nicstar.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016
  1. /******************************************************************************
  2. *
  3. * nicstar.c
  4. *
  5. * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
  6. *
  7. * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
  8. * It was taken from the frle-0.22 device driver.
  9. * As the file doesn't have a copyright notice, in the file
  10. * nicstarmac.copyright I put the copyright notice from the
  11. * frle-0.22 device driver.
  12. * Some code is based on the nicstar driver by M. Welsh.
  13. *
  14. * Author: Rui Prior (rprior@inescn.pt)
  15. * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
  16. *
  17. *
  18. * (C) INESC 1999
  19. *
  20. *
  21. ******************************************************************************/
  22. /**** IMPORTANT INFORMATION ***************************************************
  23. *
  24. * There are currently three types of spinlocks:
  25. *
  26. * 1 - Per card interrupt spinlock (to protect structures and such)
  27. * 2 - Per SCQ scq spinlock
  28. * 3 - Per card resource spinlock (to access registers, etc.)
  29. *
  30. * These must NEVER be grabbed in reverse order.
  31. *
  32. ******************************************************************************/
  33. /* Header files ***************************************************************/
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/atmdev.h>
  38. #include <linux/atm.h>
  39. #include <linux/pci.h>
  40. #include <linux/types.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/sched.h>
  45. #include <linux/timer.h>
  46. #include <linux/interrupt.h>
  47. #include <linux/bitops.h>
  48. #include <asm/io.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/atomic.h>
  51. #include "nicstar.h"
  52. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  53. #include "suni.h"
  54. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  55. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  56. #include "idt77105.h"
  57. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  58. #if BITS_PER_LONG != 32
  59. # error FIXME: this driver requires a 32-bit platform
  60. #endif
  61. /* Additional code ************************************************************/
  62. #include "nicstarmac.c"
  63. /* Configurable parameters ****************************************************/
  64. #undef PHY_LOOPBACK
  65. #undef TX_DEBUG
  66. #undef RX_DEBUG
  67. #undef GENERAL_DEBUG
  68. #undef EXTRA_DEBUG
  69. #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know
  70. you're going to use only raw ATM */
  71. /* Do not touch these *********************************************************/
  72. #ifdef TX_DEBUG
  73. #define TXPRINTK(args...) printk(args)
  74. #else
  75. #define TXPRINTK(args...)
  76. #endif /* TX_DEBUG */
  77. #ifdef RX_DEBUG
  78. #define RXPRINTK(args...) printk(args)
  79. #else
  80. #define RXPRINTK(args...)
  81. #endif /* RX_DEBUG */
  82. #ifdef GENERAL_DEBUG
  83. #define PRINTK(args...) printk(args)
  84. #else
  85. #define PRINTK(args...)
  86. #endif /* GENERAL_DEBUG */
  87. #ifdef EXTRA_DEBUG
  88. #define XPRINTK(args...) printk(args)
  89. #else
  90. #define XPRINTK(args...)
  91. #endif /* EXTRA_DEBUG */
  92. /* Macros *********************************************************************/
  93. #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
  94. #define NS_DELAY mdelay(1)
  95. #define ALIGN_BUS_ADDR(addr, alignment) \
  96. ((((u32) (addr)) + (((u32) (alignment)) - 1)) & ~(((u32) (alignment)) - 1))
  97. #define ALIGN_ADDRESS(addr, alignment) \
  98. bus_to_virt(ALIGN_BUS_ADDR(virt_to_bus(addr), alignment))
  99. #undef CEIL
  100. #ifndef ATM_SKB
  101. #define ATM_SKB(s) (&(s)->atm)
  102. #endif
  103. /* Function declarations ******************************************************/
  104. static u32 ns_read_sram(ns_dev *card, u32 sram_address);
  105. static void ns_write_sram(ns_dev *card, u32 sram_address, u32 *value, int count);
  106. static int __devinit ns_init_card(int i, struct pci_dev *pcidev);
  107. static void __devinit ns_init_card_error(ns_dev *card, int error);
  108. static scq_info *get_scq(int size, u32 scd);
  109. static void free_scq(scq_info *scq, struct atm_vcc *vcc);
  110. static void push_rxbufs(ns_dev *, struct sk_buff *);
  111. static irqreturn_t ns_irq_handler(int irq, void *dev_id);
  112. static int ns_open(struct atm_vcc *vcc);
  113. static void ns_close(struct atm_vcc *vcc);
  114. static void fill_tst(ns_dev *card, int n, vc_map *vc);
  115. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
  116. static int push_scqe(ns_dev *card, vc_map *vc, scq_info *scq, ns_scqe *tbd,
  117. struct sk_buff *skb);
  118. static void process_tsq(ns_dev *card);
  119. static void drain_scq(ns_dev *card, scq_info *scq, int pos);
  120. static void process_rsq(ns_dev *card);
  121. static void dequeue_rx(ns_dev *card, ns_rsqe *rsqe);
  122. #ifdef NS_USE_DESTRUCTORS
  123. static void ns_sb_destructor(struct sk_buff *sb);
  124. static void ns_lb_destructor(struct sk_buff *lb);
  125. static void ns_hb_destructor(struct sk_buff *hb);
  126. #endif /* NS_USE_DESTRUCTORS */
  127. static void recycle_rx_buf(ns_dev *card, struct sk_buff *skb);
  128. static void recycle_iovec_rx_bufs(ns_dev *card, struct iovec *iov, int count);
  129. static void recycle_iov_buf(ns_dev *card, struct sk_buff *iovb);
  130. static void dequeue_sm_buf(ns_dev *card, struct sk_buff *sb);
  131. static void dequeue_lg_buf(ns_dev *card, struct sk_buff *lb);
  132. static int ns_proc_read(struct atm_dev *dev, loff_t *pos, char *page);
  133. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
  134. static void which_list(ns_dev *card, struct sk_buff *skb);
  135. static void ns_poll(unsigned long arg);
  136. static int ns_parse_mac(char *mac, unsigned char *esi);
  137. static short ns_h2i(char c);
  138. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  139. unsigned long addr);
  140. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
  141. /* Global variables ***********************************************************/
  142. static struct ns_dev *cards[NS_MAX_CARDS];
  143. static unsigned num_cards;
  144. static struct atmdev_ops atm_ops =
  145. {
  146. .open = ns_open,
  147. .close = ns_close,
  148. .ioctl = ns_ioctl,
  149. .send = ns_send,
  150. .phy_put = ns_phy_put,
  151. .phy_get = ns_phy_get,
  152. .proc_read = ns_proc_read,
  153. .owner = THIS_MODULE,
  154. };
  155. static struct timer_list ns_timer;
  156. static char *mac[NS_MAX_CARDS];
  157. module_param_array(mac, charp, NULL, 0);
  158. MODULE_LICENSE("GPL");
  159. /* Functions*******************************************************************/
  160. static int __devinit nicstar_init_one(struct pci_dev *pcidev,
  161. const struct pci_device_id *ent)
  162. {
  163. static int index = -1;
  164. unsigned int error;
  165. index++;
  166. cards[index] = NULL;
  167. error = ns_init_card(index, pcidev);
  168. if (error) {
  169. cards[index--] = NULL; /* don't increment index */
  170. goto err_out;
  171. }
  172. return 0;
  173. err_out:
  174. return -ENODEV;
  175. }
  176. static void __devexit nicstar_remove_one(struct pci_dev *pcidev)
  177. {
  178. int i, j;
  179. ns_dev *card = pci_get_drvdata(pcidev);
  180. struct sk_buff *hb;
  181. struct sk_buff *iovb;
  182. struct sk_buff *lb;
  183. struct sk_buff *sb;
  184. i = card->index;
  185. if (cards[i] == NULL)
  186. return;
  187. if (card->atmdev->phy && card->atmdev->phy->stop)
  188. card->atmdev->phy->stop(card->atmdev);
  189. /* Stop everything */
  190. writel(0x00000000, card->membase + CFG);
  191. /* De-register device */
  192. atm_dev_deregister(card->atmdev);
  193. /* Disable PCI device */
  194. pci_disable_device(pcidev);
  195. /* Free up resources */
  196. j = 0;
  197. PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
  198. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  199. {
  200. dev_kfree_skb_any(hb);
  201. j++;
  202. }
  203. PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
  204. j = 0;
  205. PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, card->iovpool.count);
  206. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  207. {
  208. dev_kfree_skb_any(iovb);
  209. j++;
  210. }
  211. PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
  212. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  213. dev_kfree_skb_any(lb);
  214. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  215. dev_kfree_skb_any(sb);
  216. free_scq(card->scq0, NULL);
  217. for (j = 0; j < NS_FRSCD_NUM; j++)
  218. {
  219. if (card->scd2vc[j] != NULL)
  220. free_scq(card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
  221. }
  222. kfree(card->rsq.org);
  223. kfree(card->tsq.org);
  224. free_irq(card->pcidev->irq, card);
  225. iounmap(card->membase);
  226. kfree(card);
  227. }
  228. static struct pci_device_id nicstar_pci_tbl[] __devinitdata =
  229. {
  230. {PCI_VENDOR_ID_IDT, PCI_DEVICE_ID_IDT_IDT77201,
  231. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  232. {0,} /* terminate list */
  233. };
  234. MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
  235. static struct pci_driver nicstar_driver = {
  236. .name = "nicstar",
  237. .id_table = nicstar_pci_tbl,
  238. .probe = nicstar_init_one,
  239. .remove = __devexit_p(nicstar_remove_one),
  240. };
  241. static int __init nicstar_init(void)
  242. {
  243. unsigned error = 0; /* Initialized to remove compile warning */
  244. XPRINTK("nicstar: nicstar_init() called.\n");
  245. error = pci_register_driver(&nicstar_driver);
  246. TXPRINTK("nicstar: TX debug enabled.\n");
  247. RXPRINTK("nicstar: RX debug enabled.\n");
  248. PRINTK("nicstar: General debug enabled.\n");
  249. #ifdef PHY_LOOPBACK
  250. printk("nicstar: using PHY loopback.\n");
  251. #endif /* PHY_LOOPBACK */
  252. XPRINTK("nicstar: nicstar_init() returned.\n");
  253. if (!error) {
  254. init_timer(&ns_timer);
  255. ns_timer.expires = jiffies + NS_POLL_PERIOD;
  256. ns_timer.data = 0UL;
  257. ns_timer.function = ns_poll;
  258. add_timer(&ns_timer);
  259. }
  260. return error;
  261. }
  262. static void __exit nicstar_cleanup(void)
  263. {
  264. XPRINTK("nicstar: nicstar_cleanup() called.\n");
  265. del_timer(&ns_timer);
  266. pci_unregister_driver(&nicstar_driver);
  267. XPRINTK("nicstar: nicstar_cleanup() returned.\n");
  268. }
  269. static u32 ns_read_sram(ns_dev *card, u32 sram_address)
  270. {
  271. unsigned long flags;
  272. u32 data;
  273. sram_address <<= 2;
  274. sram_address &= 0x0007FFFC; /* address must be dword aligned */
  275. sram_address |= 0x50000000; /* SRAM read command */
  276. spin_lock_irqsave(&card->res_lock, flags);
  277. while (CMD_BUSY(card));
  278. writel(sram_address, card->membase + CMD);
  279. while (CMD_BUSY(card));
  280. data = readl(card->membase + DR0);
  281. spin_unlock_irqrestore(&card->res_lock, flags);
  282. return data;
  283. }
  284. static void ns_write_sram(ns_dev *card, u32 sram_address, u32 *value, int count)
  285. {
  286. unsigned long flags;
  287. int i, c;
