pageattr.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/seq_file.h>
  13. #include <linux/debugfs.h>
  14. #include <linux/pfn.h>
  15. #include <asm/e820.h>
  16. #include <asm/processor.h>
  17. #include <asm/tlbflush.h>
  18. #include <asm/sections.h>
  19. #include <asm/setup.h>
  20. #include <asm/uaccess.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/proto.h>
  23. #include <asm/pat.h>
  24. /*
  25. * The current flushing context - we pass it instead of 5 arguments:
  26. */
  27. struct cpa_data {
  28. unsigned long *vaddr;
  29. pgprot_t mask_set;
  30. pgprot_t mask_clr;
  31. int numpages;
  32. int flags;
  33. unsigned long pfn;
  34. unsigned force_split : 1;
  35. int curpage;
  36. struct page **pages;
  37. };
  38. /*
  39. * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  40. * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  41. * entries change the page attribute in parallel to some other cpu
  42. * splitting a large page entry along with changing the attribute.
  43. */
  44. static DEFINE_SPINLOCK(cpa_lock);
  45. #define CPA_FLUSHTLB 1
  46. #define CPA_ARRAY 2
  47. #define CPA_PAGES_ARRAY 4
  48. #ifdef CONFIG_PROC_FS
  49. static unsigned long direct_pages_count[PG_LEVEL_NUM];
  50. void update_page_count(int level, unsigned long pages)
  51. {
  52. unsigned long flags;
  53. /* Protect against CPA */
  54. spin_lock_irqsave(&pgd_lock, flags);
  55. direct_pages_count[level] += pages;
  56. spin_unlock_irqrestore(&pgd_lock, flags);
  57. }
  58. static void split_page_count(int level)
  59. {
  60. direct_pages_count[level]--;
  61. direct_pages_count[level - 1] += PTRS_PER_PTE;
  62. }
  63. void arch_report_meminfo(struct seq_file *m)
  64. {
  65. seq_printf(m, "DirectMap4k: %8lu kB\n",
  66. direct_pages_count[PG_LEVEL_4K] << 2);
  67. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  68. seq_printf(m, "DirectMap2M: %8lu kB\n",
  69. direct_pages_count[PG_LEVEL_2M] << 11);
  70. #else
  71. seq_printf(m, "DirectMap4M: %8lu kB\n",
  72. direct_pages_count[PG_LEVEL_2M] << 12);
  73. #endif
  74. #ifdef CONFIG_X86_64
  75. if (direct_gbpages)
  76. seq_printf(m, "DirectMap1G: %8lu kB\n",
  77. direct_pages_count[PG_LEVEL_1G] << 20);
  78. #endif
  79. }
  80. #else
  81. static inline void split_page_count(int level) { }
  82. #endif
  83. #ifdef CONFIG_X86_64
  84. static inline unsigned long highmap_start_pfn(void)
  85. {
  86. return __pa(_text) >> PAGE_SHIFT;
  87. }
  88. static inline unsigned long highmap_end_pfn(void)
  89. {
  90. return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
  91. }
  92. #endif
  93. #ifdef CONFIG_DEBUG_PAGEALLOC
  94. # define debug_pagealloc 1
  95. #else
  96. # define debug_pagealloc 0
  97. #endif
  98. static inline int
  99. within(unsigned long addr, unsigned long start, unsigned long end)
  100. {
  101. return addr >= start && addr < end;
  102. }
  103. /*
  104. * Flushing functions
  105. */
  106. /**
  107. * clflush_cache_range - flush a cache range with clflush
  108. * @addr: virtual start address
  109. * @size: number of bytes to flush
  110. *
  111. * clflush is an unordered instruction which needs fencing with mfence
  112. * to avoid ordering issues.
  113. */
  114. void clflush_cache_range(void *vaddr, unsigned int size)
  115. {
  116. void *vend = vaddr + size - 1;
  117. mb();
  118. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  119. clflush(vaddr);
  120. /*
  121. * Flush any possible final partial cacheline:
  122. */
  123. clflush(vend);
  124. mb();
  125. }
  126. static void __cpa_flush_all(void *arg)
  127. {
  128. unsigned long cache = (unsigned long)arg;
  129. /*
  130. * Flush all to work around Errata in early athlons regarding
  131. * large page flushing.
  132. */
  133. __flush_tlb_all();
  134. if (cache && boot_cpu_data.x86 >= 4)
  135. wbinvd();
  136. }
  137. static void cpa_flush_all(unsigned long cache)
  138. {
  139. BUG_ON(irqs_disabled());
  140. on_each_cpu(__cpa_flush_all, (void *) cache, 1);
  141. }
  142. static void __cpa_flush_range(void *arg)
  143. {
  144. /*
  145. * We could optimize that further and do individual per page
  146. * tlb invalidates for a low number of pages. Caveat: we must
  147. * flush the high aliases on 64bit as well.
