processor_idle.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <linux/pm_qos_params.h>
  41. #include <linux/clockchips.h>
  42. #include <linux/cpuidle.h>
  43. #include <linux/irqflags.h>
  44. /*
  45. * Include the apic definitions for x86 to have the APIC timer related defines
  46. * available also for UP (on SMP it gets magically included via linux/smp.h).
  47. * asm/acpi.h is not an option, as it would require more include magic. Also
  48. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  49. */
  50. #ifdef CONFIG_X86
  51. #include <asm/apic.h>
  52. #endif
  53. #include <asm/io.h>
  54. #include <asm/uaccess.h>
  55. #include <acpi/acpi_bus.h>
  56. #include <acpi/processor.h>
  57. #include <asm/processor.h>
  58. #define ACPI_PROCESSOR_CLASS "processor"
  59. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  60. ACPI_MODULE_NAME("processor_idle");
  61. #define ACPI_PROCESSOR_FILE_POWER "power"
  62. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  63. #define C2_OVERHEAD 1 /* 1us */
  64. #define C3_OVERHEAD 1 /* 1us */
  65. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  66. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  67. module_param(max_cstate, uint, 0000);
  68. static unsigned int nocst __read_mostly;
  69. module_param(nocst, uint, 0000);
  70. static unsigned int latency_factor __read_mostly = 2;
  71. module_param(latency_factor, uint, 0644);
  72. static s64 us_to_pm_timer_ticks(s64 t)
  73. {
  74. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  75. }
  76. /*
  77. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  78. * For now disable this. Probably a bug somewhere else.
  79. *
  80. * To skip this limit, boot/load with a large max_cstate limit.
  81. */
  82. static int set_max_cstate(const struct dmi_system_id *id)
  83. {
  84. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  85. return 0;
  86. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  87. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  88. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  89. max_cstate = (long)id->driver_data;
  90. return 0;
  91. }
  92. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  93. callers to only run once -AK */
  94. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  95. { set_max_cstate, "Clevo 5600D", {
  96. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  97. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  98. (void *)2},
  99. {},
  100. };
  101. /*
  102. * Callers should disable interrupts before the call and enable
  103. * interrupts after return.
  104. */
  105. static void acpi_safe_halt(void)
  106. {
  107. current_thread_info()->status &= ~TS_POLLING;
  108. /*
  109. * TS_POLLING-cleared state must be visible before we
  110. * test NEED_RESCHED:
  111. */
  112. smp_mb();
  113. if (!need_resched()) {
  114. safe_halt();
  115. local_irq_disable();
  116. }
  117. current_thread_info()->status |= TS_POLLING;
  118. }
  119. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  120. /*
  121. * Some BIOS implementations switch to C3 in the published C2 state.
  122. * This seems to be a common problem on AMD boxen, but other vendors
  123. * are affected too. We pick the most conservative approach: we assume
  124. * that the local APIC stops in both C2 and C3.