  288. count--; /* count range now is 0..3 instead of 1..4 */
  289. c = count;
  290. c <<= 2; /* to use increments of 4 */
  291. spin_lock_irqsave(&card->res_lock, flags);
  292. while (CMD_BUSY(card));
  293. for (i = 0; i <= c; i += 4)
  294. writel(*(value++), card->membase + i);
  295. /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
  296. so card->membase + DR0 == card->membase */
  297. sram_address <<= 2;
  298. sram_address &= 0x0007FFFC;
  299. sram_address |= (0x40000000 | count);
  300. writel(sram_address, card->membase + CMD);
  301. spin_unlock_irqrestore(&card->res_lock, flags);
  302. }
  303. static int __devinit ns_init_card(int i, struct pci_dev *pcidev)
  304. {
  305. int j;
  306. struct ns_dev *card = NULL;
  307. unsigned char pci_latency;
  308. unsigned error;
  309. u32 data;
  310. u32 u32d[4];
  311. u32 ns_cfg_rctsize;
  312. int bcount;
  313. unsigned long membase;
  314. error = 0;
  315. if (pci_enable_device(pcidev))
  316. {
  317. printk("nicstar%d: can't enable PCI device\n", i);
  318. error = 2;
  319. ns_init_card_error(card, error);
  320. return error;
  321. }
  322. if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL)
  323. {
  324. printk("nicstar%d: can't allocate memory for device structure.\n", i);
  325. error = 2;
  326. ns_init_card_error(card, error);
  327. return error;
  328. }
  329. cards[i] = card;
  330. spin_lock_init(&card->int_lock);
  331. spin_lock_init(&card->res_lock);
  332. pci_set_drvdata(pcidev, card);
  333. card->index = i;
  334. card->atmdev = NULL;
  335. card->pcidev = pcidev;
  336. membase = pci_resource_start(pcidev, 1);
  337. card->membase = ioremap(membase, NS_IOREMAP_SIZE);
  338. if (!card->membase)
  339. {
  340. printk("nicstar%d: can't ioremap() membase.\n",i);
  341. error = 3;
  342. ns_init_card_error(card, error);
  343. return error;
  344. }
  345. PRINTK("nicstar%d: membase at 0x%x.\n", i, card->membase);
  346. pci_set_master(pcidev);
  347. if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0)
  348. {
  349. printk("nicstar%d: can't read PCI latency timer.\n", i);
  350. error = 6;
  351. ns_init_card_error(card, error);
  352. return error;
  353. }
  354. #ifdef NS_PCI_LATENCY
  355. if (pci_latency < NS_PCI_LATENCY)
  356. {
  357. PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, NS_PCI_LATENCY);
  358. for (j = 1; j < 4; j++)
  359. {
  360. if (pci_write_config_byte(pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
  361. break;
  362. }
  363. if (j == 4)
  364. {
  365. printk("nicstar%d: can't set PCI latency timer to %d.\n", i, NS_PCI_LATENCY);
  366. error = 7;
  367. ns_init_card_error(card, error);
  368. return error;
  369. }
  370. }
  371. #endif /* NS_PCI_LATENCY */
  372. /* Clear timer overflow */
  373. data = readl(card->membase + STAT);
  374. if (data & NS_STAT_TMROF)
  375. writel(NS_STAT_TMROF, card->membase + STAT);
  376. /* Software reset */
  377. writel(NS_CFG_SWRST, card->membase + CFG);
  378. NS_DELAY;
  379. writel(0x00000000, card->membase + CFG);
  380. /* PHY reset */
  381. writel(0x00000008, card->membase + GP);
  382. NS_DELAY;
  383. writel(0x00000001, card->membase + GP);
  384. NS_DELAY;
  385. while (CMD_BUSY(card));
  386. writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
  387. NS_DELAY;
  388. /* Detect PHY type */
  389. while (CMD_BUSY(card));
  390. writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
  391. while (CMD_BUSY(card));
  392. data = readl(card->membase + DR0);
  393. switch(data) {
  394. case 0x00000009:
  395. printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
  396. card->max_pcr = ATM_25_PCR;
  397. while(CMD_BUSY(card));
  398. writel(0x00000008, card->membase + DR0);
  399. writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
  400. /* Clear an eventual pending interrupt */
  401. writel(NS_STAT_SFBQF, card->membase + STAT);
  402. #ifdef PHY_LOOPBACK
  403. while(CMD_BUSY(card));
  404. writel(0x00000022, card->membase + DR0);
  405. writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
  406. #endif /* PHY_LOOPBACK */
  407. break;
  408. case 0x00000030:
  409. case 0x00000031:
  410. printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
  411. card->max_pcr = ATM_OC3_PCR;
  412. #ifdef PHY_LOOPBACK
  413. while(CMD_BUSY(card));
  414. writel(0x00000002, card->membase + DR0);
  415. writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
  416. #endif /* PHY_LOOPBACK */
  417. break;
  418. default:
  419. printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
  420. error = 8;
  421. ns_init_card_error(card, error);
  422. return error;
  423. }
  424. writel(0x00000000, card->membase + GP);
  425. /* Determine SRAM size */
  426. data = 0x76543210;
  427. ns_write_sram(card, 0x1C003, &data, 1);
  428. data = 0x89ABCDEF;
  429. ns_write_sram(card, 0x14003, &data, 1);
  430. if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
  431. ns_read_sram(card, 0x1C003) == 0x76543210)
  432. card->sram_size = 128;
  433. else
  434. card->sram_size = 32;
  435. PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
  436. card->rct_size = NS_MAX_RCTSIZE;
  437. #if (NS_MAX_RCTSIZE == 4096)
  438. if (card->sram_size == 128)
  439. printk("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", i);
  440. #elif (NS_MAX_RCTSIZE == 16384)
  441. if (card->sram_size == 32)
  442. {
  443. printk("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", i);
  444. card->rct_size = 4096;
  445. }
  446. #else
  447. #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
  448. #endif
  449. card->vpibits = NS_VPIBITS;
  450. if (card->rct_size == 4096)
  451. card->vcibits = 12 - NS_VPIBITS;
  452. else /* card->rct_size == 16384 */
  453. card->vcibits = 14 - NS_VPIBITS;
  454. /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
  455. if (mac[i] == NULL)
  456. nicstar_init_eprom(card->membase);
  457. /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
  458. writel(0x00000000, card->membase + VPM);
  459. /* Initialize TSQ */
  460. card->tsq.org = kmalloc(NS_TSQSIZE + NS_TSQ_ALIGNMENT, GFP_KERNEL);
  461. if (card->tsq.org == NULL)
  462. {
  463. printk("nicstar%d: can't allocate TSQ.\n", i);
  464. error = 10;
  465. ns_init_card_error(card, error);
  466. return error;
  467. }
  468. card->tsq.base = (ns_tsi *) ALIGN_ADDRESS(card->tsq.org, NS_TSQ_ALIGNMENT);
  469. card->tsq.next = card->tsq.base;
  470. card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
  471. for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
  472. ns_tsi_init(card->tsq.base + j);
  473. writel(0x00000000, card->membase + TSQH);
  474. writel((u32) virt_to_bus(card->tsq.base), card->membase + TSQB);
  475. PRINTK("nicstar%d: TSQ base at 0x%x 0x%x 0x%x.\n", i, (u32) card->tsq.base,
  476. (u32) virt_to_bus(card->tsq.base), readl(card->membase + TSQB));
  477. /* Initialize RSQ */
  478. card->rsq.org = kmalloc(NS_RSQSIZE + NS_RSQ_ALIGNMENT, GFP_KERNEL);
  479. if (card->rsq.org == NULL)
  480. {
  481. printk("nicstar%d: can't allocate RSQ.\n", i);
  482. error = 11;
  483. ns_init_card_error(card, error);
  484. return error;
  485. }
  486. card->rsq.base = (ns_rsqe *) ALIGN_ADDRESS(card->rsq.org, NS_RSQ_ALIGNMENT);
  487. card->rsq.next = card->rsq.base;
  488. card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
  489. for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
  490. ns_rsqe_init(card->rsq.base + j);
  491. writel(0x00000000, card->membase + RSQH);
  492. writel((u32) virt_to_bus(card->rsq.base), card->membase + RSQB);
  493. PRINTK("nicstar%d: RSQ base at 0x%x.\n", i, (u32) card->rsq.base);
  494. /* Initialize SCQ0, the only VBR SCQ used */
  495. card->scq1 = NULL;
  496. card->scq2 = NULL;
  497. card->scq0 = get_scq(VBR_SCQSIZE, NS_VRSCD0);
  498. if (card->scq0 == NULL)
  499. {
  500. printk("nicstar%d: can't get SCQ0.\n", i);
  501. error = 12;
  502. ns_init_card_error(card, error);
  503. return error;
  504. }
  505. u32d[0] = (u32) virt_to_bus(card->scq0->base);
  506. u32d[1] = (u32) 0x00000000;
  507. u32d[2] = (u32) 0xffffffff;
  508. u32d[3] = (u32) 0x00000000;
  509. ns_write_sram(card, NS_VRSCD0, u32d, 4);
  510. ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
  511. ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
  512. card->scq0->scd = NS_VRSCD0;
  513. PRINTK("nicstar%d: VBR-SCQ0 base at 0x%x.\n", i, (u32) card->scq0->base);
  514. /* Initialize TSTs */
  515. card->tst_addr = NS_TST0;
  516. card->tst_free_entries = NS_TST_NUM_ENTRIES;
  517. data = NS_TST_OPCODE_VARIABLE;
  518. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  519. ns_write_sram(card, NS_TST0 + j, &data, 1);
  520. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
  521. ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
  522. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  523. ns_write_sram(card, NS_TST1 + j, &data, 1);
  524. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
  525. ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
  526. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  527. card->tste2vc[j] = NULL;
  528. writel(NS_TST0 << 2, card->membase + TSTB);
  529. /* Initialize RCT. AAL type is set on opening the VC. */
  530. #ifdef RCQ_SUPPORT
  531. u32d[0] = NS_RCTE_RAWCELLINTEN;
  532. #else
  533. u32d[0] = 0x00000000;
  534. #endif /* RCQ_SUPPORT */
  535. u32d[1] = 0x00000000;
  536. u32d[2] = 0x00000000;
  537. u32d[3] = 0xFFFFFFFF;
  538. for (j = 0; j < card->rct_size; j++)
  539. ns_write_sram(card, j * 4, u32d, 4);
  540. memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
  541. for (j = 0; j < NS_FRSCD_NUM; j++)
  542. card->scd2vc[j] = NULL;
  543. /* Initialize buffer levels */
  544. card->sbnr.min = MIN_SB;
  545. card->sbnr.init = NUM_SB;
  546. card->sbnr.max = MAX_SB;
  547. card->lbnr.min = MIN_LB;
  548. card->lbnr.init = NUM_LB;
  549. card->lbnr.max = MAX_LB;
  550. card->iovnr.min = MIN_IOVB;
  551. card->iovnr.init = NUM_IOVB;
  552. card->iovnr.max = MAX_IOVB;
  553. card->hbnr.min = MIN_HB;
  554. card->hbnr.init = NUM_HB;
  555. card->hbnr.max = MAX_HB;
  556. card->sm_handle = 0x00000000;
  557. card->sm_addr = 0x00000000;
  558. card->lg_handle = 0x00000000;
  559. card->lg_addr = 0x00000000;
  560. card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
  561. /* Pre-allocate some huge buffers */
  562. skb_queue_head_init(&card->hbpool.queue);
  563. card->hbpool.count = 0;
  564. for (j = 0; j < NUM_HB; j++)
  565. {
  566. struct sk_buff *hb;
  567. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  568. if (hb == NULL)
  569. {
  570. printk("nicstar%d: can't allocate %dth of %d huge buffers.\n",
  571. i, j, NUM_HB);
  572. error = 13;
  573. ns_init_card_error(card, error);
  574. return error;
  575. }
  576. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  577. skb_queue_tail(&card->hbpool.queue, hb);
  578. card->hbpool.count++;
  579. }
  580. /* Allocate large buffers */
  581. skb_queue_head_init(&card->lbpool.queue);
  582. card->lbpool.count = 0; /* Not used */
  583. for (j = 0; j < NUM_LB; j++)
  584. {
  585. struct sk_buff *lb;
  586. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  587. if (lb == NULL)
