dma-mapping.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. /*
  2. * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
  3. *
  4. * Copyright (c) 2006 SUSE Linux Products GmbH
  5. * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
  6. *
  7. * This file is released under the GPLv2.
  8. */
  9. #include <linux/dma-mapping.h>
  10. /*
  11. * Managed DMA API
  12. */
  13. struct dma_devres {
  14. size_t size;
  15. void *vaddr;
  16. dma_addr_t dma_handle;
  17. };
  18. static void dmam_coherent_release(struct device *dev, void *res)
  19. {
  20. struct dma_devres *this = res;
  21. dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
  22. }
  23. static void dmam_noncoherent_release(struct device *dev, void *res)
  24. {
  25. struct dma_devres *this = res;
  26. dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
  27. }
  28. static int dmam_match(struct device *dev, void *res, void *match_data)
  29. {
  30. struct dma_devres *this = res, *match = match_data;
  31. if (this->vaddr == match->vaddr) {
  32. WARN_ON(this->size != match->size ||
  33. this->dma_handle != match->dma_handle);
  34. return 1;
  35. }
  36. return 0;
  37. }
  38. /**
  39. * dmam_alloc_coherent - Managed dma_alloc_coherent()
  40. * @dev: Device to allocate coherent memory for
  41. * @size: Size of allocation
  42. * @dma_handle: Out argument for allocated DMA handle
  43. * @gfp: Allocation flags
  44. *
  45. * Managed dma_alloc_coherent(). Memory allocated using this function
  46. * will be automatically released on driver detach.
  47. *
  48. * RETURNS:
  49. * Pointer to allocated memory on success, NULL on failure.
  50. */
  51. void * dmam_alloc_coherent(struct device *dev, size_t size,
  52. dma_addr_t *dma_handle, gfp_t gfp)
  53. {
  54. struct dma_devres *dr;
  55. void *vaddr;
  56. dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
  57. if (!dr)
  58. return NULL;
  59. vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
  60. if (!vaddr) {
  61. devres_free(dr);
  62. return NULL;
  63. }
  64. dr->vaddr = vaddr;
  65. dr->dma_handle = *dma_handle;
  66. dr->size = size;
  67. devres_add(dev, dr);
  68. return vaddr;
  69. }
  70. EXPORT_SYMBOL(dmam_alloc_coherent);
  71. /**
  72. * dmam_free_coherent - Managed dma_free_coherent()
  73. * @dev: Device to free coherent memory for
  74. * @size: Size of allocation
  75. * @vaddr: Virtual address of the memory to free
  76. * @dma_handle: DMA handle of the memory to free
  77. *
  78. * Managed dma_free_coherent().
  79. */
  80. void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  81. dma_addr_t dma_handle)
  82. {
  83. struct dma_devres match_data = { size, vaddr, dma_handle };
  84. dma_free_coherent(dev, size, vaddr, dma_handle);
  85. WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
  86. &match_data));
  87. }
  88. EXPORT_SYMBOL(dmam_free_coherent);
  89. /**
  90. * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
  91. * @dev: Device to allocate non_coherent memory for
  92. * @size: Size of allocation
  93. * @dma_handle: Out argument for allocated DMA handle
  94. * @gfp: Allocation flags
  95. *
  96. * Managed dma_alloc_non_coherent(). Memory allocated using this
  97. * function will be automatically released on driver detach.
  98. *
  99. * RETURNS:
  100. * Pointer to allocated memory on success, NULL on failure.
  101. */
  102. void *dmam_alloc_noncoherent(struct device *dev, size_t size,
  103. dma_addr_t *dma_handle, gfp_t gfp)
  104. {
  105. struct dma_devres *dr;
  106. void *vaddr;
  107. dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
  108. if (!dr)
  109. return NULL;
  110. vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
  111. if (!vaddr) {
  112. devres_free(dr);
  113. return NULL;
  114. }
  115. dr->vaddr = vaddr;
  116. dr->dma_handle = *dma_handle;
  117. dr->size = size;
  118. devres_add(dev, dr);
  119. return vaddr;
  120. }
  121. EXPORT_SYMBOL(dmam_alloc_noncoherent);
  122. /**
  123. * dmam_free_coherent - Managed dma_free_noncoherent()
  124. * @dev: Device to free noncoherent memory for
  125. * @size: Size of allocation
  126. * @vaddr: Virtual address of the memory to free
  127. * @dma_handle: DMA handle of the memory to free
  128. *
  129. * Managed dma_free_noncoherent().
  130. */
  131. void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  132. dma_addr_t dma_handle)
  133. {
  134. struct dma_devres match_data = { size, vaddr, dma_handle };
  135. dma_free_noncoherent(dev, size, vaddr, dma_handle);
  136. WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
  137. &match_data));
  138. }
  139. EXPORT_SYMBOL(dmam_free_noncoherent);
  140. #ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
  141. static void dmam_coherent_decl_release(struct device *dev, void *res)
  142. {
  143. dma_release_declared_memory(dev);
  144. }
  145. /**
  146. * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
  147. * @dev: Device to declare coherent memory for
  148. * @bus_addr: Bus address of coherent memory to be declared
  149. * @device_addr: Device address of coherent memory to be declared
  150. * @size: Size of coherent memory to be declared
  151. * @flags: Flags
  152. *
  153. * Managed dma_declare_coherent_memory().
  154. *
  155. * RETURNS:
  156. * 0 on success, -errno on failure.
  157. */
  158. int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
  159. dma_addr_t device_addr, size_t size, int flags)
  160. {
  161. void *res;
  162. int rc;
  163. res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
  164. if (!res)
  165. return -ENOMEM;
  166. rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
  167. flags);
  168. if (rc == 0)
  169. devres_add(dev, res);
  170. else
  171. devres_free(res);
  172. return rc;
  173. }
  174. EXPORT_SYMBOL(dmam_declare_coherent_memory);
  175. /**
  176. * dmam_release_declared_memory - Managed dma_release_declared_memory().
  177. * @dev: Device to release declared coherent memory for
  178. *
  179. * Managed dmam_release_declared_memory().
  180. */
  181. void dmam_release_declared_memory(struct device *dev)
  182. {
  183. WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
  184. }
  185. EXPORT_SYMBOL(dmam_release_declared_memory);
  186. #endif