vmx.c 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #include <asm/mce.h>
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. static int __read_mostly bypass_guest_pf = 1;
  37. module_param(bypass_guest_pf, bool, S_IRUGO);
  38. static int __read_mostly enable_vpid = 1;
  39. module_param_named(vpid, enable_vpid, bool, 0444);
  40. static int __read_mostly flexpriority_enabled = 1;
  41. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  42. static int __read_mostly enable_ept = 1;
  43. module_param_named(ept, enable_ept, bool, S_IRUGO);
  44. static int __read_mostly emulate_invalid_guest_state = 0;
  45. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  46. struct vmcs {
  47. u32 revision_id;
  48. u32 abort;
  49. char data[0];
  50. };
  51. struct vcpu_vmx {
  52. struct kvm_vcpu vcpu;
  53. struct list_head local_vcpus_link;
  54. unsigned long host_rsp;
  55. int launched;
  56. u8 fail;
  57. u32 idt_vectoring_info;
  58. struct kvm_msr_entry *guest_msrs;
  59. struct kvm_msr_entry *host_msrs;
  60. int nmsrs;
  61. int save_nmsrs;
  62. int msr_offset_efer;
  63. #ifdef CONFIG_X86_64
  64. int msr_offset_kernel_gs_base;
  65. #endif
  66. struct vmcs *vmcs;
  67. struct {
  68. int loaded;
  69. u16 fs_sel, gs_sel, ldt_sel;
  70. int gs_ldt_reload_needed;
  71. int fs_reload_needed;
  72. int guest_efer_loaded;
  73. } host_state;
  74. struct {
  75. struct {
  76. bool pending;
  77. u8 vector;
  78. unsigned rip;
  79. } irq;
  80. } rmode;
  81. int vpid;
  82. bool emulation_required;
  83. enum emulation_result invalid_state_emulation_result;
  84. /* Support for vnmi-less CPUs */
  85. int soft_vnmi_blocked;
  86. ktime_t entry_time;
  87. s64 vnmi_blocked_time;
  88. u32 exit_reason;
  89. };
  90. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  91. {
  92. return container_of(vcpu, struct vcpu_vmx, vcpu);
  93. }
  94. static int init_rmode(struct kvm *kvm);
  95. static u64 construct_eptp(unsigned long root_hpa);
  96. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  97. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  98. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  99. static unsigned long *vmx_io_bitmap_a;
  100. static unsigned long *vmx_io_bitmap_b;
  101. static unsigned long *vmx_msr_bitmap_legacy;
  102. static unsigned long *vmx_msr_bitmap_longmode;
  103. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  104. static DEFINE_SPINLOCK(vmx_vpid_lock);
  105. static struct vmcs_config {
  106. int size;
  107. int order;
  108. u32 revision_id;
  109. u32 pin_based_exec_ctrl;
  110. u32 cpu_based_exec_ctrl;
  111. u32 cpu_based_2nd_exec_ctrl;
  112. u32 vmexit_ctrl;
  113. u32 vmentry_ctrl;
  114. } vmcs_config;
  115. static struct vmx_capability {
  116. u32 ept;
  117. u32 vpid;
  118. } vmx_capability;
  119. #define VMX_SEGMENT_FIELD(seg) \
  120. [VCPU_SREG_##seg] = { \
  121. .selector = GUEST_##seg##_SELECTOR, \
  122. .base = GUEST_##seg##_BASE, \
  123. .limit = GUEST_##seg##_LIMIT, \
  124. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  125. }
  126. static struct kvm_vmx_segment_field {
  127. unsigned selector;
  128. unsigned base;
  129. unsigned limit;
  130. unsigned ar_bytes;
  131. } kvm_vmx_segment_fields[] = {
  132. VMX_SEGMENT_FIELD(CS),
  133. VMX_SEGMENT_FIELD(DS),
  134. VMX_SEGMENT_FIELD(ES),
  135. VMX_SEGMENT_FIELD(FS),
  136. VMX_SEGMENT_FIELD(GS),
  137. VMX_SEGMENT_FIELD(SS),
  138. VMX_SEGMENT_FIELD(TR),
  139. VMX_SEGMENT_FIELD(LDTR),
  140. };
  141. /*
  142. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  143. * away by decrementing the array size.
  144. */
  145. static const u32 vmx_msr_index[] = {
  146. #ifdef CONFIG_X86_64
  147. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  148. #endif
  149. MSR_EFER, MSR_K6_STAR,
  150. };
  151. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  152. static void load_msrs(struct kvm_msr_entry *e, int n)
  153. {
  154. int i;
  155. for (i = 0; i < n; ++i)
  156. wrmsrl(e[i].index, e[i].data);
  157. }
  158. static void save_msrs(struct kvm_msr_entry *e, int n)
  159. {
  160. int i;
  161. for (i = 0; i < n; ++i)
  162. rdmsrl(e[i].index, e[i].data);
  163. }
  164. static inline int is_page_fault(u32 intr_info)
  165. {
  166. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  167. INTR_INFO_VALID_MASK)) ==
  168. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  169. }
  170. static inline int is_no_device(u32 intr_info)
  171. {
  172. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  173. INTR_INFO_VALID_MASK)) ==
  174. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  175. }
  176. static inline int is_invalid_opcode(u32 intr_info)
  177. {
  178. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  179. INTR_INFO_VALID_MASK)) ==
  180. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  181. }
  182. static inline int is_external_interrupt(u32 intr_info)
  183. {
  184. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  185. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  186. }
  187. static inline int is_machine_check(u32 intr_info)
  188. {
  189. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  190. INTR_INFO_VALID_MASK)) ==
  191. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  192. }
  193. static inline int cpu_has_vmx_msr_bitmap(void)
  194. {
  195. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  196. }
  197. static inline int cpu_has_vmx_tpr_shadow(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  200. }
  201. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  202. {
  203. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  204. }
  205. static inline int cpu_has_secondary_exec_ctrls(void)
  206. {
  207. return vmcs_config.cpu_based_exec_ctrl &
  208. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  209. }
  210. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  211. {
  212. return vmcs_config.cpu_based_2nd_exec_ctrl &
  213. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  214. }
  215. static inline bool cpu_has_vmx_flexpriority(void)
  216. {
  217. return cpu_has_vmx_tpr_shadow() &&
  218. cpu_has_vmx_virtualize_apic_accesses();
  219. }
  220. static inline int cpu_has_vmx_invept_individual_addr(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_invept_context(void)
  225. {
  226. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  227. }