  588. {
  589. printk("nicstar%d: can't allocate %dth of %d large buffers.\n",
  590. i, j, NUM_LB);
  591. error = 14;
  592. ns_init_card_error(card, error);
  593. return error;
  594. }
  595. NS_SKB_CB(lb)->buf_type = BUF_LG;
  596. skb_queue_tail(&card->lbpool.queue, lb);
  597. skb_reserve(lb, NS_SMBUFSIZE);
  598. push_rxbufs(card, lb);
  599. /* Due to the implementation of push_rxbufs() this is 1, not 0 */
  600. if (j == 1)
  601. {
  602. card->rcbuf = lb;
  603. card->rawch = (u32) virt_to_bus(lb->data);
  604. }
  605. }
  606. /* Test for strange behaviour which leads to crashes */
  607. if ((bcount = ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min)
  608. {
  609. printk("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
  610. i, j, bcount);
  611. error = 14;
  612. ns_init_card_error(card, error);
  613. return error;
  614. }
  615. /* Allocate small buffers */
  616. skb_queue_head_init(&card->sbpool.queue);
  617. card->sbpool.count = 0; /* Not used */
  618. for (j = 0; j < NUM_SB; j++)
  619. {
  620. struct sk_buff *sb;
  621. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  622. if (sb == NULL)
  623. {
  624. printk("nicstar%d: can't allocate %dth of %d small buffers.\n",
  625. i, j, NUM_SB);
  626. error = 15;
  627. ns_init_card_error(card, error);
  628. return error;
  629. }
  630. NS_SKB_CB(sb)->buf_type = BUF_SM;
  631. skb_queue_tail(&card->sbpool.queue, sb);
  632. skb_reserve(sb, NS_AAL0_HEADER);
  633. push_rxbufs(card, sb);
  634. }
  635. /* Test for strange behaviour which leads to crashes */
  636. if ((bcount = ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min)
  637. {
  638. printk("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
  639. i, j, bcount);
  640. error = 15;
  641. ns_init_card_error(card, error);
  642. return error;
  643. }
  644. /* Allocate iovec buffers */
  645. skb_queue_head_init(&card->iovpool.queue);
  646. card->iovpool.count = 0;
  647. for (j = 0; j < NUM_IOVB; j++)
  648. {
  649. struct sk_buff *iovb;
  650. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  651. if (iovb == NULL)
  652. {
  653. printk("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
  654. i, j, NUM_IOVB);
  655. error = 16;
  656. ns_init_card_error(card, error);
  657. return error;
  658. }
  659. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  660. skb_queue_tail(&card->iovpool.queue, iovb);
  661. card->iovpool.count++;
  662. }
  663. /* Configure NICStAR */
  664. if (card->rct_size == 4096)
  665. ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
  666. else /* (card->rct_size == 16384) */
  667. ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
  668. card->efbie = 1;
  669. card->intcnt = 0;
  670. if (request_irq(pcidev->irq, &ns_irq_handler, IRQF_DISABLED | IRQF_SHARED, "nicstar", card) != 0)
  671. {
  672. printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
  673. error = 9;
  674. ns_init_card_error(card, error);
  675. return error;
  676. }
  677. /* Register device */
  678. card->atmdev = atm_dev_register("nicstar", &atm_ops, -1, NULL);
  679. if (card->atmdev == NULL)
  680. {
  681. printk("nicstar%d: can't register device.\n", i);
  682. error = 17;
  683. ns_init_card_error(card, error);
  684. return error;
  685. }
  686. if (ns_parse_mac(mac[i], card->atmdev->esi)) {
  687. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
  688. card->atmdev->esi, 6);
  689. if (memcmp(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00", 6) == 0) {
  690. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
  691. card->atmdev->esi, 6);
  692. }
  693. }
  694. printk("nicstar%d: MAC address %02X:%02X:%02X:%02X:%02X:%02X\n", i,
  695. card->atmdev->esi[0], card->atmdev->esi[1], card->atmdev->esi[2],
  696. card->atmdev->esi[3], card->atmdev->esi[4], card->atmdev->esi[5]);
  697. card->atmdev->dev_data = card;
  698. card->atmdev->ci_range.vpi_bits = card->vpibits;
  699. card->atmdev->ci_range.vci_bits = card->vcibits;
  700. card->atmdev->link_rate = card->max_pcr;
  701. card->atmdev->phy = NULL;
  702. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  703. if (card->max_pcr == ATM_OC3_PCR)
  704. suni_init(card->atmdev);
  705. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  706. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  707. if (card->max_pcr == ATM_25_PCR)
  708. idt77105_init(card->atmdev);
  709. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  710. if (card->atmdev->phy && card->atmdev->phy->start)
  711. card->atmdev->phy->start(card->atmdev);
  712. writel(NS_CFG_RXPATH |
  713. NS_CFG_SMBUFSIZE |
  714. NS_CFG_LGBUFSIZE |
  715. NS_CFG_EFBIE |
  716. NS_CFG_RSQSIZE |
  717. NS_CFG_VPIBITS |
  718. ns_cfg_rctsize |
  719. NS_CFG_RXINT_NODELAY |
  720. NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
  721. NS_CFG_RSQAFIE |
  722. NS_CFG_TXEN |
  723. NS_CFG_TXIE |
  724. NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
  725. NS_CFG_PHYIE,
  726. card->membase + CFG);
  727. num_cards++;
  728. return error;
  729. }
  730. static void __devinit ns_init_card_error(ns_dev *card, int error)
  731. {
  732. if (error >= 17)
  733. {
  734. writel(0x00000000, card->membase + CFG);
  735. }
  736. if (error >= 16)
  737. {
  738. struct sk_buff *iovb;
  739. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  740. dev_kfree_skb_any(iovb);
  741. }
  742. if (error >= 15)
  743. {
  744. struct sk_buff *sb;
  745. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  746. dev_kfree_skb_any(sb);
  747. free_scq(card->scq0, NULL);
  748. }
  749. if (error >= 14)
  750. {
  751. struct sk_buff *lb;
  752. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  753. dev_kfree_skb_any(lb);
  754. }
  755. if (error >= 13)
  756. {
  757. struct sk_buff *hb;
  758. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  759. dev_kfree_skb_any(hb);
  760. }
  761. if (error >= 12)
  762. {
  763. kfree(card->rsq.org);
  764. }
  765. if (error >= 11)
  766. {
  767. kfree(card->tsq.org);
  768. }
  769. if (error >= 10)
  770. {
  771. free_irq(card->pcidev->irq, card);
  772. }
  773. if (error >= 4)
  774. {
  775. iounmap(card->membase);
  776. }
  777. if (error >= 3)
  778. {
  779. pci_disable_device(card->pcidev);
  780. kfree(card);
  781. }
  782. }
  783. static scq_info *get_scq(int size, u32 scd)
  784. {
  785. scq_info *scq;
  786. int i;
  787. if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
  788. return NULL;
  789. scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
  790. if (scq == NULL)
  791. return NULL;
  792. scq->org = kmalloc(2 * size, GFP_KERNEL);
  793. if (scq->org == NULL)
  794. {
  795. kfree(scq);
  796. return NULL;
  797. }
  798. scq->skb = kmalloc(sizeof(struct sk_buff *) *
  799. (size / NS_SCQE_SIZE), GFP_KERNEL);
  800. if (scq->skb == NULL)
  801. {
  802. kfree(scq->org);
  803. kfree(scq);
  804. return NULL;
  805. }
  806. scq->num_entries = size / NS_SCQE_SIZE;
  807. scq->base = (ns_scqe *) ALIGN_ADDRESS(scq->org, size);
  808. scq->next = scq->base;
  809. scq->last = scq->base + (scq->num_entries - 1);
  810. scq->tail = scq->last;
  811. scq->scd = scd;
  812. scq->num_entries = size / NS_SCQE_SIZE;
  813. scq->tbd_count = 0;
  814. init_waitqueue_head(&scq->scqfull_waitq);
  815. scq->full = 0;
  816. spin_lock_init(&scq->lock);
  817. for (i = 0; i < scq->num_entries; i++)
  818. scq->skb[i] = NULL;
  819. return scq;
  820. }
  821. /* For variable rate SCQ vcc must be NULL */
  822. static void free_scq(scq_info *scq, struct atm_vcc *vcc)
  823. {
  824. int i;
  825. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  826. for (i = 0; i < scq->num_entries; i++)
  827. {
  828. if (scq->skb[i] != NULL)
  829. {
  830. vcc = ATM_SKB(scq->skb[i])->vcc;
  831. if (vcc->pop != NULL)
  832. vcc->pop(vcc, scq->skb[i]);
  833. else
  834. dev_kfree_skb_any(scq->skb[i]);
  835. }
  836. }
  837. else /* vcc must be != NULL */
  838. {
  839. if (vcc == NULL)
  840. {
  841. printk("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
  842. for (i = 0; i < scq->num_entries; i++)
  843. dev_kfree_skb_any(scq->skb[i]);
  844. }
  845. else
  846. for (i = 0; i < scq->num_entries; i++)
  847. {
  848. if (scq->skb[i] != NULL)
  849. {
  850. if (vcc->pop != NULL)
  851. vcc->pop(vcc, scq->skb[i]);
  852. else
  853. dev_kfree_skb_any(scq->skb[i]);
  854. }
  855. }
  856. }
  857. kfree(scq->skb);
  858. kfree(scq->org);
  859. kfree(scq);
  860. }
  861. /* The handles passed must be pointers to the sk_buff containing the small
  862. or large buffer(s) cast to u32. */
  863. static void push_rxbufs(ns_dev *card, struct sk_buff *skb)
  864. {
  865. struct ns_skb_cb *cb = NS_SKB_CB(skb);
  866. u32 handle1, addr1;
  867. u32 handle2, addr2;
  868. u32 stat;
  869. unsigned long flags;
  870. /* *BARF* */
  871. handle2 = addr2 = 0;
  872. handle1 = (u32)skb;
  873. addr1 = (u32)virt_to_bus(skb->data);
  874. #ifdef GENERAL_DEBUG
  875. if (!addr1)
  876. printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", card->index);
  877. #endif /* GENERAL_DEBUG */
  878. stat = readl(card->membase + STAT);
  879. card->sbfqc = ns_stat_sfbqc_get(stat);
  880. card->lbfqc = ns_stat_lfbqc_get(stat);
  881. if (cb->buf_type == BUF_SM)
  882. {
  883. if (!addr2)
  884. {
  885. if (card->sm_addr)
  886. {
  887. addr2 = card->sm_addr;
  888. handle2 = card->sm_handle;
  889. card->sm_addr = 0x00000000;
  890. card->sm_handle = 0x00000000;
  891. }
  892. else /* (!sm_addr) */
  893. {
  894. card->sm_addr = addr1;
  895. card->sm_handle = handle1;
  896. }
  897. }
  898. }
  899. else /* buf_type == BUF_LG */
  900. {
  901. if (!addr2)
  902. {
  903. if (card->lg_addr)
  904. {
  905. addr2 = card->lg_addr;
  906. handle2 = card->lg_handle;
  907. card->lg_addr = 0x00000000;
  908. card->lg_handle = 0x00000000;
  909. }
  910. else /* (!lg_addr) */
  911. {
  912. card->lg_addr = addr1;
  913. card->lg_handle = handle1;
  914. }
  915. }
  916. }
  917. if (addr2)
  918. {
  919. if (cb->buf_type == BUF_SM)
  920. {
  921. if (card->sbfqc >= card->sbnr.max)
  922. {
  923. skb_unlink((struct sk_buff *) handle1, &card->sbpool.queue);
  924. dev_kfree_skb_any((struct sk_buff *) handle1);
  925. skb_unlink((struct sk_buff *) handle2, &card->sbpool.queue);
  926. dev_kfree_skb_any((struct sk_buff *) handle2);
  927. return;
  928. }
  929. else
  930. card->sbfqc += 2;
  931. }
  932. else /* (buf_type == BUF_LG) */
  933. {
  934. if (card->lbfqc >= card->lbnr.max)
  935. {
  936. skb_unlink((struct sk_buff *) handle1, &card->lbpool.queue);
  937. dev_kfree_skb_any((struct sk_buff *) handle1);
  938. skb_unlink((struct sk_buff *) handle2, &card->lbpool.queue);
  939. dev_kfree_skb_any((struct sk_buff *) handle2);
  940. return;
  941. }
  942. else
  943. card->lbfqc += 2;
  944. }
  945. spin_lock_irqsave(&card->res_lock, flags);
  946. while (CMD_BUSY(card));
  947. writel(addr2, card->membase + DR3);
  948. writel(handle2, card->membase + DR2);
  949. writel(addr1, card->membase + DR1);
  950. writel(handle1, card->membase + DR0);
  951. writel(NS_CMD_WRITE_FREEBUFQ | cb->buf_type, card->membase + CMD);
