cpufreq_ondemand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  31. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  32. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  33. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  34. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  35. /*
  36. * The polling frequency of this governor depends on the capability of
  37. * the processor. Default polling frequency is 1000 times the transition
  38. * latency of the processor. The governor will work on any processor with
  39. * transition latency <= 10mS, using appropriate sampling
  40. * rate.
  41. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  42. * this governor will not work.
  43. * All times here are in uS.
  44. */
  45. #define MIN_SAMPLING_RATE_RATIO (2)
  46. static unsigned int min_sampling_rate;
  47. #define LATENCY_MULTIPLIER (1000)
  48. #define MIN_LATENCY_MULTIPLIER (100)
  49. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  50. static void do_dbs_timer(struct work_struct *work);
  51. /* Sampling types */
  52. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  53. struct cpu_dbs_info_s {
  54. cputime64_t prev_cpu_idle;
  55. cputime64_t prev_cpu_wall;
  56. cputime64_t prev_cpu_nice;
  57. struct cpufreq_policy *cur_policy;
  58. struct delayed_work work;
  59. struct cpufreq_frequency_table *freq_table;
  60. unsigned int freq_lo;
  61. unsigned int freq_lo_jiffies;
  62. unsigned int freq_hi_jiffies;
  63. int cpu;
  64. unsigned int sample_type:1;
  65. /*
  66. * percpu mutex that serializes governor limit change with
  67. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  68. * when user is changing the governor or limits.
  69. */
  70. struct mutex timer_mutex;
  71. };
  72. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  73. static unsigned int dbs_enable; /* number of CPUs using this policy */
  74. /*
  75. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  76. * different CPUs. It protects dbs_enable in governor start/stop.
  77. */
  78. static DEFINE_MUTEX(dbs_mutex);
  79. static struct workqueue_struct *kondemand_wq;
  80. static struct dbs_tuners {
  81. unsigned int sampling_rate;
  82. unsigned int up_threshold;
  83. unsigned int down_differential;
  84. unsigned int ignore_nice;
  85. unsigned int powersave_bias;
  86. } dbs_tuners_ins = {
  87. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  88. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  89. .ignore_nice = 0,
  90. .powersave_bias = 0,
  91. };
  92. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  93. cputime64_t *wall)
  94. {
  95. cputime64_t idle_time;
  96. cputime64_t cur_wall_time;
  97. cputime64_t busy_time;
  98. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  99. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  100. kstat_cpu(cpu).cpustat.system);
  101. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  102. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  103. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  104. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  105. idle_time = cputime64_sub(cur_wall_time, busy_time);
  106. if (wall)
  107. *wall = cur_wall_time;
  108. return idle_time;
  109. }
  110. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  111. {
  112. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  113. if (idle_time == -1ULL)
  114. return get_cpu_idle_time_jiffy(cpu, wall);
  115. return idle_time;
  116. }
  117. /*
  118. * Find right freq to be set now with powersave_bias on.