  228. static inline int cpu_has_vmx_invept_global(void)
  229. {
  230. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  231. }
  232. static inline int cpu_has_vmx_ept(void)
  233. {
  234. return vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_ENABLE_EPT;
  236. }
  237. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  238. {
  239. return flexpriority_enabled &&
  240. (cpu_has_vmx_virtualize_apic_accesses()) &&
  241. (irqchip_in_kernel(kvm));
  242. }
  243. static inline int cpu_has_vmx_vpid(void)
  244. {
  245. return vmcs_config.cpu_based_2nd_exec_ctrl &
  246. SECONDARY_EXEC_ENABLE_VPID;
  247. }
  248. static inline int cpu_has_virtual_nmis(void)
  249. {
  250. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  251. }
  252. static inline bool report_flexpriority(void)
  253. {
  254. return flexpriority_enabled;
  255. }
  256. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  257. {
  258. int i;
  259. for (i = 0; i < vmx->nmsrs; ++i)
  260. if (vmx->guest_msrs[i].index == msr)
  261. return i;
  262. return -1;
  263. }
  264. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  265. {
  266. struct {
  267. u64 vpid : 16;
  268. u64 rsvd : 48;
  269. u64 gva;
  270. } operand = { vpid, 0, gva };
  271. asm volatile (__ex(ASM_VMX_INVVPID)
  272. /* CF==1 or ZF==1 --> rc = -1 */
  273. "; ja 1f ; ud2 ; 1:"
  274. : : "a"(&operand), "c"(ext) : "cc", "memory");
  275. }
  276. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  277. {
  278. struct {
  279. u64 eptp, gpa;
  280. } operand = {eptp, gpa};
  281. asm volatile (__ex(ASM_VMX_INVEPT)
  282. /* CF==1 or ZF==1 --> rc = -1 */
  283. "; ja 1f ; ud2 ; 1:\n"
  284. : : "a" (&operand), "c" (ext) : "cc", "memory");
  285. }
  286. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  287. {
  288. int i;
  289. i = __find_msr_index(vmx, msr);
  290. if (i >= 0)
  291. return &vmx->guest_msrs[i];
  292. return NULL;
  293. }
  294. static void vmcs_clear(struct vmcs *vmcs)
  295. {
  296. u64 phys_addr = __pa(vmcs);
  297. u8 error;
  298. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  299. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  300. : "cc", "memory");
  301. if (error)
  302. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  303. vmcs, phys_addr);
  304. }
  305. static void __vcpu_clear(void *arg)
  306. {
  307. struct vcpu_vmx *vmx = arg;
  308. int cpu = raw_smp_processor_id();
  309. if (vmx->vcpu.cpu == cpu)
  310. vmcs_clear(vmx->vmcs);
  311. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  312. per_cpu(current_vmcs, cpu) = NULL;
  313. rdtscll(vmx->vcpu.arch.host_tsc);
  314. list_del(&vmx->local_vcpus_link);
  315. vmx->vcpu.cpu = -1;
  316. vmx->launched = 0;
  317. }
  318. static void vcpu_clear(struct vcpu_vmx *vmx)
  319. {
  320. if (vmx->vcpu.cpu == -1)
  321. return;
  322. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  323. }
  324. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  325. {
  326. if (vmx->vpid == 0)
  327. return;
  328. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  329. }
  330. static inline void ept_sync_global(void)
  331. {
  332. if (cpu_has_vmx_invept_global())
  333. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  334. }
  335. static inline void ept_sync_context(u64 eptp)
  336. {
  337. if (enable_ept) {
  338. if (cpu_has_vmx_invept_context())
  339. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  340. else
  341. ept_sync_global();
  342. }
  343. }
  344. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  345. {
  346. if (enable_ept) {
  347. if (cpu_has_vmx_invept_individual_addr())
  348. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  349. eptp, gpa);
  350. else
  351. ept_sync_context(eptp);
  352. }
  353. }
  354. static unsigned long vmcs_readl(unsigned long field)
  355. {
  356. unsigned long value;
  357. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  358. : "=a"(value) : "d"(field) : "cc");
  359. return value;
  360. }
  361. static u16 vmcs_read16(unsigned long field)
  362. {
  363. return vmcs_readl(field);
  364. }
  365. static u32 vmcs_read32(unsigned long field)
  366. {
  367. return vmcs_readl(field);
  368. }
  369. static u64 vmcs_read64(unsigned long field)
  370. {
  371. #ifdef CONFIG_X86_64
  372. return vmcs_readl(field);
  373. #else
  374. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  375. #endif
  376. }
  377. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  378. {
  379. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  380. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  381. dump_stack();
  382. }
  383. static void vmcs_writel(unsigned long field, unsigned long value)
  384. {
  385. u8 error;
  386. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  387. : "=q"(error) : "a"(value), "d"(field) : "cc");
  388. if (unlikely(error))
  389. vmwrite_error(field, value);
  390. }
  391. static void vmcs_write16(unsigned long field, u16 value)
  392. {
  393. vmcs_writel(field, value);
  394. }
  395. static void vmcs_write32(unsigned long field, u32 value)
  396. {
  397. vmcs_writel(field, value);
  398. }
  399. static void vmcs_write64(unsigned long field, u64 value)
  400. {
  401. vmcs_writel(field, value);
  402. #ifndef CONFIG_X86_64
  403. asm volatile ("");
  404. vmcs_writel(field+1, value >> 32);
  405. #endif
  406. }
  407. static void vmcs_clear_bits(unsigned long field, u32 mask)
  408. {
  409. vmcs_writel(field, vmcs_readl(field) & ~mask);
  410. }
  411. static void vmcs_set_bits(unsigned long field, u32 mask)
  412. {
  413. vmcs_writel(field, vmcs_readl(field) | mask);
  414. }
  415. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  416. {
  417. u32 eb;
  418. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  419. if (!vcpu->fpu_active)
  420. eb |= 1u << NM_VECTOR;
  421. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  422. if (vcpu->guest_debug &
  423. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  424. eb |= 1u << DB_VECTOR;
  425. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  426. eb |= 1u << BP_VECTOR;
  427. }
  428. if (vcpu->arch.rmode.vm86_active)
  429. eb = ~0;
  430. if (enable_ept)
  431. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  432. vmcs_write32(EXCEPTION_BITMAP, eb);
  433. }
  434. static void reload_tss(void)
  435. {
  436. /*
  437. * VT restores TR but not its size. Useless.
