123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701 |
- /*
- * random.c -- A strong random number generator
- *
- * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
- /*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the SHA
- * hash of the contents of the "entropy pool". The SHA hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of SHA from its output. Even if it is possible to
- * analyze SHA in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of SHA, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are three exported interfaces; the first is one designed to
- * be used from within the kernel:
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer.
- *
- * The two other interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_input_randomness(unsigned int type, unsigned int code,
- * unsigned int value);
- * void add_interrupt_randomness(int irq);
- *
- * add_input_randomness() uses the input layer interrupt timing, as well as
- * the event type information from the hardware.
- *
- * add_interrupt_randomness() uses the inter-interrupt timing as random
- * inputs to the entropy pool. Note that not all interrupts are good
- * sources of randomness! For example, the timer interrupts is not a
- * good choice, because the periodicity of the interrupts is too
- * regular, and hence predictable to an attacker. Disk interrupts are
- * a better measure, since the timing of the disk interrupts are more
- * unpredictable.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
- */
- #include <linux/utsname.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <linux/fs.h>
- #include <linux/genhd.h>
- #include <linux/interrupt.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/percpu.h>
- #include <linux/cryptohash.h>
- #ifdef CONFIG_GENERIC_HARDIRQS
- # include <linux/irq.h>
- #endif
- #include <asm/processor.h>
- #include <asm/uaccess.h>
- #include <asm/irq.h>
- #include <asm/io.h>
- /*
- * Configuration information
- */
- #define INPUT_POOL_WORDS 128
- #define OUTPUT_POOL_WORDS 32
- #define SEC_XFER_SIZE 512
- /*
- * The minimum number of bits of entropy before we wake up a read on
- * /dev/random. Should be enough to do a significant reseed.
- */
- static int random_read_wakeup_thresh = 64;
- /*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
- static int random_write_wakeup_thresh = 128;
- /*
- * When the input pool goes over trickle_thresh, start dropping most
- * samples to avoid wasting CPU time and reduce lock contention.
- */
- static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
- static DEFINE_PER_CPU(int, trickle_count);
- /*
- * A pool of size .poolwords is stirred with a primitive polynomial
- * of degree .poolwords over GF(2). The taps for various sizes are
- * defined below. They are chosen to be evenly spaced (minimum RMS
- * distance from evenly spaced; the numbers in the comments are a
- * scaled squared error sum) except for the last tap, which is 1 to
- * get the twisting happening as fast as possible.
- */
- static struct poolinfo {
- int poolwords;
- int tap1, tap2, tap3, tap4, tap5;
- } poolinfo_table[] = {
- /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
- { 128, 103, 76, 51, 25, 1 },
- /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
- { 32, 26, 20, 14, 7, 1 },
- #if 0
- /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
- { 2048, 1638, 1231, 819, 411, 1 },
- /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
- { 1024, 817, 615, 412, 204, 1 },
- /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
- { 1024, 819, 616, 410, 207, 2 },
- /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
- { 512, 411, 308, 208, 104, 1 },
- /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
- { 512, 409, 307, 206, 102, 2 },
- /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
- { 512, 409, 309, 205, 103, 2 },
- /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
- { 256, 205, 155, 101, 52, 1 },
- /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
- { 128, 103, 78, 51, 27, 2 },
- /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
- { 64, 52, 39, 26, 14, 1 },
- #endif
- };
- #define POOLBITS poolwords*32
- #define POOLBYTES poolwords*4
- /*
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a twisted Generalized Feedback Shift Reigster
- *
- * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
- * Transactions on Modeling and Computer Simulation 2(3):179-194.
- * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
- * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
- *
- * Thanks to Colin Plumb for suggesting this.
- *
- * We have not analyzed the resultant polynomial to prove it primitive;
- * in fact it almost certainly isn't. Nonetheless, the irreducible factors
- * of a random large-degree polynomial over GF(2) are more than large enough
- * that periodicity is not a concern.
- *
- * The input hash is much less sensitive than the output hash. All
- * that we want of it is that it be a good non-cryptographic hash;
- * i.e. it not produce collisions when fed "random" data of the sort
- * we expect to see. As long as the pool state differs for different
- * inputs, we have preserved the input entropy and done a good job.
- * The fact that an intelligent attacker can construct inputs that
- * will produce controlled alterations to the pool's state is not
- * important because we don't consider such inputs to contribute any
- * randomness. The only property we need with respect to them is that
- * the attacker can't increase his/her knowledge of the pool's state.
