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1800. }
  1801. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1802. {
  1803. struct drm_gem_object *obj = reg->obj;
  1804. struct drm_device *dev = obj->dev;
  1805. drm_i915_private_t *dev_priv = dev->dev_private;
  1806. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1807. int regnum = obj_priv->fence_reg;
  1808. int tile_width;
  1809. uint32_t fence_reg, val;
  1810. uint32_t pitch_val;
  1811. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1812. (obj_priv->gtt_offset & (obj->size - 1))) {
  1813. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1814. __func__, obj_priv->gtt_offset, obj->size);
  1815. return;
  1816. }
  1817. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1818. HAS_128_BYTE_Y_TILING(dev))
  1819. tile_width = 128;
  1820. else
  1821. tile_width = 512;
  1822. /* Note: pitch better be a power of two tile widths */
  1823. pitch_val = obj_priv->stride / tile_width;
  1824. pitch_val = ffs(pitch_val) - 1;
  1825. val = obj_priv->gtt_offset;
  1826. if (obj_priv->tiling_mode == I915_TILING_Y)
  1827. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1828. val |= I915_FENCE_SIZE_BITS(obj->size);
  1829. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1830. val |= I830_FENCE_REG_VALID;
  1831. if (regnum < 8)
  1832. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1833. else
  1834. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1835. I915_WRITE(fence_reg, val);
  1836. }
  1837. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1838. {
  1839. struct drm_gem_object *obj = reg->obj;
  1840. struct drm_device *dev = obj->dev;
  1841. drm_i915_private_t *dev_priv = dev->dev_private;
  1842. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1843. int regnum = obj_priv->fence_reg;
  1844. uint32_t val;
  1845. uint32_t pitch_val;
  1846. uint32_t fence_size_bits;
  1847. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1848. (obj_priv->gtt_offset & (obj->size - 1))) {
  1849. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1850. __func__, obj_priv->gtt_offset);
  1851. return;
  1852. }
  1853. pitch_val = obj_priv->stride / 128;
  1854. pitch_val = ffs(pitch_val) - 1;
  1855. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1856. val = obj_priv->gtt_offset;
  1857. if (obj_priv->tiling_mode == I915_TILING_Y)
  1858. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1859. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1860. WARN_ON(fence_size_bits & ~0x00000f00);
  1861. val |= fence_size_bits;
  1862. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1863. val |= I830_FENCE_REG_VALID;
  1864. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1865. }
  1866. /**
  1867. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1868. * @obj: object to map through a fence reg
  1869. *
  1870. * When mapping objects through the GTT, userspace wants to be able to write
  1871. * to them without having to worry about swizzling if the object is tiled.
  1872. *
  1873. * This function walks the fence regs looking for a free one for @obj,
  1874. * stealing one if it can't find any.
  1875. *
  1876. * It then sets up the reg based on the object's properties: address, pitch
  1877. * and tiling format.
  1878. */
  1879. int
  1880. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1881. {
  1882. struct drm_device *dev = obj->dev;
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1885. struct drm_i915_fence_reg *reg = NULL;
  1886. struct drm_i915_gem_object *old_obj_priv = NULL;
  1887. int i, ret, avail;
  1888. switch (obj_priv->tiling_mode) {
  1889. case I915_TILING_NONE:
  1890. WARN(1, "allocating a fence for non-tiled object?\n");
  1891. break;
  1892. case I915_TILING_X:
  1893. if (!obj_priv->stride)
  1894. return -EINVAL;
  1895. WARN((obj_priv->stride & (512 - 1)),
  1896. "object 0x%08x is X tiled but has non-512B pitch\n",
  1897. obj_priv->gtt_offset);
  1898. break;
  1899. case I915_TILING_Y:
  1900. if (!obj_priv->stride)
  1901. return -EINVAL;
  1902. WARN((obj_priv->stride & (128 - 1)),
  1903. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1904. obj_priv->gtt_offset);
  1905. break;
  1906. }
  1907. /* First try to find a free reg */
  1908. try_again:
  1909. avail = 0;
  1910. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1911. reg = &dev_priv->fence_regs[i];
  1912. if (!reg->obj)
  1913. break;
  1914. old_obj_priv = reg->obj->driver_private;
  1915. if (!old_obj_priv->pin_count)
  1916. avail++;
  1917. }
  1918. /* None available, try to steal one or wait for a user to finish */
  1919. if (i == dev_priv->num_fence_regs) {
  1920. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1921. if (avail == 0)
  1922. return -ENOSPC;
  1923. for (i = dev_priv->fence_reg_start;
  1924. i < dev_priv->num_fence_regs; i++) {
  1925. uint32_t this_seqno;
  1926. reg = &dev_priv->fence_regs[i];
  1927. old_obj_priv = reg->obj->driver_private;
  1928. if (old_obj_priv->pin_count)
  1929. continue;
  1930. /* i915 uses fences for GPU access to tiled buffers */
  1931. if (IS_I965G(dev) || !old_obj_priv->active)
  1932. break;
  1933. /* find the seqno of the first available fence */
  1934. this_seqno = old_obj_priv->last_rendering_seqno;
  1935. if (this_seqno != 0 &&
  1936. reg->obj->write_domain == 0 &&
  1937. i915_seqno_passed(seqno, this_seqno))
  1938. seqno = this_seqno;
  1939. }
  1940. /*
  1941. * Now things get ugly... we have to wait for one of the
  1942. * objects to finish before trying again.
  1943. */
  1944. if (i == dev_priv->num_fence_regs) {
  1945. if (seqno == dev_priv->mm.next_gem_seqno) {
  1946. i915_gem_flush(dev,
  1947. I915_GEM_GPU_DOMAINS,
  1948. I915_GEM_GPU_DOMAINS);
  1949. seqno = i915_add_request(dev, NULL,
  1950. I915_GEM_GPU_DOMAINS);
  1951. if (seqno == 0)
  1952. return -ENOMEM;
  1953. }
  1954. ret = i915_wait_request(dev, seqno);
  1955. if (ret)
  1956. return ret;
  1957. goto try_again;
  1958. }
  1959. /*
  1960. * Zap this virtual mapping so we can set up a fence again
  1961. * for this object next time we need it.
  1962. */
  1963. i915_gem_release_mmap(reg->obj);
  1964. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1965. }
  1966. obj_priv->fence_reg = i;
  1967. reg->obj = obj;
  1968. if (IS_I965G(dev))
  1969. i965_write_fence_reg(reg);
  1970. else if (IS_I9XX(dev))
  1971. i915_write_fence_reg(reg);
  1972. else
  1973. i830_write_fence_reg(reg);
  1974. return 0;
  1975. }
  1976. /**
  1977. * i915_gem_clear_fence_reg - clear out fence register info
  1978. * @obj: object to clear
  1979. *
  1980. * Zeroes out the fence register itself and clears out the associated
  1981. * data structures in dev_priv and obj_priv.
  1982. */
  1983. static void
  1984. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1985. {
  1986. struct drm_device *dev = obj->dev;
  1987. drm_i915_private_t *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1989. if (IS_I965G(dev))
  1990. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1991. else {
  1992. uint32_t fence_reg;
  1993. if (obj_priv->fence_reg < 8)
  1994. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1995. else
  1996. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1997. 8) * 4;
  1998. I915_WRITE(fence_reg, 0);
  1999. }
  2000. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2001. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2002. }
  2003. /**
  2004. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2005. * to the buffer to finish, and then resets the fence register.
  2006. * @obj: tiled object holding a fence register.
  2007. *
  2008. * Zeroes out the fence register itself and clears out the associated
  2009. * data structures in dev_priv and obj_priv.
  2010. */
  2011. int
  2012. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2013. {
  2014. struct drm_device *dev = obj->dev;
  2015. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2016. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2017. return 0;
  2018. /* On the i915, GPU access to tiled buffers is via a fence,
  2019. * therefore we must wait for any outstanding access to complete
  2020. * before clearing the fence.
  2021. */
  2022. if (!IS_I965G(dev)) {
  2023. int ret;
  2024. i915_gem_object_flush_gpu_write_domain(obj);
  2025. i915_gem_object_flush_gtt_write_domain(obj);
  2026. ret = i915_gem_object_wait_rendering(obj);
  2027. if (ret != 0)
  2028. return ret;
  2029. }
  2030. i915_gem_clear_fence_reg (obj);
  2031. return 0;
  2032. }
  2033. /**
  2034. * Finds free space in the GTT aperture and binds the object there.
  2035. */
  2036. static int
  2037. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2038. {
  2039. struct drm_device *dev = obj->dev;
  2040. drm_i915_private_t *dev_priv = dev->dev_private;
  2041. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2042. struct drm_mm_node *free_space;
  2043. int page_count, ret;
  2044. if (dev_priv->mm.suspended)
  2045. return -EBUSY;
  2046. if (alignment == 0)
  2047. alignment = i915_gem_get_gtt_alignment(obj);
  2048. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2049. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2050. return -EINVAL;
  2051. }
  2052. search_free:
  2053. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2054. obj->size, alignment, 0);
  2055. if (free_space != NULL) {
  2056. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2057. alignment);
  2058. if (obj_priv->gtt_space != NULL) {
  2059. obj_priv->gtt_space->private = obj;
  2060. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2061. }
  2062. }
  2063. if (obj_priv->gtt_space == NULL) {
  2064. bool lists_empty;
  2065. /* If the gtt is empty and we're still having trouble
  2066. * fitting our object in, we're out of memory.
