init_64.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/bios_ebda.h>
  33. #include <asm/system.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/dma.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/e820.h>
  40. #include <asm/apic.h>
  41. #include <asm/tlb.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/proto.h>
  44. #include <asm/smp.h>
  45. #include <asm/sections.h>
  46. #include <asm/kdebug.h>
  47. #include <asm/numa.h>
  48. #include <asm/cacheflush.h>
  49. #include <asm/init.h>
  50. static unsigned long dma_reserve __initdata;
  51. static int __init parse_direct_gbpages_off(char *arg)
  52. {
  53. direct_gbpages = 0;
  54. return 0;
  55. }
  56. early_param("nogbpages", parse_direct_gbpages_off);
  57. static int __init parse_direct_gbpages_on(char *arg)
  58. {
  59. direct_gbpages = 1;
  60. return 0;
  61. }
  62. early_param("gbpages", parse_direct_gbpages_on);
  63. /*
  64. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  65. * physical space so we can cache the place of the first one and move
  66. * around without checking the pgd every time.
  67. */
  68. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  69. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  70. int force_personality32;
  71. /*
  72. * noexec32=on|off
  73. * Control non executable heap for 32bit processes.
  74. * To control the stack too use noexec=off
  75. *
  76. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  77. * off PROT_READ implies PROT_EXEC
  78. */
  79. static int __init nonx32_setup(char *str)
  80. {
  81. if (!strcmp(str, "on"))
  82. force_personality32 &= ~READ_IMPLIES_EXEC;
  83. else if (!strcmp(str, "off"))
  84. force_personality32 |= READ_IMPLIES_EXEC;
  85. return 1;
  86. }
  87. __setup("noexec32=", nonx32_setup);
  88. /*
  89. * NOTE: This function is marked __ref because it calls __init function
  90. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  91. */
  92. static __ref void *spp_getpage(void)
  93. {
  94. void *ptr;
  95. if (after_bootmem)
  96. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  97. else
  98. ptr = alloc_bootmem_pages(PAGE_SIZE);
  99. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  100. panic("set_pte_phys: cannot allocate page data %s\n",
  101. after_bootmem ? "after bootmem" : "");
  102. }
  103. pr_debug("spp_getpage %p\n", ptr);
  104. return ptr;
  105. }
  106. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  107. {
  108. if (pgd_none(*pgd)) {
  109. pud_t *pud = (pud_t *)spp_getpage();
  110. pgd_populate(&init_mm, pgd, pud);
  111. if (pud != pud_offset(pgd, 0))
  112. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  113. pud, pud_offset(pgd, 0));
  114. }
  115. return pud_offset(pgd, vaddr);
  116. }
  117. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  118. {
  119. if (pud_none(*pud)) {
  120. pmd_t *pmd = (pmd_t *) spp_getpage();
  121. pud_populate(&init_mm, pud, pmd);
  122. if (pmd != pmd_offset(pud, 0))
  123. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  124. pmd, pmd_offset(pud, 0));
  125. }
  126. return pmd_offset(pud, vaddr);
  127. }
  128. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  129. {
  130. if (pmd_none(*pmd)) {
  131. pte_t *pte = (pte_t *) spp_getpage();
  132. pmd_populate_kernel(&init_mm, pmd, pte);
  133. if (pte != pte_offset_kernel(pmd, 0))
  134. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  135. }
  136. return pte_offset_kernel(pmd, vaddr);
  137. }
  138. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  139. {
  140. pud_t *pud;
  141. pmd_t *pmd;
  142. pte_t *pte;
  143. pud = pud_page + pud_index(vaddr);
  144. pmd = fill_pmd(pud, vaddr);
  145. pte = fill_pte(pmd, vaddr);
  146. set_pte(pte, new_pte);
  147. /*
  148. * It's enough to flush this one mapping.