- * Since all additions are reversible (knowing the final state and the
- * input, you can reconstruct the initial state), if an attacker has
- * any uncertainty about the initial state, he/she can only shuffle
- * that uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
- *
- * The chosen system lets the state of the pool be (essentially) the input
- * modulo the generator polymnomial. Now, for random primitive polynomials,
- * this is a universal class of hash functions, meaning that the chance
- * of a collision is limited by the attacker's knowledge of the generator
- * polynomail, so if it is chosen at random, an attacker can never force
- * a collision. Here, we use a fixed polynomial, but we *can* assume that
- * ###--> it is unknown to the processes generating the input entropy. <-###
- * Because of this important property, this is a good, collision-resistant
- * hash; hash collisions will occur no more often than chance.
- */
- /*
- * Static global variables
- */
- static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
- static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
- static struct fasync_struct *fasync;
- #if 0
- static int debug;
- module_param(debug, bool, 0644);
- #define DEBUG_ENT(fmt, arg...) do { \
- if (debug) \
- printk(KERN_DEBUG "random %04d %04d %04d: " \
- fmt,\
- input_pool.entropy_count,\
- blocking_pool.entropy_count,\
- nonblocking_pool.entropy_count,\
- ## arg); } while (0)
- #else
- #define DEBUG_ENT(fmt, arg...) do {} while (0)
- #endif
- /**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
- *
- **********************************************************************/
- struct entropy_store;
- struct entropy_store {
- /* read-only data: */
- struct poolinfo *poolinfo;
- __u32 *pool;
- const char *name;
- int limit;
- struct entropy_store *pull;
- /* read-write data: */
- spinlock_t lock;
- unsigned add_ptr;
- int entropy_count;
- int input_rotate;
- };
- static __u32 input_pool_data[INPUT_POOL_WORDS];
- static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
- static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
- static struct entropy_store input_pool = {
- .poolinfo = &poolinfo_table[0],
- .name = "input",
- .limit = 1,
- .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
- .pool = input_pool_data
- };
- static struct entropy_store blocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "blocking",
- .limit = 1,
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
- .pool = blocking_pool_data
- };
- static struct entropy_store nonblocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "nonblocking",
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
- .pool = nonblocking_pool_data
- };
- /*
- * This function adds bytes into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_bits if this is appropriate.
- *
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
- */
- static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
- int nbytes, __u8 out[64])
- {
- static __u32 const twist_table[8] = {
- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
- unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
- int input_rotate;
- int wordmask = r->poolinfo->poolwords - 1;
- const char *bytes = in;
- __u32 w;
- unsigned long flags;
- /* Taps are constant, so we can load them without holding r->lock. */
- tap1 = r->poolinfo->tap1;
- tap2 = r->poolinfo->tap2;
- tap3 = r->poolinfo->tap3;
- tap4 = r->poolinfo->tap4;
- tap5 = r->poolinfo->tap5;
- spin_lock_irqsave(&r->lock, flags);
- input_rotate = r->input_rotate;
- i = r->add_ptr;
- /* mix one byte at a time to simplify size handling and churn faster */
- while (nbytes--) {
- w = rol32(*bytes++, input_rotate & 31);
- i = (i - 1) & wordmask;
- /* XOR in the various taps */
- w ^= r->pool[i];
- w ^= r->pool[(i + tap1) & wordmask];
- w ^= r->pool[(i + tap2) & wordmask];
- w ^= r->pool[(i + tap3) & wordmask];
- w ^= r->pool[(i + tap4) & wordmask];
- w ^= r->pool[(i + tap5) & wordmask];
- /* Mix the result back in with a twist */
- r->pool[i] = (w >> 3) ^ twist_table[w & 7];
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- input_rotate += i ? 7 : 14;
- }
- r->input_rotate = input_rotate;
- r->add_ptr = i;
- if (out)
- for (j = 0; j < 16; j++)
- ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
- spin_unlock_irqrestore(&r->lock, flags);
- }
- static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
- {
- mix_pool_bytes_extract(r, in, bytes, NULL);
- }
- /*
- * Credit (or debit) the entropy store with n bits of entropy
- */
- static void credit_entropy_bits(struct entropy_store *r, int nbits)
- {
- unsigned long flags;
- int entropy_count;
- if (!nbits)
- return;
- spin_lock_irqsave(&r->lock, flags);
- DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
- entropy_count = r->entropy_count;
- entropy_count += nbits;
- if (entropy_count < 0) {
- DEBUG_ENT("negative entropy/overflow\n");
- entropy_count = 0;
- } else if (entropy_count > r->poolinfo->POOLBITS)
- entropy_count = r->poolinfo->POOLBITS;
- r->entropy_count = entropy_count;
- /* should we wake readers? */
- if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
- wake_up_interruptible(&random_read_wait);
- kill_fasync(&fasync, SIGIO, POLL_IN);
- }
- spin_unlock_irqrestore(&r->lock, flags);
- }
- /*********************************************************************
- *
- * Entropy input management
- *
- *********************************************************************/
- /* There is one of these per entropy source */
- struct timer_rand_state {
- cycles_t last_time;
- long last_delta, last_delta2;
- unsigned dont_count_entropy:1;
- };
- #ifndef CONFIG_GENERIC_HARDIRQS
- static struct timer_rand_state *irq_timer_state[NR_IRQS];
- static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
- {
- return irq_timer_state[irq];
- }
- static void set_timer_rand_state(unsigned int irq,
- struct timer_rand_state *state)
- {
- irq_timer_state[irq] = state;
- }
- #else
- static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
- {
- struct irq_desc *desc;
- desc = irq_to_desc(irq);
- return desc->timer_rand_state;
- }
- static void set_timer_rand_state(unsigned int irq,
- struct timer_rand_state *state)
- {
- struct irq_desc *desc;
- desc = irq_to_desc(irq);
- desc->timer_rand_state = state;
- }
- #endif
- static struct timer_rand_state input_timer_state;
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool.