  438. */
  439. struct descriptor_table gdt;
  440. struct desc_struct *descs;
  441. kvm_get_gdt(&gdt);
  442. descs = (void *)gdt.base;
  443. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  444. load_TR_desc();
  445. }
  446. static void load_transition_efer(struct vcpu_vmx *vmx)
  447. {
  448. int efer_offset = vmx->msr_offset_efer;
  449. u64 host_efer = vmx->host_msrs[efer_offset].data;
  450. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  451. u64 ignore_bits;
  452. if (efer_offset < 0)
  453. return;
  454. /*
  455. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  456. * outside long mode
  457. */
  458. ignore_bits = EFER_NX | EFER_SCE;
  459. #ifdef CONFIG_X86_64
  460. ignore_bits |= EFER_LMA | EFER_LME;
  461. /* SCE is meaningful only in long mode on Intel */
  462. if (guest_efer & EFER_LMA)
  463. ignore_bits &= ~(u64)EFER_SCE;
  464. #endif
  465. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  466. return;
  467. vmx->host_state.guest_efer_loaded = 1;
  468. guest_efer &= ~ignore_bits;
  469. guest_efer |= host_efer & ignore_bits;
  470. wrmsrl(MSR_EFER, guest_efer);
  471. vmx->vcpu.stat.efer_reload++;
  472. }
  473. static void reload_host_efer(struct vcpu_vmx *vmx)
  474. {
  475. if (vmx->host_state.guest_efer_loaded) {
  476. vmx->host_state.guest_efer_loaded = 0;
  477. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  478. }
  479. }
  480. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  481. {
  482. struct vcpu_vmx *vmx = to_vmx(vcpu);
  483. if (vmx->host_state.loaded)
  484. return;
  485. vmx->host_state.loaded = 1;
  486. /*
  487. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  488. * allow segment selectors with cpl > 0 or ti == 1.
  489. */
  490. vmx->host_state.ldt_sel = kvm_read_ldt();
  491. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  492. vmx->host_state.fs_sel = kvm_read_fs();
  493. if (!(vmx->host_state.fs_sel & 7)) {
  494. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  495. vmx->host_state.fs_reload_needed = 0;
  496. } else {
  497. vmcs_write16(HOST_FS_SELECTOR, 0);
  498. vmx->host_state.fs_reload_needed = 1;
  499. }
  500. vmx->host_state.gs_sel = kvm_read_gs();
  501. if (!(vmx->host_state.gs_sel & 7))
  502. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  503. else {
  504. vmcs_write16(HOST_GS_SELECTOR, 0);
  505. vmx->host_state.gs_ldt_reload_needed = 1;
  506. }
  507. #ifdef CONFIG_X86_64
  508. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  509. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  510. #else
  511. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  512. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  513. #endif
  514. #ifdef CONFIG_X86_64
  515. if (is_long_mode(&vmx->vcpu))
  516. save_msrs(vmx->host_msrs +
  517. vmx->msr_offset_kernel_gs_base, 1);
  518. #endif
  519. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  520. load_transition_efer(vmx);
  521. }
  522. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  523. {
  524. unsigned long flags;
  525. if (!vmx->host_state.loaded)
  526. return;
  527. ++vmx->vcpu.stat.host_state_reload;
  528. vmx->host_state.loaded = 0;
  529. if (vmx->host_state.fs_reload_needed)
  530. kvm_load_fs(vmx->host_state.fs_sel);
  531. if (vmx->host_state.gs_ldt_reload_needed) {
  532. kvm_load_ldt(vmx->host_state.ldt_sel);
  533. /*
  534. * If we have to reload gs, we must take care to
  535. * preserve our gs base.
  536. */
  537. local_irq_save(flags);
  538. kvm_load_gs(vmx->host_state.gs_sel);
  539. #ifdef CONFIG_X86_64
  540. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  541. #endif
  542. local_irq_restore(flags);
  543. }
  544. reload_tss();
  545. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  546. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  547. reload_host_efer(vmx);
  548. }
  549. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  550. {
  551. preempt_disable();
  552. __vmx_load_host_state(vmx);
  553. preempt_enable();
  554. }
  555. /*
  556. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  557. * vcpu mutex is already taken.
  558. */
  559. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  560. {
  561. struct vcpu_vmx *vmx = to_vmx(vcpu);
  562. u64 phys_addr = __pa(vmx->vmcs);
  563. u64 tsc_this, delta, new_offset;
  564. if (vcpu->cpu != cpu) {
  565. vcpu_clear(vmx);
  566. kvm_migrate_timers(vcpu);
  567. vpid_sync_vcpu_all(vmx);
  568. local_irq_disable();
  569. list_add(&vmx->local_vcpus_link,
  570. &per_cpu(vcpus_on_cpu, cpu));
  571. local_irq_enable();
  572. }
  573. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  574. u8 error;
  575. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  576. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  577. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  578. : "cc");
  579. if (error)
  580. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  581. vmx->vmcs, phys_addr);
  582. }
  583. if (vcpu->cpu != cpu) {
  584. struct descriptor_table dt;
  585. unsigned long sysenter_esp;
  586. vcpu->cpu = cpu;
  587. /*
  588. * Linux uses per-cpu TSS and GDT, so set these when switching
  589. * processors.
  590. */
  591. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  592. kvm_get_gdt(&dt);
  593. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  594. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  595. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  596. /*
  597. * Make sure the time stamp counter is monotonous.
  598. */
  599. rdtscll(tsc_this);
  600. if (tsc_this < vcpu->arch.host_tsc) {
  601. delta = vcpu->arch.host_tsc - tsc_this;
  602. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  603. vmcs_write64(TSC_OFFSET, new_offset);
  604. }
  605. }
  606. }
  607. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  608. {
  609. __vmx_load_host_state(to_vmx(vcpu));
  610. }
  611. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  612. {
  613. if (vcpu->fpu_active)
  614. return;
  615. vcpu->fpu_active = 1;
  616. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  617. if (vcpu->arch.cr0 & X86_CR0_TS)
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  622. {
  623. if (!vcpu->fpu_active)
  624. return;
  625. vcpu->fpu_active = 0;
  626. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  627. update_exception_bitmap(vcpu);
  628. }
  629. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  630. {
  631. return vmcs_readl(GUEST_RFLAGS);
  632. }
  633. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  634. {
  635. if (vcpu->arch.rmode.vm86_active)
  636. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  637. vmcs_writel(GUEST_RFLAGS, rflags);
  638. }
  639. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  640. {
  641. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  642. int ret = 0;
  643. if (interruptibility & GUEST_INTR_STATE_STI)
  644. ret |= X86_SHADOW_INT_STI;
  645. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  646. ret |= X86_SHADOW_INT_MOV_SS;
  647. return ret & mask;
  648. }
  649. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  650. {
  651. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  652. u32 interruptibility = interruptibility_old;
  653. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  654. if (mask & X86_SHADOW_INT_MOV_SS)
  655. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  656. if (mask & X86_SHADOW_INT_STI)
  657. interruptibility |= GUEST_INTR_STATE_STI;
  658. if ((interruptibility != interruptibility_old))
  659. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  660. }
  661. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  662. {
  663. unsigned long rip;
  664. rip = kvm_rip_read(vcpu);
  665. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  666. kvm_rip_write(vcpu, rip);
  667. /* skipping an emulated instruction also counts */
  668. vmx_set_interrupt_shadow(vcpu, 0);
  669. }
  670. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  671. bool has_error_code, u32 error_code)
  672. {
  673. struct vcpu_vmx *vmx = to_vmx(vcpu);
  674. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  675. if (has_error_code) {
  676. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  677. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  678. }
  679. if (vcpu->arch.rmode.vm86_active) {
  680. vmx->rmode.irq.pending = true;
  681. vmx->rmode.irq.vector = nr;
  682. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  683. if (nr == BP_VECTOR || nr == OF_VECTOR)
  684. vmx->rmode.irq.rip++;
  685. intr_info |= INTR_TYPE_SOFT_INTR;
  686. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  687. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  688. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  689. return;
  690. }
  691. if (kvm_exception_is_soft(nr)) {
  692. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  693. vmx->vcpu.arch.event_exit_inst_len);
  694. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  695. } else
  696. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  697. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  698. }
  699. /*
  700. * Swap MSR entry in host/guest MSR entry array.