  148. */
  149. __flush_tlb_all();
  150. }
  151. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  152. {
  153. unsigned int i, level;
  154. unsigned long addr;
  155. BUG_ON(irqs_disabled());
  156. WARN_ON(PAGE_ALIGN(start) != start);
  157. on_each_cpu(__cpa_flush_range, NULL, 1);
  158. if (!cache)
  159. return;
  160. /*
  161. * We only need to flush on one CPU,
  162. * clflush is a MESI-coherent instruction that
  163. * will cause all other CPUs to flush the same
  164. * cachelines:
  165. */
  166. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  167. pte_t *pte = lookup_address(addr, &level);
  168. /*
  169. * Only flush present addresses:
  170. */
  171. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  172. clflush_cache_range((void *) addr, PAGE_SIZE);
  173. }
  174. }
  175. static void cpa_flush_array(unsigned long *start, int numpages, int cache,
  176. int in_flags, struct page **pages)
  177. {
  178. unsigned int i, level;
  179. unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
  180. BUG_ON(irqs_disabled());
  181. on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
  182. if (!cache || do_wbinvd)
  183. return;
  184. /*
  185. * We only need to flush on one CPU,
  186. * clflush is a MESI-coherent instruction that
  187. * will cause all other CPUs to flush the same
  188. * cachelines:
  189. */
  190. for (i = 0; i < numpages; i++) {
  191. unsigned long addr;
  192. pte_t *pte;
  193. if (in_flags & CPA_PAGES_ARRAY)
  194. addr = (unsigned long)page_address(pages[i]);
  195. else
  196. addr = start[i];
  197. pte = lookup_address(addr, &level);
  198. /*
  199. * Only flush present addresses:
  200. */
  201. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  202. clflush_cache_range((void *)addr, PAGE_SIZE);
  203. }
  204. }
  205. /*
  206. * Certain areas of memory on x86 require very specific protection flags,
  207. * for example the BIOS area or kernel text. Callers don't always get this
  208. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  209. * checks and fixes these known static required protection bits.
  210. */
  211. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
  212. unsigned long pfn)
  213. {
  214. pgprot_t forbidden = __pgprot(0);
  215. /*
  216. * The BIOS area between 640k and 1Mb needs to be executable for
  217. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  218. */
  219. if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
  220. pgprot_val(forbidden) |= _PAGE_NX;
  221. /*
  222. * The kernel text needs to be executable for obvious reasons
  223. * Does not cover __inittext since that is gone later on. On
  224. * 64bit we do not enforce !NX on the low mapping
  225. */
  226. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  227. pgprot_val(forbidden) |= _PAGE_NX;
  228. /*
  229. * The .rodata section needs to be read-only. Using the pfn
  230. * catches all aliases.
  231. */
  232. if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
  233. __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
  234. pgprot_val(forbidden) |= _PAGE_RW;
  235. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  236. return prot;
  237. }
  238. /*
  239. * Lookup the page table entry for a virtual address. Return a pointer
  240. * to the entry and the level of the mapping.
  241. *
  242. * Note: We return pud and pmd either when the entry is marked large
  243. * or when the present bit is not set. Otherwise we would return a
  244. * pointer to a nonexisting mapping.
  245. */
  246. pte_t *lookup_address(unsigned long address, unsigned int *level)
  247. {
  248. pgd_t *pgd = pgd_offset_k(address);
  249. pud_t *pud;
  250. pmd_t *pmd;
  251. *level = PG_LEVEL_NONE;
  252. if (pgd_none(*pgd))
  253. return NULL;
  254. pud = pud_offset(pgd, address);
  255. if (pud_none(*pud))
  256. return NULL;
  257. *level = PG_LEVEL_1G;
  258. if (pud_large(*pud) || !pud_present(*pud))
  259. return (pte_t *)pud;
  260. pmd = pmd_offset(pud, address);
  261. if (pmd_none(*pmd))
  262. return NULL;
  263. *level = PG_LEVEL_2M;
  264. if (pmd_large(*pmd) || !pmd_present(*pmd))
  265. return (pte_t *)pmd;
  266. *level = PG_LEVEL_4K;
  267. return pte_offset_kernel(pmd, address);
  268. }
  269. EXPORT_SYMBOL_GPL(lookup_address);
  270. /*
  271. * Set the new pmd in all the pgds we know about:
  272. */
  273. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  274. {
  275. /* change init_mm */
  276. set_pte_atomic(kpte, pte);
  277. #ifdef CONFIG_X86_32
  278. if (!SHARED_KERNEL_PMD) {
  279. struct page *page;
  280. list_for_each_entry(page, &pgd_list, lru) {
  281. pgd_t *pgd;
  282. pud_t *pud;
  283. pmd_t *pmd;
  284. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  285. pud = pud_offset(pgd, address);
  286. pmd = pmd_offset(pud, address);
  287. set_pte_atomic((pte_t *)pmd, pte);
  288. }
  289. }
  290. #endif
  291. }
  292. static int
  293. try_preserve_large_page(pte_t *kpte, unsigned long address,
  294. struct cpa_data *cpa)
  295. {
  296. unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