  2067. */
  2068. #if WATCH_LRU
  2069. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2070. #endif
  2071. spin_lock(&dev_priv->mm.active_list_lock);
  2072. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2073. list_empty(&dev_priv->mm.flushing_list) &&
  2074. list_empty(&dev_priv->mm.active_list));
  2075. spin_unlock(&dev_priv->mm.active_list_lock);
  2076. if (lists_empty) {
  2077. DRM_ERROR("GTT full, but LRU list empty\n");
  2078. return -ENOSPC;
  2079. }
  2080. ret = i915_gem_evict_something(dev);
  2081. if (ret != 0) {
  2082. if (ret != -ERESTARTSYS)
  2083. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2084. return ret;
  2085. }
  2086. goto search_free;
  2087. }
  2088. #if WATCH_BUF
  2089. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2090. obj->size, obj_priv->gtt_offset);
  2091. #endif
  2092. ret = i915_gem_object_get_pages(obj);
  2093. if (ret) {
  2094. drm_mm_put_block(obj_priv->gtt_space);
  2095. obj_priv->gtt_space = NULL;
  2096. return ret;
  2097. }
  2098. page_count = obj->size / PAGE_SIZE;
  2099. /* Create an AGP memory structure pointing at our pages, and bind it
  2100. * into the GTT.
  2101. */
  2102. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2103. obj_priv->pages,
  2104. page_count,
  2105. obj_priv->gtt_offset,
  2106. obj_priv->agp_type);
  2107. if (obj_priv->agp_mem == NULL) {
  2108. i915_gem_object_put_pages(obj);
  2109. drm_mm_put_block(obj_priv->gtt_space);
  2110. obj_priv->gtt_space = NULL;
  2111. return -ENOMEM;
  2112. }
  2113. atomic_inc(&dev->gtt_count);
  2114. atomic_add(obj->size, &dev->gtt_memory);
  2115. /* Assert that the object is not currently in any GPU domain. As it
  2116. * wasn't in the GTT, there shouldn't be any way it could have been in
  2117. * a GPU cache
  2118. */
  2119. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2120. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2121. return 0;
  2122. }
  2123. void
  2124. i915_gem_clflush_object(struct drm_gem_object *obj)
  2125. {
  2126. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2127. /* If we don't have a page list set up, then we're not pinned
  2128. * to GPU, and we can ignore the cache flush because it'll happen
  2129. * again at bind time.
  2130. */
  2131. if (obj_priv->pages == NULL)
  2132. return;
  2133. /* XXX: The 865 in particular appears to be weird in how it handles
  2134. * cache flushing. We haven't figured it out, but the
  2135. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2136. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2137. */
  2138. if (IS_I865G(obj->dev)) {
  2139. wbinvd();
  2140. return;
  2141. }
  2142. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2143. }
  2144. /** Flushes any GPU write domain for the object if it's dirty. */
  2145. static void
  2146. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2147. {
  2148. struct drm_device *dev = obj->dev;
  2149. uint32_t seqno;
  2150. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2151. return;
  2152. /* Queue the GPU write cache flushing we need. */
  2153. i915_gem_flush(dev, 0, obj->write_domain);
  2154. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2155. obj->write_domain = 0;
  2156. i915_gem_object_move_to_active(obj, seqno);
  2157. }
  2158. /** Flushes the GTT write domain for the object if it's dirty. */
  2159. static void
  2160. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2161. {
  2162. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2163. return;
  2164. /* No actual flushing is required for the GTT write domain. Writes
  2165. * to it immediately go to main memory as far as we know, so there's
  2166. * no chipset flush. It also doesn't land in render cache.
  2167. */
  2168. obj->write_domain = 0;
  2169. }
  2170. /** Flushes the CPU write domain for the object if it's dirty. */
  2171. static void
  2172. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2173. {
  2174. struct drm_device *dev = obj->dev;
  2175. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2176. return;
  2177. i915_gem_clflush_object(obj);
  2178. drm_agp_chipset_flush(dev);
  2179. obj->write_domain = 0;
  2180. }
  2181. /**
  2182. * Moves a single object to the GTT read, and possibly write domain.
  2183. *
  2184. * This function returns when the move is complete, including waiting on
  2185. * flushes to occur.
  2186. */
  2187. int
  2188. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2189. {
  2190. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2191. int ret;
  2192. /* Not valid to be called on unbound objects. */
  2193. if (obj_priv->gtt_space == NULL)
  2194. return -EINVAL;
  2195. i915_gem_object_flush_gpu_write_domain(obj);
  2196. /* Wait on any GPU rendering and flushing to occur. */
  2197. ret = i915_gem_object_wait_rendering(obj);
  2198. if (ret != 0)
  2199. return ret;
  2200. /* If we're writing through the GTT domain, then CPU and GPU caches
  2201. * will need to be invalidated at next use.
  2202. */
  2203. if (write)
  2204. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2205. i915_gem_object_flush_cpu_write_domain(obj);
  2206. /* It should now be out of any other write domains, and we can update
  2207. * the domain values for our changes.
  2208. */
  2209. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2210. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2211. if (write) {
  2212. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2213. obj_priv->dirty = 1;
  2214. }
  2215. return 0;
  2216. }
  2217. /**
  2218. * Moves a single object to the CPU read, and possibly write domain.
  2219. *
  2220. * This function returns when the move is complete, including waiting on
  2221. * flushes to occur.
  2222. */
  2223. static int
  2224. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2225. {
  2226. int ret;
  2227. i915_gem_object_flush_gpu_write_domain(obj);
  2228. /* Wait on any GPU rendering and flushing to occur. */
  2229. ret = i915_gem_object_wait_rendering(obj);
  2230. if (ret != 0)
  2231. return ret;
  2232. i915_gem_object_flush_gtt_write_domain(obj);
  2233. /* If we have a partially-valid cache of the object in the CPU,
  2234. * finish invalidating it and free the per-page flags.
  2235. */
  2236. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2237. /* Flush the CPU cache if it's still invalid. */
  2238. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2239. i915_gem_clflush_object(obj);
  2240. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2241. }
  2242. /* It should now be out of any other write domains, and we can update
  2243. * the domain values for our changes.
  2244. */
  2245. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2246. /* If we're writing through the CPU, then the GPU read domains will
  2247. * need to be invalidated at next use.
  2248. */
  2249. if (write) {
  2250. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2251. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2252. }
  2253. return 0;
  2254. }
  2255. /*
  2256. * Set the next domain for the specified object. This
  2257. * may not actually perform the necessary flushing/invaliding though,
  2258. * as that may want to be batched with other set_domain operations
  2259. *
  2260. * This is (we hope) the only really tricky part of gem. The goal
  2261. * is fairly simple -- track which caches hold bits of the object
  2262. * and make sure they remain coherent. A few concrete examples may
  2263. * help to explain how it works. For shorthand, we use the notation
  2264. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2265. * a pair of read and write domain masks.
  2266. *
  2267. * Case 1: the batch buffer
  2268. *
  2269. * 1. Allocated
  2270. * 2. Written by CPU
  2271. * 3. Mapped to GTT
  2272. * 4. Read by GPU
  2273. * 5. Unmapped from GTT
  2274. * 6. Freed
  2275. *
  2276. * Let's take these a step at a time
  2277. *
  2278. * 1. Allocated
  2279. * Pages allocated from the kernel may still have
  2280. * cache contents, so we set them to (CPU, CPU) always.
  2281. * 2. Written by CPU (using pwrite)
  2282. * The pwrite function calls set_domain (CPU, CPU) and
  2283. * this function does nothing (as nothing changes)
  2284. * 3. Mapped by GTT
  2285. * This function asserts that the object is not
  2286. * currently in any GPU-based read or write domains
  2287. * 4. Read by GPU
  2288. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2289. * As write_domain is zero, this function adds in the
  2290. * current read domains (CPU+COMMAND, 0).
  2291. * flush_domains is set to CPU.
  2292. * invalidate_domains is set to COMMAND
  2293. * clflush is run to get data out of the CPU caches
  2294. * then i915_dev_set_domain calls i915_gem_flush to
  2295. * emit an MI_FLUSH and drm_agp_chipset_flush
  2296. * 5. Unmapped from GTT
  2297. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2298. * flush_domains and invalidate_domains end up both zero
  2299. * so no flushing/invalidating happens
  2300. * 6. Freed
  2301. * yay, done
  2302. *
  2303. * Case 2: The shared render buffer
  2304. *
  2305. * 1. Allocated
  2306. * 2. Mapped to GTT
  2307. * 3. Read/written by GPU
  2308. * 4. set_domain to (CPU,CPU)
  2309. * 5. Read/written by CPU
  2310. * 6. Read/written by GPU
  2311. *
  2312. * 1. Allocated
  2313. * Same as last example, (CPU, CPU)
  2314. * 2. Mapped to GTT
  2315. * Nothing changes (assertions find that it is not in the GPU)
  2316. * 3. Read/written by GPU
  2317. * execbuffer calls set_domain (RENDER, RENDER)
  2318. * flush_domains gets CPU
  2319. * invalidate_domains gets GPU
  2320. * clflush (obj)
  2321. * MI_FLUSH and drm_agp_chipset_flush
  2322. * 4. set_domain (CPU, CPU)
  2323. * flush_domains gets GPU
  2324. * invalidate_domains gets CPU
  2325. * wait_rendering (obj) to make sure all drawing is complete.