  125. */
  126. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  127. struct acpi_processor_cx *cx)
  128. {
  129. struct acpi_processor_power *pwr = &pr->power;
  130. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  131. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  132. return;
  133. if (boot_cpu_has(X86_FEATURE_AMDC1E))
  134. type = ACPI_STATE_C1;
  135. /*
  136. * Check, if one of the previous states already marked the lapic
  137. * unstable
  138. */
  139. if (pwr->timer_broadcast_on_state < state)
  140. return;
  141. if (cx->type >= type)
  142. pr->power.timer_broadcast_on_state = state;
  143. }
  144. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
  145. {
  146. unsigned long reason;
  147. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  148. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  149. clockevents_notify(reason, &pr->id);
  150. }
  151. /* Power(C) State timer broadcast control */
  152. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  153. struct acpi_processor_cx *cx,
  154. int broadcast)
  155. {
  156. int state = cx - pr->power.states;
  157. if (state >= pr->power.timer_broadcast_on_state) {
  158. unsigned long reason;
  159. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  160. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  161. clockevents_notify(reason, &pr->id);
  162. }
  163. }
  164. #else
  165. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  166. struct acpi_processor_cx *cstate) { }
  167. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  168. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  169. struct acpi_processor_cx *cx,
  170. int broadcast)
  171. {
  172. }
  173. #endif
  174. /*
  175. * Suspend / resume control
  176. */
  177. static int acpi_idle_suspend;
  178. static u32 saved_bm_rld;
  179. static void acpi_idle_bm_rld_save(void)
  180. {
  181. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  182. }
  183. static void acpi_idle_bm_rld_restore(void)
  184. {
  185. u32 resumed_bm_rld;
  186. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  187. if (resumed_bm_rld != saved_bm_rld)
  188. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  189. }
  190. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  191. {
  192. if (acpi_idle_suspend == 1)
  193. return 0;
  194. acpi_idle_bm_rld_save();
  195. acpi_idle_suspend = 1;
  196. return 0;
  197. }
  198. int acpi_processor_resume(struct acpi_device * device)
  199. {
  200. if (acpi_idle_suspend == 0)
  201. return 0;
  202. acpi_idle_bm_rld_restore();
  203. acpi_idle_suspend = 0;
  204. return 0;
  205. }
  206. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  207. static void tsc_check_state(int state)
  208. {
  209. switch (boot_cpu_data.x86_vendor) {
  210. case X86_VENDOR_AMD:
  211. case X86_VENDOR_INTEL:
  212. /*
  213. * AMD Fam10h TSC will tick in all
  214. * C/P/S0/S1 states when this bit is set.
  215. */
  216. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  217. return;
  218. /*FALL THROUGH*/
  219. default:
  220. /* TSC could halt in idle, so notify users */
  221. if (state > ACPI_STATE_C1)
  222. mark_tsc_unstable("TSC halts in idle");
  223. }
  224. }
  225. #else
  226. static void tsc_check_state(int state) { return; }
  227. #endif
  228. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  229. {
  230. if (!pr)
  231. return -EINVAL;
  232. if (!pr->pblk)
  233. return -ENODEV;
  234. /* if info is obtained from pblk/fadt, type equals state */
  235. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  236. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  237. #ifndef CONFIG_HOTPLUG_CPU
  238. /*
  239. * Check for P_LVL2_UP flag before entering C2 and above on
  240. * an SMP system.
  241. */
  242. if ((num_online_cpus() > 1) &&
  243. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  244. return -ENODEV;
  245. #endif
  246. /* determine C2 and C3 address from pblk */
  247. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  248. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  249. /* determine latencies from FADT */
  250. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  251. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  252. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  253. "lvl2[0x%08x] lvl3[0x%08x]\n",
  254. pr->power.states[ACPI_STATE_C2].address,
  255. pr->power.states[ACPI_STATE_C3].address));
  256. return 0;
  257. }
  258. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  259. {
  260. if (!pr->power.states[ACPI_STATE_C1].valid) {
  261. /* set the first C-State to C1 */
  262. /* all processors need to support C1 */
  263. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  264. pr->power.states[ACPI_STATE_C1].valid = 1;
  265. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  266. }
  267. /* the C0 state only exists as a filler in our array */
  268. pr->power.states[ACPI_STATE_C0].valid = 1;
  269. return 0;
  270. }
  271. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  272. {
  273. acpi_status status = 0;
  274. acpi_integer count;
  275. int current_count;
  276. int i;
  277. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  278. union acpi_object *cst;
  279. if (nocst)
  280. return -ENODEV;
  281. current_count = 0;