  119. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  120. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  121. */
  122. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  123. unsigned int freq_next,
  124. unsigned int relation)
  125. {
  126. unsigned int freq_req, freq_reduc, freq_avg;
  127. unsigned int freq_hi, freq_lo;
  128. unsigned int index = 0;
  129. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  130. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
  131. if (!dbs_info->freq_table) {
  132. dbs_info->freq_lo = 0;
  133. dbs_info->freq_lo_jiffies = 0;
  134. return freq_next;
  135. }
  136. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  137. relation, &index);
  138. freq_req = dbs_info->freq_table[index].frequency;
  139. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  140. freq_avg = freq_req - freq_reduc;
  141. /* Find freq bounds for freq_avg in freq_table */
  142. index = 0;
  143. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  144. CPUFREQ_RELATION_H, &index);
  145. freq_lo = dbs_info->freq_table[index].frequency;
  146. index = 0;
  147. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  148. CPUFREQ_RELATION_L, &index);
  149. freq_hi = dbs_info->freq_table[index].frequency;
  150. /* Find out how long we have to be in hi and lo freqs */
  151. if (freq_hi == freq_lo) {
  152. dbs_info->freq_lo = 0;
  153. dbs_info->freq_lo_jiffies = 0;
  154. return freq_lo;
  155. }
  156. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  157. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  158. jiffies_hi += ((freq_hi - freq_lo) / 2);
  159. jiffies_hi /= (freq_hi - freq_lo);
  160. jiffies_lo = jiffies_total - jiffies_hi;
  161. dbs_info->freq_lo = freq_lo;
  162. dbs_info->freq_lo_jiffies = jiffies_lo;
  163. dbs_info->freq_hi_jiffies = jiffies_hi;
  164. return freq_hi;
  165. }
  166. static void ondemand_powersave_bias_init_cpu(int cpu)
  167. {
  168. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
  169. dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
  170. dbs_info->freq_lo = 0;
  171. }
  172. static void ondemand_powersave_bias_init(void)
  173. {
  174. int i;
  175. for_each_online_cpu(i) {
  176. ondemand_powersave_bias_init_cpu(i);
  177. }
  178. }
  179. /************************** sysfs interface ************************/
  180. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  181. {
  182. printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  183. "sysfs file is deprecated - used by: %s\n", current->comm);
  184. return sprintf(buf, "%u\n", -1U);
  185. }
  186. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  187. {
  188. return sprintf(buf, "%u\n", min_sampling_rate);
  189. }
  190. #define define_one_ro(_name) \
  191. static struct freq_attr _name = \
  192. __ATTR(_name, 0444, show_##_name, NULL)
  193. define_one_ro(sampling_rate_max);
  194. define_one_ro(sampling_rate_min);
  195. /* cpufreq_ondemand Governor Tunables */
  196. #define show_one(file_name, object) \
  197. static ssize_t show_##file_name \
  198. (struct cpufreq_policy *unused, char *buf) \
  199. { \
  200. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  201. }
  202. show_one(sampling_rate, sampling_rate);
  203. show_one(up_threshold, up_threshold);
  204. show_one(ignore_nice_load, ignore_nice);
  205. show_one(powersave_bias, powersave_bias);
  206. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  207. const char *buf, size_t count)
  208. {
  209. unsigned int input;
  210. int ret;
  211. ret = sscanf(buf, "%u", &input);
  212. if (ret != 1)
  213. return -EINVAL;
  214. mutex_lock(&dbs_mutex);
  215. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  216. mutex_unlock(&dbs_mutex);
  217. return count;
  218. }
  219. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  220. const char *buf, size_t count)
  221. {
  222. unsigned int input;
  223. int ret;
  224. ret = sscanf(buf, "%u", &input);
  225. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  226. input < MIN_FREQUENCY_UP_THRESHOLD) {
  227. return -EINVAL;
  228. }
  229. mutex_lock(&dbs_mutex);
  230. dbs_tuners_ins.up_threshold = input;
  231. mutex_unlock(&dbs_mutex);
  232. return count;
  233. }
  234. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  235. const char *buf, size_t count)
  236. {
  237. unsigned int input;
  238. int ret;
  239. unsigned int j;
  240. ret = sscanf(buf, "%u", &input);
  241. if (ret != 1)
  242. return -EINVAL;
  243. if (input > 1)
  244. input = 1;
  245. mutex_lock(&dbs_mutex);
  246. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  247. mutex_unlock(&dbs_mutex);
  248. return count;
  249. }
  250. dbs_tuners_ins.ignore_nice = input;
  251. /* we need to re-evaluate prev_cpu_idle */
  252. for_each_online_cpu(j) {
  253. struct cpu_dbs_info_s *dbs_info;
