pgtable.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/pgtable.h>
  4. #include <asm/tlb.h>
  5. #include <asm/fixmap.h>
  6. #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  7. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  8. {
  9. return (pte_t *)__get_free_page(PGALLOC_GFP);
  10. }
  11. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  12. {
  13. struct page *pte;
  14. #ifdef CONFIG_HIGHPTE
  15. pte = alloc_pages(PGALLOC_GFP | __GFP_HIGHMEM, 0);
  16. #else
  17. pte = alloc_pages(PGALLOC_GFP, 0);
  18. #endif
  19. if (pte)
  20. pgtable_page_ctor(pte);
  21. return pte;
  22. }
  23. void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  24. {
  25. pgtable_page_dtor(pte);
  26. paravirt_release_pte(page_to_pfn(pte));
  27. tlb_remove_page(tlb, pte);
  28. }
  29. #if PAGETABLE_LEVELS > 2
  30. void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  31. {
  32. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  33. tlb_remove_page(tlb, virt_to_page(pmd));
  34. }
  35. #if PAGETABLE_LEVELS > 3
  36. void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  37. {
  38. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  39. tlb_remove_page(tlb, virt_to_page(pud));
  40. }
  41. #endif /* PAGETABLE_LEVELS > 3 */
  42. #endif /* PAGETABLE_LEVELS > 2 */
  43. static inline void pgd_list_add(pgd_t *pgd)
  44. {
  45. struct page *page = virt_to_page(pgd);
  46. list_add(&page->lru, &pgd_list);
  47. }
  48. static inline void pgd_list_del(pgd_t *pgd)
  49. {
  50. struct page *page = virt_to_page(pgd);
  51. list_del(&page->lru);
  52. }
  53. #define UNSHARED_PTRS_PER_PGD \
  54. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  55. static void pgd_ctor(pgd_t *pgd)
  56. {
  57. /* If the pgd points to a shared pagetable level (either the
  58. ptes in non-PAE, or shared PMD in PAE), then just copy the
  59. references from swapper_pg_dir. */
  60. if (PAGETABLE_LEVELS == 2 ||
  61. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  62. PAGETABLE_LEVELS == 4) {
  63. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  64. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  65. KERNEL_PGD_PTRS);
  66. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  67. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  68. KERNEL_PGD_BOUNDARY,
  69. KERNEL_PGD_PTRS);
  70. }
  71. /* list required to sync kernel mapping updates */
  72. if (!SHARED_KERNEL_PMD)
  73. pgd_list_add(pgd);
  74. }
  75. static void pgd_dtor(pgd_t *pgd)
  76. {
  77. unsigned long flags; /* can be called from interrupt context */
  78. if (SHARED_KERNEL_PMD)
  79. return;
  80. spin_lock_irqsave(&pgd_lock, flags);
  81. pgd_list_del(pgd);
  82. spin_unlock_irqrestore(&pgd_lock, flags);
  83. }
  84. /*
  85. * List of all pgd's needed for non-PAE so it can invalidate entries
  86. * in both cached and uncached pgd's; not needed for PAE since the
  87. * kernel pmd is shared. If PAE were not to share the pmd a similar
  88. * tactic would be needed. This is essentially codepath-based locking
  89. * against pageattr.c; it is the unique case in which a valid change
  90. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  91. * vmalloc faults work because attached pagetables are never freed.
  92. * -- wli
  93. */
  94. #ifdef CONFIG_X86_PAE
  95. /*
  96. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  97. * updating the top-level pagetable entries to guarantee the
  98. * processor notices the update. Since this is expensive, and
  99. * all 4 top-level entries are used almost immediately in a
  100. * new process's life, we just pre-populate them here.
  101. *
  102. * Also, if we're in a paravirt environment where the kernel pmd is
  103. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  104. * and initialize the kernel pmds here.
  105. */
  106. #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
  107. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  108. {
  109. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  110. /* Note: almost everything apart from _PAGE_PRESENT is
  111. reserved at the pmd (PDPT) level. */
  112. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  113. /*
  114. * According to Intel App note "TLBs, Paging-Structure Caches,
  115. * and Their Invalidation", April 2007, document 317080-001,
  116. * section 8.1: in PAE mode we explicitly have to flush the
  117. * TLB via cr3 if the top-level pgd is changed...
  118. */
  119. if (mm == current->active_mm)
  120. write_cr3(read_cr3());
  121. }
  122. #else /* !CONFIG_X86_PAE */
  123. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  124. #define PREALLOCATED_PMDS 0
  125. #endif /* CONFIG_X86_PAE */
  126. static void free_pmds(pmd_t *pmds[])
  127. {
  128. int i;
  129. for(i = 0; i < PREALLOCATED_PMDS; i++)
  130. if (pmds[i])
  131. free_page((unsigned long)pmds[i]);
  132. }
  133. static int preallocate_pmds(pmd_t *pmds[])
  134. {
  135. int i;
  136. bool failed = false;
  137. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  138. pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
  139. if (pmd == NULL)
  140. failed = true;
  141. pmds[i] = pmd;
  142. }
  143. if (failed) {
  144. free_pmds(pmds);
  145. return -ENOMEM;
  146. }
  147. return 0;
  148. }
  149. /*
  150. * Mop up any pmd pages which may still be attached to the pgd.