  282. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  283. if (ACPI_FAILURE(status)) {
  284. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  285. return -ENODEV;
  286. }
  287. cst = buffer.pointer;
  288. /* There must be at least 2 elements */
  289. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  290. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  291. status = -EFAULT;
  292. goto end;
  293. }
  294. count = cst->package.elements[0].integer.value;
  295. /* Validate number of power states. */
  296. if (count < 1 || count != cst->package.count - 1) {
  297. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  298. status = -EFAULT;
  299. goto end;
  300. }
  301. /* Tell driver that at least _CST is supported. */
  302. pr->flags.has_cst = 1;
  303. for (i = 1; i <= count; i++) {
  304. union acpi_object *element;
  305. union acpi_object *obj;
  306. struct acpi_power_register *reg;
  307. struct acpi_processor_cx cx;
  308. memset(&cx, 0, sizeof(cx));
  309. element = &(cst->package.elements[i]);
  310. if (element->type != ACPI_TYPE_PACKAGE)
  311. continue;
  312. if (element->package.count != 4)
  313. continue;
  314. obj = &(element->package.elements[0]);
  315. if (obj->type != ACPI_TYPE_BUFFER)
  316. continue;
  317. reg = (struct acpi_power_register *)obj->buffer.pointer;
  318. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  319. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  320. continue;
  321. /* There should be an easy way to extract an integer... */
  322. obj = &(element->package.elements[1]);
  323. if (obj->type != ACPI_TYPE_INTEGER)
  324. continue;
  325. cx.type = obj->integer.value;
  326. /*
  327. * Some buggy BIOSes won't list C1 in _CST -
  328. * Let acpi_processor_get_power_info_default() handle them later
  329. */
  330. if (i == 1 && cx.type != ACPI_STATE_C1)
  331. current_count++;
  332. cx.address = reg->address;
  333. cx.index = current_count + 1;
  334. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  335. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  336. if (acpi_processor_ffh_cstate_probe
  337. (pr->id, &cx, reg) == 0) {
  338. cx.entry_method = ACPI_CSTATE_FFH;
  339. } else if (cx.type == ACPI_STATE_C1) {
  340. /*
  341. * C1 is a special case where FIXED_HARDWARE
  342. * can be handled in non-MWAIT way as well.
  343. * In that case, save this _CST entry info.
  344. * Otherwise, ignore this info and continue.
  345. */
  346. cx.entry_method = ACPI_CSTATE_HALT;
  347. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  348. } else {
  349. continue;
  350. }
  351. if (cx.type == ACPI_STATE_C1 &&
  352. (idle_halt || idle_nomwait)) {
  353. /*
  354. * In most cases the C1 space_id obtained from
  355. * _CST object is FIXED_HARDWARE access mode.
  356. * But when the option of idle=halt is added,
  357. * the entry_method type should be changed from
  358. * CSTATE_FFH to CSTATE_HALT.
  359. * When the option of idle=nomwait is added,
  360. * the C1 entry_method type should be
  361. * CSTATE_HALT.
  362. */
  363. cx.entry_method = ACPI_CSTATE_HALT;
  364. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  365. }
  366. } else {
  367. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  368. cx.address);
  369. }
  370. if (cx.type == ACPI_STATE_C1) {
  371. cx.valid = 1;
  372. }
  373. obj = &(element->package.elements[2]);
  374. if (obj->type != ACPI_TYPE_INTEGER)
  375. continue;
  376. cx.latency = obj->integer.value;
  377. obj = &(element->package.elements[3]);
  378. if (obj->type != ACPI_TYPE_INTEGER)
  379. continue;
  380. cx.power = obj->integer.value;
  381. current_count++;
  382. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  383. /*
  384. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  385. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  386. */
  387. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  388. printk(KERN_WARNING
  389. "Limiting number of power states to max (%d)\n",
  390. ACPI_PROCESSOR_MAX_POWER);
  391. printk(KERN_WARNING
  392. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  393. break;
  394. }
  395. }
  396. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  397. current_count));
  398. /* Validate number of power states discovered */
  399. if (current_count < 2)
  400. status = -EFAULT;
  401. end:
  402. kfree(buffer.pointer);
  403. return status;
  404. }
  405. static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
  406. {
  407. if (!cx->address)
  408. return;
  409. /*
  410. * C2 latency must be less than or equal to 100
  411. * microseconds.
  412. */
  413. else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  414. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  415. "latency too large [%d]\n", cx->latency));
  416. return;
  417. }
  418. /*
  419. * Otherwise we've met all of our C2 requirements.
  420. * Normalize the C2 latency to expidite policy
  421. */
  422. cx->valid = 1;
  423. cx->latency_ticks = cx->latency;
  424. return;
  425. }
  426. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  427. struct acpi_processor_cx *cx)
  428. {
  429. static int bm_check_flag = -1;
  430. static int bm_control_flag = -1;
  431. if (!cx->address)
  432. return;
  433. /*
  434. * C3 latency must be less than or equal to 1000
  435. * microseconds.
