pdc_adma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/DocBook/libata.*
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/pci.h>
  37. #include <linux/init.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/device.h>
  42. #include <scsi/scsi_host.h>
  43. #include <linux/libata.h>
  44. #define DRV_NAME "pdc_adma"
  45. #define DRV_VERSION "1.0"
  46. /* macro to calculate base address for ATA regs */
  47. #define ADMA_ATA_REGS(base, port_no) ((base) + ((port_no) * 0x40))
  48. /* macro to calculate base address for ADMA regs */
  49. #define ADMA_REGS(base, port_no) ((base) + 0x80 + ((port_no) * 0x20))
  50. /* macro to obtain addresses from ata_port */
  51. #define ADMA_PORT_REGS(ap) \
  52. ADMA_REGS((ap)->host->iomap[ADMA_MMIO_BAR], ap->port_no)
  53. enum {
  54. ADMA_MMIO_BAR = 4,
  55. ADMA_PORTS = 2,
  56. ADMA_CPB_BYTES = 40,
  57. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  58. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  59. ADMA_DMA_BOUNDARY = 0xffffffff,
  60. /* global register offsets */
  61. ADMA_MODE_LOCK = 0x00c7,
  62. /* per-channel register offsets */
  63. ADMA_CONTROL = 0x0000, /* ADMA control */
  64. ADMA_STATUS = 0x0002, /* ADMA status */
  65. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  66. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  67. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  68. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  69. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  70. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  71. /* ADMA_CONTROL register bits */
  72. aNIEN = (1 << 8), /* irq mask: 1==masked */
  73. aGO = (1 << 7), /* packet trigger ("Go!") */
  74. aRSTADM = (1 << 5), /* ADMA logic reset */
  75. aPIOMD4 = 0x0003, /* PIO mode 4 */
  76. /* ADMA_STATUS register bits */
  77. aPSD = (1 << 6),
  78. aUIRQ = (1 << 4),
  79. aPERR = (1 << 0),
  80. /* CPB bits */
  81. cDONE = (1 << 0),
  82. cATERR = (1 << 3),
  83. cVLD = (1 << 0),
  84. cDAT = (1 << 2),
  85. cIEN = (1 << 3),
  86. /* PRD bits */
  87. pORD = (1 << 4),
  88. pDIRO = (1 << 5),
  89. pEND = (1 << 7),
  90. /* ATA register flags */
  91. rIGN = (1 << 5),
  92. rEND = (1 << 7),
  93. /* ATA register addresses */
  94. ADMA_REGS_CONTROL = 0x0e,
  95. ADMA_REGS_SECTOR_COUNT = 0x12,
  96. ADMA_REGS_LBA_LOW = 0x13,
  97. ADMA_REGS_LBA_MID = 0x14,
  98. ADMA_REGS_LBA_HIGH = 0x15,
  99. ADMA_REGS_DEVICE = 0x16,
  100. ADMA_REGS_COMMAND = 0x17,
  101. /* PCI device IDs */
  102. board_1841_idx = 0, /* ADMA 2-port controller */
  103. };
  104. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  105. struct adma_port_priv {
  106. u8 *pkt;
  107. dma_addr_t pkt_dma;
  108. adma_state_t state;
  109. };
  110. static int adma_ata_init_one(struct pci_dev *pdev,
  111. const struct pci_device_id *ent);
  112. static int adma_port_start(struct ata_port *ap);
  113. static void adma_port_stop(struct ata_port *ap);
  114. static void adma_qc_prep(struct ata_queued_cmd *qc);
  115. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc);
  116. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  117. static void adma_freeze(struct ata_port *ap);
  118. static void adma_thaw(struct ata_port *ap);
  119. static int adma_prereset(struct ata_link *link, unsigned long deadline);
  120. static struct scsi_host_template adma_ata_sht = {
  121. ATA_BASE_SHT(DRV_NAME),
  122. .sg_tablesize = LIBATA_MAX_PRD,
  123. .dma_boundary = ADMA_DMA_BOUNDARY,
  124. };
  125. static struct ata_port_operations adma_ata_ops = {
  126. .inherits = &ata_sff_port_ops,
  127. .lost_interrupt = ATA_OP_NULL,
  128. .check_atapi_dma = adma_check_atapi_dma,
  129. .qc_prep = adma_qc_prep,
  130. .qc_issue = adma_qc_issue,
  131. .freeze = adma_freeze,
  132. .thaw = adma_thaw,