- *
- * The number "num" is also added to the pool - it should somehow describe
- * the type of event which just happened. This is currently 0-255 for
- * keyboard scan codes, and 256 upwards for interrupts.
- *
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
- {
- struct {
- cycles_t cycles;
- long jiffies;
- unsigned num;
- } sample;
- long delta, delta2, delta3;
- preempt_disable();
- /* if over the trickle threshold, use only 1 in 4096 samples */
- if (input_pool.entropy_count > trickle_thresh &&
- (__get_cpu_var(trickle_count)++ & 0xfff))
- goto out;
- sample.jiffies = jiffies;
- sample.cycles = get_cycles();
- sample.num = num;
- mix_pool_bytes(&input_pool, &sample, sizeof(sample));
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- if (!state->dont_count_entropy) {
- delta = sample.jiffies - state->last_time;
- state->last_time = sample.jiffies;
- delta2 = delta - state->last_delta;
- state->last_delta = delta;
- delta3 = delta2 - state->last_delta2;
- state->last_delta2 = delta2;
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta.
- * Round down by 1 bit on general principles,
- * and limit entropy entimate to 12 bits.
- */
- credit_entropy_bits(&input_pool,
- min_t(int, fls(delta>>1), 11));
- }
- out:
- preempt_enable();
- }
- void add_input_randomness(unsigned int type, unsigned int code,
- unsigned int value)
- {
- static unsigned char last_value;
- /* ignore autorepeat and the like */
- if (value == last_value)
- return;
- DEBUG_ENT("input event\n");
- last_value = value;
- add_timer_randomness(&input_timer_state,
- (type << 4) ^ code ^ (code >> 4) ^ value);
- }
- EXPORT_SYMBOL_GPL(add_input_randomness);
- void add_interrupt_randomness(int irq)
- {
- struct timer_rand_state *state;
- state = get_timer_rand_state(irq);
- if (state == NULL)
- return;
- DEBUG_ENT("irq event %d\n", irq);
- add_timer_randomness(state, 0x100 + irq);
- }
- #ifdef CONFIG_BLOCK
- void add_disk_randomness(struct gendisk *disk)
- {
- if (!disk || !disk->random)
- return;
- /* first major is 1, so we get >= 0x200 here */
- DEBUG_ENT("disk event %d:%d\n",
- MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
- }
- #endif
- #define EXTRACT_SIZE 10
- /*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int rsvd);
- /*
- * This utility inline function is responsible for transfering entropy
- * from the primary pool to the secondary extraction pool. We make
- * sure we pull enough for a 'catastrophic reseed'.
- */
- static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
- {
- __u32 tmp[OUTPUT_POOL_WORDS];
- if (r->pull && r->entropy_count < nbytes * 8 &&
- r->entropy_count < r->poolinfo->POOLBITS) {
- /* If we're limited, always leave two wakeup worth's BITS */
- int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
- int bytes = nbytes;
- /* pull at least as many as BYTES as wakeup BITS */
- bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
- /* but never more than the buffer size */
- bytes = min_t(int, bytes, sizeof(tmp));
- DEBUG_ENT("going to reseed %s with %d bits "
- "(%d of %d requested)\n",
- r->name, bytes * 8, nbytes * 8, r->entropy_count);
- bytes = extract_entropy(r->pull, tmp, bytes,
- random_read_wakeup_thresh / 8, rsvd);
- mix_pool_bytes(r, tmp, bytes);
- credit_entropy_bits(r, bytes*8);
- }
- }
- /*
- * These functions extracts randomness from the "entropy pool", and
- * returns it in a buffer.
- *
- * The min parameter specifies the minimum amount we can pull before
- * failing to avoid races that defeat catastrophic reseeding while the
- * reserved parameter indicates how much entropy we must leave in the
- * pool after each pull to avoid starving other readers.