  254. dbs_info = &per_cpu(cpu_dbs_info, j);
  255. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  256. &dbs_info->prev_cpu_wall);
  257. if (dbs_tuners_ins.ignore_nice)
  258. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  259. }
  260. mutex_unlock(&dbs_mutex);
  261. return count;
  262. }
  263. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  264. const char *buf, size_t count)
  265. {
  266. unsigned int input;
  267. int ret;
  268. ret = sscanf(buf, "%u", &input);
  269. if (ret != 1)
  270. return -EINVAL;
  271. if (input > 1000)
  272. input = 1000;
  273. mutex_lock(&dbs_mutex);
  274. dbs_tuners_ins.powersave_bias = input;
  275. ondemand_powersave_bias_init();
  276. mutex_unlock(&dbs_mutex);
  277. return count;
  278. }
  279. #define define_one_rw(_name) \
  280. static struct freq_attr _name = \
  281. __ATTR(_name, 0644, show_##_name, store_##_name)
  282. define_one_rw(sampling_rate);
  283. define_one_rw(up_threshold);
  284. define_one_rw(ignore_nice_load);
  285. define_one_rw(powersave_bias);
  286. static struct attribute *dbs_attributes[] = {
  287. &sampling_rate_max.attr,
  288. &sampling_rate_min.attr,
  289. &sampling_rate.attr,
  290. &up_threshold.attr,
  291. &ignore_nice_load.attr,
  292. &powersave_bias.attr,
  293. NULL
  294. };
  295. static struct attribute_group dbs_attr_group = {
  296. .attrs = dbs_attributes,
  297. .name = "ondemand",
  298. };
  299. /************************** sysfs end ************************/
  300. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  301. {
  302. unsigned int max_load_freq;
  303. struct cpufreq_policy *policy;
  304. unsigned int j;
  305. this_dbs_info->freq_lo = 0;
  306. policy = this_dbs_info->cur_policy;
  307. /*
  308. * Every sampling_rate, we check, if current idle time is less
  309. * than 20% (default), then we try to increase frequency
  310. * Every sampling_rate, we look for a the lowest
  311. * frequency which can sustain the load while keeping idle time over
  312. * 30%. If such a frequency exist, we try to decrease to this frequency.
  313. *
  314. * Any frequency increase takes it to the maximum frequency.
  315. * Frequency reduction happens at minimum steps of
  316. * 5% (default) of current frequency
  317. */
  318. /* Get Absolute Load - in terms of freq */
  319. max_load_freq = 0;
  320. for_each_cpu(j, policy->cpus) {
  321. struct cpu_dbs_info_s *j_dbs_info;
  322. cputime64_t cur_wall_time, cur_idle_time;
  323. unsigned int idle_time, wall_time;
  324. unsigned int load, load_freq;
  325. int freq_avg;
  326. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  327. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  328. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  329. j_dbs_info->prev_cpu_wall);
  330. j_dbs_info->prev_cpu_wall = cur_wall_time;
  331. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  332. j_dbs_info->prev_cpu_idle);
  333. j_dbs_info->prev_cpu_idle = cur_idle_time;
  334. if (dbs_tuners_ins.ignore_nice) {
  335. cputime64_t cur_nice;
  336. unsigned long cur_nice_jiffies;
  337. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  338. j_dbs_info->prev_cpu_nice);
  339. /*
  340. * Assumption: nice time between sampling periods will
  341. * be less than 2^32 jiffies for 32 bit sys
  342. */
  343. cur_nice_jiffies = (unsigned long)
  344. cputime64_to_jiffies64(cur_nice);
  345. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  346. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  347. }
  348. if (unlikely(!wall_time || wall_time < idle_time))
  349. continue;
  350. load = 100 * (wall_time - idle_time) / wall_time;
  351. freq_avg = __cpufreq_driver_getavg(policy, j);
  352. if (freq_avg <= 0)
  353. freq_avg = policy->cur;
  354. load_freq = load * freq_avg;
  355. if (load_freq > max_load_freq)
  356. max_load_freq = load_freq;
  357. }
  358. /* Check for frequency increase */
  359. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  360. /* if we are already at full speed then break out early */
  361. if (!dbs_tuners_ins.powersave_bias) {
  362. if (policy->cur == policy->max)
  363. return;
  364. __cpufreq_driver_target(policy, policy->max,
  365. CPUFREQ_RELATION_H);
  366. } else {
  367. int freq = powersave_bias_target(policy, policy->max,
  368. CPUFREQ_RELATION_H);
  369. __cpufreq_driver_target(policy, freq,
  370. CPUFREQ_RELATION_L);
  371. }
  372. return;
  373. }
  374. /* Check for frequency decrease */
  375. /* if we cannot reduce the frequency anymore, break out early */
  376. if (policy->cur == policy->min)
  377. return;
  378. /*
  379. * The optimal frequency is the frequency that is the lowest that
  380. * can support the current CPU usage without triggering the up
  381. * policy. To be safe, we focus 10 points under the threshold.