  701. */
  702. #ifdef CONFIG_X86_64
  703. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  704. {
  705. struct kvm_msr_entry tmp;
  706. tmp = vmx->guest_msrs[to];
  707. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  708. vmx->guest_msrs[from] = tmp;
  709. tmp = vmx->host_msrs[to];
  710. vmx->host_msrs[to] = vmx->host_msrs[from];
  711. vmx->host_msrs[from] = tmp;
  712. }
  713. #endif
  714. /*
  715. * Set up the vmcs to automatically save and restore system
  716. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  717. * mode, as fiddling with msrs is very expensive.
  718. */
  719. static void setup_msrs(struct vcpu_vmx *vmx)
  720. {
  721. int save_nmsrs;
  722. unsigned long *msr_bitmap;
  723. vmx_load_host_state(vmx);
  724. save_nmsrs = 0;
  725. #ifdef CONFIG_X86_64
  726. if (is_long_mode(&vmx->vcpu)) {
  727. int index;
  728. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  729. if (index >= 0)
  730. move_msr_up(vmx, index, save_nmsrs++);
  731. index = __find_msr_index(vmx, MSR_LSTAR);
  732. if (index >= 0)
  733. move_msr_up(vmx, index, save_nmsrs++);
  734. index = __find_msr_index(vmx, MSR_CSTAR);
  735. if (index >= 0)
  736. move_msr_up(vmx, index, save_nmsrs++);
  737. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  738. if (index >= 0)
  739. move_msr_up(vmx, index, save_nmsrs++);
  740. /*
  741. * MSR_K6_STAR is only needed on long mode guests, and only
  742. * if efer.sce is enabled.
  743. */
  744. index = __find_msr_index(vmx, MSR_K6_STAR);
  745. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  746. move_msr_up(vmx, index, save_nmsrs++);
  747. }
  748. #endif
  749. vmx->save_nmsrs = save_nmsrs;
  750. #ifdef CONFIG_X86_64
  751. vmx->msr_offset_kernel_gs_base =
  752. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  753. #endif
  754. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  755. if (cpu_has_vmx_msr_bitmap()) {
  756. if (is_long_mode(&vmx->vcpu))
  757. msr_bitmap = vmx_msr_bitmap_longmode;
  758. else
  759. msr_bitmap = vmx_msr_bitmap_legacy;
  760. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  761. }
  762. }
  763. /*
  764. * reads and returns guest's timestamp counter "register"
  765. * guest_tsc = host_tsc + tsc_offset -- 21.3
  766. */
  767. static u64 guest_read_tsc(void)
  768. {
  769. u64 host_tsc, tsc_offset;
  770. rdtscll(host_tsc);
  771. tsc_offset = vmcs_read64(TSC_OFFSET);
  772. return host_tsc + tsc_offset;
  773. }
  774. /*
  775. * writes 'guest_tsc' into guest's timestamp counter "register"
  776. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  777. */
  778. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  779. {
  780. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  781. }
  782. /*
  783. * Reads an msr value (of 'msr_index') into 'pdata'.
  784. * Returns 0 on success, non-0 otherwise.
  785. * Assumes vcpu_load() was already called.
  786. */
  787. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  788. {
  789. u64 data;
  790. struct kvm_msr_entry *msr;
  791. if (!pdata) {
  792. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  793. return -EINVAL;
  794. }
  795. switch (msr_index) {
  796. #ifdef CONFIG_X86_64
  797. case MSR_FS_BASE:
  798. data = vmcs_readl(GUEST_FS_BASE);
  799. break;
  800. case MSR_GS_BASE:
  801. data = vmcs_readl(GUEST_GS_BASE);
  802. break;
  803. case MSR_EFER:
  804. return kvm_get_msr_common(vcpu, msr_index, pdata);
  805. #endif
  806. case MSR_IA32_TIME_STAMP_COUNTER:
  807. data = guest_read_tsc();
  808. break;
  809. case MSR_IA32_SYSENTER_CS:
  810. data = vmcs_read32(GUEST_SYSENTER_CS);
  811. break;
  812. case MSR_IA32_SYSENTER_EIP:
  813. data = vmcs_readl(GUEST_SYSENTER_EIP);
  814. break;
  815. case MSR_IA32_SYSENTER_ESP:
  816. data = vmcs_readl(GUEST_SYSENTER_ESP);
  817. break;
  818. default:
  819. vmx_load_host_state(to_vmx(vcpu));
  820. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  821. if (msr) {
  822. data = msr->data;
  823. break;
  824. }
  825. return kvm_get_msr_common(vcpu, msr_index, pdata);
  826. }
  827. *pdata = data;
  828. return 0;
  829. }
  830. /*
  831. * Writes msr value into into the appropriate "register".
  832. * Returns 0 on success, non-0 otherwise.
  833. * Assumes vcpu_load() was already called.