- *
- * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
- */
- static size_t account(struct entropy_store *r, size_t nbytes, int min,
- int reserved)
- {
- unsigned long flags;
- /* Hold lock while accounting */
- spin_lock_irqsave(&r->lock, flags);
- BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
- DEBUG_ENT("trying to extract %d bits from %s\n",
- nbytes * 8, r->name);
- /* Can we pull enough? */
- if (r->entropy_count / 8 < min + reserved) {
- nbytes = 0;
- } else {
- /* If limited, never pull more than available */
- if (r->limit && nbytes + reserved >= r->entropy_count / 8)
- nbytes = r->entropy_count/8 - reserved;
- if (r->entropy_count / 8 >= nbytes + reserved)
- r->entropy_count -= nbytes*8;
- else
- r->entropy_count = reserved;
- if (r->entropy_count < random_write_wakeup_thresh) {
- wake_up_interruptible(&random_write_wait);
- kill_fasync(&fasync, SIGIO, POLL_OUT);
- }
- }
- DEBUG_ENT("debiting %d entropy credits from %s%s\n",
- nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
- spin_unlock_irqrestore(&r->lock, flags);
- return nbytes;
- }
- static void extract_buf(struct entropy_store *r, __u8 *out)
- {
- int i;
- __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
- __u8 extract[64];
- /* Generate a hash across the pool, 16 words (512 bits) at a time */
- sha_init(hash);
- for (i = 0; i < r->poolinfo->poolwords; i += 16)
- sha_transform(hash, (__u8 *)(r->pool + i), workspace);
- /*
- * We mix the hash back into the pool to prevent backtracking
- * attacks (where the attacker knows the state of the pool
- * plus the current outputs, and attempts to find previous
- * ouputs), unless the hash function can be inverted. By
- * mixing at least a SHA1 worth of hash data back, we make
- * brute-forcing the feedback as hard as brute-forcing the
- * hash.
- */
- mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
- /*
- * To avoid duplicates, we atomically extract a portion of the
- * pool while mixing, and hash one final time.
- */
- sha_transform(hash, extract, workspace);
- memset(extract, 0, sizeof(extract));
- memset(workspace, 0, sizeof(workspace));
- /*
- * In case the hash function has some recognizable output
- * pattern, we fold it in half. Thus, we always feed back
- * twice as much data as we output.
- */
- hash[0] ^= hash[3];
- hash[1] ^= hash[4];
- hash[2] ^= rol32(hash[2], 16);
- memcpy(out, hash, EXTRACT_SIZE);
- memset(hash, 0, sizeof(hash));
- }
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int reserved)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, min, reserved);
- while (nbytes) {
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- memcpy(buf, tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memset(tmp, 0, sizeof(tmp));
- return ret;
- }
- static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
- size_t nbytes)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, 0, 0);
- while (nbytes) {
- if (need_resched()) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- if (copy_to_user(buf, tmp, i)) {
- ret = -EFAULT;
- break;
- }
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memset(tmp, 0, sizeof(tmp));
- return ret;
- }
- /*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for seeding TCP sequence
- * numbers, etc.
- */
- void get_random_bytes(void *buf, int nbytes)
- {
- extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes);
- /*
- * init_std_data - initialize pool with system data
- *
- * @r: pool to initialize
- *
- * This function clears the pool's entropy count and mixes some system
- * data into the pool to prepare it for use. The pool is not cleared
- * as that can only decrease the entropy in the pool.
- */
- static void init_std_data(struct entropy_store *r)
- {
- ktime_t now;
- unsigned long flags;
- spin_lock_irqsave(&r->lock, flags);
- r->entropy_count = 0;
- spin_unlock_irqrestore(&r->lock, flags);
- now = ktime_get_real();
- mix_pool_bytes(r, &now, sizeof(now));
- mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
- }
- static int rand_initialize(void)
- {
- init_std_data(&input_pool);
- init_std_data(&blocking_pool);
- init_std_data(&nonblocking_pool);
- return 0;
- }
- module_init(rand_initialize);
- void rand_initialize_irq(int irq)
- {
- struct timer_rand_state *state;
- state = get_timer_rand_state(irq);
- if (state)
- return;
- /*
- * If kzalloc returns null, we just won't use that entropy
- * source.
- */
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state)
- set_timer_rand_state(irq, state);
- }
- #ifdef CONFIG_BLOCK
- void rand_initialize_disk(struct gendisk *disk)
- {
- struct timer_rand_state *state;
- /*
- * If kzalloc returns null, we just won't use that entropy
- * source.