  2326. * This will include an MI_FLUSH to get the data from GPU
  2327. * to memory
  2328. * clflush (obj) to invalidate the CPU cache
  2329. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2330. * 5. Read/written by CPU
  2331. * cache lines are loaded and dirtied
  2332. * 6. Read written by GPU
  2333. * Same as last GPU access
  2334. *
  2335. * Case 3: The constant buffer
  2336. *
  2337. * 1. Allocated
  2338. * 2. Written by CPU
  2339. * 3. Read by GPU
  2340. * 4. Updated (written) by CPU again
  2341. * 5. Read by GPU
  2342. *
  2343. * 1. Allocated
  2344. * (CPU, CPU)
  2345. * 2. Written by CPU
  2346. * (CPU, CPU)
  2347. * 3. Read by GPU
  2348. * (CPU+RENDER, 0)
  2349. * flush_domains = CPU
  2350. * invalidate_domains = RENDER
  2351. * clflush (obj)
  2352. * MI_FLUSH
  2353. * drm_agp_chipset_flush
  2354. * 4. Updated (written) by CPU again
  2355. * (CPU, CPU)
  2356. * flush_domains = 0 (no previous write domain)
  2357. * invalidate_domains = 0 (no new read domains)
  2358. * 5. Read by GPU
  2359. * (CPU+RENDER, 0)
  2360. * flush_domains = CPU
  2361. * invalidate_domains = RENDER
  2362. * clflush (obj)
  2363. * MI_FLUSH
  2364. * drm_agp_chipset_flush
  2365. */
  2366. static void
  2367. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2368. {
  2369. struct drm_device *dev = obj->dev;
  2370. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2371. uint32_t invalidate_domains = 0;
  2372. uint32_t flush_domains = 0;
  2373. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2374. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2375. #if WATCH_BUF
  2376. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2377. __func__, obj,
  2378. obj->read_domains, obj->pending_read_domains,
  2379. obj->write_domain, obj->pending_write_domain);
  2380. #endif
  2381. /*
  2382. * If the object isn't moving to a new write domain,
  2383. * let the object stay in multiple read domains
  2384. */
  2385. if (obj->pending_write_domain == 0)
  2386. obj->pending_read_domains |= obj->read_domains;
  2387. else
  2388. obj_priv->dirty = 1;
  2389. /*
  2390. * Flush the current write domain if
  2391. * the new read domains don't match. Invalidate
  2392. * any read domains which differ from the old
  2393. * write domain
  2394. */
  2395. if (obj->write_domain &&
  2396. obj->write_domain != obj->pending_read_domains) {
  2397. flush_domains |= obj->write_domain;
  2398. invalidate_domains |=
  2399. obj->pending_read_domains & ~obj->write_domain;
  2400. }
  2401. /*
  2402. * Invalidate any read caches which may have
  2403. * stale data. That is, any new read domains.
  2404. */
  2405. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2406. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2407. #if WATCH_BUF
  2408. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2409. __func__, flush_domains, invalidate_domains);
  2410. #endif
  2411. i915_gem_clflush_object(obj);
  2412. }
  2413. /* The actual obj->write_domain will be updated with
  2414. * pending_write_domain after we emit the accumulated flush for all
  2415. * of our domain changes in execbuffers (which clears objects'
  2416. * write_domains). So if we have a current write domain that we
  2417. * aren't changing, set pending_write_domain to that.
  2418. */
  2419. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2420. obj->pending_write_domain = obj->write_domain;
  2421. obj->read_domains = obj->pending_read_domains;
  2422. dev->invalidate_domains |= invalidate_domains;
  2423. dev->flush_domains |= flush_domains;
  2424. #if WATCH_BUF
  2425. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2426. __func__,
  2427. obj->read_domains, obj->write_domain,
  2428. dev->invalidate_domains, dev->flush_domains);
  2429. #endif
  2430. }
  2431. /**
  2432. * Moves the object from a partially CPU read to a full one.
  2433. *
  2434. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2435. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2436. */
  2437. static void
  2438. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2439. {
  2440. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2441. if (!obj_priv->page_cpu_valid)
  2442. return;
  2443. /* If we're partially in the CPU read domain, finish moving it in.
  2444. */
  2445. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2446. int i;
  2447. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2448. if (obj_priv->page_cpu_valid[i])
  2449. continue;
  2450. drm_clflush_pages(obj_priv->pages + i, 1);
  2451. }
  2452. }
  2453. /* Free the page_cpu_valid mappings which are now stale, whether
  2454. * or not we've got I915_GEM_DOMAIN_CPU.
  2455. */
  2456. kfree(obj_priv->page_cpu_valid);
  2457. obj_priv->page_cpu_valid = NULL;
  2458. }
  2459. /**
  2460. * Set the CPU read domain on a range of the object.
  2461. *
  2462. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2463. * not entirely valid. The page_cpu_valid member of the object flags which
  2464. * pages have been flushed, and will be respected by
  2465. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2466. * of the whole object.
  2467. *
  2468. * This function returns when the move is complete, including waiting on
  2469. * flushes to occur.
  2470. */
  2471. static int
  2472. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2473. uint64_t offset, uint64_t size)
  2474. {
  2475. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2476. int i, ret;
  2477. if (offset == 0 && size == obj->size)
  2478. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2479. i915_gem_object_flush_gpu_write_domain(obj);
  2480. /* Wait on any GPU rendering and flushing to occur. */
  2481. ret = i915_gem_object_wait_rendering(obj);
  2482. if (ret != 0)
  2483. return ret;
  2484. i915_gem_object_flush_gtt_write_domain(obj);
  2485. /* If we're already fully in the CPU read domain, we're done. */
  2486. if (obj_priv->page_cpu_valid == NULL &&
  2487. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2488. return 0;
  2489. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2490. * newly adding I915_GEM_DOMAIN_CPU
  2491. */
  2492. if (obj_priv->page_cpu_valid == NULL) {
  2493. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2494. GFP_KERNEL);
  2495. if (obj_priv->page_cpu_valid == NULL)
  2496. return -ENOMEM;
  2497. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2498. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2499. /* Flush the cache on any pages that are still invalid from the CPU's
  2500. * perspective.
  2501. */
  2502. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2503. i++) {
  2504. if (obj_priv->page_cpu_valid[i])
  2505. continue;
  2506. drm_clflush_pages(obj_priv->pages + i, 1);
  2507. obj_priv->page_cpu_valid[i] = 1;
  2508. }
  2509. /* It should now be out of any other write domains, and we can update
  2510. * the domain values for our changes.
  2511. */
  2512. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2513. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2514. return 0;
  2515. }
  2516. /**
  2517. * Pin an object to the GTT and evaluate the relocations landing in it.
  2518. */
  2519. static int
  2520. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2521. struct drm_file *file_priv,
  2522. struct drm_i915_gem_exec_object *entry,
  2523. struct drm_i915_gem_relocation_entry *relocs)
  2524. {
  2525. struct drm_device *dev = obj->dev;
  2526. drm_i915_private_t *dev_priv = dev->dev_private;
  2527. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2528. int i, ret;
  2529. void __iomem *reloc_page;
  2530. /* Choose the GTT offset for our buffer and put it there. */
  2531. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2532. if (ret)
  2533. return ret;
  2534. entry->offset = obj_priv->gtt_offset;
  2535. /* Apply the relocations, using the GTT aperture to avoid cache
  2536. * flushing requirements.
  2537. */
  2538. for (i = 0; i < entry->relocation_count; i++) {
  2539. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2540. struct drm_gem_object *target_obj;
  2541. struct drm_i915_gem_object *target_obj_priv;
  2542. uint32_t reloc_val, reloc_offset;
  2543. uint32_t __iomem *reloc_entry;
  2544. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2545. reloc->target_handle);
  2546. if (target_obj == NULL) {
  2547. i915_gem_object_unpin(obj);
  2548. return -EBADF;
  2549. }
  2550. target_obj_priv = target_obj->driver_private;
  2551. /* The target buffer should have appeared before us in the
  2552. * exec_object list, so it should have a GTT space bound by now.