  952. spin_unlock_irqrestore(&card->res_lock, flags);
  953. XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", card->index,
  954. (cb->buf_type == BUF_SM ? "small" : "large"), addr1, addr2);
  955. }
  956. if (!card->efbie && card->sbfqc >= card->sbnr.min &&
  957. card->lbfqc >= card->lbnr.min)
  958. {
  959. card->efbie = 1;
  960. writel((readl(card->membase + CFG) | NS_CFG_EFBIE), card->membase + CFG);
  961. }
  962. return;
  963. }
  964. static irqreturn_t ns_irq_handler(int irq, void *dev_id)
  965. {
  966. u32 stat_r;
  967. ns_dev *card;
  968. struct atm_dev *dev;
  969. unsigned long flags;
  970. card = (ns_dev *) dev_id;
  971. dev = card->atmdev;
  972. card->intcnt++;
  973. PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
  974. spin_lock_irqsave(&card->int_lock, flags);
  975. stat_r = readl(card->membase + STAT);
  976. /* Transmit Status Indicator has been written to T. S. Queue */
  977. if (stat_r & NS_STAT_TSIF)
  978. {
  979. TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
  980. process_tsq(card);
  981. writel(NS_STAT_TSIF, card->membase + STAT);
  982. }
  983. /* Incomplete CS-PDU has been transmitted */
  984. if (stat_r & NS_STAT_TXICP)
  985. {
  986. writel(NS_STAT_TXICP, card->membase + STAT);
  987. TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
  988. card->index);
  989. }
  990. /* Transmit Status Queue 7/8 full */
  991. if (stat_r & NS_STAT_TSQF)
  992. {
  993. writel(NS_STAT_TSQF, card->membase + STAT);
  994. PRINTK("nicstar%d: TSQ full.\n", card->index);
  995. process_tsq(card);
  996. }
  997. /* Timer overflow */
  998. if (stat_r & NS_STAT_TMROF)
  999. {
  1000. writel(NS_STAT_TMROF, card->membase + STAT);
  1001. PRINTK("nicstar%d: Timer overflow.\n", card->index);
  1002. }
  1003. /* PHY device interrupt signal active */
  1004. if (stat_r & NS_STAT_PHYI)
  1005. {
  1006. writel(NS_STAT_PHYI, card->membase + STAT);
  1007. PRINTK("nicstar%d: PHY interrupt.\n", card->index);
  1008. if (dev->phy && dev->phy->interrupt) {
  1009. dev->phy->interrupt(dev);
  1010. }
  1011. }
  1012. /* Small Buffer Queue is full */
  1013. if (stat_r & NS_STAT_SFBQF)
  1014. {
  1015. writel(NS_STAT_SFBQF, card->membase + STAT);
  1016. printk("nicstar%d: Small free buffer queue is full.\n", card->index);
  1017. }
  1018. /* Large Buffer Queue is full */
  1019. if (stat_r & NS_STAT_LFBQF)
  1020. {
  1021. writel(NS_STAT_LFBQF, card->membase + STAT);
  1022. printk("nicstar%d: Large free buffer queue is full.\n", card->index);
  1023. }
  1024. /* Receive Status Queue is full */
  1025. if (stat_r & NS_STAT_RSQF)
  1026. {
  1027. writel(NS_STAT_RSQF, card->membase + STAT);
  1028. printk("nicstar%d: RSQ full.\n", card->index);
  1029. process_rsq(card);
  1030. }
  1031. /* Complete CS-PDU received */
  1032. if (stat_r & NS_STAT_EOPDU)
  1033. {
  1034. RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
  1035. process_rsq(card);
  1036. writel(NS_STAT_EOPDU, card->membase + STAT);
  1037. }
  1038. /* Raw cell received */
  1039. if (stat_r & NS_STAT_RAWCF)
  1040. {
  1041. writel(NS_STAT_RAWCF, card->membase + STAT);
  1042. #ifndef RCQ_SUPPORT
  1043. printk("nicstar%d: Raw cell received and no support yet...\n",
  1044. card->index);
  1045. #endif /* RCQ_SUPPORT */
  1046. /* NOTE: the following procedure may keep a raw cell pending until the
  1047. next interrupt. As this preliminary support is only meant to
  1048. avoid buffer leakage, this is not an issue. */
  1049. while (readl(card->membase + RAWCT) != card->rawch)
  1050. {
  1051. ns_rcqe *rawcell;
  1052. rawcell = (ns_rcqe *) bus_to_virt(card->rawch);
  1053. if (ns_rcqe_islast(rawcell))
  1054. {
  1055. struct sk_buff *oldbuf;
  1056. oldbuf = card->rcbuf;
  1057. card->rcbuf = (struct sk_buff *) ns_rcqe_nextbufhandle(rawcell);
  1058. card->rawch = (u32) virt_to_bus(card->rcbuf->data);
  1059. recycle_rx_buf(card, oldbuf);
  1060. }
  1061. else
  1062. card->rawch += NS_RCQE_SIZE;
  1063. }
  1064. }
  1065. /* Small buffer queue is empty */
  1066. if (stat_r & NS_STAT_SFBQE)
  1067. {
  1068. int i;
  1069. struct sk_buff *sb;
  1070. writel(NS_STAT_SFBQE, card->membase + STAT);
  1071. printk("nicstar%d: Small free buffer queue empty.\n",
  1072. card->index);
  1073. for (i = 0; i < card->sbnr.min; i++)
  1074. {
  1075. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1076. if (sb == NULL)
  1077. {
  1078. writel(readl(card->membase + CFG) & ~NS_CFG_EFBIE, card->membase + CFG);
  1079. card->efbie = 0;
  1080. break;
  1081. }
  1082. NS_SKB_CB(sb)->buf_type = BUF_SM;
  1083. skb_queue_tail(&card->sbpool.queue, sb);
  1084. skb_reserve(sb, NS_AAL0_HEADER);
  1085. push_rxbufs(card, sb);
  1086. }
  1087. card->sbfqc = i;
  1088. process_rsq(card);
  1089. }
  1090. /* Large buffer queue empty */
  1091. if (stat_r & NS_STAT_LFBQE)
  1092. {
  1093. int i;
  1094. struct sk_buff *lb;
  1095. writel(NS_STAT_LFBQE, card->membase + STAT);
  1096. printk("nicstar%d: Large free buffer queue empty.\n",
  1097. card->index);
  1098. for (i = 0; i < card->lbnr.min; i++)
  1099. {
  1100. lb = dev_alloc_skb(NS_LGSKBSIZE);
  1101. if (lb == NULL)
  1102. {
  1103. writel(readl(card->membase + CFG) & ~NS_CFG_EFBIE, card->membase + CFG);
  1104. card->efbie = 0;
  1105. break;
  1106. }
  1107. NS_SKB_CB(lb)->buf_type = BUF_LG;
  1108. skb_queue_tail(&card->lbpool.queue, lb);
  1109. skb_reserve(lb, NS_SMBUFSIZE);
  1110. push_rxbufs(card, lb);
  1111. }
  1112. card->lbfqc = i;
  1113. process_rsq(card);
  1114. }
  1115. /* Receive Status Queue is 7/8 full */
  1116. if (stat_r & NS_STAT_RSQAF)
  1117. {
  1118. writel(NS_STAT_RSQAF, card->membase + STAT);
  1119. RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
  1120. process_rsq(card);
  1121. }
  1122. spin_unlock_irqrestore(&card->int_lock, flags);
  1123. PRINTK("nicstar%d: end of interrupt service\n", card->index);
  1124. return IRQ_HANDLED;
  1125. }
  1126. static int ns_open(struct atm_vcc *vcc)
  1127. {
  1128. ns_dev *card;
  1129. vc_map *vc;
  1130. unsigned long tmpl, modl;
  1131. int tcr, tcra; /* target cell rate, and absolute value */
  1132. int n = 0; /* Number of entries in the TST. Initialized to remove
  1133. the compiler warning. */
  1134. u32 u32d[4];
  1135. int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
  1136. warning. How I wish compilers were clever enough to
  1137. tell which variables can truly be used
  1138. uninitialized... */
  1139. int inuse; /* tx or rx vc already in use by another vcc */
  1140. short vpi = vcc->vpi;
  1141. int vci = vcc->vci;
  1142. card = (ns_dev *) vcc->dev->dev_data;
  1143. PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int) vpi, vci);
  1144. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0)
  1145. {
  1146. PRINTK("nicstar%d: unsupported AAL.\n", card->index);
  1147. return -EINVAL;
  1148. }
  1149. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1150. vcc->dev_data = vc;
  1151. inuse = 0;
  1152. if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
  1153. inuse = 1;
  1154. if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
  1155. inuse += 2;
  1156. if (inuse)
  1157. {
  1158. printk("nicstar%d: %s vci already in use.\n", card->index,
  1159. inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
  1160. return -EINVAL;
  1161. }
  1162. set_bit(ATM_VF_ADDR,&vcc->flags);
  1163. /* NOTE: You are not allowed to modify an open connection's QOS. To change
  1164. that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
  1165. needed to do that. */
  1166. if (!test_bit(ATM_VF_PARTIAL,&vcc->flags))
  1167. {
  1168. scq_info *scq;
  1169. set_bit(ATM_VF_PARTIAL,&vcc->flags);
  1170. if (vcc->qos.txtp.traffic_class == ATM_CBR)
  1171. {
  1172. /* Check requested cell rate and availability of SCD */
  1173. if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 &&
  1174. vcc->qos.txtp.min_pcr == 0)
  1175. {
  1176. PRINTK("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
  1177. card->index);
  1178. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1179. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1180. return -EINVAL;
  1181. }
  1182. tcr = atm_pcr_goal(&(vcc->qos.txtp));
  1183. tcra = tcr >= 0 ? tcr : -tcr;
  1184. PRINTK("nicstar%d: target cell rate = %d.\n", card->index,
  1185. vcc->qos.txtp.max_pcr);
  1186. tmpl = (unsigned long)tcra * (unsigned long)NS_TST_NUM_ENTRIES;
  1187. modl = tmpl % card->max_pcr;
  1188. n = (int)(tmpl / card->max_pcr);
  1189. if (tcr > 0)
  1190. {
  1191. if (modl > 0) n++;
  1192. }
  1193. else if (tcr == 0)
  1194. {
  1195. if ((n = (card->tst_free_entries - NS_TST_RESERVED)) <= 0)
  1196. {
  1197. PRINTK("nicstar%d: no CBR bandwidth free.\n", card->index);
  1198. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1199. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1200. return -EINVAL;
  1201. }
  1202. }
  1203. if (n == 0)
  1204. {
  1205. printk("nicstar%d: selected bandwidth < granularity.\n", card->index);
  1206. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1207. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1208. return -EINVAL;
  1209. }
  1210. if (n > (card->tst_free_entries - NS_TST_RESERVED))
  1211. {
  1212. PRINTK("nicstar%d: not enough free CBR bandwidth.\n", card->index);
  1213. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1214. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1215. return -EINVAL;
  1216. }
  1217. else
  1218. card->tst_free_entries -= n;
  1219. XPRINTK("nicstar%d: writing %d tst entries.\n", card->index, n);
  1220. for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++)
  1221. {
  1222. if (card->scd2vc[frscdi] == NULL)
  1223. {
  1224. card->scd2vc[frscdi] = vc;
  1225. break;
  1226. }
  1227. }
  1228. if (frscdi == NS_FRSCD_NUM)
  1229. {
  1230. PRINTK("nicstar%d: no SCD available for CBR channel.\n", card->index);
  1231. card->tst_free_entries += n;
  1232. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1233. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1234. return -EBUSY;
  1235. }
  1236. vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
  1237. scq = get_scq(CBR_SCQSIZE, vc->cbr_scd);
  1238. if (scq == NULL)
  1239. {
  1240. PRINTK("nicstar%d: can't get fixed rate SCQ.\n", card->index);
  1241. card->scd2vc[frscdi] = NULL;
  1242. card->tst_free_entries += n;
  1243. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1244. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1245. return -ENOMEM;
  1246. }
  1247. vc->scq = scq;
  1248. u32d[0] = (u32) virt_to_bus(scq->base);
  1249. u32d[1] = (u32) 0x00000000;
  1250. u32d[2] = (u32) 0xffffffff;
  1251. u32d[3] = (u32) 0x00000000;
  1252. ns_write_sram(card, vc->cbr_scd, u32d, 4);
  1253. fill_tst(card, n, vc);
  1254. }
  1255. else if (vcc->qos.txtp.traffic_class == ATM_UBR)
  1256. {
  1257. vc->cbr_scd = 0x00000000;
  1258. vc->scq = card->scq0;
  1259. }
  1260. if (vcc->qos.txtp.traffic_class != ATM_NONE)
  1261. {
  1262. vc->tx = 1;
  1263. vc->tx_vcc = vcc;
  1264. vc->tbd_count = 0;
  1265. }
  1266. if (vcc->qos.rxtp.traffic_class != ATM_NONE)
  1267. {
  1268. u32 status;
  1269. vc->rx = 1;
  1270. vc->rx_vcc = vcc;