  834. */
  835. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  836. {
  837. struct vcpu_vmx *vmx = to_vmx(vcpu);
  838. struct kvm_msr_entry *msr;
  839. u64 host_tsc;
  840. int ret = 0;
  841. switch (msr_index) {
  842. case MSR_EFER:
  843. vmx_load_host_state(vmx);
  844. ret = kvm_set_msr_common(vcpu, msr_index, data);
  845. break;
  846. #ifdef CONFIG_X86_64
  847. case MSR_FS_BASE:
  848. vmcs_writel(GUEST_FS_BASE, data);
  849. break;
  850. case MSR_GS_BASE:
  851. vmcs_writel(GUEST_GS_BASE, data);
  852. break;
  853. #endif
  854. case MSR_IA32_SYSENTER_CS:
  855. vmcs_write32(GUEST_SYSENTER_CS, data);
  856. break;
  857. case MSR_IA32_SYSENTER_EIP:
  858. vmcs_writel(GUEST_SYSENTER_EIP, data);
  859. break;
  860. case MSR_IA32_SYSENTER_ESP:
  861. vmcs_writel(GUEST_SYSENTER_ESP, data);
  862. break;
  863. case MSR_IA32_TIME_STAMP_COUNTER:
  864. rdtscll(host_tsc);
  865. guest_write_tsc(data, host_tsc);
  866. break;
  867. case MSR_P6_PERFCTR0:
  868. case MSR_P6_PERFCTR1:
  869. case MSR_P6_EVNTSEL0:
  870. case MSR_P6_EVNTSEL1:
  871. /*
  872. * Just discard all writes to the performance counters; this
  873. * should keep both older linux and windows 64-bit guests
  874. * happy
  875. */
  876. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  877. break;
  878. case MSR_IA32_CR_PAT:
  879. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  880. vmcs_write64(GUEST_IA32_PAT, data);
  881. vcpu->arch.pat = data;
  882. break;
  883. }
  884. /* Otherwise falls through to kvm_set_msr_common */
  885. default:
  886. vmx_load_host_state(vmx);
  887. msr = find_msr_entry(vmx, msr_index);
  888. if (msr) {
  889. msr->data = data;
  890. break;
  891. }
  892. ret = kvm_set_msr_common(vcpu, msr_index, data);
  893. }
  894. return ret;
  895. }
  896. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  897. {
  898. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  899. switch (reg) {
  900. case VCPU_REGS_RSP:
  901. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  902. break;
  903. case VCPU_REGS_RIP:
  904. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  905. break;
  906. default:
  907. break;
  908. }
  909. }
  910. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  911. {
  912. int old_debug = vcpu->guest_debug;
  913. unsigned long flags;
  914. vcpu->guest_debug = dbg->control;
  915. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  916. vcpu->guest_debug = 0;
  917. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  918. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  919. else
  920. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  921. flags = vmcs_readl(GUEST_RFLAGS);
  922. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  923. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  924. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  925. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  926. vmcs_writel(GUEST_RFLAGS, flags);
  927. update_exception_bitmap(vcpu);
  928. return 0;
  929. }
  930. static __init int cpu_has_kvm_support(void)
  931. {
  932. return cpu_has_vmx();
  933. }
  934. static __init int vmx_disabled_by_bios(void)
  935. {
  936. u64 msr;
  937. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  938. return (msr & (FEATURE_CONTROL_LOCKED |
  939. FEATURE_CONTROL_VMXON_ENABLED))
  940. == FEATURE_CONTROL_LOCKED;
  941. /* locked but not enabled */
  942. }
  943. static void hardware_enable(void *garbage)
  944. {
  945. int cpu = raw_smp_processor_id();
  946. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  947. u64 old;
  948. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  949. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  950. if ((old & (FEATURE_CONTROL_LOCKED |
  951. FEATURE_CONTROL_VMXON_ENABLED))
  952. != (FEATURE_CONTROL_LOCKED |
  953. FEATURE_CONTROL_VMXON_ENABLED))
  954. /* enable and lock */
  955. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  956. FEATURE_CONTROL_LOCKED |
  957. FEATURE_CONTROL_VMXON_ENABLED);
  958. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  959. asm volatile (ASM_VMX_VMXON_RAX
  960. : : "a"(&phys_addr), "m"(phys_addr)
  961. : "memory", "cc");
  962. }
  963. static void vmclear_local_vcpus(void)
  964. {
  965. int cpu = raw_smp_processor_id();
  966. struct vcpu_vmx *vmx, *n;
  967. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  968. local_vcpus_link)
  969. __vcpu_clear(vmx);
  970. }
  971. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  972. * tricks.
  973. */
  974. static void kvm_cpu_vmxoff(void)
  975. {
  976. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  977. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  978. }
  979. static void hardware_disable(void *garbage)
  980. {
  981. vmclear_local_vcpus();
  982. kvm_cpu_vmxoff();
  983. }
  984. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  985. u32 msr, u32 *result)
  986. {
  987. u32 vmx_msr_low, vmx_msr_high;
  988. u32 ctl = ctl_min | ctl_opt;
  989. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  990. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  991. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  992. /* Ensure minimum (required) set of control bits are supported. */
  993. if (ctl_min & ~ctl)
  994. return -EIO;
  995. *result = ctl;
  996. return 0;
  997. }
  998. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  999. {
  1000. u32 vmx_msr_low, vmx_msr_high;
  1001. u32 min, opt, min2, opt2;
  1002. u32 _pin_based_exec_control = 0;
  1003. u32 _cpu_based_exec_control = 0;
  1004. u32 _cpu_based_2nd_exec_control = 0;
  1005. u32 _vmexit_control = 0;
  1006. u32 _vmentry_control = 0;
  1007. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1008. opt = PIN_BASED_VIRTUAL_NMIS;
  1009. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1010. &_pin_based_exec_control) < 0)
  1011. return -EIO;
  1012. min = CPU_BASED_HLT_EXITING |
  1013. #ifdef CONFIG_X86_64
  1014. CPU_BASED_CR8_LOAD_EXITING |
  1015. CPU_BASED_CR8_STORE_EXITING |
  1016. #endif
  1017. CPU_BASED_CR3_LOAD_EXITING |
  1018. CPU_BASED_CR3_STORE_EXITING |
  1019. CPU_BASED_USE_IO_BITMAPS |
  1020. CPU_BASED_MOV_DR_EXITING |
  1021. CPU_BASED_USE_TSC_OFFSETING |
  1022. CPU_BASED_INVLPG_EXITING;
  1023. opt = CPU_BASED_TPR_SHADOW |
  1024. CPU_BASED_USE_MSR_BITMAPS |
  1025. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1026. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1027. &_cpu_based_exec_control) < 0)
  1028. return -EIO;
  1029. #ifdef CONFIG_X86_64
  1030. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1031. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1032. ~CPU_BASED_CR8_STORE_EXITING;
  1033. #endif
  1034. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1035. min2 = 0;
  1036. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1037. SECONDARY_EXEC_WBINVD_EXITING |
  1038. SECONDARY_EXEC_ENABLE_VPID |
  1039. SECONDARY_EXEC_ENABLE_EPT;
  1040. if (adjust_vmx_controls(min2, opt2,
  1041. MSR_IA32_VMX_PROCBASED_CTLS2,