  297. pte_t new_pte, old_pte, *tmp;
  298. pgprot_t old_prot, new_prot;
  299. int i, do_split = 1;
  300. unsigned int level;
  301. if (cpa->force_split)
  302. return 1;
  303. spin_lock_irqsave(&pgd_lock, flags);
  304. /*
  305. * Check for races, another CPU might have split this page
  306. * up already:
  307. */
  308. tmp = lookup_address(address, &level);
  309. if (tmp != kpte)
  310. goto out_unlock;
  311. switch (level) {
  312. case PG_LEVEL_2M:
  313. psize = PMD_PAGE_SIZE;
  314. pmask = PMD_PAGE_MASK;
  315. break;
  316. #ifdef CONFIG_X86_64
  317. case PG_LEVEL_1G:
  318. psize = PUD_PAGE_SIZE;
  319. pmask = PUD_PAGE_MASK;
  320. break;
  321. #endif
  322. default:
  323. do_split = -EINVAL;
  324. goto out_unlock;
  325. }
  326. /*
  327. * Calculate the number of pages, which fit into this large
  328. * page starting at address:
  329. */
  330. nextpage_addr = (address + psize) & pmask;
  331. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  332. if (numpages < cpa->numpages)
  333. cpa->numpages = numpages;
  334. /*
  335. * We are safe now. Check whether the new pgprot is the same:
  336. */
  337. old_pte = *kpte;
  338. old_prot = new_prot = pte_pgprot(old_pte);
  339. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  340. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  341. /*
  342. * old_pte points to the large page base address. So we need
  343. * to add the offset of the virtual address:
  344. */
  345. pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
  346. cpa->pfn = pfn;
  347. new_prot = static_protections(new_prot, address, pfn);
  348. /*
  349. * We need to check the full range, whether
  350. * static_protection() requires a different pgprot for one of
  351. * the pages in the range we try to preserve:
  352. */
  353. addr = address + PAGE_SIZE;
  354. pfn++;
  355. for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
  356. pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
  357. if (pgprot_val(chk_prot) != pgprot_val(new_prot))
  358. goto out_unlock;
  359. }
  360. /*
  361. * If there are no changes, return. maxpages has been updated
  362. * above:
  363. */
  364. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  365. do_split = 0;
  366. goto out_unlock;
  367. }
  368. /*
  369. * We need to change the attributes. Check, whether we can
  370. * change the large page in one go. We request a split, when
  371. * the address is not aligned and the number of pages is
  372. * smaller than the number of pages in the large page. Note
  373. * that we limited the number of possible pages already to
  374. * the number of pages in the large page.
  375. */
  376. if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
  377. /*
  378. * The address is aligned and the number of pages
  379. * covers the full page.
  380. */
  381. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  382. __set_pmd_pte(kpte, address, new_pte);
  383. cpa->flags |= CPA_FLUSHTLB;
  384. do_split = 0;
  385. }
  386. out_unlock:
  387. spin_unlock_irqrestore(&pgd_lock, flags);
  388. return do_split;
  389. }
  390. static int split_large_page(pte_t *kpte, unsigned long address)
  391. {
  392. unsigned long flags, pfn, pfninc = 1;
  393. unsigned int i, level;
  394. pte_t *pbase, *tmp;
  395. pgprot_t ref_prot;
  396. struct page *base;
  397. if (!debug_pagealloc)
  398. spin_unlock(&cpa_lock);
  399. base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
  400. if (!debug_pagealloc)
  401. spin_lock(&cpa_lock);
  402. if (!base)
  403. return -ENOMEM;
  404. spin_lock_irqsave(&pgd_lock, flags);
  405. /*
  406. * Check for races, another CPU might have split this page
  407. * up for us already:
  408. */
  409. tmp = lookup_address(address, &level);
  410. if (tmp != kpte)
  411. goto out_unlock;
  412. pbase = (pte_t *)page_address(base);
  413. paravirt_alloc_pte(&init_mm, page_to_pfn(base));
  414. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  415. /*
  416. * If we ever want to utilize the PAT bit, we need to
  417. * update this function to make sure it's converted from
  418. * bit 12 to bit 7 when we cross from the 2MB level to
  419. * the 4K level:
  420. */
  421. WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
  422. #ifdef CONFIG_X86_64
  423. if (level == PG_LEVEL_1G) {
  424. pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
  425. pgprot_val(ref_prot) |= _PAGE_PSE;
  426. }
  427. #endif
  428. /*
  429. * Get the target pfn from the original entry:
  430. */
  431. pfn = pte_pfn(*kpte);
  432. for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
  433. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  434. if (address >= (unsigned long)__va(0) &&
  435. address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
  436. split_page_count(level);
  437. #ifdef CONFIG_X86_64
  438. if (address >= (unsigned long)__va(1UL<<32) &&
  439. address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
  440. split_page_count(level);
  441. #endif
  442. /*
  443. * Install the new, split up pagetable.