  436. */
  437. else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  438. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  439. "latency too large [%d]\n", cx->latency));
  440. return;
  441. }
  442. /*
  443. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  444. * DMA transfers are used by any ISA device to avoid livelock.
  445. * Note that we could disable Type-F DMA (as recommended by
  446. * the erratum), but this is known to disrupt certain ISA
  447. * devices thus we take the conservative approach.
  448. */
  449. else if (errata.piix4.fdma) {
  450. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  451. "C3 not supported on PIIX4 with Type-F DMA\n"));
  452. return;
  453. }
  454. /* All the logic here assumes flags.bm_check is same across all CPUs */
  455. if (bm_check_flag == -1) {
  456. /* Determine whether bm_check is needed based on CPU */
  457. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  458. bm_check_flag = pr->flags.bm_check;
  459. bm_control_flag = pr->flags.bm_control;
  460. } else {
  461. pr->flags.bm_check = bm_check_flag;
  462. pr->flags.bm_control = bm_control_flag;
  463. }
  464. if (pr->flags.bm_check) {
  465. if (!pr->flags.bm_control) {
  466. if (pr->flags.has_cst != 1) {
  467. /* bus mastering control is necessary */
  468. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  469. "C3 support requires BM control\n"));
  470. return;
  471. } else {
  472. /* Here we enter C3 without bus mastering */
  473. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  474. "C3 support without BM control\n"));
  475. }
  476. }
  477. } else {
  478. /*
  479. * WBINVD should be set in fadt, for C3 state to be
  480. * supported on when bm_check is not required.
  481. */
  482. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  483. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  484. "Cache invalidation should work properly"
  485. " for C3 to be enabled on SMP systems\n"));
  486. return;
  487. }
  488. }
  489. /*
  490. * Otherwise we've met all of our C3 requirements.
  491. * Normalize the C3 latency to expidite policy. Enable
  492. * checking of bus mastering status (bm_check) so we can
  493. * use this in our C3 policy
  494. */
  495. cx->valid = 1;
  496. cx->latency_ticks = cx->latency;
  497. /*
  498. * On older chipsets, BM_RLD needs to be set
  499. * in order for Bus Master activity to wake the
  500. * system from C3. Newer chipsets handle DMA
  501. * during C3 automatically and BM_RLD is a NOP.
  502. * In either case, the proper way to
  503. * handle BM_RLD is to set it and leave it set.
  504. */
  505. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  506. return;
  507. }
  508. static int acpi_processor_power_verify(struct acpi_processor *pr)
  509. {
  510. unsigned int i;
  511. unsigned int working = 0;
  512. pr->power.timer_broadcast_on_state = INT_MAX;
  513. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  514. struct acpi_processor_cx *cx = &pr->power.states[i];
  515. switch (cx->type) {
  516. case ACPI_STATE_C1:
  517. cx->valid = 1;
  518. break;
  519. case ACPI_STATE_C2:
  520. acpi_processor_power_verify_c2(cx);
  521. break;
  522. case ACPI_STATE_C3:
  523. acpi_processor_power_verify_c3(pr, cx);
  524. break;
  525. }
  526. if (!cx->valid)
  527. continue;
  528. lapic_timer_check_state(i, pr, cx);
  529. tsc_check_state(cx->type);
  530. working++;
  531. }
  532. lapic_timer_propagate_broadcast(pr);
  533. return (working);
  534. }
  535. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  536. {
  537. unsigned int i;
  538. int result;
  539. /* NOTE: the idle thread may not be running while calling
  540. * this function */
  541. /* Zero initialize all the C-states info. */
  542. memset(pr->power.states, 0, sizeof(pr->power.states));
  543. result = acpi_processor_get_power_info_cst(pr);
  544. if (result == -ENODEV)
  545. result = acpi_processor_get_power_info_fadt(pr);
  546. if (result)
  547. return result;
  548. acpi_processor_get_power_info_default(pr);
  549. pr->power.count = acpi_processor_power_verify(pr);
  550. /*
  551. * if one state of type C2 or C3 is available, mark this
  552. * CPU as being "idle manageable"
  553. */