  1271. vc->rx_iov = NULL;
  1272. /* Open the connection in hardware */
  1273. if (vcc->qos.aal == ATM_AAL5)
  1274. status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
  1275. else /* vcc->qos.aal == ATM_AAL0 */
  1276. status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
  1277. #ifdef RCQ_SUPPORT
  1278. status |= NS_RCTE_RAWCELLINTEN;
  1279. #endif /* RCQ_SUPPORT */
  1280. ns_write_sram(card, NS_RCT + (vpi << card->vcibits | vci) *
  1281. NS_RCT_ENTRY_SIZE, &status, 1);
  1282. }
  1283. }
  1284. set_bit(ATM_VF_READY,&vcc->flags);
  1285. return 0;
  1286. }
  1287. static void ns_close(struct atm_vcc *vcc)
  1288. {
  1289. vc_map *vc;
  1290. ns_dev *card;
  1291. u32 data;
  1292. int i;
  1293. vc = vcc->dev_data;
  1294. card = vcc->dev->dev_data;
  1295. PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
  1296. (int) vcc->vpi, vcc->vci);
  1297. clear_bit(ATM_VF_READY,&vcc->flags);
  1298. if (vcc->qos.rxtp.traffic_class != ATM_NONE)
  1299. {
  1300. u32 addr;
  1301. unsigned long flags;
  1302. addr = NS_RCT + (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
  1303. spin_lock_irqsave(&card->res_lock, flags);
  1304. while(CMD_BUSY(card));
  1305. writel(NS_CMD_CLOSE_CONNECTION | addr << 2, card->membase + CMD);
  1306. spin_unlock_irqrestore(&card->res_lock, flags);
  1307. vc->rx = 0;
  1308. if (vc->rx_iov != NULL)
  1309. {
  1310. struct sk_buff *iovb;
  1311. u32 stat;
  1312. stat = readl(card->membase + STAT);
  1313. card->sbfqc = ns_stat_sfbqc_get(stat);
  1314. card->lbfqc = ns_stat_lfbqc_get(stat);
  1315. PRINTK("nicstar%d: closing a VC with pending rx buffers.\n",
  1316. card->index);
  1317. iovb = vc->rx_iov;
  1318. recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data,
  1319. NS_SKB(iovb)->iovcnt);
  1320. NS_SKB(iovb)->iovcnt = 0;
  1321. NS_SKB(iovb)->vcc = NULL;
  1322. spin_lock_irqsave(&card->int_lock, flags);
  1323. recycle_iov_buf(card, iovb);
  1324. spin_unlock_irqrestore(&card->int_lock, flags);
  1325. vc->rx_iov = NULL;
  1326. }
  1327. }
  1328. if (vcc->qos.txtp.traffic_class != ATM_NONE)
  1329. {
  1330. vc->tx = 0;
  1331. }
  1332. if (vcc->qos.txtp.traffic_class == ATM_CBR)
  1333. {
  1334. unsigned long flags;
  1335. ns_scqe *scqep;
  1336. scq_info *scq;
  1337. scq = vc->scq;
  1338. for (;;)
  1339. {
  1340. spin_lock_irqsave(&scq->lock, flags);
  1341. scqep = scq->next;
  1342. if (scqep == scq->base)
  1343. scqep = scq->last;
  1344. else
  1345. scqep--;
  1346. if (scqep == scq->tail)
  1347. {
  1348. spin_unlock_irqrestore(&scq->lock, flags);
  1349. break;
  1350. }
  1351. /* If the last entry is not a TSR, place one in the SCQ in order to
  1352. be able to completely drain it and then close. */
  1353. if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next)
  1354. {
  1355. ns_scqe tsr;
  1356. u32 scdi, scqi;
  1357. u32 data;
  1358. int index;
  1359. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1360. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1361. scqi = scq->next - scq->base;
  1362. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1363. tsr.word_3 = 0x00000000;
  1364. tsr.word_4 = 0x00000000;
  1365. *scq->next = tsr;
  1366. index = (int) scqi;
  1367. scq->skb[index] = NULL;
  1368. if (scq->next == scq->last)
  1369. scq->next = scq->base;
  1370. else
  1371. scq->next++;
  1372. data = (u32) virt_to_bus(scq->next);
  1373. ns_write_sram(card, scq->scd, &data, 1);
  1374. }
  1375. spin_unlock_irqrestore(&scq->lock, flags);
  1376. schedule();
  1377. }
  1378. /* Free all TST entries */
  1379. data = NS_TST_OPCODE_VARIABLE;
  1380. for (i = 0; i < NS_TST_NUM_ENTRIES; i++)
  1381. {
  1382. if (card->tste2vc[i] == vc)
  1383. {
  1384. ns_write_sram(card, card->tst_addr + i, &data, 1);
  1385. card->tste2vc[i] = NULL;
  1386. card->tst_free_entries++;
  1387. }
  1388. }
  1389. card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
  1390. free_scq(vc->scq, vcc);
  1391. }
  1392. /* remove all references to vcc before deleting it */
  1393. if (vcc->qos.txtp.traffic_class != ATM_NONE)
  1394. {
  1395. unsigned long flags;
  1396. scq_info *scq = card->scq0;
  1397. spin_lock_irqsave(&scq->lock, flags);
  1398. for(i = 0; i < scq->num_entries; i++) {
  1399. if(scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
  1400. ATM_SKB(scq->skb[i])->vcc = NULL;
  1401. atm_return(vcc, scq->skb[i]->truesize);
  1402. PRINTK("nicstar: deleted pending vcc mapping\n");
  1403. }
  1404. }
  1405. spin_unlock_irqrestore(&scq->lock, flags);
  1406. }
  1407. vcc->dev_data = NULL;
  1408. clear_bit(ATM_VF_PARTIAL,&vcc->flags);
  1409. clear_bit(ATM_VF_ADDR,&vcc->flags);
  1410. #ifdef RX_DEBUG
  1411. {
  1412. u32 stat, cfg;
  1413. stat = readl(card->membase + STAT);
  1414. cfg = readl(card->membase + CFG);
  1415. printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
  1416. printk("TSQ: base = 0x%08X next = 0x%08X last = 0x%08X TSQT = 0x%08X \n",
  1417. (u32) card->tsq.base, (u32) card->tsq.next,(u32) card->tsq.last,
  1418. readl(card->membase + TSQT));
  1419. printk("RSQ: base = 0x%08X next = 0x%08X last = 0x%08X RSQT = 0x%08X \n",
  1420. (u32) card->rsq.base, (u32) card->rsq.next,(u32) card->rsq.last,
  1421. readl(card->membase + RSQT));
  1422. printk("Empty free buffer queue interrupt %s \n",
  1423. card->efbie ? "enabled" : "disabled");
  1424. printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
  1425. ns_stat_sfbqc_get(stat), card->sbpool.count,
  1426. ns_stat_lfbqc_get(stat), card->lbpool.count);
  1427. printk("hbpool.count = %d iovpool.count = %d \n",
  1428. card->hbpool.count, card->iovpool.count);
  1429. }
  1430. #endif /* RX_DEBUG */
  1431. }
  1432. static void fill_tst(ns_dev *card, int n, vc_map *vc)
  1433. {
  1434. u32 new_tst;
  1435. unsigned long cl;
  1436. int e, r;
  1437. u32 data;
  1438. /* It would be very complicated to keep the two TSTs synchronized while
  1439. assuring that writes are only made to the inactive TST. So, for now I
  1440. will use only one TST. If problems occur, I will change this again */
  1441. new_tst = card->tst_addr;
  1442. /* Fill procedure */
  1443. for (e = 0; e < NS_TST_NUM_ENTRIES; e++)
  1444. {
  1445. if (card->tste2vc[e] == NULL)
  1446. break;
  1447. }
  1448. if (e == NS_TST_NUM_ENTRIES) {
  1449. printk("nicstar%d: No free TST entries found. \n", card->index);
  1450. return;
  1451. }
  1452. r = n;
  1453. cl = NS_TST_NUM_ENTRIES;
  1454. data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
  1455. while (r > 0)
  1456. {
  1457. if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL)
  1458. {
  1459. card->tste2vc[e] = vc;
  1460. ns_write_sram(card, new_tst + e, &data, 1);
  1461. cl -= NS_TST_NUM_ENTRIES;
  1462. r--;
  1463. }
  1464. if (++e == NS_TST_NUM_ENTRIES) {
  1465. e = 0;
  1466. }
  1467. cl += n;
  1468. }
  1469. /* End of fill procedure */
  1470. data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
  1471. ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
  1472. ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
  1473. card->tst_addr = new_tst;
  1474. }
  1475. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
  1476. {
  1477. ns_dev *card;
  1478. vc_map *vc;
  1479. scq_info *scq;
  1480. unsigned long buflen;
  1481. ns_scqe scqe;
  1482. u32 flags; /* TBD flags, not CPU flags */
  1483. card = vcc->dev->dev_data;
  1484. TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
  1485. if ((vc = (vc_map *) vcc->dev_data) == NULL)
  1486. {
  1487. printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", card->index);
  1488. atomic_inc(&vcc->stats->tx_err);
  1489. dev_kfree_skb_any(skb);
  1490. return -EINVAL;
  1491. }
  1492. if (!vc->tx)
  1493. {
  1494. printk("nicstar%d: Trying to transmit on a non-tx VC.\n", card->index);
  1495. atomic_inc(&vcc->stats->tx_err);
  1496. dev_kfree_skb_any(skb);
  1497. return -EINVAL;
  1498. }
  1499. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0)
  1500. {
  1501. printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", card->index);
  1502. atomic_inc(&vcc->stats->tx_err);
  1503. dev_kfree_skb_any(skb);
  1504. return -EINVAL;
  1505. }
  1506. if (skb_shinfo(skb)->nr_frags != 0)
  1507. {
  1508. printk("nicstar%d: No scatter-gather yet.\n", card->index);
  1509. atomic_inc(&vcc->stats->tx_err);
  1510. dev_kfree_skb_any(skb);
  1511. return -EINVAL;
  1512. }
  1513. ATM_SKB(skb)->vcc = vcc;
  1514. if (vcc->qos.aal == ATM_AAL5)
  1515. {
  1516. buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
  1517. flags = NS_TBD_AAL5;
  1518. scqe.word_2 = cpu_to_le32((u32) virt_to_bus(skb->data));
  1519. scqe.word_3 = cpu_to_le32((u32) skb->len);
  1520. scqe.word_4 = ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
  1521. ATM_SKB(skb)->atm_options & ATM_ATMOPT_CLP ? 1 : 0);
  1522. flags |= NS_TBD_EOPDU;
  1523. }
  1524. else /* (vcc->qos.aal == ATM_AAL0) */
  1525. {
  1526. buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
  1527. flags = NS_TBD_AAL0;
  1528. scqe.word_2 = cpu_to_le32((u32) virt_to_bus(skb->data) + NS_AAL0_HEADER);
  1529. scqe.word_3 = cpu_to_le32(0x00000000);
  1530. if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
  1531. flags |= NS_TBD_EOPDU;
  1532. scqe.word_4 = cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
  1533. /* Force the VPI/VCI to be the same as in VCC struct */
  1534. scqe.word_4 |= cpu_to_le32((((u32) vcc->vpi) << NS_TBD_VPI_SHIFT |
  1535. ((u32) vcc->vci) << NS_TBD_VCI_SHIFT) &
  1536. NS_TBD_VC_MASK);
  1537. }
  1538. if (vcc->qos.txtp.traffic_class == ATM_CBR)
  1539. {
  1540. scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
  1541. scq = ((vc_map *) vcc->dev_data)->scq;
  1542. }
  1543. else
  1544. {
  1545. scqe.word_1 = ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
  1546. scq = card->scq0;
  1547. }
  1548. if (push_scqe(card, vc, scq, &scqe, skb) != 0)
  1549. {
  1550. atomic_inc(&vcc->stats->tx_err);
  1551. dev_kfree_skb_any(skb);
  1552. return -EIO;
  1553. }
  1554. atomic_inc(&vcc->stats->tx);
  1555. return 0;
  1556. }
  1557. static int push_scqe(ns_dev *card, vc_map *vc, scq_info *scq, ns_scqe *tbd,
  1558. struct sk_buff *skb)
  1559. {
  1560. unsigned long flags;
  1561. ns_scqe tsr;
  1562. u32 scdi, scqi;
  1563. int scq_is_vbr;
  1564. u32 data;
  1565. int index;
  1566. spin_lock_irqsave(&scq->lock, flags);
  1567. while (scq->tail == scq->next)
  1568. {
  1569. if (in_interrupt()) {
  1570. spin_unlock_irqrestore(&scq->lock, flags);
  1571. printk("nicstar%d: Error pushing TBD.\n", card->index);
  1572. return 1;
  1573. }
  1574. scq->full = 1;
  1575. spin_unlock_irqrestore(&scq->lock, flags);
  1576. interruptible_sleep_on_timeout(&scq->scqfull_waitq, SCQFULL_TIMEOUT);
  1577. spin_lock_irqsave(&scq->lock, flags);
  1578. if (scq->full) {
  1579. spin_unlock_irqrestore(&scq->lock, flags);
  1580. printk("nicstar%d: Timeout pushing TBD.\n", card->index);
  1581. return 1;
  1582. }
  1583. }
  1584. *scq->next = *tbd;
  1585. index = (int) (scq->next - scq->base);
  1586. scq->skb[index] = skb;
  1587. XPRINTK("nicstar%d: sending skb at 0x%x (pos %d).\n",
  1588. card->index, (u32) skb, index);