  1042. &_cpu_based_2nd_exec_control) < 0)
  1043. return -EIO;
  1044. }
  1045. #ifndef CONFIG_X86_64
  1046. if (!(_cpu_based_2nd_exec_control &
  1047. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1048. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1049. #endif
  1050. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1051. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1052. enabled */
  1053. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1054. CPU_BASED_CR3_STORE_EXITING |
  1055. CPU_BASED_INVLPG_EXITING);
  1056. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1057. &_cpu_based_exec_control) < 0)
  1058. return -EIO;
  1059. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1060. vmx_capability.ept, vmx_capability.vpid);
  1061. }
  1062. min = 0;
  1063. #ifdef CONFIG_X86_64
  1064. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1065. #endif
  1066. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1067. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1068. &_vmexit_control) < 0)
  1069. return -EIO;
  1070. min = 0;
  1071. opt = VM_ENTRY_LOAD_IA32_PAT;
  1072. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1073. &_vmentry_control) < 0)
  1074. return -EIO;
  1075. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1076. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1077. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1078. return -EIO;
  1079. #ifdef CONFIG_X86_64
  1080. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1081. if (vmx_msr_high & (1u<<16))
  1082. return -EIO;
  1083. #endif
  1084. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1085. if (((vmx_msr_high >> 18) & 15) != 6)
  1086. return -EIO;
  1087. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1088. vmcs_conf->order = get_order(vmcs_config.size);
  1089. vmcs_conf->revision_id = vmx_msr_low;
  1090. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1091. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1092. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1093. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1094. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1095. return 0;
  1096. }
  1097. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1098. {
  1099. int node = cpu_to_node(cpu);
  1100. struct page *pages;
  1101. struct vmcs *vmcs;
  1102. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1103. if (!pages)
  1104. return NULL;
  1105. vmcs = page_address(pages);
  1106. memset(vmcs, 0, vmcs_config.size);
  1107. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1108. return vmcs;
  1109. }
  1110. static struct vmcs *alloc_vmcs(void)
  1111. {
  1112. return alloc_vmcs_cpu(raw_smp_processor_id());
  1113. }
  1114. static void free_vmcs(struct vmcs *vmcs)
  1115. {
  1116. free_pages((unsigned long)vmcs, vmcs_config.order);
  1117. }
  1118. static void free_kvm_area(void)
  1119. {
  1120. int cpu;
  1121. for_each_online_cpu(cpu)
  1122. free_vmcs(per_cpu(vmxarea, cpu));
  1123. }
  1124. static __init int alloc_kvm_area(void)
  1125. {
  1126. int cpu;
  1127. for_each_online_cpu(cpu) {
  1128. struct vmcs *vmcs;
  1129. vmcs = alloc_vmcs_cpu(cpu);
  1130. if (!vmcs) {
  1131. free_kvm_area();
  1132. return -ENOMEM;
  1133. }
  1134. per_cpu(vmxarea, cpu) = vmcs;
  1135. }
  1136. return 0;
  1137. }
  1138. static __init int hardware_setup(void)
  1139. {
  1140. if (setup_vmcs_config(&vmcs_config) < 0)
  1141. return -EIO;
  1142. if (boot_cpu_has(X86_FEATURE_NX))
  1143. kvm_enable_efer_bits(EFER_NX);
  1144. if (!cpu_has_vmx_vpid())
  1145. enable_vpid = 0;
  1146. if (!cpu_has_vmx_ept())
  1147. enable_ept = 0;
  1148. if (!cpu_has_vmx_flexpriority())
  1149. flexpriority_enabled = 0;
  1150. if (!cpu_has_vmx_tpr_shadow())
  1151. kvm_x86_ops->update_cr8_intercept = NULL;
  1152. return alloc_kvm_area();
  1153. }
  1154. static __exit void hardware_unsetup(void)
  1155. {
  1156. free_kvm_area();
  1157. }
  1158. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1159. {
  1160. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1161. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1162. vmcs_write16(sf->selector, save->selector);
  1163. vmcs_writel(sf->base, save->base);
  1164. vmcs_write32(sf->limit, save->limit);
  1165. vmcs_write32(sf->ar_bytes, save->ar);
  1166. } else {
  1167. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1168. << AR_DPL_SHIFT;
  1169. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1170. }
  1171. }
  1172. static void enter_pmode(struct kvm_vcpu *vcpu)
  1173. {
  1174. unsigned long flags;
  1175. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1176. vmx->emulation_required = 1;
  1177. vcpu->arch.rmode.vm86_active = 0;
  1178. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1179. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1180. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1181. flags = vmcs_readl(GUEST_RFLAGS);
  1182. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1183. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1184. vmcs_writel(GUEST_RFLAGS, flags);
  1185. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1186. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1187. update_exception_bitmap(vcpu);
  1188. if (emulate_invalid_guest_state)
  1189. return;
  1190. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1191. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1192. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1193. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1194. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1195. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1196. vmcs_write16(GUEST_CS_SELECTOR,
  1197. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1198. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1199. }
  1200. static gva_t rmode_tss_base(struct kvm *kvm)
  1201. {
  1202. if (!kvm->arch.tss_addr) {
  1203. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1204. kvm->memslots[0].npages - 3;
  1205. return base_gfn << PAGE_SHIFT;
  1206. }
  1207. return kvm->arch.tss_addr;
  1208. }
  1209. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1210. {
  1211. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1212. save->selector = vmcs_read16(sf->selector);
  1213. save->base = vmcs_readl(sf->base);
  1214. save->limit = vmcs_read32(sf->limit);
  1215. save->ar = vmcs_read32(sf->ar_bytes);
  1216. vmcs_write16(sf->selector, save->base >> 4);
  1217. vmcs_write32(sf->base, save->base & 0xfffff);
  1218. vmcs_write32(sf->limit, 0xffff);
  1219. vmcs_write32(sf->ar_bytes, 0xf3);
  1220. }
  1221. static void enter_rmode(struct kvm_vcpu *vcpu)
  1222. {
  1223. unsigned long flags;
  1224. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1225. vmx->emulation_required = 1;
  1226. vcpu->arch.rmode.vm86_active = 1;
  1227. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1228. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1229. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1230. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1231. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1232. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1233. flags = vmcs_readl(GUEST_RFLAGS);