  554. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  555. if (pr->power.states[i].valid) {
  556. pr->power.count = i;
  557. if (pr->power.states[i].type >= ACPI_STATE_C2)
  558. pr->flags.power = 1;
  559. }
  560. }
  561. return 0;
  562. }
  563. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  564. {
  565. struct acpi_processor *pr = seq->private;
  566. unsigned int i;
  567. if (!pr)
  568. goto end;
  569. seq_printf(seq, "active state: C%zd\n"
  570. "max_cstate: C%d\n"
  571. "maximum allowed latency: %d usec\n",
  572. pr->power.state ? pr->power.state - pr->power.states : 0,
  573. max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  574. seq_puts(seq, "states:\n");
  575. for (i = 1; i <= pr->power.count; i++) {
  576. seq_printf(seq, " %cC%d: ",
  577. (&pr->power.states[i] ==
  578. pr->power.state ? '*' : ' '), i);
  579. if (!pr->power.states[i].valid) {
  580. seq_puts(seq, "<not supported>\n");
  581. continue;
  582. }
  583. switch (pr->power.states[i].type) {
  584. case ACPI_STATE_C1:
  585. seq_printf(seq, "type[C1] ");
  586. break;
  587. case ACPI_STATE_C2:
  588. seq_printf(seq, "type[C2] ");
  589. break;
  590. case ACPI_STATE_C3:
  591. seq_printf(seq, "type[C3] ");
  592. break;
  593. default:
  594. seq_printf(seq, "type[--] ");
  595. break;
  596. }
  597. if (pr->power.states[i].promotion.state)
  598. seq_printf(seq, "promotion[C%zd] ",
  599. (pr->power.states[i].promotion.state -
  600. pr->power.states));
  601. else
  602. seq_puts(seq, "promotion[--] ");
  603. if (pr->power.states[i].demotion.state)
  604. seq_printf(seq, "demotion[C%zd] ",
  605. (pr->power.states[i].demotion.state -
  606. pr->power.states));
  607. else
  608. seq_puts(seq, "demotion[--] ");
  609. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  610. pr->power.states[i].latency,
  611. pr->power.states[i].usage,
  612. (unsigned long long)pr->power.states[i].time);
  613. }
  614. end:
  615. return 0;
  616. }
  617. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  618. {
  619. return single_open(file, acpi_processor_power_seq_show,
  620. PDE(inode)->data);
  621. }
  622. static const struct file_operations acpi_processor_power_fops = {
  623. .owner = THIS_MODULE,
  624. .open = acpi_processor_power_open_fs,
  625. .read = seq_read,
  626. .llseek = seq_lseek,
  627. .release = single_release,
  628. };
  629. /**
  630. * acpi_idle_bm_check - checks if bus master activity was detected
  631. */
  632. static int acpi_idle_bm_check(void)
  633. {
  634. u32 bm_status = 0;
  635. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  636. if (bm_status)
  637. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  638. /*
  639. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  640. * the true state of bus mastering activity; forcing us to
  641. * manually check the BMIDEA bit of each IDE channel.
  642. */
  643. else if (errata.piix4.bmisx) {
  644. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  645. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  646. bm_status = 1;
  647. }
  648. return bm_status;
  649. }
  650. /**
  651. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  652. * @cx: cstate data
  653. *
  654. * Caller disables interrupt before call and enables interrupt after return.
  655. */
  656. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  657. {
  658. /* Don't trace irqs off for idle */
  659. stop_critical_timings();
  660. if (cx->entry_method == ACPI_CSTATE_FFH) {
  661. /* Call into architectural FFH based C-state */
  662. acpi_processor_ffh_cstate_enter(cx);
  663. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  664. acpi_safe_halt();
  665. } else {
  666. int unused;
  667. /* IO port based C-state */
  668. inb(cx->address);
  669. /* Dummy wait op - must do something useless after P_LVL2 read
  670. because chipsets cannot guarantee that STPCLK# signal
  671. gets asserted in time to freeze execution properly. */
  672. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  673. }
  674. start_critical_timings();
  675. }
  676. /**
  677. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  678. * @dev: the target CPU
  679. * @state: the state data
  680. *
  681. * This is equivalent to the HALT instruction.