  149. * (PGE mappings get flushed as well)
  150. */
  151. __flush_tlb_one(vaddr);
  152. }
  153. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  154. {
  155. pgd_t *pgd;
  156. pud_t *pud_page;
  157. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  158. pgd = pgd_offset_k(vaddr);
  159. if (pgd_none(*pgd)) {
  160. printk(KERN_ERR
  161. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  162. return;
  163. }
  164. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  165. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  166. }
  167. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  168. {
  169. pgd_t *pgd;
  170. pud_t *pud;
  171. pgd = pgd_offset_k(vaddr);
  172. pud = fill_pud(pgd, vaddr);
  173. return fill_pmd(pud, vaddr);
  174. }
  175. pte_t * __init populate_extra_pte(unsigned long vaddr)
  176. {
  177. pmd_t *pmd;
  178. pmd = populate_extra_pmd(vaddr);
  179. return fill_pte(pmd, vaddr);
  180. }
  181. /*
  182. * Create large page table mappings for a range of physical addresses.
  183. */
  184. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  185. pgprot_t prot)
  186. {
  187. pgd_t *pgd;
  188. pud_t *pud;
  189. pmd_t *pmd;
  190. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  191. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  192. pgd = pgd_offset_k((unsigned long)__va(phys));
  193. if (pgd_none(*pgd)) {
  194. pud = (pud_t *) spp_getpage();
  195. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  196. _PAGE_USER));
  197. }
  198. pud = pud_offset(pgd, (unsigned long)__va(phys));
  199. if (pud_none(*pud)) {
  200. pmd = (pmd_t *) spp_getpage();
  201. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  202. _PAGE_USER));
  203. }
  204. pmd = pmd_offset(pud, phys);
  205. BUG_ON(!pmd_none(*pmd));
  206. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  207. }
  208. }
  209. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  210. {
  211. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  212. }
  213. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  214. {
  215. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  216. }
  217. /*
  218. * The head.S code sets up the kernel high mapping:
  219. *
  220. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  221. *
  222. * phys_addr holds the negative offset to the kernel, which is added
  223. * to the compile time generated pmds. This results in invalid pmds up
  224. * to the point where we hit the physaddr 0 mapping.
  225. *
  226. * We limit the mappings to the region from _text to _end. _end is
  227. * rounded up to the 2MB boundary. This catches the invalid pmds as
  228. * well, as they are located before _text:
  229. */
  230. void __init cleanup_highmap(void)
  231. {
  232. unsigned long vaddr = __START_KERNEL_map;
  233. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  234. pmd_t *pmd = level2_kernel_pgt;
  235. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  236. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  237. if (pmd_none(*pmd))
  238. continue;
  239. if (vaddr < (unsigned long) _text || vaddr > end)
  240. set_pmd(pmd, __pmd(0));
  241. }
  242. }
  243. static __ref void *alloc_low_page(unsigned long *phys)
  244. {
  245. unsigned long pfn = e820_table_end++;
  246. void *adr;
  247. if (after_bootmem) {
  248. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  249. *phys = __pa(adr);
  250. return adr;
  251. }
  252. if (pfn >= e820_table_top)
  253. panic("alloc_low_page: ran out of memory");
  254. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  255. memset(adr, 0, PAGE_SIZE);
  256. *phys = pfn * PAGE_SIZE;
  257. return adr;
  258. }
  259. static __ref void unmap_low_page(void *adr)
  260. {
  261. if (after_bootmem)
  262. return;
  263. early_iounmap(adr, PAGE_SIZE);
  264. }
  265. static unsigned long __meminit
  266. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  267. pgprot_t prot)
  268. {
  269. unsigned pages = 0;
  270. unsigned long last_map_addr = end;
  271. int i;
  272. pte_t *pte = pte_page + pte_index(addr);
  273. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  274. if (addr >= end) {
  275. if (!after_bootmem) {
  276. for(; i < PTRS_PER_PTE; i++, pte++)
  277. set_pte(pte, __pte(0));
  278. }
  279. break;
  280. }
  281. /*
  282. * We will re-use the existing mapping.
  283. * Xen for example has some special requirements, like mapping
  284. * pagetable pages as RO. So assume someone who pre-setup
  285. * these mappings are more intelligent.