  1234. vcpu->arch.rmode.save_iopl
  1235. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1236. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1237. vmcs_writel(GUEST_RFLAGS, flags);
  1238. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1239. update_exception_bitmap(vcpu);
  1240. if (emulate_invalid_guest_state)
  1241. goto continue_rmode;
  1242. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1243. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1244. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1245. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1246. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1247. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1248. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1249. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1250. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1251. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1252. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1253. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1254. continue_rmode:
  1255. kvm_mmu_reset_context(vcpu);
  1256. init_rmode(vcpu->kvm);
  1257. }
  1258. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1259. {
  1260. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1261. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1262. vcpu->arch.shadow_efer = efer;
  1263. if (!msr)
  1264. return;
  1265. if (efer & EFER_LMA) {
  1266. vmcs_write32(VM_ENTRY_CONTROLS,
  1267. vmcs_read32(VM_ENTRY_CONTROLS) |
  1268. VM_ENTRY_IA32E_MODE);
  1269. msr->data = efer;
  1270. } else {
  1271. vmcs_write32(VM_ENTRY_CONTROLS,
  1272. vmcs_read32(VM_ENTRY_CONTROLS) &
  1273. ~VM_ENTRY_IA32E_MODE);
  1274. msr->data = efer & ~EFER_LME;
  1275. }
  1276. setup_msrs(vmx);
  1277. }
  1278. #ifdef CONFIG_X86_64
  1279. static void enter_lmode(struct kvm_vcpu *vcpu)
  1280. {
  1281. u32 guest_tr_ar;
  1282. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1283. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1284. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1285. __func__);
  1286. vmcs_write32(GUEST_TR_AR_BYTES,
  1287. (guest_tr_ar & ~AR_TYPE_MASK)
  1288. | AR_TYPE_BUSY_64_TSS);
  1289. }
  1290. vcpu->arch.shadow_efer |= EFER_LMA;
  1291. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1292. }
  1293. static void exit_lmode(struct kvm_vcpu *vcpu)
  1294. {
  1295. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1296. vmcs_write32(VM_ENTRY_CONTROLS,
  1297. vmcs_read32(VM_ENTRY_CONTROLS)
  1298. & ~VM_ENTRY_IA32E_MODE);
  1299. }
  1300. #endif
  1301. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1302. {
  1303. vpid_sync_vcpu_all(to_vmx(vcpu));
  1304. if (enable_ept)
  1305. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1306. }
  1307. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1308. {
  1309. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1310. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1311. }
  1312. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1313. {
  1314. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1315. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1316. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1317. return;
  1318. }
  1319. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1320. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1321. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1322. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1323. }
  1324. }
  1325. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1326. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1327. unsigned long cr0,
  1328. struct kvm_vcpu *vcpu)
  1329. {
  1330. if (!(cr0 & X86_CR0_PG)) {
  1331. /* From paging/starting to nonpaging */
  1332. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1333. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1334. (CPU_BASED_CR3_LOAD_EXITING |
  1335. CPU_BASED_CR3_STORE_EXITING));
  1336. vcpu->arch.cr0 = cr0;
  1337. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1338. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1339. *hw_cr0 &= ~X86_CR0_WP;
  1340. } else if (!is_paging(vcpu)) {
  1341. /* From nonpaging to paging */
  1342. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1343. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1344. ~(CPU_BASED_CR3_LOAD_EXITING |
  1345. CPU_BASED_CR3_STORE_EXITING));
  1346. vcpu->arch.cr0 = cr0;
  1347. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1348. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1349. *hw_cr0 &= ~X86_CR0_WP;
  1350. }
  1351. }
  1352. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1353. struct kvm_vcpu *vcpu)
  1354. {
  1355. if (!is_paging(vcpu)) {
  1356. *hw_cr4 &= ~X86_CR4_PAE;
  1357. *hw_cr4 |= X86_CR4_PSE;
  1358. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1359. *hw_cr4 &= ~X86_CR4_PAE;
  1360. }
  1361. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1362. {
  1363. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1364. KVM_VM_CR0_ALWAYS_ON;
  1365. vmx_fpu_deactivate(vcpu);
  1366. if (vcpu->arch.rmode.vm86_active && (cr0 & X86_CR0_PE))
  1367. enter_pmode(vcpu);
  1368. if (!vcpu->arch.rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1369. enter_rmode(vcpu);
  1370. #ifdef CONFIG_X86_64
  1371. if (vcpu->arch.shadow_efer & EFER_LME) {
  1372. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1373. enter_lmode(vcpu);
  1374. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1375. exit_lmode(vcpu);
  1376. }
  1377. #endif
  1378. if (enable_ept)
  1379. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1380. vmcs_writel(CR0_READ_SHADOW, cr0);
  1381. vmcs_writel(GUEST_CR0, hw_cr0);
  1382. vcpu->arch.cr0 = cr0;
  1383. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1384. vmx_fpu_activate(vcpu);
  1385. }
  1386. static u64 construct_eptp(unsigned long root_hpa)
  1387. {
  1388. u64 eptp;
  1389. /* TODO write the value reading from MSR */
  1390. eptp = VMX_EPT_DEFAULT_MT |
  1391. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1392. eptp |= (root_hpa & PAGE_MASK);
  1393. return eptp;
  1394. }
  1395. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1396. {
  1397. unsigned long guest_cr3;
  1398. u64 eptp;
  1399. guest_cr3 = cr3;
  1400. if (enable_ept) {
  1401. eptp = construct_eptp(cr3);
  1402. vmcs_write64(EPT_POINTER, eptp);
  1403. ept_sync_context(eptp);
  1404. ept_load_pdptrs(vcpu);
  1405. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1406. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1407. }
  1408. vmx_flush_tlb(vcpu);
  1409. vmcs_writel(GUEST_CR3, guest_cr3);
  1410. if (vcpu->arch.cr0 & X86_CR0_PE)
  1411. vmx_fpu_deactivate(vcpu);
  1412. }
  1413. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1414. {
  1415. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.vm86_active ?