  382. */
  383. if (max_load_freq <
  384. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  385. policy->cur) {
  386. unsigned int freq_next;
  387. freq_next = max_load_freq /
  388. (dbs_tuners_ins.up_threshold -
  389. dbs_tuners_ins.down_differential);
  390. if (!dbs_tuners_ins.powersave_bias) {
  391. __cpufreq_driver_target(policy, freq_next,
  392. CPUFREQ_RELATION_L);
  393. } else {
  394. int freq = powersave_bias_target(policy, freq_next,
  395. CPUFREQ_RELATION_L);
  396. __cpufreq_driver_target(policy, freq,
  397. CPUFREQ_RELATION_L);
  398. }
  399. }
  400. }
  401. static void do_dbs_timer(struct work_struct *work)
  402. {
  403. struct cpu_dbs_info_s *dbs_info =
  404. container_of(work, struct cpu_dbs_info_s, work.work);
  405. unsigned int cpu = dbs_info->cpu;
  406. int sample_type = dbs_info->sample_type;
  407. /* We want all CPUs to do sampling nearly on same jiffy */
  408. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  409. delay -= jiffies % delay;
  410. mutex_lock(&dbs_info->timer_mutex);
  411. /* Common NORMAL_SAMPLE setup */
  412. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  413. if (!dbs_tuners_ins.powersave_bias ||
  414. sample_type == DBS_NORMAL_SAMPLE) {
  415. dbs_check_cpu(dbs_info);
  416. if (dbs_info->freq_lo) {
  417. /* Setup timer for SUB_SAMPLE */
  418. dbs_info->sample_type = DBS_SUB_SAMPLE;
  419. delay = dbs_info->freq_hi_jiffies;
  420. }
  421. } else {
  422. __cpufreq_driver_target(dbs_info->cur_policy,
  423. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  424. }
  425. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  426. mutex_unlock(&dbs_info->timer_mutex);
  427. }
  428. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  429. {
  430. /* We want all CPUs to do sampling nearly on same jiffy */
  431. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  432. delay -= jiffies % delay;
  433. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  434. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  435. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  436. delay);
  437. }
  438. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  439. {
  440. cancel_delayed_work_sync(&dbs_info->work);
  441. }
  442. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  443. unsigned int event)
  444. {
  445. unsigned int cpu = policy->cpu;
  446. struct cpu_dbs_info_s *this_dbs_info;
  447. unsigned int j;
  448. int rc;
  449. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  450. switch (event) {
  451. case CPUFREQ_GOV_START:
  452. if ((!cpu_online(cpu)) || (!policy->cur))
  453. return -EINVAL;
  454. mutex_lock(&dbs_mutex);
  455. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  456. if (rc) {
  457. mutex_unlock(&dbs_mutex);
  458. return rc;
  459. }
  460. dbs_enable++;
  461. for_each_cpu(j, policy->cpus) {
  462. struct cpu_dbs_info_s *j_dbs_info;
  463. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  464. j_dbs_info->cur_policy = policy;
  465. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  466. &j_dbs_info->prev_cpu_wall);
  467. if (dbs_tuners_ins.ignore_nice) {
  468. j_dbs_info->prev_cpu_nice =
  469. kstat_cpu(j).cpustat.nice;
  470. }
  471. }
  472. this_dbs_info->cpu = cpu;
  473. ondemand_powersave_bias_init_cpu(cpu);
  474. mutex_init(&this_dbs_info->timer_mutex);
  475. /*
  476. * Start the timerschedule work, when this governor
  477. * is used for first time
  478. */
  479. if (dbs_enable == 1) {
  480. unsigned int latency;
