edac_mc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * edac_mc kernel module
  3. * (C) 2005, 2006 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * Written by Thayne Harbaugh
  8. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  9. * http://www.anime.net/~goemon/linux-ecc/
  10. *
  11. * Modified by Dave Peterson and Doug Thompson
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/sysctl.h>
  21. #include <linux/highmem.h>
  22. #include <linux/timer.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/list.h>
  27. #include <linux/sysdev.h>
  28. #include <linux/ctype.h>
  29. #include <linux/edac.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/page.h>
  32. #include <asm/edac.h>
  33. #include "edac_core.h"
  34. #include "edac_module.h"
  35. /* lock to memory controller's control array */
  36. static DEFINE_MUTEX(mem_ctls_mutex);
  37. static LIST_HEAD(mc_devices);
  38. #ifdef CONFIG_EDAC_DEBUG
  39. static void edac_mc_dump_channel(struct channel_info *chan)
  40. {
  41. debugf4("\tchannel = %p\n", chan);
  42. debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
  43. debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
  44. debugf4("\tchannel->label = '%s'\n", chan->label);
  45. debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
  46. }
  47. static void edac_mc_dump_csrow(struct csrow_info *csrow)
  48. {
  49. debugf4("\tcsrow = %p\n", csrow);
  50. debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
  51. debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
  52. debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
  53. debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
  54. debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
  55. debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
  56. debugf4("\tcsrow->channels = %p\n", csrow->channels);
  57. debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
  58. }
  59. static void edac_mc_dump_mci(struct mem_ctl_info *mci)
  60. {
  61. debugf3("\tmci = %p\n", mci);
  62. debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
  63. debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
  64. debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
  65. debugf4("\tmci->edac_check = %p\n", mci->edac_check);
  66. debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
  67. mci->nr_csrows, mci->csrows);
  68. debugf3("\tdev = %p\n", mci->dev);
  69. debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
  70. debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
  71. }
  72. #endif /* CONFIG_EDAC_DEBUG */
  73. /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
  74. * Adjust 'ptr' so that its alignment is at least as stringent as what the
  75. * compiler would provide for X and return the aligned result.
  76. *
  77. * If 'size' is a constant, the compiler will optimize this whole function
  78. * down to either a no-op or the addition of a constant to the value of 'ptr'.
  79. */
  80. void *edac_align_ptr(void *ptr, unsigned size)
  81. {
  82. unsigned align, r;
  83. /* Here we assume that the alignment of a "long long" is the most
  84. * stringent alignment that the compiler will ever provide by default.
  85. * As far as I know, this is a reasonable assumption.
  86. */
  87. if (size > sizeof(long))
  88. align = sizeof(long long);
  89. else if (size > sizeof(int))
  90. align = sizeof(long);
  91. else if (size > sizeof(short))
  92. align = sizeof(int);
  93. else if (size > sizeof(char))
  94. align = sizeof(short);
  95. else
  96. return (char *)ptr;
  97. r = size % align;
  98. if (r == 0)
  99. return (char *)ptr;
  100. return (void *)(((unsigned long)ptr) + align - r);
  101. }
  102. /**
  103. * edac_mc_alloc: Allocate a struct mem_ctl_info structure
  104. * @size_pvt: size of private storage needed
  105. * @nr_csrows: Number of CWROWS needed for this MC
  106. * @nr_chans: Number of channels for the MC
  107. *
  108. * Everything is kmalloc'ed as one big chunk - more efficient.
  109. * Only can be used if all structures have the same lifetime - otherwise
  110. * you have to allocate and initialize your own structures.
  111. *
  112. * Use edac_mc_free() to free mc structures allocated by this function.