  444. *
  445. * We use the standard kernel pagetable protections for the new
  446. * pagetable protections, the actual ptes set above control the
  447. * primary protection behavior:
  448. */
  449. __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
  450. /*
  451. * Intel Atom errata AAH41 workaround.
  452. *
  453. * The real fix should be in hw or in a microcode update, but
  454. * we also probabilistically try to reduce the window of having
  455. * a large TLB mixed with 4K TLBs while instruction fetches are
  456. * going on.
  457. */
  458. __flush_tlb_all();
  459. base = NULL;
  460. out_unlock:
  461. /*
  462. * If we dropped out via the lookup_address check under
  463. * pgd_lock then stick the page back into the pool:
  464. */
  465. if (base)
  466. __free_page(base);
  467. spin_unlock_irqrestore(&pgd_lock, flags);
  468. return 0;
  469. }
  470. static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
  471. int primary)
  472. {
  473. /*
  474. * Ignore all non primary paths.
  475. */
  476. if (!primary)
  477. return 0;
  478. /*
  479. * Ignore the NULL PTE for kernel identity mapping, as it is expected
  480. * to have holes.
  481. * Also set numpages to '1' indicating that we processed cpa req for
  482. * one virtual address page and its pfn. TBD: numpages can be set based
  483. * on the initial value and the level returned by lookup_address().
  484. */
  485. if (within(vaddr, PAGE_OFFSET,
  486. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
  487. cpa->numpages = 1;
  488. cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
  489. return 0;
  490. } else {
  491. WARN(1, KERN_WARNING "CPA: called for zero pte. "
  492. "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
  493. *cpa->vaddr);
  494. return -EFAULT;
  495. }
  496. }
  497. static int __change_page_attr(struct cpa_data *cpa, int primary)
  498. {
  499. unsigned long address;
  500. int do_split, err;
  501. unsigned int level;
  502. pte_t *kpte, old_pte;
  503. if (cpa->flags & CPA_PAGES_ARRAY)
  504. address = (unsigned long)page_address(cpa->pages[cpa->curpage]);
  505. else if (cpa->flags & CPA_ARRAY)
  506. address = cpa->vaddr[cpa->curpage];
  507. else
  508. address = *cpa->vaddr;
  509. repeat:
  510. kpte = lookup_address(address, &level);
  511. if (!kpte)
  512. return __cpa_process_fault(cpa, address, primary);
  513. old_pte = *kpte;
  514. if (!pte_val(old_pte))
  515. return __cpa_process_fault(cpa, address, primary);
  516. if (level == PG_LEVEL_4K) {
  517. pte_t new_pte;
  518. pgprot_t new_prot = pte_pgprot(old_pte);
  519. unsigned long pfn = pte_pfn(old_pte);
  520. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  521. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  522. new_prot = static_protections(new_prot, address, pfn);
  523. /*
  524. * We need to keep the pfn from the existing PTE,
  525. * after all we're only going to change it's attributes
  526. * not the memory it points to
  527. */
  528. new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
  529. cpa->pfn = pfn;
  530. /*
  531. * Do we really change anything ?
  532. */
  533. if (pte_val(old_pte) != pte_val(new_pte)) {
  534. set_pte_atomic(kpte, new_pte);
  535. cpa->flags |= CPA_FLUSHTLB;
  536. }
  537. cpa->numpages = 1;
  538. return 0;
  539. }
  540. /*
  541. * Check, whether we can keep the large page intact
  542. * and just change the pte:
  543. */
  544. do_split = try_preserve_large_page(kpte, address, cpa);
  545. /*
  546. * When the range fits into the existing large page,
  547. * return. cp->numpages and cpa->tlbflush have been updated in
  548. * try_large_page:
  549. */
  550. if (do_split <= 0)
  551. return do_split;
  552. /*
  553. * We have to split the large page:
  554. */
  555. err = split_large_page(kpte, address);
  556. if (!err) {
  557. /*
  558. * Do a global flush tlb after splitting the large page
  559. * and before we do the actual change page attribute in the PTE.