  286. */
  287. if (pte_val(*pte)) {
  288. pages++;
  289. continue;
  290. }
  291. if (0)
  292. printk(" pte=%p addr=%lx pte=%016lx\n",
  293. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  294. pages++;
  295. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  296. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  297. }
  298. update_page_count(PG_LEVEL_4K, pages);
  299. return last_map_addr;
  300. }
  301. static unsigned long __meminit
  302. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  303. pgprot_t prot)
  304. {
  305. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  306. return phys_pte_init(pte, address, end, prot);
  307. }
  308. static unsigned long __meminit
  309. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  310. unsigned long page_size_mask, pgprot_t prot)
  311. {
  312. unsigned long pages = 0;
  313. unsigned long last_map_addr = end;
  314. int i = pmd_index(address);
  315. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  316. unsigned long pte_phys;
  317. pmd_t *pmd = pmd_page + pmd_index(address);
  318. pte_t *pte;
  319. pgprot_t new_prot = prot;
  320. if (address >= end) {
  321. if (!after_bootmem) {
  322. for (; i < PTRS_PER_PMD; i++, pmd++)
  323. set_pmd(pmd, __pmd(0));
  324. }
  325. break;
  326. }
  327. if (pmd_val(*pmd)) {
  328. if (!pmd_large(*pmd)) {
  329. spin_lock(&init_mm.page_table_lock);
  330. last_map_addr = phys_pte_update(pmd, address,
  331. end, prot);
  332. spin_unlock(&init_mm.page_table_lock);
  333. continue;
  334. }
  335. /*
  336. * If we are ok with PG_LEVEL_2M mapping, then we will
  337. * use the existing mapping,
  338. *
  339. * Otherwise, we will split the large page mapping but
  340. * use the same existing protection bits except for
  341. * large page, so that we don't violate Intel's TLB
  342. * Application note (317080) which says, while changing
  343. * the page sizes, new and old translations should
  344. * not differ with respect to page frame and
  345. * attributes.
  346. */
  347. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  348. pages++;
  349. continue;
  350. }
  351. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  352. }
  353. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  354. pages++;
  355. spin_lock(&init_mm.page_table_lock);
  356. set_pte((pte_t *)pmd,
  357. pfn_pte(address >> PAGE_SHIFT,
  358. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  359. spin_unlock(&init_mm.page_table_lock);
  360. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  361. continue;
  362. }
  363. pte = alloc_low_page(&pte_phys);
  364. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  365. unmap_low_page(pte);
  366. spin_lock(&init_mm.page_table_lock);
  367. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  368. spin_unlock(&init_mm.page_table_lock);
  369. }
  370. update_page_count(PG_LEVEL_2M, pages);
  371. return last_map_addr;
  372. }
  373. static unsigned long __meminit
  374. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  375. unsigned long page_size_mask, pgprot_t prot)
  376. {
  377. pmd_t *pmd = pmd_offset(pud, 0);
  378. unsigned long last_map_addr;
  379. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  380. __flush_tlb_all();
  381. return last_map_addr;
  382. }
  383. static unsigned long __meminit
  384. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  385. unsigned long page_size_mask)
  386. {
  387. unsigned long pages = 0;
  388. unsigned long last_map_addr = end;
  389. int i = pud_index(addr);
  390. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  391. unsigned long pmd_phys;
  392. pud_t *pud = pud_page + pud_index(addr);
  393. pmd_t *pmd;
  394. pgprot_t prot = PAGE_KERNEL;
  395. if (addr >= end)
  396. break;
  397. if (!after_bootmem &&
  398. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  399. set_pud(pud, __pud(0));
  400. continue;
  401. }
  402. if (pud_val(*pud)) {
  403. if (!pud_large(*pud)) {
  404. last_map_addr = phys_pmd_update(pud, addr, end,
  405. page_size_mask, prot);
  406. continue;
  407. }
  408. /*
  409. * If we are ok with PG_LEVEL_1G mapping, then we will
  410. * use the existing mapping.
  411. *
  412. * Otherwise, we will split the gbpage mapping but use
  413. * the same existing protection bits except for large
  414. * page, so that we don't violate Intel's TLB
  415. * Application note (317080) which says, while changing
  416. * the page sizes, new and old translations should
  417. * not differ with respect to page frame and
  418. * attributes.