  113. *
  114. * Returns:
  115. * NULL allocation failed
  116. * struct mem_ctl_info pointer
  117. */
  118. struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
  119. unsigned nr_chans, int edac_index)
  120. {
  121. struct mem_ctl_info *mci;
  122. struct csrow_info *csi, *csrow;
  123. struct channel_info *chi, *chp, *chan;
  124. void *pvt;
  125. unsigned size;
  126. int row, chn;
  127. int err;
  128. /* Figure out the offsets of the various items from the start of an mc
  129. * structure. We want the alignment of each item to be at least as
  130. * stringent as what the compiler would provide if we could simply
  131. * hardcode everything into a single struct.
  132. */
  133. mci = (struct mem_ctl_info *)0;
  134. csi = edac_align_ptr(&mci[1], sizeof(*csi));
  135. chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
  136. pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
  137. size = ((unsigned long)pvt) + sz_pvt;
  138. mci = kzalloc(size, GFP_KERNEL);
  139. if (mci == NULL)
  140. return NULL;
  141. /* Adjust pointers so they point within the memory we just allocated
  142. * rather than an imaginary chunk of memory located at address 0.
  143. */
  144. csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
  145. chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
  146. pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
  147. /* setup index and various internal pointers */
  148. mci->mc_idx = edac_index;
  149. mci->csrows = csi;
  150. mci->pvt_info = pvt;
  151. mci->nr_csrows = nr_csrows;
  152. for (row = 0; row < nr_csrows; row++) {
  153. csrow = &csi[row];
  154. csrow->csrow_idx = row;
  155. csrow->mci = mci;
  156. csrow->nr_channels = nr_chans;
  157. chp = &chi[row * nr_chans];
  158. csrow->channels = chp;
  159. for (chn = 0; chn < nr_chans; chn++) {
  160. chan = &chp[chn];
  161. chan->chan_idx = chn;
  162. chan->csrow = csrow;
  163. }
  164. }
  165. mci->op_state = OP_ALLOC;
  166. /*
  167. * Initialize the 'root' kobj for the edac_mc controller
  168. */
  169. err = edac_mc_register_sysfs_main_kobj(mci);
  170. if (err) {
  171. kfree(mci);
  172. return NULL;
  173. }
  174. /* at this point, the root kobj is valid, and in order to
  175. * 'free' the object, then the function:
  176. * edac_mc_unregister_sysfs_main_kobj() must be called
  177. * which will perform kobj unregistration and the actual free
  178. * will occur during the kobject callback operation
  179. */
  180. return mci;
  181. }
  182. EXPORT_SYMBOL_GPL(edac_mc_alloc);
  183. /**
  184. * edac_mc_free
  185. * 'Free' a previously allocated 'mci' structure
  186. * @mci: pointer to a struct mem_ctl_info structure
  187. */
  188. void edac_mc_free(struct mem_ctl_info *mci)
  189. {
  190. edac_mc_unregister_sysfs_main_kobj(mci);
  191. }
  192. EXPORT_SYMBOL_GPL(edac_mc_free);
  193. /*
  194. * find_mci_by_dev
  195. *
  196. * scan list of controllers looking for the one that manages
  197. * the 'dev' device
  198. */
  199. static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
  200. {
  201. struct mem_ctl_info *mci;
  202. struct list_head *item;
  203. debugf3("%s()\n", __func__);
  204. list_for_each(item, &mc_devices) {
  205. mci = list_entry(item, struct mem_ctl_info, link);
  206. if (mci->dev == dev)
  207. return mci;
  208. }
  209. return NULL;
  210. }
  211. /*
  212. * handler for EDAC to check if NMI type handler has asserted interrupt