  133. .prereset = adma_prereset,
  134. .port_start = adma_port_start,
  135. .port_stop = adma_port_stop,
  136. };
  137. static struct ata_port_info adma_port_info[] = {
  138. /* board_1841_idx */
  139. {
  140. .flags = ATA_FLAG_SLAVE_POSS |
  141. ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO |
  142. ATA_FLAG_PIO_POLLING,
  143. .pio_mask = ATA_PIO4_ONLY,
  144. .udma_mask = ATA_UDMA4,
  145. .port_ops = &adma_ata_ops,
  146. },
  147. };
  148. static const struct pci_device_id adma_ata_pci_tbl[] = {
  149. { PCI_VDEVICE(PDC, 0x1841), board_1841_idx },
  150. { } /* terminate list */
  151. };
  152. static struct pci_driver adma_ata_pci_driver = {
  153. .name = DRV_NAME,
  154. .id_table = adma_ata_pci_tbl,
  155. .probe = adma_ata_init_one,
  156. .remove = ata_pci_remove_one,
  157. };
  158. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  159. {
  160. return 1; /* ATAPI DMA not yet supported */
  161. }
  162. static void adma_reset_engine(struct ata_port *ap)
  163. {
  164. void __iomem *chan = ADMA_PORT_REGS(ap);
  165. /* reset ADMA to idle state */
  166. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  167. udelay(2);
  168. writew(aPIOMD4, chan + ADMA_CONTROL);
  169. udelay(2);
  170. }
  171. static void adma_reinit_engine(struct ata_port *ap)
  172. {
  173. struct adma_port_priv *pp = ap->private_data;
  174. void __iomem *chan = ADMA_PORT_REGS(ap);
  175. /* mask/clear ATA interrupts */
  176. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  177. ata_sff_check_status(ap);
  178. /* reset the ADMA engine */
  179. adma_reset_engine(ap);
  180. /* set in-FIFO threshold to 0x100 */
  181. writew(0x100, chan + ADMA_FIFO_IN);
  182. /* set CPB pointer */
  183. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  184. /* set out-FIFO threshold to 0x100 */
  185. writew(0x100, chan + ADMA_FIFO_OUT);
  186. /* set CPB count */
  187. writew(1, chan + ADMA_CPB_COUNT);
  188. /* read/discard ADMA status */
  189. readb(chan + ADMA_STATUS);
  190. }
  191. static inline void adma_enter_reg_mode(struct ata_port *ap)
  192. {
  193. void __iomem *chan = ADMA_PORT_REGS(ap);
  194. writew(aPIOMD4, chan + ADMA_CONTROL);
  195. readb(chan + ADMA_STATUS); /* flush */
  196. }
  197. static void adma_freeze(struct ata_port *ap)
  198. {
  199. void __iomem *chan = ADMA_PORT_REGS(ap);
  200. /* mask/clear ATA interrupts */
  201. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  202. ata_sff_check_status(ap);
  203. /* reset ADMA to idle state */
  204. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  205. udelay(2);
  206. writew(aPIOMD4 | aNIEN, chan + ADMA_CONTROL);
  207. udelay(2);
  208. }
  209. static void adma_thaw(struct ata_port *ap)
  210. {
  211. adma_reinit_engine(ap);
  212. }
  213. static int adma_prereset(struct ata_link *link, unsigned long deadline)
  214. {
  215. struct ata_port *ap = link->ap;
  216. struct adma_port_priv *pp = ap->private_data;
  217. if (pp->state != adma_state_idle) /* healthy paranoia */
  218. pp->state = adma_state_mmio;
  219. adma_reinit_engine(ap);
  220. return ata_sff_prereset(link, deadline);
  221. }
  222. static int adma_fill_sg(struct ata_queued_cmd *qc)
  223. {
  224. struct scatterlist *sg;
  225. struct ata_port *ap = qc->ap;
  226. struct adma_port_priv *pp = ap->private_data;
  227. u8 *buf = pp->pkt, *last_buf = NULL;
  228. int i = (2 + buf[3]) * 8;
  229. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  230. unsigned int si;
  231. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  232. u32 addr;
  233. u32 len;
  234. addr = (u32)sg_dma_address(sg);
  235. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  236. i += 4;
  237. len = sg_dma_len(sg) >> 3;
  238. *(__le32 *)(buf + i) = cpu_to_le32(len);