  2553. */
  2554. if (target_obj_priv->gtt_space == NULL) {
  2555. DRM_ERROR("No GTT space found for object %d\n",
  2556. reloc->target_handle);
  2557. drm_gem_object_unreference(target_obj);
  2558. i915_gem_object_unpin(obj);
  2559. return -EINVAL;
  2560. }
  2561. if (reloc->offset > obj->size - 4) {
  2562. DRM_ERROR("Relocation beyond object bounds: "
  2563. "obj %p target %d offset %d size %d.\n",
  2564. obj, reloc->target_handle,
  2565. (int) reloc->offset, (int) obj->size);
  2566. drm_gem_object_unreference(target_obj);
  2567. i915_gem_object_unpin(obj);
  2568. return -EINVAL;
  2569. }
  2570. if (reloc->offset & 3) {
  2571. DRM_ERROR("Relocation not 4-byte aligned: "
  2572. "obj %p target %d offset %d.\n",
  2573. obj, reloc->target_handle,
  2574. (int) reloc->offset);
  2575. drm_gem_object_unreference(target_obj);
  2576. i915_gem_object_unpin(obj);
  2577. return -EINVAL;
  2578. }
  2579. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2580. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2581. DRM_ERROR("reloc with read/write CPU domains: "
  2582. "obj %p target %d offset %d "
  2583. "read %08x write %08x",
  2584. obj, reloc->target_handle,
  2585. (int) reloc->offset,
  2586. reloc->read_domains,
  2587. reloc->write_domain);
  2588. drm_gem_object_unreference(target_obj);
  2589. i915_gem_object_unpin(obj);
  2590. return -EINVAL;
  2591. }
  2592. if (reloc->write_domain && target_obj->pending_write_domain &&
  2593. reloc->write_domain != target_obj->pending_write_domain) {
  2594. DRM_ERROR("Write domain conflict: "
  2595. "obj %p target %d offset %d "
  2596. "new %08x old %08x\n",
  2597. obj, reloc->target_handle,
  2598. (int) reloc->offset,
  2599. reloc->write_domain,
  2600. target_obj->pending_write_domain);
  2601. drm_gem_object_unreference(target_obj);
  2602. i915_gem_object_unpin(obj);
  2603. return -EINVAL;
  2604. }
  2605. #if WATCH_RELOC
  2606. DRM_INFO("%s: obj %p offset %08x target %d "
  2607. "read %08x write %08x gtt %08x "
  2608. "presumed %08x delta %08x\n",
  2609. __func__,
  2610. obj,
  2611. (int) reloc->offset,
  2612. (int) reloc->target_handle,
  2613. (int) reloc->read_domains,
  2614. (int) reloc->write_domain,
  2615. (int) target_obj_priv->gtt_offset,
  2616. (int) reloc->presumed_offset,
  2617. reloc->delta);
  2618. #endif
  2619. target_obj->pending_read_domains |= reloc->read_domains;
  2620. target_obj->pending_write_domain |= reloc->write_domain;
  2621. /* If the relocation already has the right value in it, no
  2622. * more work needs to be done.
  2623. */
  2624. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2625. drm_gem_object_unreference(target_obj);
  2626. continue;
  2627. }
  2628. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2629. if (ret != 0) {
  2630. drm_gem_object_unreference(target_obj);
  2631. i915_gem_object_unpin(obj);
  2632. return -EINVAL;
  2633. }
  2634. /* Map the page containing the relocation we're going to
  2635. * perform.
  2636. */
  2637. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2638. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2639. (reloc_offset &
  2640. ~(PAGE_SIZE - 1)));
  2641. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2642. (reloc_offset & (PAGE_SIZE - 1)));
  2643. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2644. #if WATCH_BUF
  2645. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2646. obj, (unsigned int) reloc->offset,
  2647. readl(reloc_entry), reloc_val);
  2648. #endif
  2649. writel(reloc_val, reloc_entry);
  2650. io_mapping_unmap_atomic(reloc_page);
  2651. /* The updated presumed offset for this entry will be
  2652. * copied back out to the user.
  2653. */
  2654. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2655. drm_gem_object_unreference(target_obj);
  2656. }
  2657. #if WATCH_BUF
  2658. if (0)
  2659. i915_gem_dump_object(obj, 128, __func__, ~0);
  2660. #endif
  2661. return 0;
  2662. }
  2663. /** Dispatch a batchbuffer to the ring
  2664. */
  2665. static int
  2666. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2667. struct drm_i915_gem_execbuffer *exec,
  2668. struct drm_clip_rect *cliprects,
  2669. uint64_t exec_offset)
  2670. {
  2671. drm_i915_private_t *dev_priv = dev->dev_private;
  2672. int nbox = exec->num_cliprects;
  2673. int i = 0, count;
  2674. uint32_t exec_start, exec_len;
  2675. RING_LOCALS;
  2676. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2677. exec_len = (uint32_t) exec->batch_len;
  2678. count = nbox ? nbox : 1;
  2679. for (i = 0; i < count; i++) {
  2680. if (i < nbox) {
  2681. int ret = i915_emit_box(dev, cliprects, i,
  2682. exec->DR1, exec->DR4);
  2683. if (ret)
  2684. return ret;
  2685. }
  2686. if (IS_I830(dev) || IS_845G(dev)) {
  2687. BEGIN_LP_RING(4);
  2688. OUT_RING(MI_BATCH_BUFFER);
  2689. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2690. OUT_RING(exec_start + exec_len - 4);
  2691. OUT_RING(0);
  2692. ADVANCE_LP_RING();
  2693. } else {
  2694. BEGIN_LP_RING(2);
  2695. if (IS_I965G(dev)) {
  2696. OUT_RING(MI_BATCH_BUFFER_START |
  2697. (2 << 6) |
  2698. MI_BATCH_NON_SECURE_I965);
  2699. OUT_RING(exec_start);
  2700. } else {
  2701. OUT_RING(MI_BATCH_BUFFER_START |
  2702. (2 << 6));
  2703. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2704. }
  2705. ADVANCE_LP_RING();
  2706. }
  2707. }
  2708. /* XXX breadcrumb */
  2709. return 0;
  2710. }
  2711. /* Throttle our rendering by waiting until the ring has completed our requests
  2712. * emitted over 20 msec ago.
  2713. *
  2714. * Note that if we were to use the current jiffies each time around the loop,
  2715. * we wouldn't escape the function with any frames outstanding if the time to
  2716. * render a frame was over 20ms.
  2717. *
  2718. * This should get us reasonable parallelism between CPU and GPU but also
  2719. * relatively low latency when blocking on a particular request to finish.
  2720. */
  2721. static int
  2722. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2723. {
  2724. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2725. int ret = 0;
  2726. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2727. mutex_lock(&dev->struct_mutex);
  2728. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2729. struct drm_i915_gem_request *request;
  2730. request = list_first_entry(&i915_file_priv->mm.request_list,
  2731. struct drm_i915_gem_request,
  2732. client_list);
  2733. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2734. break;
  2735. ret = i915_wait_request(dev, request->seqno);
  2736. if (ret != 0)
  2737. break;
  2738. }
  2739. mutex_unlock(&dev->struct_mutex);
  2740. return ret;
  2741. }
  2742. static int
  2743. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2744. uint32_t buffer_count,
  2745. struct drm_i915_gem_relocation_entry **relocs)
  2746. {
  2747. uint32_t reloc_count = 0, reloc_index = 0, i;
  2748. int ret;
  2749. *relocs = NULL;
  2750. for (i = 0; i < buffer_count; i++) {
  2751. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2752. return -EINVAL;
  2753. reloc_count += exec_list[i].relocation_count;
  2754. }
  2755. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2756. if (*relocs == NULL)
  2757. return -ENOMEM;
  2758. for (i = 0; i < buffer_count; i++) {
  2759. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2760. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2761. ret = copy_from_user(&(*relocs)[reloc_index],
  2762. user_relocs,
  2763. exec_list[i].relocation_count *
  2764. sizeof(**relocs));
  2765. if (ret != 0) {
  2766. drm_free_large(*relocs);
  2767. *relocs = NULL;
  2768. return -EFAULT;
  2769. }
  2770. reloc_index += exec_list[i].relocation_count;
  2771. }
  2772. return 0;
  2773. }
  2774. static int
  2775. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2776. uint32_t buffer_count,
  2777. struct drm_i915_gem_relocation_entry *relocs)
  2778. {
  2779. uint32_t reloc_count = 0, i;
  2780. int ret = 0;
  2781. for (i = 0; i < buffer_count; i++) {
  2782. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2783. int unwritten;
  2784. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2785. unwritten = copy_to_user(user_relocs,
  2786. &relocs[reloc_count],
  2787. exec_list[i].relocation_count *
  2788. sizeof(*relocs));
  2789. if (unwritten) {
  2790. ret = -EFAULT;
  2791. goto err;
  2792. }
  2793. reloc_count += exec_list[i].relocation_count;
  2794. }
  2795. err:
  2796. drm_free_large(relocs);
  2797. return ret;
  2798. }
  2799. static int
  2800. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2801. uint64_t exec_offset)
  2802. {
  2803. uint32_t exec_start, exec_len;
  2804. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2805. exec_len = (uint32_t) exec->batch_len;
  2806. if ((exec_start | exec_len) & 0x7)
  2807. return -EINVAL;
  2808. if (!exec_start)
  2809. return -EINVAL;
  2810. return 0;
  2811. }
  2812. int
  2813. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2814. struct drm_file *file_priv)