  213. */
  214. static int edac_mc_assert_error_check_and_clear(void)
  215. {
  216. int old_state;
  217. if (edac_op_state == EDAC_OPSTATE_POLL)
  218. return 1;
  219. old_state = edac_err_assert;
  220. edac_err_assert = 0;
  221. return old_state;
  222. }
  223. /*
  224. * edac_mc_workq_function
  225. * performs the operation scheduled by a workq request
  226. */
  227. static void edac_mc_workq_function(struct work_struct *work_req)
  228. {
  229. struct delayed_work *d_work = to_delayed_work(work_req);
  230. struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
  231. mutex_lock(&mem_ctls_mutex);
  232. /* if this control struct has movd to offline state, we are done */
  233. if (mci->op_state == OP_OFFLINE) {
  234. mutex_unlock(&mem_ctls_mutex);
  235. return;
  236. }
  237. /* Only poll controllers that are running polled and have a check */
  238. if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
  239. mci->edac_check(mci);
  240. mutex_unlock(&mem_ctls_mutex);
  241. /* Reschedule */
  242. queue_delayed_work(edac_workqueue, &mci->work,
  243. msecs_to_jiffies(edac_mc_get_poll_msec()));
  244. }
  245. /*
  246. * edac_mc_workq_setup
  247. * initialize a workq item for this mci
  248. * passing in the new delay period in msec
  249. *
  250. * locking model:
  251. *
  252. * called with the mem_ctls_mutex held
  253. */
  254. static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
  255. {
  256. debugf0("%s()\n", __func__);
  257. /* if this instance is not in the POLL state, then simply return */
  258. if (mci->op_state != OP_RUNNING_POLL)
  259. return;
  260. INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
  261. queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
  262. }
  263. /*
  264. * edac_mc_workq_teardown
  265. * stop the workq processing on this mci
  266. *
  267. * locking model:
  268. *
  269. * called WITHOUT lock held
  270. */
  271. static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
  272. {
  273. int status;
  274. status = cancel_delayed_work(&mci->work);
  275. if (status == 0) {
  276. debugf0("%s() not canceled, flush the queue\n",
  277. __func__);
  278. /* workq instance might be running, wait for it */
  279. flush_workqueue(edac_workqueue);
  280. }
  281. }
  282. /*
  283. * edac_mc_reset_delay_period(unsigned long value)
  284. *
  285. * user space has updated our poll period value, need to
  286. * reset our workq delays
  287. */
  288. void edac_mc_reset_delay_period(int value)
  289. {
  290. struct mem_ctl_info *mci;
  291. struct list_head *item;
  292. mutex_lock(&mem_ctls_mutex);
  293. /* scan the list and turn off all workq timers, doing so under lock
  294. */
  295. list_for_each(item, &mc_devices) {
  296. mci = list_entry(item, struct mem_ctl_info, link);
  297. if (mci->op_state == OP_RUNNING_POLL)
  298. cancel_delayed_work(&mci->work);
  299. }
  300. mutex_unlock(&mem_ctls_mutex);
  301. /* re-walk the list, and reset the poll delay */
  302. mutex_lock(&mem_ctls_mutex);
  303. list_for_each(item, &mc_devices) {
  304. mci = list_entry(item, struct mem_ctl_info, link);
  305. edac_mc_workq_setup(mci, (unsigned long) value);
  306. }
  307. mutex_unlock(&mem_ctls_mutex);
  308. }
  309. /* Return 0 on success, 1 on failure.
  310. * Before calling this function, caller must
  311. * assign a unique value to mci->mc_idx.