  682. */
  683. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  684. struct cpuidle_state *state)
  685. {
  686. ktime_t kt1, kt2;
  687. s64 idle_time;
  688. struct acpi_processor *pr;
  689. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  690. pr = __get_cpu_var(processors);
  691. if (unlikely(!pr))
  692. return 0;
  693. local_irq_disable();
  694. /* Do not access any ACPI IO ports in suspend path */
  695. if (acpi_idle_suspend) {
  696. local_irq_enable();
  697. cpu_relax();
  698. return 0;
  699. }
  700. lapic_timer_state_broadcast(pr, cx, 1);
  701. kt1 = ktime_get_real();
  702. acpi_idle_do_entry(cx);
  703. kt2 = ktime_get_real();
  704. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  705. local_irq_enable();
  706. cx->usage++;
  707. lapic_timer_state_broadcast(pr, cx, 0);
  708. return idle_time;
  709. }
  710. /**
  711. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  712. * @dev: the target CPU
  713. * @state: the state data
  714. */
  715. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  716. struct cpuidle_state *state)
  717. {
  718. struct acpi_processor *pr;
  719. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  720. ktime_t kt1, kt2;
  721. s64 idle_time;
  722. s64 sleep_ticks = 0;
  723. pr = __get_cpu_var(processors);
  724. if (unlikely(!pr))
  725. return 0;
  726. if (acpi_idle_suspend)
  727. return(acpi_idle_enter_c1(dev, state));
  728. local_irq_disable();
  729. current_thread_info()->status &= ~TS_POLLING;
  730. /*
  731. * TS_POLLING-cleared state must be visible before we test
  732. * NEED_RESCHED:
  733. */
  734. smp_mb();
  735. if (unlikely(need_resched())) {
  736. current_thread_info()->status |= TS_POLLING;
  737. local_irq_enable();
  738. return 0;
  739. }
  740. /*
  741. * Must be done before busmaster disable as we might need to
  742. * access HPET !
  743. */
  744. lapic_timer_state_broadcast(pr, cx, 1);
  745. if (cx->type == ACPI_STATE_C3)
  746. ACPI_FLUSH_CPU_CACHE();
  747. kt1 = ktime_get_real();
  748. /* Tell the scheduler that we are going deep-idle: */
  749. sched_clock_idle_sleep_event();
  750. acpi_idle_do_entry(cx);
  751. kt2 = ktime_get_real();
  752. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  753. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  754. /* Tell the scheduler how much we idled: */
  755. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  756. local_irq_enable();
  757. current_thread_info()->status |= TS_POLLING;
  758. cx->usage++;
  759. lapic_timer_state_broadcast(pr, cx, 0);
  760. cx->time += sleep_ticks;
  761. return idle_time;
  762. }
  763. static int c3_cpu_count;
  764. static DEFINE_SPINLOCK(c3_lock);
  765. /**
  766. * acpi_idle_enter_bm - enters C3 with proper BM handling
  767. * @dev: the target CPU
  768. * @state: the state data
  769. *
  770. * If BM is detected, the deepest non-C3 idle state is entered instead.
  771. */
  772. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  773. struct cpuidle_state *state)
  774. {
  775. struct acpi_processor *pr;
  776. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  777. ktime_t kt1, kt2;
  778. s64 idle_time;
  779. s64 sleep_ticks = 0;
  780. pr = __get_cpu_var(processors);
  781. if (unlikely(!pr))
  782. return 0;
  783. if (acpi_idle_suspend)
  784. return(acpi_idle_enter_c1(dev, state));
  785. if (acpi_idle_bm_check()) {
  786. if (dev->safe_state) {
  787. dev->last_state = dev->safe_state;
  788. return dev->safe_state->enter(dev, dev->safe_state);
  789. } else {
  790. local_irq_disable();
  791. acpi_safe_halt();
  792. local_irq_enable();
  793. return 0;
  794. }
  795. }
  796. local_irq_disable();
  797. current_thread_info()->status &= ~TS_POLLING;
  798. /*
  799. * TS_POLLING-cleared state must be visible before we test
  800. * NEED_RESCHED:
  801. */
  802. smp_mb();
  803. if (unlikely(need_resched())) {
  804. current_thread_info()->status |= TS_POLLING;
  805. local_irq_enable();
  806. return 0;
  807. }
  808. acpi_unlazy_tlb(smp_processor_id());
  809. /* Tell the scheduler that we are going deep-idle: */
  810. sched_clock_idle_sleep_event();
  811. /*
  812. * Must be done before busmaster disable as we might need to
  813. * access HPET !