  2815. {
  2816. drm_i915_private_t *dev_priv = dev->dev_private;
  2817. struct drm_i915_gem_execbuffer *args = data;
  2818. struct drm_i915_gem_exec_object *exec_list = NULL;
  2819. struct drm_gem_object **object_list = NULL;
  2820. struct drm_gem_object *batch_obj;
  2821. struct drm_i915_gem_object *obj_priv;
  2822. struct drm_clip_rect *cliprects = NULL;
  2823. struct drm_i915_gem_relocation_entry *relocs;
  2824. int ret, ret2, i, pinned = 0;
  2825. uint64_t exec_offset;
  2826. uint32_t seqno, flush_domains, reloc_index;
  2827. int pin_tries;
  2828. #if WATCH_EXEC
  2829. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2830. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2831. #endif
  2832. if (args->buffer_count < 1) {
  2833. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2834. return -EINVAL;
  2835. }
  2836. /* Copy in the exec list from userland */
  2837. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2838. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2839. if (exec_list == NULL || object_list == NULL) {
  2840. DRM_ERROR("Failed to allocate exec or object list "
  2841. "for %d buffers\n",
  2842. args->buffer_count);
  2843. ret = -ENOMEM;
  2844. goto pre_mutex_err;
  2845. }
  2846. ret = copy_from_user(exec_list,
  2847. (struct drm_i915_relocation_entry __user *)
  2848. (uintptr_t) args->buffers_ptr,
  2849. sizeof(*exec_list) * args->buffer_count);
  2850. if (ret != 0) {
  2851. DRM_ERROR("copy %d exec entries failed %d\n",
  2852. args->buffer_count, ret);
  2853. goto pre_mutex_err;
  2854. }
  2855. if (args->num_cliprects != 0) {
  2856. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2857. GFP_KERNEL);
  2858. if (cliprects == NULL)
  2859. goto pre_mutex_err;
  2860. ret = copy_from_user(cliprects,
  2861. (struct drm_clip_rect __user *)
  2862. (uintptr_t) args->cliprects_ptr,
  2863. sizeof(*cliprects) * args->num_cliprects);
  2864. if (ret != 0) {
  2865. DRM_ERROR("copy %d cliprects failed: %d\n",
  2866. args->num_cliprects, ret);
  2867. goto pre_mutex_err;
  2868. }
  2869. }
  2870. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2871. &relocs);
  2872. if (ret != 0)
  2873. goto pre_mutex_err;
  2874. mutex_lock(&dev->struct_mutex);
  2875. i915_verify_inactive(dev, __FILE__, __LINE__);
  2876. if (dev_priv->mm.wedged) {
  2877. DRM_ERROR("Execbuf while wedged\n");
  2878. mutex_unlock(&dev->struct_mutex);
  2879. ret = -EIO;
  2880. goto pre_mutex_err;
  2881. }
  2882. if (dev_priv->mm.suspended) {
  2883. DRM_ERROR("Execbuf while VT-switched.\n");
  2884. mutex_unlock(&dev->struct_mutex);
  2885. ret = -EBUSY;
  2886. goto pre_mutex_err;
  2887. }
  2888. /* Look up object handles */
  2889. for (i = 0; i < args->buffer_count; i++) {
  2890. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2891. exec_list[i].handle);
  2892. if (object_list[i] == NULL) {
  2893. DRM_ERROR("Invalid object handle %d at index %d\n",
  2894. exec_list[i].handle, i);
  2895. ret = -EBADF;
  2896. goto err;
  2897. }
  2898. obj_priv = object_list[i]->driver_private;
  2899. if (obj_priv->in_execbuffer) {
  2900. DRM_ERROR("Object %p appears more than once in object list\n",
  2901. object_list[i]);
  2902. ret = -EBADF;
  2903. goto err;
  2904. }
  2905. obj_priv->in_execbuffer = true;
  2906. }
  2907. /* Pin and relocate */
  2908. for (pin_tries = 0; ; pin_tries++) {
  2909. ret = 0;
  2910. reloc_index = 0;
  2911. for (i = 0; i < args->buffer_count; i++) {
  2912. object_list[i]->pending_read_domains = 0;
  2913. object_list[i]->pending_write_domain = 0;
  2914. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2915. file_priv,
  2916. &exec_list[i],
  2917. &relocs[reloc_index]);
  2918. if (ret)
  2919. break;
  2920. pinned = i + 1;
  2921. reloc_index += exec_list[i].relocation_count;
  2922. }
  2923. /* success */
  2924. if (ret == 0)
  2925. break;
  2926. /* error other than GTT full, or we've already tried again */
  2927. if (ret != -ENOSPC || pin_tries >= 1) {
  2928. if (ret != -ERESTARTSYS)
  2929. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2930. goto err;
  2931. }
  2932. /* unpin all of our buffers */
  2933. for (i = 0; i < pinned; i++)
  2934. i915_gem_object_unpin(object_list[i]);
  2935. pinned = 0;
  2936. /* evict everyone we can from the aperture */
  2937. ret = i915_gem_evict_everything(dev);
  2938. if (ret)
  2939. goto err;
  2940. }
  2941. /* Set the pending read domains for the batch buffer to COMMAND */
  2942. batch_obj = object_list[args->buffer_count-1];
  2943. if (batch_obj->pending_write_domain) {
  2944. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2945. ret = -EINVAL;
  2946. goto err;
  2947. }
  2948. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2949. /* Sanity check the batch buffer, prior to moving objects */
  2950. exec_offset = exec_list[args->buffer_count - 1].offset;
  2951. ret = i915_gem_check_execbuffer (args, exec_offset);
  2952. if (ret != 0) {
  2953. DRM_ERROR("execbuf with invalid offset/length\n");
  2954. goto err;
  2955. }
  2956. i915_verify_inactive(dev, __FILE__, __LINE__);
  2957. /* Zero the global flush/invalidate flags. These
  2958. * will be modified as new domains are computed
  2959. * for each object
  2960. */
  2961. dev->invalidate_domains = 0;
  2962. dev->flush_domains = 0;
  2963. for (i = 0; i < args->buffer_count; i++) {
  2964. struct drm_gem_object *obj = object_list[i];
  2965. /* Compute new gpu domains and update invalidate/flush */
  2966. i915_gem_object_set_to_gpu_domain(obj);
  2967. }
  2968. i915_verify_inactive(dev, __FILE__, __LINE__);
  2969. if (dev->invalidate_domains | dev->flush_domains) {
  2970. #if WATCH_EXEC
  2971. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2972. __func__,
  2973. dev->invalidate_domains,
  2974. dev->flush_domains);
  2975. #endif
  2976. i915_gem_flush(dev,
  2977. dev->invalidate_domains,
  2978. dev->flush_domains);
  2979. if (dev->flush_domains)
  2980. (void)i915_add_request(dev, file_priv,
  2981. dev->flush_domains);
  2982. }
  2983. for (i = 0; i < args->buffer_count; i++) {
  2984. struct drm_gem_object *obj = object_list[i];
  2985. obj->write_domain = obj->pending_write_domain;
  2986. }
  2987. i915_verify_inactive(dev, __FILE__, __LINE__);
  2988. #if WATCH_COHERENCY
  2989. for (i = 0; i < args->buffer_count; i++) {
  2990. i915_gem_object_check_coherency(object_list[i],
  2991. exec_list[i].handle);
  2992. }
  2993. #endif
  2994. #if WATCH_EXEC
  2995. i915_gem_dump_object(batch_obj,
  2996. args->batch_len,
  2997. __func__,
  2998. ~0);
  2999. #endif
  3000. /* Exec the batchbuffer */
  3001. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3002. if (ret) {
  3003. DRM_ERROR("dispatch failed %d\n", ret);
  3004. goto err;
  3005. }
  3006. /*
  3007. * Ensure that the commands in the batch buffer are
  3008. * finished before the interrupt fires
  3009. */
  3010. flush_domains = i915_retire_commands(dev);
  3011. i915_verify_inactive(dev, __FILE__, __LINE__);
  3012. /*
  3013. * Get a seqno representing the execution of the current buffer,
  3014. * which we can wait on. We would like to mitigate these interrupts,
  3015. * likely by only creating seqnos occasionally (so that we have
  3016. * *some* interrupts representing completion of buffers that we can
  3017. * wait on when trying to clear up gtt space).
  3018. */
  3019. seqno = i915_add_request(dev, file_priv, flush_domains);
  3020. BUG_ON(seqno == 0);
  3021. for (i = 0; i < args->buffer_count; i++) {
  3022. struct drm_gem_object *obj = object_list[i];
  3023. i915_gem_object_move_to_active(obj, seqno);
  3024. #if WATCH_LRU
  3025. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3026. #endif
  3027. }
  3028. #if WATCH_LRU
  3029. i915_dump_lru(dev, __func__);
  3030. #endif
  3031. i915_verify_inactive(dev, __FILE__, __LINE__);
  3032. err:
  3033. for (i = 0; i < pinned; i++)
  3034. i915_gem_object_unpin(object_list[i]);
  3035. for (i = 0; i < args->buffer_count; i++) {
  3036. if (object_list[i]) {
  3037. obj_priv = object_list[i]->driver_private;
  3038. obj_priv->in_execbuffer = false;
  3039. }
  3040. drm_gem_object_unreference(object_list[i]);
  3041. }
  3042. mutex_unlock(&dev->struct_mutex);
  3043. if (!ret) {
  3044. /* Copy the new buffer offsets back to the user's exec list. */
  3045. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3046. (uintptr_t) args->buffers_ptr,
  3047. exec_list,
  3048. sizeof(*exec_list) * args->buffer_count);
  3049. if (ret) {
  3050. ret = -EFAULT;
  3051. DRM_ERROR("failed to copy %d exec entries "
  3052. "back to user (%d)\n",
  3053. args->buffer_count, ret);
  3054. }
  3055. }
  3056. /* Copy the updated relocations out regardless of current error
  3057. * state. Failure to update the relocs would mean that the next
  3058. * time userland calls execbuf, it would do so with presumed offset
  3059. * state that didn't match the actual object state.