  239. i += 4;
  240. last_buf = &buf[i];
  241. buf[i++] = pFLAGS;
  242. buf[i++] = qc->dev->dma_mode & 0xf;
  243. buf[i++] = 0; /* pPKLW */
  244. buf[i++] = 0; /* reserved */
  245. *(__le32 *)(buf + i) =
  246. (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  247. i += 4;
  248. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4,
  249. (unsigned long)addr, len);
  250. }
  251. if (likely(last_buf))
  252. *last_buf |= pEND;
  253. return i;
  254. }
  255. static void adma_qc_prep(struct ata_queued_cmd *qc)
  256. {
  257. struct adma_port_priv *pp = qc->ap->private_data;
  258. u8 *buf = pp->pkt;
  259. u32 pkt_dma = (u32)pp->pkt_dma;
  260. int i = 0;
  261. VPRINTK("ENTER\n");
  262. adma_enter_reg_mode(qc->ap);
  263. if (qc->tf.protocol != ATA_PROT_DMA) {
  264. ata_sff_qc_prep(qc);
  265. return;
  266. }
  267. buf[i++] = 0; /* Response flags */
  268. buf[i++] = 0; /* reserved */
  269. buf[i++] = cVLD | cDAT | cIEN;
  270. i++; /* cLEN, gets filled in below */
  271. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  272. i += 4; /* cNCPB */
  273. i += 4; /* cPRD, gets filled in below */
  274. buf[i++] = 0; /* reserved */
  275. buf[i++] = 0; /* reserved */
  276. buf[i++] = 0; /* reserved */
  277. buf[i++] = 0; /* reserved */
  278. /* ATA registers; must be a multiple of 4 */
  279. buf[i++] = qc->tf.device;
  280. buf[i++] = ADMA_REGS_DEVICE;
  281. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  282. buf[i++] = qc->tf.hob_nsect;
  283. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  284. buf[i++] = qc->tf.hob_lbal;
  285. buf[i++] = ADMA_REGS_LBA_LOW;
  286. buf[i++] = qc->tf.hob_lbam;
  287. buf[i++] = ADMA_REGS_LBA_MID;
  288. buf[i++] = qc->tf.hob_lbah;
  289. buf[i++] = ADMA_REGS_LBA_HIGH;
  290. }
  291. buf[i++] = qc->tf.nsect;
  292. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  293. buf[i++] = qc->tf.lbal;
  294. buf[i++] = ADMA_REGS_LBA_LOW;
  295. buf[i++] = qc->tf.lbam;
  296. buf[i++] = ADMA_REGS_LBA_MID;
  297. buf[i++] = qc->tf.lbah;
  298. buf[i++] = ADMA_REGS_LBA_HIGH;
  299. buf[i++] = 0;
  300. buf[i++] = ADMA_REGS_CONTROL;
  301. buf[i++] = rIGN;
  302. buf[i++] = 0;
  303. buf[i++] = qc->tf.command;
  304. buf[i++] = ADMA_REGS_COMMAND | rEND;
  305. buf[3] = (i >> 3) - 2; /* cLEN */
  306. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  307. i = adma_fill_sg(qc);
  308. wmb(); /* flush PRDs and pkt to memory */
  309. #if 0
  310. /* dump out CPB + PRDs for debug */
  311. {
  312. int j, len = 0;
  313. static char obuf[2048];
  314. for (j = 0; j < i; ++j) {
  315. len += sprintf(obuf+len, "%02x ", buf[j]);
  316. if ((j & 7) == 7) {
  317. printk("%s\n", obuf);
  318. len = 0;
  319. }
  320. }
  321. if (len)
  322. printk("%s\n", obuf);
  323. }
  324. #endif
  325. }
  326. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  327. {
  328. struct ata_port *ap = qc->ap;
  329. void __iomem *chan = ADMA_PORT_REGS(ap);
  330. VPRINTK("ENTER, ap %p\n", ap);
  331. /* fire up the ADMA engine */
  332. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  333. }
  334. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc)
  335. {
  336. struct adma_port_priv *pp = qc->ap->private_data;
  337. switch (qc->tf.protocol) {
  338. case ATA_PROT_DMA:
  339. pp->state = adma_state_pkt;
  340. adma_packet_start(qc);
  341. return 0;
  342. case ATAPI_PROT_DMA:
  343. BUG();
  344. break;
  345. default:
  346. break;
  347. }
  348. pp->state = adma_state_mmio;
  349. return ata_sff_qc_issue(qc);
  350. }
  351. static inline unsigned int adma_intr_pkt(struct ata_host *host)
  352. {
  353. unsigned int handled = 0, port_no;
  354. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  355. struct ata_port *ap = host->ports[port_no];