  312. *
  313. * locking model:
  314. *
  315. * called with the mem_ctls_mutex lock held
  316. */
  317. static int add_mc_to_global_list(struct mem_ctl_info *mci)
  318. {
  319. struct list_head *item, *insert_before;
  320. struct mem_ctl_info *p;
  321. insert_before = &mc_devices;
  322. p = find_mci_by_dev(mci->dev);
  323. if (unlikely(p != NULL))
  324. goto fail0;
  325. list_for_each(item, &mc_devices) {
  326. p = list_entry(item, struct mem_ctl_info, link);
  327. if (p->mc_idx >= mci->mc_idx) {
  328. if (unlikely(p->mc_idx == mci->mc_idx))
  329. goto fail1;
  330. insert_before = item;
  331. break;
  332. }
  333. }
  334. list_add_tail_rcu(&mci->link, insert_before);
  335. atomic_inc(&edac_handlers);
  336. return 0;
  337. fail0:
  338. edac_printk(KERN_WARNING, EDAC_MC,
  339. "%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
  340. edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
  341. return 1;
  342. fail1:
  343. edac_printk(KERN_WARNING, EDAC_MC,
  344. "bug in low-level driver: attempt to assign\n"
  345. " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
  346. return 1;
  347. }
  348. static void complete_mc_list_del(struct rcu_head *head)
  349. {
  350. struct mem_ctl_info *mci;
  351. mci = container_of(head, struct mem_ctl_info, rcu);
  352. INIT_LIST_HEAD(&mci->link);
  353. complete(&mci->complete);
  354. }
  355. static void del_mc_from_global_list(struct mem_ctl_info *mci)
  356. {
  357. atomic_dec(&edac_handlers);
  358. list_del_rcu(&mci->link);
  359. init_completion(&mci->complete);
  360. call_rcu(&mci->rcu, complete_mc_list_del);
  361. wait_for_completion(&mci->complete);
  362. }
  363. /**
  364. * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
  365. *
  366. * If found, return a pointer to the structure.
  367. * Else return NULL.
  368. *
  369. * Caller must hold mem_ctls_mutex.
  370. */
  371. struct mem_ctl_info *edac_mc_find(int idx)
  372. {
  373. struct list_head *item;
  374. struct mem_ctl_info *mci;
  375. list_for_each(item, &mc_devices) {
  376. mci = list_entry(item, struct mem_ctl_info, link);
  377. if (mci->mc_idx >= idx) {
  378. if (mci->mc_idx == idx)
  379. return mci;
  380. break;
  381. }
  382. }
  383. return NULL;
  384. }
  385. EXPORT_SYMBOL(edac_mc_find);
  386. /**
  387. * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
  388. * create sysfs entries associated with mci structure
  389. * @mci: pointer to the mci structure to be added to the list
  390. * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
  391. *
  392. * Return:
  393. * 0 Success
  394. * !0 Failure
  395. */
  396. /* FIXME - should a warning be printed if no error detection? correction? */
  397. int edac_mc_add_mc(struct mem_ctl_info *mci)
  398. {
  399. debugf0("%s()\n", __func__);
  400. #ifdef CONFIG_EDAC_DEBUG
  401. if (edac_debug_level >= 3)
  402. edac_mc_dump_mci(mci);
  403. if (edac_debug_level >= 4) {
  404. int i;
  405. for (i = 0; i < mci->nr_csrows; i++) {
  406. int j;
  407. edac_mc_dump_csrow(&mci->csrows[i]);
  408. for (j = 0; j < mci->csrows[i].nr_channels; j++)
  409. edac_mc_dump_channel(&mci->csrows[i].
  410. channels[j]);
  411. }
  412. }
  413. #endif
  414. mutex_lock(&mem_ctls_mutex);
  415. if (add_mc_to_global_list(mci))
  416. goto fail0;
  417. /* set load time so that error rate can be tracked */
  418. mci->start_time = jiffies;
  419. if (edac_create_sysfs_mci_device(mci)) {
  420. edac_mc_printk(mci, KERN_WARNING,
  421. "failed to create sysfs device\n");
  422. goto fail1;
  423. }
  424. /* If there IS a check routine, then we are running POLLED */
  425. if (mci->edac_check != NULL) {
  426. /* This instance is NOW RUNNING */
  427. mci->op_state = OP_RUNNING_POLL;
  428. edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
  429. } else {
  430. mci->op_state = OP_RUNNING_INTERRUPT;
  431. }
  432. /* Report action taken */
  433. edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
  434. " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
  435. mutex_unlock(&mem_ctls_mutex);
  436. return 0;
  437. fail1:
  438. del_mc_from_global_list(mci);
  439. fail0:
  440. mutex_unlock(&mem_ctls_mutex);
  441. return 1;
  442. }
  443. EXPORT_SYMBOL_GPL(edac_mc_add_mc);
  444. /**
  445. * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
  446. * remove mci structure from global list
  447. * @pdev: Pointer to 'struct device' representing mci structure to remove.