  560. *
  561. * With out this, we violate the TLB application note, that says
  562. * "The TLBs may contain both ordinary and large-page
  563. * translations for a 4-KByte range of linear addresses. This
  564. * may occur if software modifies the paging structures so that
  565. * the page size used for the address range changes. If the two
  566. * translations differ with respect to page frame or attributes
  567. * (e.g., permissions), processor behavior is undefined and may
  568. * be implementation-specific."
  569. *
  570. * We do this global tlb flush inside the cpa_lock, so that we
  571. * don't allow any other cpu, with stale tlb entries change the
  572. * page attribute in parallel, that also falls into the
  573. * just split large page entry.
  574. */
  575. flush_tlb_all();
  576. goto repeat;
  577. }
  578. return err;
  579. }
  580. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
  581. static int cpa_process_alias(struct cpa_data *cpa)
  582. {
  583. struct cpa_data alias_cpa;
  584. unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
  585. unsigned long vaddr, remapped;
  586. int ret;
  587. if (cpa->pfn >= max_pfn_mapped)
  588. return 0;
  589. #ifdef CONFIG_X86_64
  590. if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
  591. return 0;
  592. #endif
  593. /*
  594. * No need to redo, when the primary call touched the direct
  595. * mapping already:
  596. */
  597. if (cpa->flags & CPA_PAGES_ARRAY)
  598. vaddr = (unsigned long)page_address(cpa->pages[cpa->curpage]);
  599. else if (cpa->flags & CPA_ARRAY)
  600. vaddr = cpa->vaddr[cpa->curpage];
  601. else
  602. vaddr = *cpa->vaddr;
  603. if (!(within(vaddr, PAGE_OFFSET,
  604. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
  605. alias_cpa = *cpa;
  606. alias_cpa.vaddr = &laddr;
  607. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  608. ret = __change_page_attr_set_clr(&alias_cpa, 0);
  609. if (ret)
  610. return ret;
  611. }
  612. #ifdef CONFIG_X86_64
  613. /*
  614. * If the primary call didn't touch the high mapping already
  615. * and the physical address is inside the kernel map, we need
  616. * to touch the high mapped kernel as well:
  617. */
  618. if (!within(vaddr, (unsigned long)_text, _brk_end) &&
  619. within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
  620. unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
  621. __START_KERNEL_map - phys_base;
  622. alias_cpa = *cpa;
  623. alias_cpa.vaddr = &temp_cpa_vaddr;
  624. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  625. /*
  626. * The high mapping range is imprecise, so ignore the
  627. * return value.
  628. */
  629. __change_page_attr_set_clr(&alias_cpa, 0);
  630. }
  631. #endif
  632. /*
  633. * If the PMD page was partially used for per-cpu remapping,
  634. * the recycled area needs to be split and modified. Because
  635. * the area is always proper subset of a PMD page
  636. * cpa->numpages is guaranteed to be 1 for these areas, so
  637. * there's no need to loop over and check for further remaps.
  638. */
  639. remapped = (unsigned long)pcpu_lpage_remapped((void *)laddr);
  640. if (remapped) {
  641. WARN_ON(cpa->numpages > 1);
  642. alias_cpa = *cpa;
  643. alias_cpa.vaddr = &remapped;
  644. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  645. ret = __change_page_attr_set_clr(&alias_cpa, 0);
  646. if (ret)
  647. return ret;
  648. }
  649. return 0;
  650. }
  651. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
  652. {
  653. int ret, numpages = cpa->numpages;
  654. while (numpages) {
  655. /*
  656. * Store the remaining nr of pages for the large page
  657. * preservation check.
  658. */
  659. cpa->numpages = numpages;
  660. /* for array changes, we can't use large page */
  661. if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
  662. cpa->numpages = 1;
  663. if (!debug_pagealloc)
  664. spin_lock(&cpa_lock);
  665. ret = __change_page_attr(cpa, checkalias);
  666. if (!debug_pagealloc)
  667. spin_unlock(&cpa_lock);
  668. if (ret)
  669. return ret;
  670. if (checkalias) {
  671. ret = cpa_process_alias(cpa);
  672. if (ret)
  673. return ret;
  674. }
  675. /*
  676. * Adjust the number of pages with the result of the
  677. * CPA operation. Either a large page has been
  678. * preserved or a single page update happened.