- */
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state)
- disk->random = state;
- }
- #endif
- static ssize_t
- random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- ssize_t n, retval = 0, count = 0;
- if (nbytes == 0)
- return 0;
- while (nbytes > 0) {
- n = nbytes;
- if (n > SEC_XFER_SIZE)
- n = SEC_XFER_SIZE;
- DEBUG_ENT("reading %d bits\n", n*8);
- n = extract_entropy_user(&blocking_pool, buf, n);
- DEBUG_ENT("read got %d bits (%d still needed)\n",
- n*8, (nbytes-n)*8);
- if (n == 0) {
- if (file->f_flags & O_NONBLOCK) {
- retval = -EAGAIN;
- break;
- }
- DEBUG_ENT("sleeping?\n");
- wait_event_interruptible(random_read_wait,
- input_pool.entropy_count >=
- random_read_wakeup_thresh);
- DEBUG_ENT("awake\n");
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- break;
- }
- continue;
- }
- if (n < 0) {
- retval = n;
- break;
- }
- count += n;
- buf += n;
- nbytes -= n;
- break; /* This break makes the device work */
- /* like a named pipe */
- }
- /*
- * If we gave the user some bytes, update the access time.
- */
- if (count)
- file_accessed(file);
- return (count ? count : retval);
- }
- static ssize_t
- urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- return extract_entropy_user(&nonblocking_pool, buf, nbytes);
- }
- static unsigned int
- random_poll(struct file *file, poll_table * wait)
- {
- unsigned int mask;
- poll_wait(file, &random_read_wait, wait);
- poll_wait(file, &random_write_wait, wait);
- mask = 0;
- if (input_pool.entropy_count >= random_read_wakeup_thresh)
- mask |= POLLIN | POLLRDNORM;
- if (input_pool.entropy_count < random_write_wakeup_thresh)
- mask |= POLLOUT | POLLWRNORM;
- return mask;
- }
- static int
- write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
- {
- size_t bytes;
- __u32 buf[16];
- const char __user *p = buffer;
- while (count > 0) {
- bytes = min(count, sizeof(buf));
- if (copy_from_user(&buf, p, bytes))
- return -EFAULT;
- count -= bytes;
- p += bytes;
- mix_pool_bytes(r, buf, bytes);
- cond_resched();
- }
- return 0;
- }
- static ssize_t random_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- size_t ret;
- struct inode *inode = file->f_path.dentry->d_inode;
- ret = write_pool(&blocking_pool, buffer, count);
- if (ret)
- return ret;
- ret = write_pool(&nonblocking_pool, buffer, count);
- if (ret)
- return ret;
- inode->i_mtime = current_fs_time(inode->i_sb);
- mark_inode_dirty(inode);
- return (ssize_t)count;
- }
- static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
- {
- int size, ent_count;
- int __user *p = (int __user *)arg;
- int retval;
- switch (cmd) {
- case RNDGETENTCNT:
- /* inherently racy, no point locking */
- if (put_user(input_pool.entropy_count, p))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p))
- return -EFAULT;
- credit_entropy_bits(&input_pool, ent_count);
- return 0;
- case RNDADDENTROPY:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(size, p++))
- return -EFAULT;
- retval = write_pool(&input_pool, (const char __user *)p,
- size);
- if (retval < 0)
- return retval;
- credit_entropy_bits(&input_pool, ent_count);
- return 0;
- case RNDZAPENTCNT:
- case RNDCLEARPOOL:
- /* Clear the entropy pool counters. */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- rand_initialize();
- return 0;
- default:
- return -EINVAL;
- }
- }
- static int random_fasync(int fd, struct file *filp, int on)
- {
- return fasync_helper(fd, filp, on, &fasync);
- }
- const struct file_operations random_fops = {
- .read = random_read,
- .write = random_write,
- .poll = random_poll,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- };
- const struct file_operations urandom_fops = {
- .read = urandom_read,
- .write = random_write,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- };
- /***************************************************************
- * Random UUID interface
- *
- * Used here for a Boot ID, but can be useful for other kernel
- * drivers.
- ***************************************************************/
- /*
- * Generate random UUID
- */
- void generate_random_uuid(unsigned char uuid_out[16])
- {
- get_random_bytes(uuid_out, 16);
- /* Set UUID version to 4 --- truely random generation */
- uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
- /* Set the UUID variant to DCE */
- uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
- }
- EXPORT_SYMBOL(generate_random_uuid);
- /********************************************************************
- *
- * Sysctl interface
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int min_read_thresh = 8, min_write_thresh;
- static int max_read_thresh = INPUT_POOL_WORDS * 32;
- static int max_write_thresh = INPUT_POOL_WORDS * 32;
- static char sysctl_bootid[16];
- /*
- * These functions is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, it will be returned
- * as an ASCII string in the standard UUID format. If accesses via the
- * sysctl system call, it is returned as 16 bytes of binary data.