  419. */
  420. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  421. pages++;
  422. continue;
  423. }
  424. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  425. }
  426. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  427. pages++;
  428. spin_lock(&init_mm.page_table_lock);
  429. set_pte((pte_t *)pud,
  430. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  431. spin_unlock(&init_mm.page_table_lock);
  432. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  433. continue;
  434. }
  435. pmd = alloc_low_page(&pmd_phys);
  436. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  437. prot);
  438. unmap_low_page(pmd);
  439. spin_lock(&init_mm.page_table_lock);
  440. pud_populate(&init_mm, pud, __va(pmd_phys));
  441. spin_unlock(&init_mm.page_table_lock);
  442. }
  443. __flush_tlb_all();
  444. update_page_count(PG_LEVEL_1G, pages);
  445. return last_map_addr;
  446. }
  447. static unsigned long __meminit
  448. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  449. unsigned long page_size_mask)
  450. {
  451. pud_t *pud;
  452. pud = (pud_t *)pgd_page_vaddr(*pgd);
  453. return phys_pud_init(pud, addr, end, page_size_mask);
  454. }
  455. unsigned long __meminit
  456. kernel_physical_mapping_init(unsigned long start,
  457. unsigned long end,
  458. unsigned long page_size_mask)
  459. {
  460. unsigned long next, last_map_addr = end;
  461. start = (unsigned long)__va(start);
  462. end = (unsigned long)__va(end);
  463. for (; start < end; start = next) {
  464. pgd_t *pgd = pgd_offset_k(start);
  465. unsigned long pud_phys;
  466. pud_t *pud;
  467. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  468. if (next > end)
  469. next = end;
  470. if (pgd_val(*pgd)) {
  471. last_map_addr = phys_pud_update(pgd, __pa(start),
  472. __pa(end), page_size_mask);
  473. continue;
  474. }
  475. pud = alloc_low_page(&pud_phys);
  476. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  477. page_size_mask);
  478. unmap_low_page(pud);
  479. spin_lock(&init_mm.page_table_lock);
  480. pgd_populate(&init_mm, pgd, __va(pud_phys));
  481. spin_unlock(&init_mm.page_table_lock);
  482. }
  483. __flush_tlb_all();
  484. return last_map_addr;
  485. }
  486. #ifndef CONFIG_NUMA
  487. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  488. {
  489. unsigned long bootmap_size, bootmap;
  490. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  491. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  492. PAGE_SIZE);
  493. if (bootmap == -1L)
  494. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  495. /* don't touch min_low_pfn */
  496. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  497. 0, end_pfn);
  498. e820_register_active_regions(0, start_pfn, end_pfn);
  499. free_bootmem_with_active_regions(0, end_pfn);
  500. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  501. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  502. }
  503. #endif
  504. void __init paging_init(void)
  505. {
  506. unsigned long max_zone_pfns[MAX_NR_ZONES];
  507. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  508. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  509. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  510. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  511. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  512. sparse_init();
  513. /*
  514. * clear the default setting with node 0
  515. * note: don't use nodes_clear here, that is really clearing when
  516. * numa support is not compiled in, and later node_set_state
  517. * will not set it back.
  518. */
  519. node_clear_state(0, N_NORMAL_MEMORY);
  520. free_area_init_nodes(max_zone_pfns);
  521. }
  522. /*
  523. * Memory hotplug specific functions
  524. */
  525. #ifdef CONFIG_MEMORY_HOTPLUG
  526. /*
  527. * Memory is added always to NORMAL zone. This means you will never get
  528. * additional DMA/DMA32 memory.