  814. */
  815. lapic_timer_state_broadcast(pr, cx, 1);
  816. kt1 = ktime_get_real();
  817. /*
  818. * disable bus master
  819. * bm_check implies we need ARB_DIS
  820. * !bm_check implies we need cache flush
  821. * bm_control implies whether we can do ARB_DIS
  822. *
  823. * That leaves a case where bm_check is set and bm_control is
  824. * not set. In that case we cannot do much, we enter C3
  825. * without doing anything.
  826. */
  827. if (pr->flags.bm_check && pr->flags.bm_control) {
  828. spin_lock(&c3_lock);
  829. c3_cpu_count++;
  830. /* Disable bus master arbitration when all CPUs are in C3 */
  831. if (c3_cpu_count == num_online_cpus())
  832. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  833. spin_unlock(&c3_lock);
  834. } else if (!pr->flags.bm_check) {
  835. ACPI_FLUSH_CPU_CACHE();
  836. }
  837. acpi_idle_do_entry(cx);
  838. /* Re-enable bus master arbitration */
  839. if (pr->flags.bm_check && pr->flags.bm_control) {
  840. spin_lock(&c3_lock);
  841. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  842. c3_cpu_count--;
  843. spin_unlock(&c3_lock);
  844. }
  845. kt2 = ktime_get_real();
  846. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  847. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  848. /* Tell the scheduler how much we idled: */
  849. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  850. local_irq_enable();
  851. current_thread_info()->status |= TS_POLLING;
  852. cx->usage++;
  853. lapic_timer_state_broadcast(pr, cx, 0);
  854. cx->time += sleep_ticks;
  855. return idle_time;
  856. }
  857. struct cpuidle_driver acpi_idle_driver = {
  858. .name = "acpi_idle",
  859. .owner = THIS_MODULE,
  860. };
  861. /**
  862. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  863. * @pr: the ACPI processor
  864. */
  865. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  866. {
  867. int i, count = CPUIDLE_DRIVER_STATE_START;
  868. struct acpi_processor_cx *cx;
  869. struct cpuidle_state *state;
  870. struct cpuidle_device *dev = &pr->power.dev;
  871. if (!pr->flags.power_setup_done)
  872. return -EINVAL;
  873. if (pr->flags.power == 0) {
  874. return -EINVAL;
  875. }
  876. dev->cpu = pr->id;
  877. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  878. dev->states[i].name[0] = '\0';
  879. dev->states[i].desc[0] = '\0';
  880. }
  881. if (max_cstate == 0)
  882. max_cstate = 1;
  883. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  884. cx = &pr->power.states[i];
  885. state = &dev->states[count];
  886. if (!cx->valid)
  887. continue;
  888. #ifdef CONFIG_HOTPLUG_CPU
  889. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  890. !pr->flags.has_cst &&
  891. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  892. continue;
  893. #endif
  894. cpuidle_set_statedata(state, cx);
  895. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  896. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  897. state->exit_latency = cx->latency;
  898. state->target_residency = cx->latency * latency_factor;
  899. state->power_usage = cx->power;
  900. state->flags = 0;
  901. switch (cx->type) {
  902. case ACPI_STATE_C1:
  903. state->flags |= CPUIDLE_FLAG_SHALLOW;
  904. if (cx->entry_method == ACPI_CSTATE_FFH)
  905. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  906. state->enter = acpi_idle_enter_c1;
  907. dev->safe_state = state;
  908. break;
  909. case ACPI_STATE_C2:
  910. state->flags |= CPUIDLE_FLAG_BALANCED;
  911. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  912. state->enter = acpi_idle_enter_simple;
  913. dev->safe_state = state;
  914. break;
  915. case ACPI_STATE_C3:
  916. state->flags |= CPUIDLE_FLAG_DEEP;
  917. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  918. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  919. state->enter = pr->flags.bm_check ?