- */
- static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
- "%02x%02x%02x%02x%02x%02x",
- uuid[0], uuid[1], uuid[2], uuid[3],
- uuid[4], uuid[5], uuid[6], uuid[7],
- uuid[8], uuid[9], uuid[10], uuid[11],
- uuid[12], uuid[13], uuid[14], uuid[15]);
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
- return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
- }
- static int uuid_strategy(ctl_table *table,
- void __user *oldval, size_t __user *oldlenp,
- void __user *newval, size_t newlen)
- {
- unsigned char tmp_uuid[16], *uuid;
- unsigned int len;
- if (!oldval || !oldlenp)
- return 1;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- if (get_user(len, oldlenp))
- return -EFAULT;
- if (len) {
- if (len > 16)
- len = 16;
- if (copy_to_user(oldval, uuid, len) ||
- put_user(len, oldlenp))
- return -EFAULT;
- }
- return 1;
- }
- static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
- ctl_table random_table[] = {
- {
- .ctl_name = RANDOM_POOLSIZE,
- .procname = "poolsize",
- .data = &sysctl_poolsize,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = &proc_dointvec,
- },
- {
- .ctl_name = RANDOM_ENTROPY_COUNT,
- .procname = "entropy_avail",
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = &proc_dointvec,
- .data = &input_pool.entropy_count,
- },
- {
- .ctl_name = RANDOM_READ_THRESH,
- .procname = "read_wakeup_threshold",
- .data = &random_read_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = &proc_dointvec_minmax,
- .strategy = &sysctl_intvec,
- .extra1 = &min_read_thresh,
- .extra2 = &max_read_thresh,
- },
- {
- .ctl_name = RANDOM_WRITE_THRESH,
- .procname = "write_wakeup_threshold",
- .data = &random_write_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = &proc_dointvec_minmax,
- .strategy = &sysctl_intvec,
- .extra1 = &min_write_thresh,
- .extra2 = &max_write_thresh,
- },
- {
- .ctl_name = RANDOM_BOOT_ID,
- .procname = "boot_id",
- .data = &sysctl_bootid,
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = &proc_do_uuid,
- .strategy = &uuid_strategy,
- },
- {
- .ctl_name = RANDOM_UUID,
- .procname = "uuid",
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = &proc_do_uuid,
- .strategy = &uuid_strategy,
- },
- { .ctl_name = 0 }
- };
- #endif /* CONFIG_SYSCTL */
- /********************************************************************
- *
- * Random funtions for networking
- *
- ********************************************************************/
- /*
- * TCP initial sequence number picking. This uses the random number
- * generator to pick an initial secret value. This value is hashed
- * along with the TCP endpoint information to provide a unique
- * starting point for each pair of TCP endpoints. This defeats
- * attacks which rely on guessing the initial TCP sequence number.
- * This algorithm was suggested by Steve Bellovin.
- *
- * Using a very strong hash was taking an appreciable amount of the total
- * TCP connection establishment time, so this is a weaker hash,
- * compensated for by changing the secret periodically.
- */
- /* F, G and H are basic MD4 functions: selection, majority, parity */
- #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
- #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
- #define H(x, y, z) ((x) ^ (y) ^ (z))
- /*
- * The generic round function. The application is so specific that
- * we don't bother protecting all the arguments with parens, as is generally
- * good macro practice, in favor of extra legibility.