  1589. XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%x.\n",
  1590. card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
  1591. le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
  1592. (u32) scq->next);
  1593. if (scq->next == scq->last)
  1594. scq->next = scq->base;
  1595. else
  1596. scq->next++;
  1597. vc->tbd_count++;
  1598. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  1599. {
  1600. scq->tbd_count++;
  1601. scq_is_vbr = 1;
  1602. }
  1603. else
  1604. scq_is_vbr = 0;
  1605. if (vc->tbd_count >= MAX_TBD_PER_VC || scq->tbd_count >= MAX_TBD_PER_SCQ)
  1606. {
  1607. int has_run = 0;
  1608. while (scq->tail == scq->next)
  1609. {
  1610. if (in_interrupt()) {
  1611. data = (u32) virt_to_bus(scq->next);
  1612. ns_write_sram(card, scq->scd, &data, 1);
  1613. spin_unlock_irqrestore(&scq->lock, flags);
  1614. printk("nicstar%d: Error pushing TSR.\n", card->index);
  1615. return 0;
  1616. }
  1617. scq->full = 1;
  1618. if (has_run++) break;
  1619. spin_unlock_irqrestore(&scq->lock, flags);
  1620. interruptible_sleep_on_timeout(&scq->scqfull_waitq, SCQFULL_TIMEOUT);
  1621. spin_lock_irqsave(&scq->lock, flags);
  1622. }
  1623. if (!scq->full)
  1624. {
  1625. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1626. if (scq_is_vbr)
  1627. scdi = NS_TSR_SCDISVBR;
  1628. else
  1629. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1630. scqi = scq->next - scq->base;
  1631. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1632. tsr.word_3 = 0x00000000;
  1633. tsr.word_4 = 0x00000000;
  1634. *scq->next = tsr;
  1635. index = (int) scqi;
  1636. scq->skb[index] = NULL;
  1637. XPRINTK("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%x.\n",
  1638. card->index, le32_to_cpu(tsr.word_1), le32_to_cpu(tsr.word_2),
  1639. le32_to_cpu(tsr.word_3), le32_to_cpu(tsr.word_4),
  1640. (u32) scq->next);
  1641. if (scq->next == scq->last)
  1642. scq->next = scq->base;
  1643. else
  1644. scq->next++;
  1645. vc->tbd_count = 0;
  1646. scq->tbd_count = 0;
  1647. }
  1648. else
  1649. PRINTK("nicstar%d: Timeout pushing TSR.\n", card->index);
  1650. }
  1651. data = (u32) virt_to_bus(scq->next);
  1652. ns_write_sram(card, scq->scd, &data, 1);
  1653. spin_unlock_irqrestore(&scq->lock, flags);
  1654. return 0;
  1655. }
  1656. static void process_tsq(ns_dev *card)
  1657. {
  1658. u32 scdi;
  1659. scq_info *scq;
  1660. ns_tsi *previous = NULL, *one_ahead, *two_ahead;
  1661. int serviced_entries; /* flag indicating at least on entry was serviced */
  1662. serviced_entries = 0;
  1663. if (card->tsq.next == card->tsq.last)
  1664. one_ahead = card->tsq.base;
  1665. else
  1666. one_ahead = card->tsq.next + 1;
  1667. if (one_ahead == card->tsq.last)
  1668. two_ahead = card->tsq.base;
  1669. else
  1670. two_ahead = one_ahead + 1;
  1671. while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
  1672. !ns_tsi_isempty(two_ahead))
  1673. /* At most two empty, as stated in the 77201 errata */
  1674. {
  1675. serviced_entries = 1;
  1676. /* Skip the one or two possible empty entries */
  1677. while (ns_tsi_isempty(card->tsq.next)) {
  1678. if (card->tsq.next == card->tsq.last)
  1679. card->tsq.next = card->tsq.base;
  1680. else
  1681. card->tsq.next++;
  1682. }
  1683. if (!ns_tsi_tmrof(card->tsq.next))
  1684. {
  1685. scdi = ns_tsi_getscdindex(card->tsq.next);
  1686. if (scdi == NS_TSI_SCDISVBR)
  1687. scq = card->scq0;
  1688. else
  1689. {
  1690. if (card->scd2vc[scdi] == NULL)
  1691. {
  1692. printk("nicstar%d: could not find VC from SCD index.\n",
  1693. card->index);
  1694. ns_tsi_init(card->tsq.next);
  1695. return;
  1696. }
  1697. scq = card->scd2vc[scdi]->scq;
  1698. }
  1699. drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
  1700. scq->full = 0;
  1701. wake_up_interruptible(&(scq->scqfull_waitq));
  1702. }
  1703. ns_tsi_init(card->tsq.next);
  1704. previous = card->tsq.next;
  1705. if (card->tsq.next == card->tsq.last)
  1706. card->tsq.next = card->tsq.base;
  1707. else
  1708. card->tsq.next++;
  1709. if (card->tsq.next == card->tsq.last)
  1710. one_ahead = card->tsq.base;
  1711. else
  1712. one_ahead = card->tsq.next + 1;
  1713. if (one_ahead == card->tsq.last)
  1714. two_ahead = card->tsq.base;
  1715. else
  1716. two_ahead = one_ahead + 1;
  1717. }
  1718. if (serviced_entries) {
  1719. writel((((u32) previous) - ((u32) card->tsq.base)),
  1720. card->membase + TSQH);
  1721. }
  1722. }
  1723. static void drain_scq(ns_dev *card, scq_info *scq, int pos)
  1724. {
  1725. struct atm_vcc *vcc;
  1726. struct sk_buff *skb;
  1727. int i;
  1728. unsigned long flags;
  1729. XPRINTK("nicstar%d: drain_scq() called, scq at 0x%x, pos %d.\n",
  1730. card->index, (u32) scq, pos);
  1731. if (pos >= scq->num_entries)
  1732. {
  1733. printk("nicstar%d: Bad index on drain_scq().\n", card->index);
  1734. return;
  1735. }
  1736. spin_lock_irqsave(&scq->lock, flags);
  1737. i = (int) (scq->tail - scq->base);
  1738. if (++i == scq->num_entries)
  1739. i = 0;
  1740. while (i != pos)
  1741. {
  1742. skb = scq->skb[i];
  1743. XPRINTK("nicstar%d: freeing skb at 0x%x (index %d).\n",
  1744. card->index, (u32) skb, i);
  1745. if (skb != NULL)
  1746. {
  1747. vcc = ATM_SKB(skb)->vcc;
  1748. if (vcc && vcc->pop != NULL) {
  1749. vcc->pop(vcc, skb);
  1750. } else {
  1751. dev_kfree_skb_irq(skb);
  1752. }
  1753. scq->skb[i] = NULL;
  1754. }
  1755. if (++i == scq->num_entries)
  1756. i = 0;
  1757. }
  1758. scq->tail = scq->base + pos;
  1759. spin_unlock_irqrestore(&scq->lock, flags);
  1760. }
  1761. static void process_rsq(ns_dev *card)
  1762. {
  1763. ns_rsqe *previous;
  1764. if (!ns_rsqe_valid(card->rsq.next))
  1765. return;
  1766. do {
  1767. dequeue_rx(card, card->rsq.next);
  1768. ns_rsqe_init(card->rsq.next);
  1769. previous = card->rsq.next;
  1770. if (card->rsq.next == card->rsq.last)
  1771. card->rsq.next = card->rsq.base;
  1772. else
  1773. card->rsq.next++;
  1774. } while (ns_rsqe_valid(card->rsq.next));
  1775. writel((((u32) previous) - ((u32) card->rsq.base)),
  1776. card->membase + RSQH);
  1777. }
  1778. static void dequeue_rx(ns_dev *card, ns_rsqe *rsqe)
  1779. {
  1780. u32 vpi, vci;
  1781. vc_map *vc;
  1782. struct sk_buff *iovb;
  1783. struct iovec *iov;
  1784. struct atm_vcc *vcc;
  1785. struct sk_buff *skb;
  1786. unsigned short aal5_len;
  1787. int len;
  1788. u32 stat;
  1789. stat = readl(card->membase + STAT);
  1790. card->sbfqc = ns_stat_sfbqc_get(stat);
  1791. card->lbfqc = ns_stat_lfbqc_get(stat);
  1792. skb = (struct sk_buff *) le32_to_cpu(rsqe->buffer_handle);
  1793. vpi = ns_rsqe_vpi(rsqe);
  1794. vci = ns_rsqe_vci(rsqe);
  1795. if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits)
  1796. {
  1797. printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
  1798. card->index, vpi, vci);
  1799. recycle_rx_buf(card, skb);
  1800. return;
  1801. }
  1802. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1803. if (!vc->rx)
  1804. {
  1805. RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
  1806. card->index, vpi, vci);
  1807. recycle_rx_buf(card, skb);
  1808. return;
  1809. }
  1810. vcc = vc->rx_vcc;
  1811. if (vcc->qos.aal == ATM_AAL0)
  1812. {
  1813. struct sk_buff *sb;
  1814. unsigned char *cell;
  1815. int i;
  1816. cell = skb->data;
  1817. for (i = ns_rsqe_cellcount(rsqe); i; i--)
  1818. {
  1819. if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL)
  1820. {
  1821. printk("nicstar%d: Can't allocate buffers for aal0.\n",
  1822. card->index);
  1823. atomic_add(i,&vcc->stats->rx_drop);
  1824. break;
  1825. }
  1826. if (!atm_charge(vcc, sb->truesize))
  1827. {
  1828. RXPRINTK("nicstar%d: atm_charge() dropped aal0 packets.\n",
  1829. card->index);
  1830. atomic_add(i-1,&vcc->stats->rx_drop); /* already increased by 1 */
  1831. dev_kfree_skb_any(sb);
  1832. break;
  1833. }
  1834. /* Rebuild the header */
  1835. *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
  1836. (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
  1837. if (i == 1 && ns_rsqe_eopdu(rsqe))
  1838. *((u32 *) sb->data) |= 0x00000002;
  1839. skb_put(sb, NS_AAL0_HEADER);
  1840. memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
  1841. skb_put(sb, ATM_CELL_PAYLOAD);
  1842. ATM_SKB(sb)->vcc = vcc;
  1843. __net_timestamp(sb);
  1844. vcc->push(vcc, sb);
  1845. atomic_inc(&vcc->stats->rx);
  1846. cell += ATM_CELL_PAYLOAD;
  1847. }
  1848. recycle_rx_buf(card, skb);
  1849. return;
  1850. }
  1851. /* To reach this point, the AAL layer can only be AAL5 */
  1852. if ((iovb = vc->rx_iov) == NULL)
  1853. {
  1854. iovb = skb_dequeue(&(card->iovpool.queue));
  1855. if (iovb == NULL) /* No buffers in the queue */
  1856. {
  1857. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
  1858. if (iovb == NULL)
  1859. {
  1860. printk("nicstar%d: Out of iovec buffers.\n", card->index);
  1861. atomic_inc(&vcc->stats->rx_drop);
  1862. recycle_rx_buf(card, skb);
  1863. return;
  1864. }
  1865. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  1866. }
  1867. else
  1868. if (--card->iovpool.count < card->iovnr.min)
  1869. {
  1870. struct sk_buff *new_iovb;
  1871. if ((new_iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL)
  1872. {
  1873. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  1874. skb_queue_tail(&card->iovpool.queue, new_iovb);
  1875. card->iovpool.count++;
  1876. }
  1877. }
  1878. vc->rx_iov = iovb;
  1879. NS_SKB(iovb)->iovcnt = 0;
  1880. iovb->len = 0;
  1881. iovb->data = iovb->head;
  1882. skb_reset_tail_pointer(iovb);
  1883. NS_SKB(iovb)->vcc = vcc;
  1884. /* IMPORTANT: a pointer to the sk_buff containing the small or large
  1885. buffer is stored as iovec base, NOT a pointer to the
  1886. small or large buffer itself. */
  1887. }
  1888. else if (NS_SKB(iovb)->iovcnt >= NS_MAX_IOVECS)
  1889. {
  1890. printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
  1891. atomic_inc(&vcc->stats->rx_err);
  1892. recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data, NS_MAX_IOVECS);
  1893. NS_SKB(iovb)->iovcnt = 0;
  1894. iovb->len = 0;
  1895. iovb->data = iovb->head;
  1896. skb_reset_tail_pointer(iovb);
  1897. NS_SKB(iovb)->vcc = vcc;
  1898. }
  1899. iov = &((struct iovec *) iovb->data)[NS_SKB(iovb)->iovcnt++];
  1900. iov->iov_base = (void *) skb;
  1901. iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
  1902. iovb->len += iov->iov_len;
  1903. if (NS_SKB(iovb)->iovcnt == 1)
  1904. {
  1905. if (NS_SKB_CB(skb)->buf_type != BUF_SM)
  1906. {
  1907. printk("nicstar%d: Expected a small buffer, and this is not one.\n",
  1908. card->index);
  1909. which_list(card, skb);
  1910. atomic_inc(&vcc->stats->rx_err);
  1911. recycle_rx_buf(card, skb);
  1912. vc->rx_iov = NULL;
  1913. recycle_iov_buf(card, iovb);
  1914. return;
  1915. }
  1916. }
  1917. else /* NS_SKB(iovb)->iovcnt >= 2 */
  1918. {
  1919. if (NS_SKB_CB(skb)->buf_type != BUF_LG)
  1920. {
  1921. printk("nicstar%d: Expected a large buffer, and this is not one.\n",
  1922. card->index);
  1923. which_list(card, skb);
  1924. atomic_inc(&vcc->stats->rx_err);
  1925. recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data,