  448. *
  449. * Return pointer to removed mci structure, or NULL if device not found.
  450. */
  451. struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
  452. {
  453. struct mem_ctl_info *mci;
  454. debugf0("%s()\n", __func__);
  455. mutex_lock(&mem_ctls_mutex);
  456. /* find the requested mci struct in the global list */
  457. mci = find_mci_by_dev(dev);
  458. if (mci == NULL) {
  459. mutex_unlock(&mem_ctls_mutex);
  460. return NULL;
  461. }
  462. /* marking MCI offline */
  463. mci->op_state = OP_OFFLINE;
  464. del_mc_from_global_list(mci);
  465. mutex_unlock(&mem_ctls_mutex);
  466. /* flush workq processes and remove sysfs */
  467. edac_mc_workq_teardown(mci);
  468. edac_remove_sysfs_mci_device(mci);
  469. edac_printk(KERN_INFO, EDAC_MC,
  470. "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
  471. mci->mod_name, mci->ctl_name, edac_dev_name(mci));
  472. return mci;
  473. }
  474. EXPORT_SYMBOL_GPL(edac_mc_del_mc);
  475. static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
  476. u32 size)
  477. {
  478. struct page *pg;
  479. void *virt_addr;
  480. unsigned long flags = 0;
  481. debugf3("%s()\n", __func__);
  482. /* ECC error page was not in our memory. Ignore it. */
  483. if (!pfn_valid(page))
  484. return;
  485. /* Find the actual page structure then map it and fix */
  486. pg = pfn_to_page(page);
  487. if (PageHighMem(pg))
  488. local_irq_save(flags);
  489. virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
  490. /* Perform architecture specific atomic scrub operation */
  491. atomic_scrub(virt_addr + offset, size);
  492. /* Unmap and complete */
  493. kunmap_atomic(virt_addr, KM_BOUNCE_READ);
  494. if (PageHighMem(pg))
  495. local_irq_restore(flags);
  496. }
  497. /* FIXME - should return -1 */
  498. int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
  499. {
  500. struct csrow_info *csrows = mci->csrows;
  501. int row, i;
  502. debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
  503. row = -1;
  504. for (i = 0; i < mci->nr_csrows; i++) {
  505. struct csrow_info *csrow = &csrows[i];
  506. if (csrow->nr_pages == 0)
  507. continue;
  508. debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
  509. "mask(0x%lx)\n", mci->mc_idx, __func__,
  510. csrow->first_page, page, csrow->last_page,
  511. csrow->page_mask);
  512. if ((page >= csrow->first_page) &&
  513. (page <= csrow->last_page) &&
  514. ((page & csrow->page_mask) ==
  515. (csrow->first_page & csrow->page_mask))) {
  516. row = i;
  517. break;
  518. }
  519. }
  520. if (row == -1)
  521. edac_mc_printk(mci, KERN_ERR,
  522. "could not look up page error address %lx\n",
  523. (unsigned long)page);
  524. return row;
  525. }
  526. EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
  527. /* FIXME - setable log (warning/emerg) levels */
  528. /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
  529. void edac_mc_handle_ce(struct mem_ctl_info *mci,
  530. unsigned long page_frame_number,
  531. unsigned long offset_in_page, unsigned long syndrome,
  532. int row, int channel, const char *msg)
  533. {
  534. unsigned long remapped_page;
  535. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  536. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  537. if (row >= mci->nr_csrows || row < 0) {
  538. /* something is wrong */
  539. edac_mc_printk(mci, KERN_ERR,
  540. "INTERNAL ERROR: row out of range "
  541. "(%d >= %d)\n", row, mci->nr_csrows);
  542. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  543. return;
  544. }
  545. if (channel >= mci->csrows[row].nr_channels || channel < 0) {
  546. /* something is wrong */
  547. edac_mc_printk(mci, KERN_ERR,
  548. "INTERNAL ERROR: channel out of range "
  549. "(%d >= %d)\n", channel,
  550. mci->csrows[row].nr_channels);
  551. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  552. return;
  553. }
  554. if (edac_mc_get_log_ce())
  555. /* FIXME - put in DIMM location */
  556. edac_mc_printk(mci, KERN_WARNING,
  557. "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
  558. "0x%lx, row %d, channel %d, label \"%s\": %s\n",
  559. page_frame_number, offset_in_page,
  560. mci->csrows[row].grain, syndrome, row, channel,
  561. mci->csrows[row].channels[channel].label, msg);
  562. mci->ce_count++;
  563. mci->csrows[row].ce_count++;
  564. mci->csrows[row].channels[channel].ce_count++;
  565. if (mci->scrub_mode & SCRUB_SW_SRC) {
  566. /*
  567. * Some MC's can remap memory so that it is still available
  568. * at a different address when PCI devices map into memory.