  529. */
  530. int arch_add_memory(int nid, u64 start, u64 size)
  531. {
  532. struct pglist_data *pgdat = NODE_DATA(nid);
  533. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  534. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  535. unsigned long nr_pages = size >> PAGE_SHIFT;
  536. int ret;
  537. last_mapped_pfn = init_memory_mapping(start, start + size);
  538. if (last_mapped_pfn > max_pfn_mapped)
  539. max_pfn_mapped = last_mapped_pfn;
  540. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  541. WARN_ON_ONCE(ret);
  542. return ret;
  543. }
  544. EXPORT_SYMBOL_GPL(arch_add_memory);
  545. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  546. int memory_add_physaddr_to_nid(u64 start)
  547. {
  548. return 0;
  549. }
  550. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  551. #endif
  552. #endif /* CONFIG_MEMORY_HOTPLUG */
  553. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  554. kcore_modules, kcore_vsyscall;
  555. void __init mem_init(void)
  556. {
  557. long codesize, reservedpages, datasize, initsize;
  558. unsigned long absent_pages;
  559. pci_iommu_alloc();
  560. /* clear_bss() already clear the empty_zero_page */
  561. reservedpages = 0;
  562. /* this will put all low memory onto the freelists */
  563. #ifdef CONFIG_NUMA
  564. totalram_pages = numa_free_all_bootmem();
  565. #else
  566. totalram_pages = free_all_bootmem();
  567. #endif
  568. absent_pages = absent_pages_in_range(0, max_pfn);
  569. reservedpages = max_pfn - totalram_pages - absent_pages;
  570. after_bootmem = 1;
  571. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  572. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  573. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  574. /* Register memory areas for /proc/kcore */
  575. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  576. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  577. VMALLOC_END-VMALLOC_START);
  578. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  579. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  580. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  581. VSYSCALL_END - VSYSCALL_START);
  582. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  583. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  584. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  585. max_pfn << (PAGE_SHIFT-10),
  586. codesize >> 10,
  587. absent_pages << (PAGE_SHIFT-10),
  588. reservedpages << (PAGE_SHIFT-10),
  589. datasize >> 10,
  590. initsize >> 10);
  591. }
  592. #ifdef CONFIG_DEBUG_RODATA
  593. const int rodata_test_data = 0xC3;
  594. EXPORT_SYMBOL_GPL(rodata_test_data);
  595. static int kernel_set_to_readonly;
  596. void set_kernel_text_rw(void)
  597. {
  598. unsigned long start = PFN_ALIGN(_stext);
  599. unsigned long end = PFN_ALIGN(__start_rodata);
  600. if (!kernel_set_to_readonly)
  601. return;
  602. pr_debug("Set kernel text: %lx - %lx for read write\n",
  603. start, end);
  604. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  605. }
  606. void set_kernel_text_ro(void)
  607. {
  608. unsigned long start = PFN_ALIGN(_stext);
  609. unsigned long end = PFN_ALIGN(__start_rodata);
  610. if (!kernel_set_to_readonly)
  611. return;
  612. pr_debug("Set kernel text: %lx - %lx for read only\n",
  613. start, end);
  614. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  615. }
  616. void mark_rodata_ro(void)
  617. {
  618. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  619. unsigned long rodata_start =
  620. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  621. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  622. (end - start) >> 10);
  623. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  624. kernel_set_to_readonly = 1;
  625. /*
  626. * The rodata section (but not the kernel text!) should also be
  627. * not-executable.
  628. */
  629. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  630. rodata_test();
  631. #ifdef CONFIG_CPA_DEBUG
  632. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  633. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  634. printk(KERN_INFO "Testing CPA: again\n");
  635. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  636. #endif
  637. }
  638. #endif
  639. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  640. int flags)
  641. {
  642. #ifdef CONFIG_NUMA
  643. int nid, next_nid;
  644. int ret;
  645. #endif
  646. unsigned long pfn = phys >> PAGE_SHIFT;
  647. if (pfn >= max_pfn) {
  648. /*
  649. * This can happen with kdump kernels when accessing
  650. * firmware tables:
  651. */
  652. if (pfn < max_pfn_mapped)
  653. return -EFAULT;
  654. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  655. phys, len);
  656. return -EFAULT;
  657. }
  658. /* Should check here against the e820 map to avoid double free */
  659. #ifdef CONFIG_NUMA
  660. nid = phys_to_nid(phys);