  151. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  152. * preallocate which never got a corresponding vma will need to be
  153. * freed manually.
  154. */
  155. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  156. {
  157. int i;
  158. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  159. pgd_t pgd = pgdp[i];
  160. if (pgd_val(pgd) != 0) {
  161. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  162. pgdp[i] = native_make_pgd(0);
  163. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  164. pmd_free(mm, pmd);
  165. }
  166. }
  167. }
  168. static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
  169. {
  170. pud_t *pud;
  171. unsigned long addr;
  172. int i;
  173. if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
  174. return;
  175. pud = pud_offset(pgd, 0);
  176. for (addr = i = 0; i < PREALLOCATED_PMDS;
  177. i++, pud++, addr += PUD_SIZE) {
  178. pmd_t *pmd = pmds[i];
  179. if (i >= KERNEL_PGD_BOUNDARY)
  180. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  181. sizeof(pmd_t) * PTRS_PER_PMD);
  182. pud_populate(mm, pud, pmd);
  183. }
  184. }
  185. pgd_t *pgd_alloc(struct mm_struct *mm)
  186. {
  187. pgd_t *pgd;
  188. pmd_t *pmds[PREALLOCATED_PMDS];
  189. unsigned long flags;
  190. pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
  191. if (pgd == NULL)
  192. goto out;
  193. mm->pgd = pgd;
  194. if (preallocate_pmds(pmds) != 0)
  195. goto out_free_pgd;
  196. if (paravirt_pgd_alloc(mm) != 0)
  197. goto out_free_pmds;
  198. /*
  199. * Make sure that pre-populating the pmds is atomic with
  200. * respect to anything walking the pgd_list, so that they
  201. * never see a partially populated pgd.
  202. */
  203. spin_lock_irqsave(&pgd_lock, flags);
  204. pgd_ctor(pgd);
  205. pgd_prepopulate_pmd(mm, pgd, pmds);
  206. spin_unlock_irqrestore(&pgd_lock, flags);
  207. return pgd;
  208. out_free_pmds:
  209. free_pmds(pmds);
  210. out_free_pgd:
  211. free_page((unsigned long)pgd);
  212. out:
  213. return NULL;
  214. }
  215. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  216. {
  217. pgd_mop_up_pmds(mm, pgd);
  218. pgd_dtor(pgd);
  219. paravirt_pgd_free(mm, pgd);
  220. free_page((unsigned long)pgd);
  221. }
  222. int ptep_set_access_flags(struct vm_area_struct *vma,
  223. unsigned long address, pte_t *ptep,
  224. pte_t entry, int dirty)
  225. {
  226. int changed = !pte_same(*ptep, entry);
  227. if (changed && dirty) {
  228. *ptep = entry;
  229. pte_update_defer(vma->vm_mm, address, ptep);
  230. flush_tlb_page(vma, address);
  231. }
  232. return changed;
  233. }
  234. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  235. unsigned long addr, pte_t *ptep)
  236. {
  237. int ret = 0;
  238. if (pte_young(*ptep))
  239. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  240. (unsigned long *) &ptep->pte);
  241. if (ret)
  242. pte_update(vma->vm_mm, addr, ptep);
  243. return ret;
  244. }
  245. int ptep_clear_flush_young(struct vm_area_struct *vma,
  246. unsigned long address, pte_t *ptep)
  247. {
  248. int young;
  249. young = ptep_test_and_clear_young(vma, address, ptep);
  250. if (young)
  251. flush_tlb_page(vma, address);
  252. return young;
  253. }
  254. /**
  255. * reserve_top_address - reserves a hole in the top of kernel address space
  256. * @reserve - size of hole to reserve
  257. *
  258. * Can be used to relocate the fixmap area and poke a hole in the top
  259. * of kernel address space to make room for a hypervisor.
  260. */
  261. void __init reserve_top_address(unsigned long reserve)
  262. {
  263. #ifdef CONFIG_X86_32
  264. BUG_ON(fixmaps_set > 0);
  265. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  266. (int)-reserve);
  267. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  268. __VMALLOC_RESERVE += reserve;
  269. #endif
  270. }
  271. int fixmaps_set;
  272. void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
  273. {
  274. unsigned long address = __fix_to_virt(idx);
  275. if (idx >= __end_of_fixed_addresses) {
  276. BUG();
  277. return;
  278. }
  279. set_pte_vaddr(address, pte);
  280. fixmaps_set++;
  281. }
  282. void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
  283. pgprot_t flags)
  284. {
  285. __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
  286. }