  679. */
  680. BUG_ON(cpa->numpages > numpages);
  681. numpages -= cpa->numpages;
  682. if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
  683. cpa->curpage++;
  684. else
  685. *cpa->vaddr += cpa->numpages * PAGE_SIZE;
  686. }
  687. return 0;
  688. }
  689. static inline int cache_attr(pgprot_t attr)
  690. {
  691. return pgprot_val(attr) &
  692. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  693. }
  694. static int change_page_attr_set_clr(unsigned long *addr, int numpages,
  695. pgprot_t mask_set, pgprot_t mask_clr,
  696. int force_split, int in_flag,
  697. struct page **pages)
  698. {
  699. struct cpa_data cpa;
  700. int ret, cache, checkalias;
  701. /*
  702. * Check, if we are requested to change a not supported
  703. * feature:
  704. */
  705. mask_set = canon_pgprot(mask_set);
  706. mask_clr = canon_pgprot(mask_clr);
  707. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
  708. return 0;
  709. /* Ensure we are PAGE_SIZE aligned */
  710. if (in_flag & CPA_ARRAY) {
  711. int i;
  712. for (i = 0; i < numpages; i++) {
  713. if (addr[i] & ~PAGE_MASK) {
  714. addr[i] &= PAGE_MASK;
  715. WARN_ON_ONCE(1);
  716. }
  717. }
  718. } else if (!(in_flag & CPA_PAGES_ARRAY)) {
  719. /*
  720. * in_flag of CPA_PAGES_ARRAY implies it is aligned.
  721. * No need to cehck in that case
  722. */
  723. if (*addr & ~PAGE_MASK) {
  724. *addr &= PAGE_MASK;
  725. /*
  726. * People should not be passing in unaligned addresses:
  727. */
  728. WARN_ON_ONCE(1);
  729. }
  730. }
  731. /* Must avoid aliasing mappings in the highmem code */
  732. kmap_flush_unused();
  733. vm_unmap_aliases();
  734. cpa.vaddr = addr;
  735. cpa.pages = pages;
  736. cpa.numpages = numpages;
  737. cpa.mask_set = mask_set;
  738. cpa.mask_clr = mask_clr;
  739. cpa.flags = 0;
  740. cpa.curpage = 0;
  741. cpa.force_split = force_split;
  742. if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
  743. cpa.flags |= in_flag;
  744. /* No alias checking for _NX bit modifications */
  745. checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
  746. ret = __change_page_attr_set_clr(&cpa, checkalias);
  747. /*
  748. * Check whether we really changed something:
  749. */
  750. if (!(cpa.flags & CPA_FLUSHTLB))
  751. goto out;
  752. /*
  753. * No need to flush, when we did not set any of the caching
  754. * attributes:
  755. */
  756. cache = cache_attr(mask_set);
  757. /*
  758. * On success we use clflush, when the CPU supports it to
  759. * avoid the wbindv. If the CPU does not support it and in the
  760. * error case we fall back to cpa_flush_all (which uses
  761. * wbindv):
  762. */
  763. if (!ret && cpu_has_clflush) {
  764. if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
  765. cpa_flush_array(addr, numpages, cache,
  766. cpa.flags, pages);
  767. } else
  768. cpa_flush_range(*addr, numpages, cache);
  769. } else
  770. cpa_flush_all(cache);
  771. out:
  772. return ret;
  773. }
  774. static inline int change_page_attr_set(unsigned long *addr, int numpages,
  775. pgprot_t mask, int array)
  776. {
  777. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
  778. (array ? CPA_ARRAY : 0), NULL);
  779. }
  780. static inline int change_page_attr_clear(unsigned long *addr, int numpages,
  781. pgprot_t mask, int array)
  782. {
  783. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
  784. (array ? CPA_ARRAY : 0), NULL);
  785. }
  786. static inline int cpa_set_pages_array(struct page **pages, int numpages,
  787. pgprot_t mask)
  788. {
  789. return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
  790. CPA_PAGES_ARRAY, pages);
  791. }
  792. static inline int cpa_clear_pages_array(struct page **pages, int numpages,
  793. pgprot_t mask)
  794. {
  795. return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
  796. CPA_PAGES_ARRAY, pages);
  797. }
  798. int _set_memory_uc(unsigned long addr, int numpages)
  799. {
  800. /*
  801. * for now UC MINUS. see comments in ioremap_nocache()
  802. */
  803. return change_page_attr_set(&addr, numpages,
  804. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  805. }
  806. int set_memory_uc(unsigned long addr, int numpages)
  807. {
  808. int ret;
  809. /*
  810. * for now UC MINUS. see comments in ioremap_nocache()
  811. */
  812. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  813. _PAGE_CACHE_UC_MINUS, NULL);
  814. if (ret)
  815. goto out_err;
  816. ret = _set_memory_uc(addr, numpages);
  817. if (ret)
  818. goto out_free;
  819. return 0;
  820. out_free:
  821. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  822. out_err:
  823. return ret;
  824. }
  825. EXPORT_SYMBOL(set_memory_uc);
  826. int set_memory_array_uc(unsigned long *addr, int addrinarray)
  827. {
  828. int i, j;
  829. int ret;
  830. /*
  831. * for now UC MINUS. see comments in ioremap_nocache()
  832. */
  833. for (i = 0; i < addrinarray; i++) {
  834. ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
  835. _PAGE_CACHE_UC_MINUS, NULL);
  836. if (ret)
  837. goto out_free;
  838. }
  839. ret = change_page_attr_set(addr, addrinarray,
  840. __pgprot(_PAGE_CACHE_UC_MINUS), 1);
  841. if (ret)
  842. goto out_free;
  843. return 0;
  844. out_free:
  845. for (j = 0; j < i; j++)
  846. free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
  847. return ret;
  848. }
  849. EXPORT_SYMBOL(set_memory_array_uc);
  850. int _set_memory_wc(unsigned long addr, int numpages)
  851. {
  852. int ret;
  853. ret = change_page_attr_set(&addr, numpages,
  854. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  855. if (!ret) {
  856. ret = change_page_attr_set(&addr, numpages,
  857. __pgprot(_PAGE_CACHE_WC), 0);
  858. }
  859. return ret;
  860. }
  861. int set_memory_wc(unsigned long addr, int numpages)
  862. {
  863. int ret;
  864. if (!pat_enabled)
  865. return set_memory_uc(addr, numpages);
  866. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  867. _PAGE_CACHE_WC, NULL);
  868. if (ret)
  869. goto out_err;
  870. ret = _set_memory_wc(addr, numpages);
  871. if (ret)
  872. goto out_free;
  873. return 0;
  874. out_free:
  875. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  876. out_err:
  877. return ret;
  878. }
  879. EXPORT_SYMBOL(set_memory_wc);
  880. int _set_memory_wb(unsigned long addr, int numpages)
  881. {
  882. return change_page_attr_clear(&addr, numpages,
  883. __pgprot(_PAGE_CACHE_MASK), 0);
  884. }
  885. int set_memory_wb(unsigned long addr, int numpages)
  886. {
  887. int ret;
  888. ret = _set_memory_wb(addr, numpages);
  889. if (ret)
  890. return ret;
  891. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  892. return 0;
  893. }
  894. EXPORT_SYMBOL(set_memory_wb);
  895. int set_memory_array_wb(unsigned long *addr, int addrinarray)
  896. {
  897. int i;
  898. int ret;
  899. ret = change_page_attr_clear(addr, addrinarray,
  900. __pgprot(_PAGE_CACHE_MASK), 1);
  901. if (ret)
  902. return ret;
  903. for (i = 0; i < addrinarray; i++)
  904. free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
  905. return 0;
  906. }
  907. EXPORT_SYMBOL(set_memory_array_wb);
  908. int set_memory_x(unsigned long addr, int numpages)
  909. {
  910. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
  911. }
  912. EXPORT_SYMBOL(set_memory_x);
  913. int set_memory_nx(unsigned long addr, int numpages)
  914. {
  915. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
  916. }
  917. EXPORT_SYMBOL(set_memory_nx);
  918. int set_memory_ro(unsigned long addr, int numpages)
  919. {
  920. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
  921. }
  922. EXPORT_SYMBOL_GPL(set_memory_ro);
  923. int set_memory_rw(unsigned long addr, int numpages)
  924. {
  925. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
  926. }
  927. EXPORT_SYMBOL_GPL(set_memory_rw);
  928. int set_memory_np(unsigned long addr, int numpages)
  929. {
  930. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
  931. }
  932. int set_memory_4k(unsigned long addr, int numpages)
  933. {
  934. return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
  935. __pgprot(0), 1, 0, NULL);
  936. }
  937. int set_pages_uc(struct page *page, int numpages)
  938. {
  939. unsigned long addr = (unsigned long)page_address(page);
  940. return set_memory_uc(addr, numpages);
  941. }
  942. EXPORT_SYMBOL(set_pages_uc);
  943. int set_pages_array_uc(struct page **pages, int addrinarray)
  944. {
  945. unsigned long start;
  946. unsigned long end;
  947. int i;
  948. int free_idx;
  949. for (i = 0; i < addrinarray; i++) {
  950. start = (unsigned long)page_address(pages[i]);
  951. end = start + PAGE_SIZE;
  952. if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
  953. goto err_out;
  954. }
  955. if (cpa_set_pages_array(pages, addrinarray,
  956. __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
  957. return 0; /* Success */
  958. }
  959. err_out:
  960. free_idx = i;
  961. for (i = 0; i < free_idx; i++) {
  962. start = (unsigned long)page_address(pages[i]);
  963. end = start + PAGE_SIZE;
  964. free_memtype(start, end);
  965. }
  966. return -EINVAL;
  967. }
  968. EXPORT_SYMBOL(set_pages_array_uc);