- * Rotation is separate from addition to prevent recomputation
- */
- #define ROUND(f, a, b, c, d, x, s) \
- (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
- #define K1 0
- #define K2 013240474631UL
- #define K3 015666365641UL
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
- {
- __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
- /* Round 1 */
- ROUND(F, a, b, c, d, in[ 0] + K1, 3);
- ROUND(F, d, a, b, c, in[ 1] + K1, 7);
- ROUND(F, c, d, a, b, in[ 2] + K1, 11);
- ROUND(F, b, c, d, a, in[ 3] + K1, 19);
- ROUND(F, a, b, c, d, in[ 4] + K1, 3);
- ROUND(F, d, a, b, c, in[ 5] + K1, 7);
- ROUND(F, c, d, a, b, in[ 6] + K1, 11);
- ROUND(F, b, c, d, a, in[ 7] + K1, 19);
- ROUND(F, a, b, c, d, in[ 8] + K1, 3);
- ROUND(F, d, a, b, c, in[ 9] + K1, 7);
- ROUND(F, c, d, a, b, in[10] + K1, 11);
- ROUND(F, b, c, d, a, in[11] + K1, 19);
- /* Round 2 */
- ROUND(G, a, b, c, d, in[ 1] + K2, 3);
- ROUND(G, d, a, b, c, in[ 3] + K2, 5);
- ROUND(G, c, d, a, b, in[ 5] + K2, 9);
- ROUND(G, b, c, d, a, in[ 7] + K2, 13);
- ROUND(G, a, b, c, d, in[ 9] + K2, 3);
- ROUND(G, d, a, b, c, in[11] + K2, 5);
- ROUND(G, c, d, a, b, in[ 0] + K2, 9);
- ROUND(G, b, c, d, a, in[ 2] + K2, 13);
- ROUND(G, a, b, c, d, in[ 4] + K2, 3);
- ROUND(G, d, a, b, c, in[ 6] + K2, 5);
- ROUND(G, c, d, a, b, in[ 8] + K2, 9);
- ROUND(G, b, c, d, a, in[10] + K2, 13);
- /* Round 3 */
- ROUND(H, a, b, c, d, in[ 3] + K3, 3);
- ROUND(H, d, a, b, c, in[ 7] + K3, 9);
- ROUND(H, c, d, a, b, in[11] + K3, 11);
- ROUND(H, b, c, d, a, in[ 2] + K3, 15);
- ROUND(H, a, b, c, d, in[ 6] + K3, 3);
- ROUND(H, d, a, b, c, in[10] + K3, 9);
- ROUND(H, c, d, a, b, in[ 1] + K3, 11);
- ROUND(H, b, c, d, a, in[ 5] + K3, 15);
- ROUND(H, a, b, c, d, in[ 9] + K3, 3);
- ROUND(H, d, a, b, c, in[ 0] + K3, 9);
- ROUND(H, c, d, a, b, in[ 4] + K3, 11);
- ROUND(H, b, c, d, a, in[ 8] + K3, 15);
- return buf[1] + b; /* "most hashed" word */
- /* Alternative: return sum of all words? */
- }
- #endif
- #undef ROUND
- #undef F
- #undef G
- #undef H
- #undef K1
- #undef K2
- #undef K3
- /* This should not be decreased so low that ISNs wrap too fast. */
- #define REKEY_INTERVAL (300 * HZ)
- /*
- * Bit layout of the tcp sequence numbers (before adding current time):
- * bit 24-31: increased after every key exchange
- * bit 0-23: hash(source,dest)
- *
- * The implementation is similar to the algorithm described
- * in the Appendix of RFC 1185, except that
- * - it uses a 1 MHz clock instead of a 250 kHz clock
- * - it performs a rekey every 5 minutes, which is equivalent
- * to a (source,dest) tulple dependent forward jump of the
- * clock by 0..2^(HASH_BITS+1)
- *
- * Thus the average ISN wraparound time is 68 minutes instead of
- * 4.55 hours.
- *
- * SMP cleanup and lock avoidance with poor man's RCU.
- * Manfred Spraul <manfred@colorfullife.com>
- *
- */
- #define COUNT_BITS 8
- #define COUNT_MASK ((1 << COUNT_BITS) - 1)
- #define HASH_BITS 24
- #define HASH_MASK ((1 << HASH_BITS) - 1)
- static struct keydata {
- __u32 count; /* already shifted to the final position */
- __u32 secret[12];
- } ____cacheline_aligned ip_keydata[2];
- static unsigned int ip_cnt;
- static void rekey_seq_generator(struct work_struct *work);
- static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
- /*
- * Lock avoidance:
- * The ISN generation runs lockless - it's just a hash over random data.
- * State changes happen every 5 minutes when the random key is replaced.
- * Synchronization is performed by having two copies of the hash function
- * state and rekey_seq_generator always updates the inactive copy.
- * The copy is then activated by updating ip_cnt.
- * The implementation breaks down if someone blocks the thread
- * that processes SYN requests for more than 5 minutes. Should never
- * happen, and even if that happens only a not perfectly compliant
- * ISN is generated, nothing fatal.
- */
- static void rekey_seq_generator(struct work_struct *work)
- {
- struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
- get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
- keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
- smp_wmb();
- ip_cnt++;
- schedule_delayed_work(&rekey_work,
- round_jiffies_relative(REKEY_INTERVAL));
- }
- static inline struct keydata *get_keyptr(void)
- {
- struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
- smp_rmb();
- return keyptr;
- }
- static __init int seqgen_init(void)
- {
- rekey_seq_generator(NULL);
- return 0;
- }
- late_initcall(seqgen_init);
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
- __be16 sport, __be16 dport)
- {
- __u32 seq;
- __u32 hash[12];
- struct keydata *keyptr = get_keyptr();
- /* The procedure is the same as for IPv4, but addresses are longer.
- * Thus we must use twothirdsMD4Transform.