  1926. NS_SKB(iovb)->iovcnt);
  1927. vc->rx_iov = NULL;
  1928. recycle_iov_buf(card, iovb);
  1929. return;
  1930. }
  1931. }
  1932. if (ns_rsqe_eopdu(rsqe))
  1933. {
  1934. /* This works correctly regardless of the endianness of the host */
  1935. unsigned char *L1L2 = (unsigned char *)((u32)skb->data +
  1936. iov->iov_len - 6);
  1937. aal5_len = L1L2[0] << 8 | L1L2[1];
  1938. len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
  1939. if (ns_rsqe_crcerr(rsqe) ||
  1940. len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1941. {
  1942. printk("nicstar%d: AAL5 CRC error", card->index);
  1943. if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1944. printk(" - PDU size mismatch.\n");
  1945. else
  1946. printk(".\n");
  1947. atomic_inc(&vcc->stats->rx_err);
  1948. recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data,
  1949. NS_SKB(iovb)->iovcnt);
  1950. vc->rx_iov = NULL;
  1951. recycle_iov_buf(card, iovb);
  1952. return;
  1953. }
  1954. /* By this point we (hopefully) have a complete SDU without errors. */
  1955. if (NS_SKB(iovb)->iovcnt == 1) /* Just a small buffer */
  1956. {
  1957. /* skb points to a small buffer */
  1958. if (!atm_charge(vcc, skb->truesize))
  1959. {
  1960. push_rxbufs(card, skb);
  1961. atomic_inc(&vcc->stats->rx_drop);
  1962. }
  1963. else
  1964. {
  1965. skb_put(skb, len);
  1966. dequeue_sm_buf(card, skb);
  1967. #ifdef NS_USE_DESTRUCTORS
  1968. skb->destructor = ns_sb_destructor;
  1969. #endif /* NS_USE_DESTRUCTORS */
  1970. ATM_SKB(skb)->vcc = vcc;
  1971. __net_timestamp(skb);
  1972. vcc->push(vcc, skb);
  1973. atomic_inc(&vcc->stats->rx);
  1974. }
  1975. }
  1976. else if (NS_SKB(iovb)->iovcnt == 2) /* One small plus one large buffer */
  1977. {
  1978. struct sk_buff *sb;
  1979. sb = (struct sk_buff *) (iov - 1)->iov_base;
  1980. /* skb points to a large buffer */
  1981. if (len <= NS_SMBUFSIZE)
  1982. {
  1983. if (!atm_charge(vcc, sb->truesize))
  1984. {
  1985. push_rxbufs(card, sb);
  1986. atomic_inc(&vcc->stats->rx_drop);
  1987. }
  1988. else
  1989. {
  1990. skb_put(sb, len);
  1991. dequeue_sm_buf(card, sb);
  1992. #ifdef NS_USE_DESTRUCTORS
  1993. sb->destructor = ns_sb_destructor;
  1994. #endif /* NS_USE_DESTRUCTORS */
  1995. ATM_SKB(sb)->vcc = vcc;
  1996. __net_timestamp(sb);
  1997. vcc->push(vcc, sb);
  1998. atomic_inc(&vcc->stats->rx);
  1999. }
  2000. push_rxbufs(card, skb);
  2001. }
  2002. else /* len > NS_SMBUFSIZE, the usual case */
  2003. {
  2004. if (!atm_charge(vcc, skb->truesize))
  2005. {
  2006. push_rxbufs(card, skb);
  2007. atomic_inc(&vcc->stats->rx_drop);
  2008. }
  2009. else
  2010. {
  2011. dequeue_lg_buf(card, skb);
  2012. #ifdef NS_USE_DESTRUCTORS
  2013. skb->destructor = ns_lb_destructor;
  2014. #endif /* NS_USE_DESTRUCTORS */
  2015. skb_push(skb, NS_SMBUFSIZE);
  2016. skb_copy_from_linear_data(sb, skb->data, NS_SMBUFSIZE);
  2017. skb_put(skb, len - NS_SMBUFSIZE);
  2018. ATM_SKB(skb)->vcc = vcc;
  2019. __net_timestamp(skb);
  2020. vcc->push(vcc, skb);
  2021. atomic_inc(&vcc->stats->rx);
  2022. }
  2023. push_rxbufs(card, sb);
  2024. }
  2025. }
  2026. else /* Must push a huge buffer */
  2027. {
  2028. struct sk_buff *hb, *sb, *lb;
  2029. int remaining, tocopy;
  2030. int j;
  2031. hb = skb_dequeue(&(card->hbpool.queue));
  2032. if (hb == NULL) /* No buffers in the queue */
  2033. {
  2034. hb = dev_alloc_skb(NS_HBUFSIZE);
  2035. if (hb == NULL)
  2036. {
  2037. printk("nicstar%d: Out of huge buffers.\n", card->index);
  2038. atomic_inc(&vcc->stats->rx_drop);
  2039. recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data,
  2040. NS_SKB(iovb)->iovcnt);
  2041. vc->rx_iov = NULL;
  2042. recycle_iov_buf(card, iovb);
  2043. return;
  2044. }
  2045. else if (card->hbpool.count < card->hbnr.min)
  2046. {
  2047. struct sk_buff *new_hb;
  2048. if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL)
  2049. {
  2050. skb_queue_tail(&card->hbpool.queue, new_hb);
  2051. card->hbpool.count++;
  2052. }
  2053. }
  2054. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  2055. }
  2056. else
  2057. if (--card->hbpool.count < card->hbnr.min)
  2058. {
  2059. struct sk_buff *new_hb;
  2060. if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL)
  2061. {
  2062. NS_SKB_CB(new_hb)->buf_type = BUF_NONE;
  2063. skb_queue_tail(&card->hbpool.queue, new_hb);
  2064. card->hbpool.count++;
  2065. }
  2066. if (card->hbpool.count < card->hbnr.min)
  2067. {
  2068. if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL)
  2069. {
  2070. NS_SKB_CB(new_hb)->buf_type = BUF_NONE;
  2071. skb_queue_tail(&card->hbpool.queue, new_hb);
  2072. card->hbpool.count++;
  2073. }
  2074. }
  2075. }
  2076. iov = (struct iovec *) iovb->data;
  2077. if (!atm_charge(vcc, hb->truesize))
  2078. {
  2079. recycle_iovec_rx_bufs(card, iov, NS_SKB(iovb)->iovcnt);
  2080. if (card->hbpool.count < card->hbnr.max)
  2081. {
  2082. skb_queue_tail(&card->hbpool.queue, hb);
  2083. card->hbpool.count++;
  2084. }
  2085. else
  2086. dev_kfree_skb_any(hb);
  2087. atomic_inc(&vcc->stats->rx_drop);
  2088. }
  2089. else
  2090. {
  2091. /* Copy the small buffer to the huge buffer */
  2092. sb = (struct sk_buff *) iov->iov_base;
  2093. skb_copy_from_linear_data(sb, hb->data, iov->iov_len);
  2094. skb_put(hb, iov->iov_len);
  2095. remaining = len - iov->iov_len;
  2096. iov++;
  2097. /* Free the small buffer */
  2098. push_rxbufs(card, sb);
  2099. /* Copy all large buffers to the huge buffer and free them */
  2100. for (j = 1; j < NS_SKB(iovb)->iovcnt; j++)
  2101. {
  2102. lb = (struct sk_buff *) iov->iov_base;
  2103. tocopy = min_t(int, remaining, iov->iov_len);
  2104. skb_copy_from_linear_data(lb, skb_tail_pointer(hb), tocopy);
  2105. skb_put(hb, tocopy);
  2106. iov++;
  2107. remaining -= tocopy;
  2108. push_rxbufs(card, lb);
  2109. }
  2110. #ifdef EXTRA_DEBUG
  2111. if (remaining != 0 || hb->len != len)
  2112. printk("nicstar%d: Huge buffer len mismatch.\n", card->index);
  2113. #endif /* EXTRA_DEBUG */
  2114. ATM_SKB(hb)->vcc = vcc;
  2115. #ifdef NS_USE_DESTRUCTORS
  2116. hb->destructor = ns_hb_destructor;
  2117. #endif /* NS_USE_DESTRUCTORS */
  2118. __net_timestamp(hb);
  2119. vcc->push(vcc, hb);
  2120. atomic_inc(&vcc->stats->rx);
  2121. }
  2122. }
  2123. vc->rx_iov = NULL;
  2124. recycle_iov_buf(card, iovb);
  2125. }
  2126. }
  2127. #ifdef NS_USE_DESTRUCTORS
  2128. static void ns_sb_destructor(struct sk_buff *sb)
  2129. {
  2130. ns_dev *card;
  2131. u32 stat;
  2132. card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data;
  2133. stat = readl(card->membase + STAT);
  2134. card->sbfqc = ns_stat_sfbqc_get(stat);
  2135. card->lbfqc = ns_stat_lfbqc_get(stat);
  2136. do
  2137. {
  2138. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2139. if (sb == NULL)
  2140. break;
  2141. NS_SKB_CB(sb)->buf_type = BUF_SM;
  2142. skb_queue_tail(&card->sbpool.queue, sb);
  2143. skb_reserve(sb, NS_AAL0_HEADER);
  2144. push_rxbufs(card, sb);
  2145. } while (card->sbfqc < card->sbnr.min);
  2146. }
  2147. static void ns_lb_destructor(struct sk_buff *lb)
  2148. {
  2149. ns_dev *card;
  2150. u32 stat;
  2151. card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data;
  2152. stat = readl(card->membase + STAT);
  2153. card->sbfqc = ns_stat_sfbqc_get(stat);
  2154. card->lbfqc = ns_stat_lfbqc_get(stat);
  2155. do
  2156. {
  2157. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2158. if (lb == NULL)
  2159. break;
  2160. NS_SKB_CB(lb)->buf_type = BUF_LG;
  2161. skb_queue_tail(&card->lbpool.queue, lb);
  2162. skb_reserve(lb, NS_SMBUFSIZE);
  2163. push_rxbufs(card, lb);
  2164. } while (card->lbfqc < card->lbnr.min);
  2165. }
  2166. static void ns_hb_destructor(struct sk_buff *hb)
  2167. {
  2168. ns_dev *card;
  2169. card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data;
  2170. while (card->hbpool.count < card->hbnr.init)
  2171. {
  2172. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2173. if (hb == NULL)
  2174. break;
  2175. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  2176. skb_queue_tail(&card->hbpool.queue, hb);
  2177. card->hbpool.count++;
  2178. }
  2179. }
  2180. #endif /* NS_USE_DESTRUCTORS */
  2181. static void recycle_rx_buf(ns_dev *card, struct sk_buff *skb)
  2182. {
  2183. struct ns_skb_cb *cb = NS_SKB_CB(skb);
  2184. if (unlikely(cb->buf_type == BUF_NONE)) {
  2185. printk("nicstar%d: What kind of rx buffer is this?\n", card->index);
  2186. dev_kfree_skb_any(skb);
  2187. } else
  2188. push_rxbufs(card, skb);
  2189. }
  2190. static void recycle_iovec_rx_bufs(ns_dev *card, struct iovec *iov, int count)
  2191. {
  2192. while (count-- > 0)
  2193. recycle_rx_buf(card, (struct sk_buff *) (iov++)->iov_base);
  2194. }
  2195. static void recycle_iov_buf(ns_dev *card, struct sk_buff *iovb)
  2196. {
  2197. if (card->iovpool.count < card->iovnr.max)
  2198. {
  2199. skb_queue_tail(&card->iovpool.queue, iovb);
  2200. card->iovpool.count++;
  2201. }
  2202. else
  2203. dev_kfree_skb_any(iovb);
  2204. }
  2205. static void dequeue_sm_buf(ns_dev *card, struct sk_buff *sb)
  2206. {
  2207. skb_unlink(sb, &card->sbpool.queue);
  2208. #ifdef NS_USE_DESTRUCTORS
  2209. if (card->sbfqc < card->sbnr.min)
  2210. #else
  2211. if (card->sbfqc < card->sbnr.init)
  2212. {
  2213. struct sk_buff *new_sb;
  2214. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL)
  2215. {
  2216. NS_SKB_CB(new_sb)->buf_type = BUF_SM;
  2217. skb_queue_tail(&card->sbpool.queue, new_sb);
  2218. skb_reserve(new_sb, NS_AAL0_HEADER);
  2219. push_rxbufs(card, new_sb);
  2220. }
  2221. }
  2222. if (card->sbfqc < card->sbnr.init)
  2223. #endif /* NS_USE_DESTRUCTORS */
  2224. {
  2225. struct sk_buff *new_sb;
  2226. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL)
  2227. {
  2228. NS_SKB_CB(new_sb)->buf_type = BUF_SM;
  2229. skb_queue_tail(&card->sbpool.queue, new_sb);
  2230. skb_reserve(new_sb, NS_AAL0_HEADER);
  2231. push_rxbufs(card, new_sb);
  2232. }
  2233. }
  2234. }
  2235. static void dequeue_lg_buf(ns_dev *card, struct sk_buff *lb)
  2236. {
  2237. skb_unlink(lb, &card->lbpool.queue);
  2238. #ifdef NS_USE_DESTRUCTORS
  2239. if (card->lbfqc < card->lbnr.min)
  2240. #else
  2241. if (card->lbfqc < card->lbnr.init)
  2242. {
  2243. struct sk_buff *new_lb;
  2244. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL)
  2245. {
  2246. NS_SKB_CB(new_lb)->buf_type = BUF_LG;
  2247. skb_queue_tail(&card->lbpool.queue, new_lb);
  2248. skb_reserve(new_lb, NS_SMBUFSIZE);
  2249. push_rxbufs(card, new_lb);
  2250. }
  2251. }
  2252. if (card->lbfqc < card->lbnr.init)
  2253. #endif /* NS_USE_DESTRUCTORS */
  2254. {
  2255. struct sk_buff *new_lb;
  2256. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL)
  2257. {
  2258. NS_SKB_CB(new_lb)->buf_type = BUF_LG;
  2259. skb_queue_tail(&card->lbpool.queue, new_lb);
  2260. skb_reserve(new_lb, NS_SMBUFSIZE);
  2261. push_rxbufs(card, new_lb);
  2262. }
  2263. }
  2264. }
  2265. static int ns_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
  2266. {
  2267. u32 stat;
  2268. ns_dev *card;
  2269. int left;