  3060. */
  3061. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3062. relocs);
  3063. if (ret2 != 0) {
  3064. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3065. if (ret == 0)
  3066. ret = ret2;
  3067. }
  3068. pre_mutex_err:
  3069. drm_free_large(object_list);
  3070. drm_free_large(exec_list);
  3071. kfree(cliprects);
  3072. return ret;
  3073. }
  3074. int
  3075. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3076. {
  3077. struct drm_device *dev = obj->dev;
  3078. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3079. int ret;
  3080. i915_verify_inactive(dev, __FILE__, __LINE__);
  3081. if (obj_priv->gtt_space == NULL) {
  3082. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3083. if (ret != 0) {
  3084. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3085. DRM_ERROR("Failure to bind: %d\n", ret);
  3086. return ret;
  3087. }
  3088. }
  3089. /*
  3090. * Pre-965 chips need a fence register set up in order to
  3091. * properly handle tiled surfaces.
  3092. */
  3093. if (!IS_I965G(dev) &&
  3094. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3095. obj_priv->tiling_mode != I915_TILING_NONE) {
  3096. ret = i915_gem_object_get_fence_reg(obj);
  3097. if (ret != 0) {
  3098. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3099. DRM_ERROR("Failure to install fence: %d\n",
  3100. ret);
  3101. return ret;
  3102. }
  3103. }
  3104. obj_priv->pin_count++;
  3105. /* If the object is not active and not pending a flush,
  3106. * remove it from the inactive list
  3107. */
  3108. if (obj_priv->pin_count == 1) {
  3109. atomic_inc(&dev->pin_count);
  3110. atomic_add(obj->size, &dev->pin_memory);
  3111. if (!obj_priv->active &&
  3112. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3113. !list_empty(&obj_priv->list))
  3114. list_del_init(&obj_priv->list);
  3115. }
  3116. i915_verify_inactive(dev, __FILE__, __LINE__);
  3117. return 0;
  3118. }
  3119. void
  3120. i915_gem_object_unpin(struct drm_gem_object *obj)
  3121. {
  3122. struct drm_device *dev = obj->dev;
  3123. drm_i915_private_t *dev_priv = dev->dev_private;
  3124. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3125. i915_verify_inactive(dev, __FILE__, __LINE__);
  3126. obj_priv->pin_count--;
  3127. BUG_ON(obj_priv->pin_count < 0);
  3128. BUG_ON(obj_priv->gtt_space == NULL);
  3129. /* If the object is no longer pinned, and is
  3130. * neither active nor being flushed, then stick it on
  3131. * the inactive list
  3132. */
  3133. if (obj_priv->pin_count == 0) {
  3134. if (!obj_priv->active &&
  3135. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3136. list_move_tail(&obj_priv->list,
  3137. &dev_priv->mm.inactive_list);
  3138. atomic_dec(&dev->pin_count);
  3139. atomic_sub(obj->size, &dev->pin_memory);
  3140. }
  3141. i915_verify_inactive(dev, __FILE__, __LINE__);
  3142. }
  3143. int
  3144. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3145. struct drm_file *file_priv)
  3146. {
  3147. struct drm_i915_gem_pin *args = data;
  3148. struct drm_gem_object *obj;
  3149. struct drm_i915_gem_object *obj_priv;
  3150. int ret;
  3151. mutex_lock(&dev->struct_mutex);
  3152. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3153. if (obj == NULL) {
  3154. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3155. args->handle);
  3156. mutex_unlock(&dev->struct_mutex);
  3157. return -EBADF;
  3158. }
  3159. obj_priv = obj->driver_private;
  3160. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3161. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3162. args->handle);
  3163. drm_gem_object_unreference(obj);
  3164. mutex_unlock(&dev->struct_mutex);
  3165. return -EINVAL;
  3166. }
  3167. obj_priv->user_pin_count++;
  3168. obj_priv->pin_filp = file_priv;
  3169. if (obj_priv->user_pin_count == 1) {
  3170. ret = i915_gem_object_pin(obj, args->alignment);
  3171. if (ret != 0) {
  3172. drm_gem_object_unreference(obj);
  3173. mutex_unlock(&dev->struct_mutex);
  3174. return ret;
  3175. }
  3176. }
  3177. /* XXX - flush the CPU caches for pinned objects
  3178. * as the X server doesn't manage domains yet
  3179. */
  3180. i915_gem_object_flush_cpu_write_domain(obj);
  3181. args->offset = obj_priv->gtt_offset;
  3182. drm_gem_object_unreference(obj);
  3183. mutex_unlock(&dev->struct_mutex);
  3184. return 0;
  3185. }
  3186. int
  3187. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3188. struct drm_file *file_priv)
  3189. {
  3190. struct drm_i915_gem_pin *args = data;
  3191. struct drm_gem_object *obj;
  3192. struct drm_i915_gem_object *obj_priv;
  3193. mutex_lock(&dev->struct_mutex);
  3194. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3195. if (obj == NULL) {
  3196. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3197. args->handle);
  3198. mutex_unlock(&dev->struct_mutex);
  3199. return -EBADF;
  3200. }
  3201. obj_priv = obj->driver_private;
  3202. if (obj_priv->pin_filp != file_priv) {
  3203. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3204. args->handle);
  3205. drm_gem_object_unreference(obj);
  3206. mutex_unlock(&dev->struct_mutex);
  3207. return -EINVAL;
  3208. }
  3209. obj_priv->user_pin_count--;
  3210. if (obj_priv->user_pin_count == 0) {
  3211. obj_priv->pin_filp = NULL;
  3212. i915_gem_object_unpin(obj);
  3213. }
  3214. drm_gem_object_unreference(obj);
  3215. mutex_unlock(&dev->struct_mutex);
  3216. return 0;
  3217. }
  3218. int
  3219. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3220. struct drm_file *file_priv)
  3221. {
  3222. struct drm_i915_gem_busy *args = data;
  3223. struct drm_gem_object *obj;
  3224. struct drm_i915_gem_object *obj_priv;
  3225. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3226. if (obj == NULL) {
  3227. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3228. args->handle);
  3229. return -EBADF;
  3230. }
  3231. mutex_lock(&dev->struct_mutex);
  3232. /* Update the active list for the hardware's current position.
  3233. * Otherwise this only updates on a delayed timer or when irqs are
  3234. * actually unmasked, and our working set ends up being larger than
  3235. * required.
  3236. */
  3237. i915_gem_retire_requests(dev);
  3238. obj_priv = obj->driver_private;
  3239. /* Don't count being on the flushing list against the object being
  3240. * done. Otherwise, a buffer left on the flushing list but not getting
  3241. * flushed (because nobody's flushing that domain) won't ever return
  3242. * unbusy and get reused by libdrm's bo cache. The other expected
  3243. * consumer of this interface, OpenGL's occlusion queries, also specs
  3244. * that the objects get unbusy "eventually" without any interference.
  3245. */
  3246. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3247. drm_gem_object_unreference(obj);
  3248. mutex_unlock(&dev->struct_mutex);
  3249. return 0;
  3250. }
  3251. int
  3252. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3253. struct drm_file *file_priv)
  3254. {
  3255. return i915_gem_ring_throttle(dev, file_priv);
  3256. }
  3257. int i915_gem_init_object(struct drm_gem_object *obj)
  3258. {
  3259. struct drm_i915_gem_object *obj_priv;
  3260. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3261. if (obj_priv == NULL)
  3262. return -ENOMEM;
  3263. /*
  3264. * We've just allocated pages from the kernel,
  3265. * so they've just been written by the CPU with
  3266. * zeros. They'll need to be clflushed before we
  3267. * use them with the GPU.
  3268. */
  3269. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3270. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3271. obj_priv->agp_type = AGP_USER_MEMORY;
  3272. obj->driver_private = obj_priv;
  3273. obj_priv->obj = obj;
  3274. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3275. INIT_LIST_HEAD(&obj_priv->list);
  3276. return 0;
  3277. }
  3278. void i915_gem_free_object(struct drm_gem_object *obj)
  3279. {
  3280. struct drm_device *dev = obj->dev;
  3281. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3282. while (obj_priv->pin_count > 0)
  3283. i915_gem_object_unpin(obj);
  3284. if (obj_priv->phys_obj)
  3285. i915_gem_detach_phys_object(dev, obj);
  3286. i915_gem_object_unbind(obj);
  3287. i915_gem_free_mmap_offset(obj);
  3288. kfree(obj_priv->page_cpu_valid);
  3289. kfree(obj_priv->bit_17);
  3290. kfree(obj->driver_private);
  3291. }
  3292. /** Unbinds all objects that are on the given buffer list. */
  3293. static int
  3294. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3295. {
  3296. struct drm_gem_object *obj;
  3297. struct drm_i915_gem_object *obj_priv;
  3298. int ret;
  3299. while (!list_empty(head)) {
  3300. obj_priv = list_first_entry(head,
  3301. struct drm_i915_gem_object,
  3302. list);
  3303. obj = obj_priv->obj;
  3304. if (obj_priv->pin_count != 0) {
  3305. DRM_ERROR("Pinned object in unbind list\n");
  3306. mutex_unlock(&dev->struct_mutex);
  3307. return -EINVAL;
  3308. }
  3309. ret = i915_gem_object_unbind(obj);
  3310. if (ret != 0) {
  3311. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3312. ret);
  3313. mutex_unlock(&dev->struct_mutex);
  3314. return ret;
  3315. }
  3316. }
  3317. return 0;
  3318. }
  3319. int
  3320. i915_gem_idle(struct drm_device *dev)
  3321. {
  3322. drm_i915_private_t *dev_priv = dev->dev_private;
  3323. uint32_t seqno, cur_seqno, last_seqno;
  3324. int stuck, ret;
  3325. mutex_lock(&dev->struct_mutex);
  3326. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3327. mutex_unlock(&dev->struct_mutex);
  3328. return 0;
  3329. }
  3330. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3331. * We need to replace this with a semaphore, or something.