  661. next_nid = phys_to_nid(phys + len - 1);
  662. if (nid == next_nid)
  663. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  664. else
  665. ret = reserve_bootmem(phys, len, flags);
  666. if (ret != 0)
  667. return ret;
  668. #else
  669. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  670. #endif
  671. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  672. dma_reserve += len / PAGE_SIZE;
  673. set_dma_reserve(dma_reserve);
  674. }
  675. return 0;
  676. }
  677. int kern_addr_valid(unsigned long addr)
  678. {
  679. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  680. pgd_t *pgd;
  681. pud_t *pud;
  682. pmd_t *pmd;
  683. pte_t *pte;
  684. if (above != 0 && above != -1UL)
  685. return 0;
  686. pgd = pgd_offset_k(addr);
  687. if (pgd_none(*pgd))
  688. return 0;
  689. pud = pud_offset(pgd, addr);
  690. if (pud_none(*pud))
  691. return 0;
  692. pmd = pmd_offset(pud, addr);
  693. if (pmd_none(*pmd))
  694. return 0;
  695. if (pmd_large(*pmd))
  696. return pfn_valid(pmd_pfn(*pmd));
  697. pte = pte_offset_kernel(pmd, addr);
  698. if (pte_none(*pte))
  699. return 0;
  700. return pfn_valid(pte_pfn(*pte));
  701. }
  702. /*
  703. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  704. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  705. * not need special handling anymore:
  706. */
  707. static struct vm_area_struct gate_vma = {
  708. .vm_start = VSYSCALL_START,
  709. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  710. .vm_page_prot = PAGE_READONLY_EXEC,
  711. .vm_flags = VM_READ | VM_EXEC
  712. };
  713. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  714. {
  715. #ifdef CONFIG_IA32_EMULATION
  716. if (test_tsk_thread_flag(tsk, TIF_IA32))
  717. return NULL;
  718. #endif
  719. return &gate_vma;
  720. }
  721. int in_gate_area(struct task_struct *task, unsigned long addr)
  722. {
  723. struct vm_area_struct *vma = get_gate_vma(task);
  724. if (!vma)
  725. return 0;
  726. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  727. }
  728. /*
  729. * Use this when you have no reliable task/vma, typically from interrupt
  730. * context. It is less reliable than using the task's vma and may give
  731. * false positives:
  732. */
  733. int in_gate_area_no_task(unsigned long addr)
  734. {
  735. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  736. }
  737. const char *arch_vma_name(struct vm_area_struct *vma)
  738. {
  739. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  740. return "[vdso]";
  741. if (vma == &gate_vma)
  742. return "[vsyscall]";
  743. return NULL;
  744. }
  745. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  746. /*
  747. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  748. */
  749. static long __meminitdata addr_start, addr_end;
  750. static void __meminitdata *p_start, *p_end;
  751. static int __meminitdata node_start;
  752. int __meminit
  753. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  754. {
  755. unsigned long addr = (unsigned long)start_page;
  756. unsigned long end = (unsigned long)(start_page + size);
  757. unsigned long next;
  758. pgd_t *pgd;
  759. pud_t *pud;
  760. pmd_t *pmd;
  761. for (; addr < end; addr = next) {
  762. void *p = NULL;
  763. pgd = vmemmap_pgd_populate(addr, node);
  764. if (!pgd)
  765. return -ENOMEM;
  766. pud = vmemmap_pud_populate(pgd, addr, node);
  767. if (!pud)
  768. return -ENOMEM;
  769. if (!cpu_has_pse) {
  770. next = (addr + PAGE_SIZE) & PAGE_MASK;
  771. pmd = vmemmap_pmd_populate(pud, addr, node);
  772. if (!pmd)
  773. return -ENOMEM;
  774. p = vmemmap_pte_populate(pmd, addr, node);
  775. if (!p)
  776. return -ENOMEM;
  777. addr_end = addr + PAGE_SIZE;
  778. p_end = p + PAGE_SIZE;
  779. } else {
  780. next = pmd_addr_end(addr, end);
  781. pmd = pmd_offset(pud, addr);
  782. if (pmd_none(*pmd)) {
  783. pte_t entry;
  784. p = vmemmap_alloc_block(PMD_SIZE, node);
  785. if (!p)
  786. return -ENOMEM;
  787. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  788. PAGE_KERNEL_LARGE);
  789. set_pmd(pmd, __pmd(pte_val(entry)));
  790. /* check to see if we have contiguous blocks */
  791. if (p_end != p || node_start != node) {
  792. if (p_start)
  793. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  794. addr_start, addr_end-1, p_start, p_end-1, node_start);
  795. addr_start = addr;
  796. node_start = node;
  797. p_start = p;
  798. }
  799. addr_end = addr + PMD_SIZE;
  800. p_end = p + PMD_SIZE;
  801. } else
  802. vmemmap_verify((pte_t *)pmd, node, addr, next);
  803. }
  804. }
  805. return 0;
  806. }
  807. void __meminit vmemmap_populate_print_last(void)
  808. {
  809. if (p_start) {
  810. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  811. addr_start, addr_end-1, p_start, p_end-1, node_start);
  812. p_start = NULL;
  813. p_end = NULL;
  814. node_start = 0;
  815. }
  816. }
  817. #endif