- */
- memcpy(hash, saddr, 16);
- hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
- memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
- seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
- seq += keyptr->count;
- seq += ktime_to_ns(ktime_get_real());
- return seq;
- }
- EXPORT_SYMBOL(secure_tcpv6_sequence_number);
- #endif
- /* The code below is shamelessly stolen from secure_tcp_sequence_number().
- * All blames to Andrey V. Savochkin <saw@msu.ru>.
- */
- __u32 secure_ip_id(__be32 daddr)
- {
- struct keydata *keyptr;
- __u32 hash[4];
- keyptr = get_keyptr();
- /*
- * Pick a unique starting offset for each IP destination.
- * The dest ip address is placed in the starting vector,
- * which is then hashed with random data.
- */
- hash[0] = (__force __u32)daddr;
- hash[1] = keyptr->secret[9];
- hash[2] = keyptr->secret[10];
- hash[3] = keyptr->secret[11];
- return half_md4_transform(hash, keyptr->secret);
- }
- #ifdef CONFIG_INET
- __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
- __be16 sport, __be16 dport)
- {
- __u32 seq;
- __u32 hash[4];
- struct keydata *keyptr = get_keyptr();
- /*
- * Pick a unique starting offset for each TCP connection endpoints
- * (saddr, daddr, sport, dport).
- * Note that the words are placed into the starting vector, which is
- * then mixed with a partial MD4 over random data.
- */
- hash[0] = (__force u32)saddr;
- hash[1] = (__force u32)daddr;
- hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
- hash[3] = keyptr->secret[11];
- seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
- seq += keyptr->count;
- /*
- * As close as possible to RFC 793, which
- * suggests using a 250 kHz clock.
- * Further reading shows this assumes 2 Mb/s networks.
- * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
- * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
- * we also need to limit the resolution so that the u32 seq
- * overlaps less than one time per MSL (2 minutes).
- * Choosing a clock of 64 ns period is OK. (period of 274 s)
- */
- seq += ktime_to_ns(ktime_get_real()) >> 6;
- return seq;
- }
- /* Generate secure starting point for ephemeral IPV4 transport port search */
- u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
- {
- struct keydata *keyptr = get_keyptr();
- u32 hash[4];
- /*
- * Pick a unique starting offset for each ephemeral port search
- * (saddr, daddr, dport) and 48bits of random data.
- */
- hash[0] = (__force u32)saddr;
- hash[1] = (__force u32)daddr;
- hash[2] = (__force u32)dport ^ keyptr->secret[10];
- hash[3] = keyptr->secret[11];
- return half_md4_transform(hash, keyptr->secret);
- }
- EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
- __be16 dport)
- {
- struct keydata *keyptr = get_keyptr();
- u32 hash[12];
- memcpy(hash, saddr, 16);
- hash[4] = (__force u32)dport;
- memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
- return twothirdsMD4Transform((const __u32 *)daddr, hash);
- }
- #endif
- #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
- /* Similar to secure_tcp_sequence_number but generate a 48 bit value
- * bit's 32-47 increase every key exchange
- * 0-31 hash(source, dest)
- */
- u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
- __be16 sport, __be16 dport)
- {
- u64 seq;
- __u32 hash[4];
- struct keydata *keyptr = get_keyptr();
- hash[0] = (__force u32)saddr;
- hash[1] = (__force u32)daddr;
- hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
- hash[3] = keyptr->secret[11];
- seq = half_md4_transform(hash, keyptr->secret);
- seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
- seq += ktime_to_ns(ktime_get_real());
- seq &= (1ull << 48) - 1;
- return seq;
- }
- EXPORT_SYMBOL(secure_dccp_sequence_number);
- #endif
- #endif /* CONFIG_INET */
- /*
- * Get a random word for internal kernel use only. Similar to urandom but
- * with the goal of minimal entropy pool depletion. As a result, the random
- * value is not cryptographically secure but for several uses the cost of
- * depleting entropy is too high
- */
- DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
- unsigned int get_random_int(void)
- {
- struct keydata *keyptr;
- __u32 *hash = get_cpu_var(get_random_int_hash);
- int ret;
- keyptr = get_keyptr();
- hash[0] += current->pid + jiffies + get_cycles();
- ret = half_md4_transform(hash, keyptr->secret);
- put_cpu_var(get_random_int_hash);
- return ret;
- }
- /*
- * randomize_range() returns a start address such that
- *
- * [...... <range> .....]
- * start end
- *
- * a <range> with size "len" starting at the return value is inside in the
- * area defined by [start, end], but is otherwise randomized.
- */
- unsigned long
- randomize_range(unsigned long start, unsigned long end, unsigned long len)
- {
- unsigned long range = end - len - start;
- if (end <= start + len)
- return 0;
- return PAGE_ALIGN(get_random_int() % range + start);
- }
|