  3332. */
  3333. dev_priv->mm.suspended = 1;
  3334. /* Cancel the retire work handler, wait for it to finish if running
  3335. */
  3336. mutex_unlock(&dev->struct_mutex);
  3337. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3338. mutex_lock(&dev->struct_mutex);
  3339. i915_kernel_lost_context(dev);
  3340. /* Flush the GPU along with all non-CPU write domains
  3341. */
  3342. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3343. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3344. if (seqno == 0) {
  3345. mutex_unlock(&dev->struct_mutex);
  3346. return -ENOMEM;
  3347. }
  3348. dev_priv->mm.waiting_gem_seqno = seqno;
  3349. last_seqno = 0;
  3350. stuck = 0;
  3351. for (;;) {
  3352. cur_seqno = i915_get_gem_seqno(dev);
  3353. if (i915_seqno_passed(cur_seqno, seqno))
  3354. break;
  3355. if (last_seqno == cur_seqno) {
  3356. if (stuck++ > 100) {
  3357. DRM_ERROR("hardware wedged\n");
  3358. dev_priv->mm.wedged = 1;
  3359. DRM_WAKEUP(&dev_priv->irq_queue);
  3360. break;
  3361. }
  3362. }
  3363. msleep(10);
  3364. last_seqno = cur_seqno;
  3365. }
  3366. dev_priv->mm.waiting_gem_seqno = 0;
  3367. i915_gem_retire_requests(dev);
  3368. spin_lock(&dev_priv->mm.active_list_lock);
  3369. if (!dev_priv->mm.wedged) {
  3370. /* Active and flushing should now be empty as we've
  3371. * waited for a sequence higher than any pending execbuffer
  3372. */
  3373. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3374. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3375. /* Request should now be empty as we've also waited
  3376. * for the last request in the list
  3377. */
  3378. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3379. }
  3380. /* Empty the active and flushing lists to inactive. If there's
  3381. * anything left at this point, it means that we're wedged and
  3382. * nothing good's going to happen by leaving them there. So strip
  3383. * the GPU domains and just stuff them onto inactive.
  3384. */
  3385. while (!list_empty(&dev_priv->mm.active_list)) {
  3386. struct drm_i915_gem_object *obj_priv;
  3387. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3388. struct drm_i915_gem_object,
  3389. list);
  3390. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3391. i915_gem_object_move_to_inactive(obj_priv->obj);
  3392. }
  3393. spin_unlock(&dev_priv->mm.active_list_lock);
  3394. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3395. struct drm_i915_gem_object *obj_priv;
  3396. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3397. struct drm_i915_gem_object,
  3398. list);
  3399. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3400. i915_gem_object_move_to_inactive(obj_priv->obj);
  3401. }
  3402. /* Move all inactive buffers out of the GTT. */
  3403. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3404. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3405. if (ret) {
  3406. mutex_unlock(&dev->struct_mutex);
  3407. return ret;
  3408. }
  3409. i915_gem_cleanup_ringbuffer(dev);
  3410. mutex_unlock(&dev->struct_mutex);
  3411. return 0;
  3412. }
  3413. static int
  3414. i915_gem_init_hws(struct drm_device *dev)
  3415. {
  3416. drm_i915_private_t *dev_priv = dev->dev_private;
  3417. struct drm_gem_object *obj;
  3418. struct drm_i915_gem_object *obj_priv;
  3419. int ret;
  3420. /* If we need a physical address for the status page, it's already
  3421. * initialized at driver load time.
  3422. */
  3423. if (!I915_NEED_GFX_HWS(dev))
  3424. return 0;
  3425. obj = drm_gem_object_alloc(dev, 4096);
  3426. if (obj == NULL) {
  3427. DRM_ERROR("Failed to allocate status page\n");
  3428. return -ENOMEM;
  3429. }
  3430. obj_priv = obj->driver_private;
  3431. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3432. ret = i915_gem_object_pin(obj, 4096);
  3433. if (ret != 0) {
  3434. drm_gem_object_unreference(obj);
  3435. return ret;
  3436. }
  3437. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3438. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3439. if (dev_priv->hw_status_page == NULL) {
  3440. DRM_ERROR("Failed to map status page.\n");
  3441. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3442. i915_gem_object_unpin(obj);
  3443. drm_gem_object_unreference(obj);
  3444. return -EINVAL;
  3445. }
  3446. dev_priv->hws_obj = obj;
  3447. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3448. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3449. I915_READ(HWS_PGA); /* posting read */
  3450. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3451. return 0;
  3452. }
  3453. static void
  3454. i915_gem_cleanup_hws(struct drm_device *dev)
  3455. {
  3456. drm_i915_private_t *dev_priv = dev->dev_private;
  3457. struct drm_gem_object *obj;
  3458. struct drm_i915_gem_object *obj_priv;
  3459. if (dev_priv->hws_obj == NULL)
  3460. return;
  3461. obj = dev_priv->hws_obj;
  3462. obj_priv = obj->driver_private;
  3463. kunmap(obj_priv->pages[0]);
  3464. i915_gem_object_unpin(obj);
  3465. drm_gem_object_unreference(obj);
  3466. dev_priv->hws_obj = NULL;
  3467. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3468. dev_priv->hw_status_page = NULL;
  3469. /* Write high address into HWS_PGA when disabling. */
  3470. I915_WRITE(HWS_PGA, 0x1ffff000);
  3471. }
  3472. int
  3473. i915_gem_init_ringbuffer(struct drm_device *dev)
  3474. {
  3475. drm_i915_private_t *dev_priv = dev->dev_private;
  3476. struct drm_gem_object *obj;
  3477. struct drm_i915_gem_object *obj_priv;
  3478. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3479. int ret;
  3480. u32 head;
  3481. ret = i915_gem_init_hws(dev);
  3482. if (ret != 0)
  3483. return ret;
  3484. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3485. if (obj == NULL) {
  3486. DRM_ERROR("Failed to allocate ringbuffer\n");
  3487. i915_gem_cleanup_hws(dev);
  3488. return -ENOMEM;
  3489. }
  3490. obj_priv = obj->driver_private;
  3491. ret = i915_gem_object_pin(obj, 4096);
  3492. if (ret != 0) {
  3493. drm_gem_object_unreference(obj);
  3494. i915_gem_cleanup_hws(dev);
  3495. return ret;
  3496. }
  3497. /* Set up the kernel mapping for the ring. */
  3498. ring->Size = obj->size;
  3499. ring->tail_mask = obj->size - 1;
  3500. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3501. ring->map.size = obj->size;
  3502. ring->map.type = 0;
  3503. ring->map.flags = 0;
  3504. ring->map.mtrr = 0;
  3505. drm_core_ioremap_wc(&ring->map, dev);
  3506. if (ring->map.handle == NULL) {
  3507. DRM_ERROR("Failed to map ringbuffer.\n");
  3508. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3509. i915_gem_object_unpin(obj);
  3510. drm_gem_object_unreference(obj);
  3511. i915_gem_cleanup_hws(dev);
  3512. return -EINVAL;
  3513. }
  3514. ring->ring_obj = obj;
  3515. ring->virtual_start = ring->map.handle;
  3516. /* Stop the ring if it's running. */
  3517. I915_WRITE(PRB0_CTL, 0);
  3518. I915_WRITE(PRB0_TAIL, 0);
  3519. I915_WRITE(PRB0_HEAD, 0);
  3520. /* Initialize the ring. */
  3521. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3522. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3523. /* G45 ring initialization fails to reset head to zero */
  3524. if (head != 0) {
  3525. DRM_ERROR("Ring head not reset to zero "
  3526. "ctl %08x head %08x tail %08x start %08x\n",
  3527. I915_READ(PRB0_CTL),
  3528. I915_READ(PRB0_HEAD),
  3529. I915_READ(PRB0_TAIL),
  3530. I915_READ(PRB0_START));
  3531. I915_WRITE(PRB0_HEAD, 0);
  3532. DRM_ERROR("Ring head forced to zero "
  3533. "ctl %08x head %08x tail %08x start %08x\n",
  3534. I915_READ(PRB0_CTL),
  3535. I915_READ(PRB0_HEAD),
  3536. I915_READ(PRB0_TAIL),
  3537. I915_READ(PRB0_START));
  3538. }
  3539. I915_WRITE(PRB0_CTL,
  3540. ((obj->size - 4096) & RING_NR_PAGES) |
  3541. RING_NO_REPORT |
  3542. RING_VALID);
  3543. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3544. /* If the head is still not zero, the ring is dead */
  3545. if (head != 0) {
  3546. DRM_ERROR("Ring initialization failed "
  3547. "ctl %08x head %08x tail %08x start %08x\n",
  3548. I915_READ(PRB0_CTL),
  3549. I915_READ(PRB0_HEAD),
  3550. I915_READ(PRB0_TAIL),
  3551. I915_READ(PRB0_START));
  3552. return -EIO;
  3553. }
  3554. /* Update our cache of the ring state */
  3555. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3556. i915_kernel_lost_context(dev);
  3557. else {
  3558. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3559. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3560. ring->space = ring->head - (ring->tail + 8);
  3561. if (ring->space < 0)
  3562. ring->space += ring->Size;
  3563. }
  3564. return 0;
  3565. }
  3566. void
  3567. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3568. {