  569. * MC's that can't do this lose the memory where PCI devices
  570. * are mapped. This mapping is MC dependant and so we call
  571. * back into the MC driver for it to map the MC page to
  572. * a physical (CPU) page which can then be mapped to a virtual
  573. * page - which can then be scrubbed.
  574. */
  575. remapped_page = mci->ctl_page_to_phys ?
  576. mci->ctl_page_to_phys(mci, page_frame_number) :
  577. page_frame_number;
  578. edac_mc_scrub_block(remapped_page, offset_in_page,
  579. mci->csrows[row].grain);
  580. }
  581. }
  582. EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
  583. void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
  584. {
  585. if (edac_mc_get_log_ce())
  586. edac_mc_printk(mci, KERN_WARNING,
  587. "CE - no information available: %s\n", msg);
  588. mci->ce_noinfo_count++;
  589. mci->ce_count++;
  590. }
  591. EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
  592. void edac_mc_handle_ue(struct mem_ctl_info *mci,
  593. unsigned long page_frame_number,
  594. unsigned long offset_in_page, int row, const char *msg)
  595. {
  596. int len = EDAC_MC_LABEL_LEN * 4;
  597. char labels[len + 1];
  598. char *pos = labels;
  599. int chan;
  600. int chars;
  601. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  602. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  603. if (row >= mci->nr_csrows || row < 0) {
  604. /* something is wrong */
  605. edac_mc_printk(mci, KERN_ERR,
  606. "INTERNAL ERROR: row out of range "
  607. "(%d >= %d)\n", row, mci->nr_csrows);
  608. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  609. return;
  610. }
  611. chars = snprintf(pos, len + 1, "%s",
  612. mci->csrows[row].channels[0].label);
  613. len -= chars;
  614. pos += chars;
  615. for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
  616. chan++) {
  617. chars = snprintf(pos, len + 1, ":%s",
  618. mci->csrows[row].channels[chan].label);
  619. len -= chars;
  620. pos += chars;
  621. }
  622. if (edac_mc_get_log_ue())
  623. edac_mc_printk(mci, KERN_EMERG,
  624. "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
  625. "labels \"%s\": %s\n", page_frame_number,
  626. offset_in_page, mci->csrows[row].grain, row,
  627. labels, msg);
  628. if (edac_mc_get_panic_on_ue())
  629. panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
  630. "row %d, labels \"%s\": %s\n", mci->mc_idx,
  631. page_frame_number, offset_in_page,
  632. mci->csrows[row].grain, row, labels, msg);
  633. mci->ue_count++;
  634. mci->csrows[row].ue_count++;
  635. }
  636. EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
  637. void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
  638. {
  639. if (edac_mc_get_panic_on_ue())
  640. panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
  641. if (edac_mc_get_log_ue())
  642. edac_mc_printk(mci, KERN_WARNING,
  643. "UE - no information available: %s\n", msg);
  644. mci->ue_noinfo_count++;
  645. mci->ue_count++;
  646. }
  647. EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
  648. /*************************************************************
  649. * On Fully Buffered DIMM modules, this help function is
  650. * called to process UE events
  651. */
  652. void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
  653. unsigned int csrow,