  969. int set_pages_wb(struct page *page, int numpages)
  970. {
  971. unsigned long addr = (unsigned long)page_address(page);
  972. return set_memory_wb(addr, numpages);
  973. }
  974. EXPORT_SYMBOL(set_pages_wb);
  975. int set_pages_array_wb(struct page **pages, int addrinarray)
  976. {
  977. int retval;
  978. unsigned long start;
  979. unsigned long end;
  980. int i;
  981. retval = cpa_clear_pages_array(pages, addrinarray,
  982. __pgprot(_PAGE_CACHE_MASK));
  983. if (retval)
  984. return retval;
  985. for (i = 0; i < addrinarray; i++) {
  986. start = (unsigned long)page_address(pages[i]);
  987. end = start + PAGE_SIZE;
  988. free_memtype(start, end);
  989. }
  990. return 0;
  991. }
  992. EXPORT_SYMBOL(set_pages_array_wb);
  993. int set_pages_x(struct page *page, int numpages)
  994. {
  995. unsigned long addr = (unsigned long)page_address(page);
  996. return set_memory_x(addr, numpages);
  997. }
  998. EXPORT_SYMBOL(set_pages_x);
  999. int set_pages_nx(struct page *page, int numpages)
  1000. {
  1001. unsigned long addr = (unsigned long)page_address(page);
  1002. return set_memory_nx(addr, numpages);
  1003. }
  1004. EXPORT_SYMBOL(set_pages_nx);
  1005. int set_pages_ro(struct page *page, int numpages)
  1006. {
  1007. unsigned long addr = (unsigned long)page_address(page);
  1008. return set_memory_ro(addr, numpages);
  1009. }
  1010. int set_pages_rw(struct page *page, int numpages)
  1011. {
  1012. unsigned long addr = (unsigned long)page_address(page);
  1013. return set_memory_rw(addr, numpages);
  1014. }
  1015. #ifdef CONFIG_DEBUG_PAGEALLOC
  1016. static int __set_pages_p(struct page *page, int numpages)
  1017. {
  1018. unsigned long tempaddr = (unsigned long) page_address(page);
  1019. struct cpa_data cpa = { .vaddr = &tempaddr,
  1020. .numpages = numpages,
  1021. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1022. .mask_clr = __pgprot(0),
  1023. .flags = 0};
  1024. /*
  1025. * No alias checking needed for setting present flag. otherwise,
  1026. * we may need to break large pages for 64-bit kernel text
  1027. * mappings (this adds to complexity if we want to do this from
  1028. * atomic context especially). Let's keep it simple!
  1029. */
  1030. return __change_page_attr_set_clr(&cpa, 0);
  1031. }
  1032. static int __set_pages_np(struct page *page, int numpages)
  1033. {
  1034. unsigned long tempaddr = (unsigned long) page_address(page);
  1035. struct cpa_data cpa = { .vaddr = &tempaddr,
  1036. .numpages = numpages,
  1037. .mask_set = __pgprot(0),
  1038. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1039. .flags = 0};
  1040. /*
  1041. * No alias checking needed for setting not present flag. otherwise,
  1042. * we may need to break large pages for 64-bit kernel text
  1043. * mappings (this adds to complexity if we want to do this from
  1044. * atomic context especially). Let's keep it simple!
  1045. */
  1046. return __change_page_attr_set_clr(&cpa, 0);
  1047. }
  1048. void kernel_map_pages(struct page *page, int numpages, int enable)
  1049. {
  1050. if (PageHighMem(page))
  1051. return;
  1052. if (!enable) {
  1053. debug_check_no_locks_freed(page_address(page),
  1054. numpages * PAGE_SIZE);
  1055. }
  1056. /*
  1057. * If page allocator is not up yet then do not call c_p_a():
  1058. */
  1059. if (!debug_pagealloc_enabled)
  1060. return;
  1061. /*
  1062. * The return value is ignored as the calls cannot fail.
  1063. * Large pages for identity mappings are not used at boot time
  1064. * and hence no memory allocations during large page split.
  1065. */
  1066. if (enable)
  1067. __set_pages_p(page, numpages);
  1068. else
  1069. __set_pages_np(page, numpages);
  1070. /*
  1071. * We should perform an IPI and flush all tlbs,
  1072. * but that can deadlock->flush only current cpu:
  1073. */
  1074. __flush_tlb_all();
  1075. }
  1076. #ifdef CONFIG_HIBERNATION
  1077. bool kernel_page_present(struct page *page)
  1078. {
  1079. unsigned int level;
  1080. pte_t *pte;
  1081. if (PageHighMem(page))
  1082. return false;
  1083. pte = lookup_address((unsigned long)page_address(page), &level);
  1084. return (pte_val(*pte) & _PAGE_PRESENT);
  1085. }
  1086. #endif /* CONFIG_HIBERNATION */
  1087. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1088. /*
  1089. * The testcases use internal knowledge of the implementation that shouldn't
  1090. * be exposed to the rest of the kernel. Include these directly here.
  1091. */
  1092. #ifdef CONFIG_CPA_DEBUG
  1093. #include "pageattr-test.c"
  1094. #endif