  3569. drm_i915_private_t *dev_priv = dev->dev_private;
  3570. if (dev_priv->ring.ring_obj == NULL)
  3571. return;
  3572. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3573. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3574. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3575. dev_priv->ring.ring_obj = NULL;
  3576. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3577. i915_gem_cleanup_hws(dev);
  3578. }
  3579. int
  3580. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3581. struct drm_file *file_priv)
  3582. {
  3583. drm_i915_private_t *dev_priv = dev->dev_private;
  3584. int ret;
  3585. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3586. return 0;
  3587. if (dev_priv->mm.wedged) {
  3588. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3589. dev_priv->mm.wedged = 0;
  3590. }
  3591. mutex_lock(&dev->struct_mutex);
  3592. dev_priv->mm.suspended = 0;
  3593. ret = i915_gem_init_ringbuffer(dev);
  3594. if (ret != 0) {
  3595. mutex_unlock(&dev->struct_mutex);
  3596. return ret;
  3597. }
  3598. spin_lock(&dev_priv->mm.active_list_lock);
  3599. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3600. spin_unlock(&dev_priv->mm.active_list_lock);
  3601. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3602. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3603. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3604. mutex_unlock(&dev->struct_mutex);
  3605. drm_irq_install(dev);
  3606. return 0;
  3607. }
  3608. int
  3609. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3610. struct drm_file *file_priv)
  3611. {
  3612. int ret;
  3613. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3614. return 0;
  3615. ret = i915_gem_idle(dev);
  3616. drm_irq_uninstall(dev);
  3617. return ret;
  3618. }
  3619. void
  3620. i915_gem_lastclose(struct drm_device *dev)
  3621. {
  3622. int ret;
  3623. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3624. return;
  3625. ret = i915_gem_idle(dev);
  3626. if (ret)
  3627. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3628. }
  3629. void
  3630. i915_gem_load(struct drm_device *dev)
  3631. {
  3632. int i;
  3633. drm_i915_private_t *dev_priv = dev->dev_private;
  3634. spin_lock_init(&dev_priv->mm.active_list_lock);
  3635. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3636. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3637. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3638. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3639. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3640. i915_gem_retire_work_handler);
  3641. dev_priv->mm.next_gem_seqno = 1;
  3642. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3643. dev_priv->fence_reg_start = 3;
  3644. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3645. dev_priv->num_fence_regs = 16;
  3646. else
  3647. dev_priv->num_fence_regs = 8;
  3648. /* Initialize fence registers to zero */
  3649. if (IS_I965G(dev)) {
  3650. for (i = 0; i < 16; i++)
  3651. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3652. } else {
  3653. for (i = 0; i < 8; i++)
  3654. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3655. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3656. for (i = 0; i < 8; i++)
  3657. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3658. }
  3659. i915_gem_detect_bit_6_swizzle(dev);
  3660. }
  3661. /*
  3662. * Create a physically contiguous memory object for this object
  3663. * e.g. for cursor + overlay regs
  3664. */
  3665. int i915_gem_init_phys_object(struct drm_device *dev,
  3666. int id, int size)
  3667. {
  3668. drm_i915_private_t *dev_priv = dev->dev_private;
  3669. struct drm_i915_gem_phys_object *phys_obj;
  3670. int ret;
  3671. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3672. return 0;
  3673. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3674. if (!phys_obj)
  3675. return -ENOMEM;
  3676. phys_obj->id = id;
  3677. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3678. if (!phys_obj->handle) {
  3679. ret = -ENOMEM;
  3680. goto kfree_obj;
  3681. }
  3682. #ifdef CONFIG_X86
  3683. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3684. #endif
  3685. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3686. return 0;
  3687. kfree_obj:
  3688. kfree(phys_obj);
  3689. return ret;
  3690. }
  3691. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3692. {
  3693. drm_i915_private_t *dev_priv = dev->dev_private;
  3694. struct drm_i915_gem_phys_object *phys_obj;
  3695. if (!dev_priv->mm.phys_objs[id - 1])
  3696. return;
  3697. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3698. if (phys_obj->cur_obj) {
  3699. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3700. }
  3701. #ifdef CONFIG_X86
  3702. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3703. #endif
  3704. drm_pci_free(dev, phys_obj->handle);
  3705. kfree(phys_obj);
  3706. dev_priv->mm.phys_objs[id - 1] = NULL;
  3707. }
  3708. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3709. {
  3710. int i;
  3711. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3712. i915_gem_free_phys_object(dev, i);
  3713. }
  3714. void i915_gem_detach_phys_object(struct drm_device *dev,
  3715. struct drm_gem_object *obj)
  3716. {
  3717. struct drm_i915_gem_object *obj_priv;
  3718. int i;
  3719. int ret;
  3720. int page_count;
  3721. obj_priv = obj->driver_private;
  3722. if (!obj_priv->phys_obj)
  3723. return;
  3724. ret = i915_gem_object_get_pages(obj);
  3725. if (ret)
  3726. goto out;
  3727. page_count = obj->size / PAGE_SIZE;
  3728. for (i = 0; i < page_count; i++) {
  3729. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3730. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3731. memcpy(dst, src, PAGE_SIZE);
  3732. kunmap_atomic(dst, KM_USER0);
  3733. }
  3734. drm_clflush_pages(obj_priv->pages, page_count);
  3735. drm_agp_chipset_flush(dev);
  3736. i915_gem_object_put_pages(obj);
  3737. out:
  3738. obj_priv->phys_obj->cur_obj = NULL;
  3739. obj_priv->phys_obj = NULL;
  3740. }
  3741. int
  3742. i915_gem_attach_phys_object(struct drm_device *dev,
  3743. struct drm_gem_object *obj, int id)
  3744. {
  3745. drm_i915_private_t *dev_priv = dev->dev_private;
  3746. struct drm_i915_gem_object *obj_priv;
  3747. int ret = 0;
  3748. int page_count;
  3749. int i;
  3750. if (id > I915_MAX_PHYS_OBJECT)
  3751. return -EINVAL;
  3752. obj_priv = obj->driver_private;
  3753. if (obj_priv->phys_obj) {
  3754. if (obj_priv->phys_obj->id == id)
  3755. return 0;
  3756. i915_gem_detach_phys_object(dev, obj);
  3757. }
  3758. /* create a new object */
  3759. if (!dev_priv->mm.phys_objs[id - 1]) {
  3760. ret = i915_gem_init_phys_object(dev, id,
  3761. obj->size);
  3762. if (ret) {
  3763. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3764. goto out;
  3765. }
  3766. }
  3767. /* bind to the object */
  3768. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3769. obj_priv->phys_obj->cur_obj = obj;
  3770. ret = i915_gem_object_get_pages(obj);
  3771. if (ret) {
  3772. DRM_ERROR("failed to get page list\n");
  3773. goto out;
  3774. }
  3775. page_count = obj->size / PAGE_SIZE;
  3776. for (i = 0; i < page_count; i++) {
  3777. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3778. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3779. memcpy(dst, src, PAGE_SIZE);
  3780. kunmap_atomic(src, KM_USER0);
  3781. }
  3782. i915_gem_object_put_pages(obj);
  3783. return 0;
  3784. out:
  3785. return ret;
  3786. }
  3787. static int
  3788. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3789. struct drm_i915_gem_pwrite *args,
  3790. struct drm_file *file_priv)
  3791. {
  3792. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3793. void *obj_addr;
  3794. int ret;
  3795. char __user *user_data;
  3796. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3797. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3798. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3799. ret = copy_from_user(obj_addr, user_data, args->size);
  3800. if (ret)
  3801. return -EFAULT;
  3802. drm_agp_chipset_flush(dev);
  3803. return 0;
  3804. }
  3805. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3806. {
  3807. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3808. /* Clean up our request list when the client is going away, so that
  3809. * later retire_requests won't dereference our soon-to-be-gone
  3810. * file_priv.
  3811. */
  3812. mutex_lock(&dev->struct_mutex);
  3813. while (!list_empty(&i915_file_priv->mm.request_list))
  3814. list_del_init(i915_file_priv->mm.request_list.next);
  3815. mutex_unlock(&dev->struct_mutex);
  3816. }