  920. acpi_idle_enter_bm :
  921. acpi_idle_enter_simple;
  922. break;
  923. }
  924. count++;
  925. if (count == CPUIDLE_STATE_MAX)
  926. break;
  927. }
  928. dev->state_count = count;
  929. if (!count)
  930. return -EINVAL;
  931. return 0;
  932. }
  933. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  934. {
  935. int ret = 0;
  936. if (boot_option_idle_override)
  937. return 0;
  938. if (!pr)
  939. return -EINVAL;
  940. if (nocst) {
  941. return -ENODEV;
  942. }
  943. if (!pr->flags.power_setup_done)
  944. return -ENODEV;
  945. cpuidle_pause_and_lock();
  946. cpuidle_disable_device(&pr->power.dev);
  947. acpi_processor_get_power_info(pr);
  948. if (pr->flags.power) {
  949. acpi_processor_setup_cpuidle(pr);
  950. ret = cpuidle_enable_device(&pr->power.dev);
  951. }
  952. cpuidle_resume_and_unlock();
  953. return ret;
  954. }
  955. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  956. struct acpi_device *device)
  957. {
  958. acpi_status status = 0;
  959. static int first_run;
  960. struct proc_dir_entry *entry = NULL;
  961. unsigned int i;
  962. if (boot_option_idle_override)
  963. return 0;
  964. if (!first_run) {
  965. if (idle_halt) {
  966. /*
  967. * When the boot option of "idle=halt" is added, halt
  968. * is used for CPU IDLE.
  969. * In such case C2/C3 is meaningless. So the max_cstate
  970. * is set to one.
  971. */
  972. max_cstate = 1;
  973. }
  974. dmi_check_system(processor_power_dmi_table);
  975. max_cstate = acpi_processor_cstate_check(max_cstate);
  976. if (max_cstate < ACPI_C_STATES_MAX)
  977. printk(KERN_NOTICE
  978. "ACPI: processor limited to max C-state %d\n",
  979. max_cstate);
  980. first_run++;
  981. }
  982. if (!pr)
  983. return -EINVAL;
  984. if (acpi_gbl_FADT.cst_control && !nocst) {
  985. status =
  986. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  987. if (ACPI_FAILURE(status)) {
  988. ACPI_EXCEPTION((AE_INFO, status,
  989. "Notifying BIOS of _CST ability failed"));
  990. }
  991. }
  992. acpi_processor_get_power_info(pr);
  993. pr->flags.power_setup_done = 1;
  994. /*
  995. * Install the idle handler if processor power management is supported.
  996. * Note that we use previously set idle handler will be used on
  997. * platforms that only support C1.
  998. */
  999. if (pr->flags.power) {
  1000. acpi_processor_setup_cpuidle(pr);
  1001. if (cpuidle_register_device(&pr->power.dev))
  1002. return -EIO;
  1003. printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
  1004. for (i = 1; i <= pr->power.count; i++)
  1005. if (pr->power.states[i].valid)
  1006. printk(" C%d[C%d]", i,
  1007. pr->power.states[i].type);
  1008. printk(")\n");
  1009. }
  1010. /* 'power' [R] */
  1011. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1012. S_IRUGO, acpi_device_dir(device),
  1013. &acpi_processor_power_fops,
  1014. acpi_driver_data(device));
  1015. if (!entry)
  1016. return -EIO;
  1017. return 0;
  1018. }
  1019. int acpi_processor_power_exit(struct acpi_processor *pr,
  1020. struct acpi_device *device)
  1021. {
  1022. if (boot_option_idle_override)
  1023. return 0;
  1024. cpuidle_unregister_device(&pr->power.dev);
  1025. pr->flags.power_setup_done = 0;
  1026. if (acpi_device_dir(device))
  1027. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1028. acpi_device_dir(device));
  1029. return 0;
  1030. }