  2270. left = (int) *pos;
  2271. card = (ns_dev *) dev->dev_data;
  2272. stat = readl(card->membase + STAT);
  2273. if (!left--)
  2274. return sprintf(page, "Pool count min init max \n");
  2275. if (!left--)
  2276. return sprintf(page, "Small %5d %5d %5d %5d \n",
  2277. ns_stat_sfbqc_get(stat), card->sbnr.min, card->sbnr.init,
  2278. card->sbnr.max);
  2279. if (!left--)
  2280. return sprintf(page, "Large %5d %5d %5d %5d \n",
  2281. ns_stat_lfbqc_get(stat), card->lbnr.min, card->lbnr.init,
  2282. card->lbnr.max);
  2283. if (!left--)
  2284. return sprintf(page, "Huge %5d %5d %5d %5d \n", card->hbpool.count,
  2285. card->hbnr.min, card->hbnr.init, card->hbnr.max);
  2286. if (!left--)
  2287. return sprintf(page, "Iovec %5d %5d %5d %5d \n", card->iovpool.count,
  2288. card->iovnr.min, card->iovnr.init, card->iovnr.max);
  2289. if (!left--)
  2290. {
  2291. int retval;
  2292. retval = sprintf(page, "Interrupt counter: %u \n", card->intcnt);
  2293. card->intcnt = 0;
  2294. return retval;
  2295. }
  2296. #if 0
  2297. /* Dump 25.6 Mbps PHY registers */
  2298. /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
  2299. here just in case it's needed for debugging. */
  2300. if (card->max_pcr == ATM_25_PCR && !left--)
  2301. {
  2302. u32 phy_regs[4];
  2303. u32 i;
  2304. for (i = 0; i < 4; i++)
  2305. {
  2306. while (CMD_BUSY(card));
  2307. writel(NS_CMD_READ_UTILITY | 0x00000200 | i, card->membase + CMD);
  2308. while (CMD_BUSY(card));
  2309. phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
  2310. }
  2311. return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
  2312. phy_regs[0], phy_regs[1], phy_regs[2], phy_regs[3]);
  2313. }
  2314. #endif /* 0 - Dump 25.6 Mbps PHY registers */
  2315. #if 0
  2316. /* Dump TST */
  2317. if (left-- < NS_TST_NUM_ENTRIES)
  2318. {
  2319. if (card->tste2vc[left + 1] == NULL)
  2320. return sprintf(page, "%5d - VBR/UBR \n", left + 1);
  2321. else
  2322. return sprintf(page, "%5d - %d %d \n", left + 1,
  2323. card->tste2vc[left + 1]->tx_vcc->vpi,
  2324. card->tste2vc[left + 1]->tx_vcc->vci);
  2325. }
  2326. #endif /* 0 */
  2327. return 0;
  2328. }
  2329. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg)
  2330. {
  2331. ns_dev *card;
  2332. pool_levels pl;
  2333. long btype;
  2334. unsigned long flags;
  2335. card = dev->dev_data;
  2336. switch (cmd)
  2337. {
  2338. case NS_GETPSTAT:
  2339. if (get_user(pl.buftype, &((pool_levels __user *) arg)->buftype))
  2340. return -EFAULT;
  2341. switch (pl.buftype)
  2342. {
  2343. case NS_BUFTYPE_SMALL:
  2344. pl.count = ns_stat_sfbqc_get(readl(card->membase + STAT));
  2345. pl.level.min = card->sbnr.min;
  2346. pl.level.init = card->sbnr.init;
  2347. pl.level.max = card->sbnr.max;
  2348. break;
  2349. case NS_BUFTYPE_LARGE:
  2350. pl.count = ns_stat_lfbqc_get(readl(card->membase + STAT));
  2351. pl.level.min = card->lbnr.min;
  2352. pl.level.init = card->lbnr.init;
  2353. pl.level.max = card->lbnr.max;
  2354. break;
  2355. case NS_BUFTYPE_HUGE:
  2356. pl.count = card->hbpool.count;
  2357. pl.level.min = card->hbnr.min;
  2358. pl.level.init = card->hbnr.init;
  2359. pl.level.max = card->hbnr.max;
  2360. break;
  2361. case NS_BUFTYPE_IOVEC:
  2362. pl.count = card->iovpool.count;
  2363. pl.level.min = card->iovnr.min;
  2364. pl.level.init = card->iovnr.init;
  2365. pl.level.max = card->iovnr.max;
  2366. break;
  2367. default:
  2368. return -ENOIOCTLCMD;
  2369. }
  2370. if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
  2371. return (sizeof(pl));
  2372. else
  2373. return -EFAULT;
  2374. case NS_SETBUFLEV:
  2375. if (!capable(CAP_NET_ADMIN))
  2376. return -EPERM;
  2377. if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
  2378. return -EFAULT;
  2379. if (pl.level.min >= pl.level.init || pl.level.init >= pl.level.max)
  2380. return -EINVAL;
  2381. if (pl.level.min == 0)
  2382. return -EINVAL;
  2383. switch (pl.buftype)
  2384. {
  2385. case NS_BUFTYPE_SMALL:
  2386. if (pl.level.max > TOP_SB)
  2387. return -EINVAL;
  2388. card->sbnr.min = pl.level.min;
  2389. card->sbnr.init = pl.level.init;
  2390. card->sbnr.max = pl.level.max;
  2391. break;
  2392. case NS_BUFTYPE_LARGE:
  2393. if (pl.level.max > TOP_LB)
  2394. return -EINVAL;
  2395. card->lbnr.min = pl.level.min;
  2396. card->lbnr.init = pl.level.init;
  2397. card->lbnr.max = pl.level.max;
  2398. break;
  2399. case NS_BUFTYPE_HUGE:
  2400. if (pl.level.max > TOP_HB)
  2401. return -EINVAL;
  2402. card->hbnr.min = pl.level.min;
  2403. card->hbnr.init = pl.level.init;
  2404. card->hbnr.max = pl.level.max;
  2405. break;
  2406. case NS_BUFTYPE_IOVEC:
  2407. if (pl.level.max > TOP_IOVB)
  2408. return -EINVAL;
  2409. card->iovnr.min = pl.level.min;
  2410. card->iovnr.init = pl.level.init;
  2411. card->iovnr.max = pl.level.max;
  2412. break;
  2413. default:
  2414. return -EINVAL;
  2415. }
  2416. return 0;
  2417. case NS_ADJBUFLEV:
  2418. if (!capable(CAP_NET_ADMIN))
  2419. return -EPERM;
  2420. btype = (long) arg; /* a long is the same size as a pointer or bigger */
  2421. switch (btype)
  2422. {
  2423. case NS_BUFTYPE_SMALL:
  2424. while (card->sbfqc < card->sbnr.init)
  2425. {
  2426. struct sk_buff *sb;
  2427. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2428. if (sb == NULL)
  2429. return -ENOMEM;
  2430. NS_SKB_CB(sb)->buf_type = BUF_SM;
  2431. skb_queue_tail(&card->sbpool.queue, sb);
  2432. skb_reserve(sb, NS_AAL0_HEADER);
  2433. push_rxbufs(card, sb);
  2434. }
  2435. break;
  2436. case NS_BUFTYPE_LARGE:
  2437. while (card->lbfqc < card->lbnr.init)
  2438. {
  2439. struct sk_buff *lb;
  2440. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2441. if (lb == NULL)
  2442. return -ENOMEM;
  2443. NS_SKB_CB(lb)->buf_type = BUF_LG;
  2444. skb_queue_tail(&card->lbpool.queue, lb);
  2445. skb_reserve(lb, NS_SMBUFSIZE);
  2446. push_rxbufs(card, lb);
  2447. }
  2448. break;
  2449. case NS_BUFTYPE_HUGE:
  2450. while (card->hbpool.count > card->hbnr.init)
  2451. {
  2452. struct sk_buff *hb;
  2453. spin_lock_irqsave(&card->int_lock, flags);
  2454. hb = skb_dequeue(&card->hbpool.queue);
  2455. card->hbpool.count--;
  2456. spin_unlock_irqrestore(&card->int_lock, flags);
  2457. if (hb == NULL)
  2458. printk("nicstar%d: huge buffer count inconsistent.\n",
  2459. card->index);
  2460. else
  2461. dev_kfree_skb_any(hb);
  2462. }
  2463. while (card->hbpool.count < card->hbnr.init)
  2464. {
  2465. struct sk_buff *hb;
  2466. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2467. if (hb == NULL)
  2468. return -ENOMEM;
  2469. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  2470. spin_lock_irqsave(&card->int_lock, flags);
  2471. skb_queue_tail(&card->hbpool.queue, hb);
  2472. card->hbpool.count++;
  2473. spin_unlock_irqrestore(&card->int_lock, flags);
  2474. }
  2475. break;
  2476. case NS_BUFTYPE_IOVEC:
  2477. while (card->iovpool.count > card->iovnr.init)
  2478. {
  2479. struct sk_buff *iovb;
  2480. spin_lock_irqsave(&card->int_lock, flags);
  2481. iovb = skb_dequeue(&card->iovpool.queue);
  2482. card->iovpool.count--;
  2483. spin_unlock_irqrestore(&card->int_lock, flags);
  2484. if (iovb == NULL)
  2485. printk("nicstar%d: iovec buffer count inconsistent.\n",
  2486. card->index);
  2487. else
  2488. dev_kfree_skb_any(iovb);
  2489. }
  2490. while (card->iovpool.count < card->iovnr.init)
  2491. {
  2492. struct sk_buff *iovb;
  2493. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  2494. if (iovb == NULL)
  2495. return -ENOMEM;
  2496. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  2497. spin_lock_irqsave(&card->int_lock, flags);
  2498. skb_queue_tail(&card->iovpool.queue, iovb);
  2499. card->iovpool.count++;
  2500. spin_unlock_irqrestore(&card->int_lock, flags);
  2501. }
  2502. break;
  2503. default:
  2504. return -EINVAL;
  2505. }
  2506. return 0;
  2507. default:
  2508. if (dev->phy && dev->phy->ioctl) {
  2509. return dev->phy->ioctl(dev, cmd, arg);
  2510. }
  2511. else {
  2512. printk("nicstar%d: %s == NULL \n", card->index,
  2513. dev->phy ? "dev->phy->ioctl" : "dev->phy");
  2514. return -ENOIOCTLCMD;
  2515. }
  2516. }
  2517. }
  2518. static void which_list(ns_dev *card, struct sk_buff *skb)
  2519. {
  2520. printk("skb buf_type: 0x%08x\n", NS_SKB_CB(skb)->buf_type);
  2521. }
  2522. static void ns_poll(unsigned long arg)
  2523. {
  2524. int i;
  2525. ns_dev *card;
  2526. unsigned long flags;
  2527. u32 stat_r, stat_w;
  2528. PRINTK("nicstar: Entering ns_poll().\n");
  2529. for (i = 0; i < num_cards; i++)
  2530. {
  2531. card = cards[i];
  2532. if (spin_is_locked(&card->int_lock)) {
  2533. /* Probably it isn't worth spinning */
  2534. continue;
  2535. }
  2536. spin_lock_irqsave(&card->int_lock, flags);
  2537. stat_w = 0;
  2538. stat_r = readl(card->membase + STAT);
  2539. if (stat_r & NS_STAT_TSIF)
  2540. stat_w |= NS_STAT_TSIF;
  2541. if (stat_r & NS_STAT_EOPDU)
  2542. stat_w |= NS_STAT_EOPDU;
  2543. process_tsq(card);
  2544. process_rsq(card);
  2545. writel(stat_w, card->membase + STAT);
  2546. spin_unlock_irqrestore(&card->int_lock, flags);
  2547. }
  2548. mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
  2549. PRINTK("nicstar: Leaving ns_poll().\n");
  2550. }
  2551. static int ns_parse_mac(char *mac, unsigned char *esi)
  2552. {
  2553. int i, j;
  2554. short byte1, byte0;
  2555. if (mac == NULL || esi == NULL)
  2556. return -1;
  2557. j = 0;
  2558. for (i = 0; i < 6; i++)
  2559. {
  2560. if ((byte1 = ns_h2i(mac[j++])) < 0)
  2561. return -1;
  2562. if ((byte0 = ns_h2i(mac[j++])) < 0)
  2563. return -1;
  2564. esi[i] = (unsigned char) (byte1 * 16 + byte0);
  2565. if (i < 5)
  2566. {
  2567. if (mac[j++] != ':')
  2568. return -1;
  2569. }
  2570. }
  2571. return 0;
  2572. }
  2573. static short ns_h2i(char c)
  2574. {
  2575. if (c >= '0' && c <= '9')
  2576. return (short) (c - '0');
  2577. if (c >= 'A' && c <= 'F')
  2578. return (short) (c - 'A' + 10);
  2579. if (c >= 'a' && c <= 'f')
  2580. return (short) (c - 'a' + 10);
  2581. return -1;
  2582. }
  2583. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  2584. unsigned long addr)
  2585. {
  2586. ns_dev *card;
  2587. unsigned long flags;
  2588. card = dev->dev_data;
  2589. spin_lock_irqsave(&card->res_lock, flags);
  2590. while(CMD_BUSY(card));
  2591. writel((unsigned long) value, card->membase + DR0);
  2592. writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2593. card->membase + CMD);
  2594. spin_unlock_irqrestore(&card->res_lock, flags);
  2595. }
  2596. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
  2597. {
  2598. ns_dev *card;
  2599. unsigned long flags;
  2600. unsigned long data;
  2601. card = dev->dev_data;
  2602. spin_lock_irqsave(&card->res_lock, flags);
  2603. while(CMD_BUSY(card));
  2604. writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2605. card->membase + CMD);
  2606. while(CMD_BUSY(card));
  2607. data = readl(card->membase + DR0) & 0x000000FF;
  2608. spin_unlock_irqrestore(&card->res_lock, flags);
  2609. return (unsigned char) data;
  2610. }
  2611. module_init(nicstar_init);
  2612. module_exit(nicstar_cleanup);