  356. struct adma_port_priv *pp;
  357. struct ata_queued_cmd *qc;
  358. void __iomem *chan = ADMA_PORT_REGS(ap);
  359. u8 status = readb(chan + ADMA_STATUS);
  360. if (status == 0)
  361. continue;
  362. handled = 1;
  363. adma_enter_reg_mode(ap);
  364. if (ap->flags & ATA_FLAG_DISABLED)
  365. continue;
  366. pp = ap->private_data;
  367. if (!pp || pp->state != adma_state_pkt)
  368. continue;
  369. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  370. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  371. if (status & aPERR)
  372. qc->err_mask |= AC_ERR_HOST_BUS;
  373. else if ((status & (aPSD | aUIRQ)))
  374. qc->err_mask |= AC_ERR_OTHER;
  375. if (pp->pkt[0] & cATERR)
  376. qc->err_mask |= AC_ERR_DEV;
  377. else if (pp->pkt[0] != cDONE)
  378. qc->err_mask |= AC_ERR_OTHER;
  379. if (!qc->err_mask)
  380. ata_qc_complete(qc);
  381. else {
  382. struct ata_eh_info *ehi = &ap->link.eh_info;
  383. ata_ehi_clear_desc(ehi);
  384. ata_ehi_push_desc(ehi,
  385. "ADMA-status 0x%02X", status);
  386. ata_ehi_push_desc(ehi,
  387. "pkt[0] 0x%02X", pp->pkt[0]);
  388. if (qc->err_mask == AC_ERR_DEV)
  389. ata_port_abort(ap);
  390. else
  391. ata_port_freeze(ap);
  392. }
  393. }
  394. }
  395. return handled;
  396. }
  397. static inline unsigned int adma_intr_mmio(struct ata_host *host)
  398. {
  399. unsigned int handled = 0, port_no;
  400. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  401. struct ata_port *ap;
  402. ap = host->ports[port_no];
  403. if (ap && (!(ap->flags & ATA_FLAG_DISABLED))) {
  404. struct ata_queued_cmd *qc;
  405. struct adma_port_priv *pp = ap->private_data;
  406. if (!pp || pp->state != adma_state_mmio)
  407. continue;
  408. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  409. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  410. /* check main status, clearing INTRQ */
  411. u8 status = ata_sff_check_status(ap);
  412. if ((status & ATA_BUSY))
  413. continue;
  414. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  415. ap->print_id, qc->tf.protocol, status);
  416. /* complete taskfile transaction */
  417. pp->state = adma_state_idle;
  418. qc->err_mask |= ac_err_mask(status);
  419. if (!qc->err_mask)
  420. ata_qc_complete(qc);
  421. else {
  422. struct ata_eh_info *ehi =
  423. &ap->link.eh_info;
  424. ata_ehi_clear_desc(ehi);
  425. ata_ehi_push_desc(ehi,
  426. "status 0x%02X", status);
  427. if (qc->err_mask == AC_ERR_DEV)
  428. ata_port_abort(ap);
  429. else
  430. ata_port_freeze(ap);
  431. }
  432. handled = 1;
  433. }
  434. }
  435. }
  436. return handled;
  437. }
  438. static irqreturn_t adma_intr(int irq, void *dev_instance)
  439. {
  440. struct ata_host *host = dev_instance;
  441. unsigned int handled = 0;
  442. VPRINTK("ENTER\n");
  443. spin_lock(&host->lock);
  444. handled = adma_intr_pkt(host) | adma_intr_mmio(host);
  445. spin_unlock(&host->lock);
  446. VPRINTK("EXIT\n");
  447. return IRQ_RETVAL(handled);
  448. }
  449. static void adma_ata_setup_port(struct ata_ioports *port, void __iomem *base)
  450. {
  451. port->cmd_addr =
  452. port->data_addr = base + 0x000;
  453. port->error_addr =
  454. port->feature_addr = base + 0x004;
  455. port->nsect_addr = base + 0x008;
  456. port->lbal_addr = base + 0x00c;
  457. port->lbam_addr = base + 0x010;
  458. port->lbah_addr = base + 0x014;
  459. port->device_addr = base + 0x018;
  460. port->status_addr =
  461. port->command_addr = base + 0x01c;
  462. port->altstatus_addr =
  463. port->ctl_addr = base + 0x038;
  464. }
  465. static int adma_port_start(struct ata_port *ap)
  466. {
  467. struct device *dev = ap->host->dev;
  468. struct adma_port_priv *pp;
  469. int rc;
  470. rc = ata_port_start(ap);
  471. if (rc)
  472. return rc;