  654. unsigned int channela,
  655. unsigned int channelb, char *msg)
  656. {
  657. int len = EDAC_MC_LABEL_LEN * 4;
  658. char labels[len + 1];
  659. char *pos = labels;
  660. int chars;
  661. if (csrow >= mci->nr_csrows) {
  662. /* something is wrong */
  663. edac_mc_printk(mci, KERN_ERR,
  664. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  665. csrow, mci->nr_csrows);
  666. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  667. return;
  668. }
  669. if (channela >= mci->csrows[csrow].nr_channels) {
  670. /* something is wrong */
  671. edac_mc_printk(mci, KERN_ERR,
  672. "INTERNAL ERROR: channel-a out of range "
  673. "(%d >= %d)\n",
  674. channela, mci->csrows[csrow].nr_channels);
  675. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  676. return;
  677. }
  678. if (channelb >= mci->csrows[csrow].nr_channels) {
  679. /* something is wrong */
  680. edac_mc_printk(mci, KERN_ERR,
  681. "INTERNAL ERROR: channel-b out of range "
  682. "(%d >= %d)\n",
  683. channelb, mci->csrows[csrow].nr_channels);
  684. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  685. return;
  686. }
  687. mci->ue_count++;
  688. mci->csrows[csrow].ue_count++;
  689. /* Generate the DIMM labels from the specified channels */
  690. chars = snprintf(pos, len + 1, "%s",
  691. mci->csrows[csrow].channels[channela].label);
  692. len -= chars;
  693. pos += chars;
  694. chars = snprintf(pos, len + 1, "-%s",
  695. mci->csrows[csrow].channels[channelb].label);
  696. if (edac_mc_get_log_ue())
  697. edac_mc_printk(mci, KERN_EMERG,
  698. "UE row %d, channel-a= %d channel-b= %d "
  699. "labels \"%s\": %s\n", csrow, channela, channelb,
  700. labels, msg);
  701. if (edac_mc_get_panic_on_ue())
  702. panic("UE row %d, channel-a= %d channel-b= %d "
  703. "labels \"%s\": %s\n", csrow, channela,
  704. channelb, labels, msg);
  705. }
  706. EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
  707. /*************************************************************
  708. * On Fully Buffered DIMM modules, this help function is
  709. * called to process CE events
  710. */
  711. void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
  712. unsigned int csrow, unsigned int channel, char *msg)
  713. {
  714. /* Ensure boundary values */
  715. if (csrow >= mci->nr_csrows) {
  716. /* something is wrong */
  717. edac_mc_printk(mci, KERN_ERR,
  718. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  719. csrow, mci->nr_csrows);
  720. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  721. return;
  722. }
  723. if (channel >= mci->csrows[csrow].nr_channels) {
  724. /* something is wrong */
  725. edac_mc_printk(mci, KERN_ERR,
  726. "INTERNAL ERROR: channel out of range (%d >= %d)\n",
  727. channel, mci->csrows[csrow].nr_channels);
  728. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  729. return;
  730. }
  731. if (edac_mc_get_log_ce())
  732. /* FIXME - put in DIMM location */
  733. edac_mc_printk(mci, KERN_WARNING,
  734. "CE row %d, channel %d, label \"%s\": %s\n",
  735. csrow, channel,
  736. mci->csrows[csrow].channels[channel].label, msg);
  737. mci->ce_count++;
  738. mci->csrows[csrow].ce_count++;
  739. mci->csrows[csrow].channels[channel].ce_count++;
  740. }
  741. EXPORT_SYMBOL(edac_mc_handle_fbd_ce);