  481. /* policy latency is in nS. Convert it to uS first */
  482. latency = policy->cpuinfo.transition_latency / 1000;
  483. if (latency == 0)
  484. latency = 1;
  485. /* Bring kernel and HW constraints together */
  486. min_sampling_rate = max(min_sampling_rate,
  487. MIN_LATENCY_MULTIPLIER * latency);
  488. dbs_tuners_ins.sampling_rate =
  489. max(min_sampling_rate,
  490. latency * LATENCY_MULTIPLIER);
  491. }
  492. mutex_unlock(&dbs_mutex);
  493. dbs_timer_init(this_dbs_info);
  494. break;
  495. case CPUFREQ_GOV_STOP:
  496. dbs_timer_exit(this_dbs_info);
  497. mutex_lock(&dbs_mutex);
  498. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  499. mutex_destroy(&this_dbs_info->timer_mutex);
  500. dbs_enable--;
  501. mutex_unlock(&dbs_mutex);
  502. break;
  503. case CPUFREQ_GOV_LIMITS:
  504. mutex_lock(&this_dbs_info->timer_mutex);
  505. if (policy->max < this_dbs_info->cur_policy->cur)
  506. __cpufreq_driver_target(this_dbs_info->cur_policy,
  507. policy->max, CPUFREQ_RELATION_H);
  508. else if (policy->min > this_dbs_info->cur_policy->cur)
  509. __cpufreq_driver_target(this_dbs_info->cur_policy,
  510. policy->min, CPUFREQ_RELATION_L);
  511. mutex_unlock(&this_dbs_info->timer_mutex);
  512. break;
  513. }
  514. return 0;
  515. }
  516. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  517. static
  518. #endif
  519. struct cpufreq_governor cpufreq_gov_ondemand = {
  520. .name = "ondemand",
  521. .governor = cpufreq_governor_dbs,
  522. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  523. .owner = THIS_MODULE,
  524. };
  525. static int __init cpufreq_gov_dbs_init(void)
  526. {
  527. int err;
  528. cputime64_t wall;
  529. u64 idle_time;
  530. int cpu = get_cpu();
  531. idle_time = get_cpu_idle_time_us(cpu, &wall);
  532. put_cpu();
  533. if (idle_time != -1ULL) {
  534. /* Idle micro accounting is supported. Use finer thresholds */
  535. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  536. dbs_tuners_ins.down_differential =
  537. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  538. /*
  539. * In no_hz/micro accounting case we set the minimum frequency
  540. * not depending on HZ, but fixed (very low). The deferred
  541. * timer might skip some samples if idle/sleeping as needed.
  542. */
  543. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  544. } else {
  545. /* For correct statistics, we need 10 ticks for each measure */
  546. min_sampling_rate =
  547. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  548. }
  549. kondemand_wq = create_workqueue("kondemand");
  550. if (!kondemand_wq) {
  551. printk(KERN_ERR "Creation of kondemand failed\n");
  552. return -EFAULT;
  553. }
  554. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  555. if (err)
  556. destroy_workqueue(kondemand_wq);
  557. return err;
  558. }
  559. static void __exit cpufreq_gov_dbs_exit(void)
  560. {
  561. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  562. destroy_workqueue(kondemand_wq);
  563. }
  564. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  565. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  566. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  567. "Low Latency Frequency Transition capable processors");
  568. MODULE_LICENSE("GPL");
  569. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  570. fs_initcall(cpufreq_gov_dbs_init);
  571. #else
  572. module_init(cpufreq_gov_dbs_init);
  573. #endif
  574. module_exit(cpufreq_gov_dbs_exit);