  473. adma_enter_reg_mode(ap);
  474. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  475. if (!pp)
  476. return -ENOMEM;
  477. pp->pkt = dmam_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  478. GFP_KERNEL);
  479. if (!pp->pkt)
  480. return -ENOMEM;
  481. /* paranoia? */
  482. if ((pp->pkt_dma & 7) != 0) {
  483. printk(KERN_ERR "bad alignment for pp->pkt_dma: %08x\n",
  484. (u32)pp->pkt_dma);
  485. return -ENOMEM;
  486. }
  487. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  488. ap->private_data = pp;
  489. adma_reinit_engine(ap);
  490. return 0;
  491. }
  492. static void adma_port_stop(struct ata_port *ap)
  493. {
  494. adma_reset_engine(ap);
  495. }
  496. static void adma_host_init(struct ata_host *host, unsigned int chip_id)
  497. {
  498. unsigned int port_no;
  499. /* enable/lock aGO operation */
  500. writeb(7, host->iomap[ADMA_MMIO_BAR] + ADMA_MODE_LOCK);
  501. /* reset the ADMA logic */
  502. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  503. adma_reset_engine(host->ports[port_no]);
  504. }
  505. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  506. {
  507. int rc;
  508. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  509. if (rc) {
  510. dev_printk(KERN_ERR, &pdev->dev,
  511. "32-bit DMA enable failed\n");
  512. return rc;
  513. }
  514. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  515. if (rc) {
  516. dev_printk(KERN_ERR, &pdev->dev,
  517. "32-bit consistent DMA enable failed\n");
  518. return rc;
  519. }
  520. return 0;
  521. }
  522. static int adma_ata_init_one(struct pci_dev *pdev,
  523. const struct pci_device_id *ent)
  524. {
  525. static int printed_version;
  526. unsigned int board_idx = (unsigned int) ent->driver_data;
  527. const struct ata_port_info *ppi[] = { &adma_port_info[board_idx], NULL };
  528. struct ata_host *host;
  529. void __iomem *mmio_base;
  530. int rc, port_no;
  531. if (!printed_version++)
  532. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  533. /* alloc host */
  534. host = ata_host_alloc_pinfo(&pdev->dev, ppi, ADMA_PORTS);
  535. if (!host)
  536. return -ENOMEM;
  537. /* acquire resources and fill host */
  538. rc = pcim_enable_device(pdev);
  539. if (rc)
  540. return rc;
  541. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0)
  542. return -ENODEV;
  543. rc = pcim_iomap_regions(pdev, 1 << ADMA_MMIO_BAR, DRV_NAME);
  544. if (rc)
  545. return rc;
  546. host->iomap = pcim_iomap_table(pdev);
  547. mmio_base = host->iomap[ADMA_MMIO_BAR];
  548. rc = adma_set_dma_masks(pdev, mmio_base);
  549. if (rc)
  550. return rc;
  551. for (port_no = 0; port_no < ADMA_PORTS; ++port_no) {
  552. struct ata_port *ap = host->ports[port_no];
  553. void __iomem *port_base = ADMA_ATA_REGS(mmio_base, port_no);
  554. unsigned int offset = port_base - mmio_base;
  555. adma_ata_setup_port(&ap->ioaddr, port_base);
  556. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, -1, "mmio");
  557. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, offset, "port");
  558. }
  559. /* initialize adapter */
  560. adma_host_init(host, board_idx);
  561. pci_set_master(pdev);
  562. return ata_host_activate(host, pdev->irq, adma_intr, IRQF_SHARED,
  563. &adma_ata_sht);
  564. }
  565. static int __init adma_ata_init(void)
  566. {
  567. return pci_register_driver(&adma_ata_pci_driver);
  568. }
  569. static void __exit adma_ata_exit(void)
  570. {
  571. pci_unregister_driver(&adma_ata_pci_driver);
  572. }
  573. MODULE_AUTHOR("Mark Lord");
  574. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  575. MODULE_LICENSE("GPL");
  576. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  577. MODULE_VERSION(DRV_VERSION);
  578. module_init(adma_ata_init);
  579. module_exit(adma_ata_exit);