  1416. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1417. vcpu->arch.cr4 = cr4;
  1418. if (enable_ept)
  1419. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1420. vmcs_writel(CR4_READ_SHADOW, cr4);
  1421. vmcs_writel(GUEST_CR4, hw_cr4);
  1422. }
  1423. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1424. {
  1425. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1426. return vmcs_readl(sf->base);
  1427. }
  1428. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1429. struct kvm_segment *var, int seg)
  1430. {
  1431. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1432. u32 ar;
  1433. var->base = vmcs_readl(sf->base);
  1434. var->limit = vmcs_read32(sf->limit);
  1435. var->selector = vmcs_read16(sf->selector);
  1436. ar = vmcs_read32(sf->ar_bytes);
  1437. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1438. ar = 0;
  1439. var->type = ar & 15;
  1440. var->s = (ar >> 4) & 1;
  1441. var->dpl = (ar >> 5) & 3;
  1442. var->present = (ar >> 7) & 1;
  1443. var->avl = (ar >> 12) & 1;
  1444. var->l = (ar >> 13) & 1;
  1445. var->db = (ar >> 14) & 1;
  1446. var->g = (ar >> 15) & 1;
  1447. var->unusable = (ar >> 16) & 1;
  1448. }
  1449. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1450. {
  1451. struct kvm_segment kvm_seg;
  1452. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1453. return 0;
  1454. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1455. return 3;
  1456. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1457. return kvm_seg.selector & 3;
  1458. }
  1459. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1460. {
  1461. u32 ar;
  1462. if (var->unusable)
  1463. ar = 1 << 16;
  1464. else {
  1465. ar = var->type & 15;
  1466. ar |= (var->s & 1) << 4;
  1467. ar |= (var->dpl & 3) << 5;
  1468. ar |= (var->present & 1) << 7;
  1469. ar |= (var->avl & 1) << 12;
  1470. ar |= (var->l & 1) << 13;
  1471. ar |= (var->db & 1) << 14;
  1472. ar |= (var->g & 1) << 15;
  1473. }
  1474. if (ar == 0) /* a 0 value means unusable */
  1475. ar = AR_UNUSABLE_MASK;
  1476. return ar;
  1477. }
  1478. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1479. struct kvm_segment *var, int seg)
  1480. {
  1481. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1482. u32 ar;
  1483. if (vcpu->arch.rmode.vm86_active && seg == VCPU_SREG_TR) {
  1484. vcpu->arch.rmode.tr.selector = var->selector;
  1485. vcpu->arch.rmode.tr.base = var->base;
  1486. vcpu->arch.rmode.tr.limit = var->limit;
  1487. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1488. return;
  1489. }
  1490. vmcs_writel(sf->base, var->base);
  1491. vmcs_write32(sf->limit, var->limit);
  1492. vmcs_write16(sf->selector, var->selector);
  1493. if (vcpu->arch.rmode.vm86_active && var->s) {
  1494. /*
  1495. * Hack real-mode segments into vm86 compatibility.
  1496. */
  1497. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1498. vmcs_writel(sf->base, 0xf0000);
  1499. ar = 0xf3;
  1500. } else
  1501. ar = vmx_segment_access_rights(var);
  1502. vmcs_write32(sf->ar_bytes, ar);
  1503. }
  1504. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1505. {
  1506. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1507. *db = (ar >> 14) & 1;
  1508. *l = (ar >> 13) & 1;
  1509. }
  1510. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1511. {
  1512. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1513. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1514. }
  1515. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1516. {
  1517. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1518. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1519. }
  1520. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1521. {
  1522. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1523. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1524. }
  1525. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1526. {
  1527. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1528. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1529. }
  1530. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1531. {
  1532. struct kvm_segment var;
  1533. u32 ar;
  1534. vmx_get_segment(vcpu, &var, seg);
  1535. ar = vmx_segment_access_rights(&var);
  1536. if (var.base != (var.selector << 4))
  1537. return false;
  1538. if (var.limit != 0xffff)
  1539. return false;
  1540. if (ar != 0xf3)
  1541. return false;
  1542. return true;
  1543. }
  1544. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct kvm_segment cs;
  1547. unsigned int cs_rpl;
  1548. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1549. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1550. if (cs.unusable)
  1551. return false;
  1552. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1553. return false;
  1554. if (!cs.s)
  1555. return false;
  1556. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1557. if (cs.dpl > cs_rpl)
  1558. return false;
  1559. } else {
  1560. if (cs.dpl != cs_rpl)
  1561. return false;
  1562. }
  1563. if (!cs.present)
  1564. return false;
  1565. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1566. return true;
  1567. }
  1568. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1569. {
  1570. struct kvm_segment ss;
  1571. unsigned int ss_rpl;
  1572. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1573. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1574. if (ss.unusable)
  1575. return true;
  1576. if (ss.type != 3 && ss.type != 7)
  1577. return false;
  1578. if (!ss.s)
  1579. return false;
  1580. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1581. return false;
  1582. if (!ss.present)
  1583. return false;
  1584. return true;
  1585. }
  1586. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1587. {
  1588. struct kvm_segment var;
  1589. unsigned int rpl;
  1590. vmx_get_segment(vcpu, &var, seg);
  1591. rpl = var.selector & SELECTOR_RPL_MASK;
  1592. if (var.unusable)
  1593. return true;
  1594. if (!var.s)
  1595. return false;
  1596. if (!var.present)
  1597. return false;
  1598. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1599. if (var.dpl < rpl) /* DPL < RPL */
  1600. return false;
  1601. }
  1602. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1603. * rights flags
  1604. */
  1605. return true;
  1606. }
  1607. static bool tr_valid(struct kvm_vcpu *vcpu)
  1608. {
  1609. struct kvm_segment tr;
  1610. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1611. if (tr.unusable)
  1612. return false;
  1613. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1614. return false;
  1615. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1616. return false;
  1617. if (!tr.present)
  1618. return false;
  1619. return true;
  1620. }
  1621. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1622. {
  1623. struct kvm_segment ldtr;
  1624. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1625. if (ldtr.unusable)
  1626. return true;
  1627. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1628. return false;
  1629. if (ldtr.type != 2)
  1630. return false;
  1631. if (!ldtr.present)
  1632. return false;
  1633. return true;
  1634. }
  1635. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1636. {
  1637. struct kvm_segment cs, ss;
  1638. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1639. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1640. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1641. (ss.selector & SELECTOR_RPL_MASK));
  1642. }
  1643. /*
  1644. * Check if guest state is valid. Returns true if valid, false if
  1645. * not.
  1646. * We assume that registers are always usable
  1647. */
  1648. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1649. {
  1650. /* real mode guest state checks */
  1651. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1652. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1653. return false;
  1654. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1655. return false;
  1656. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1657. return false;
  1658. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1659. return false;
  1660. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1661. return false;
  1662. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1663. return false;
  1664. } else {
  1665. /* protected mode guest state checks */
  1666. if (!cs_ss_rpl_check(vcpu))
  1667. return false;
  1668. if (!code_segment_valid(vcpu))
  1669. return false;
  1670. if (!stack_segment_valid(vcpu))
  1671. return false;
  1672. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1673. return false;
  1674. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1675. return false;
  1676. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1677. return false;
  1678. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1679. return false;
  1680. if (!tr_valid(vcpu))
  1681. return false;
  1682. if (!ldtr_valid(vcpu))
  1683. return false;
  1684. }
  1685. /* TODO:
  1686. * - Add checks on RIP
  1687. * - Add checks on RFLAGS
  1688. */
  1689. return true;
  1690. }
  1691. static int init_rmode_tss(struct kvm *kvm)
  1692. {
  1693. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1694. u16 data = 0;
  1695. int ret = 0;
  1696. int r;
  1697. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1698. if (r < 0)
  1699. goto out;
  1700. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1701. r = kvm_write_guest_page(kvm, fn++, &data,
  1702. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1703. if (r < 0)
  1704. goto out;
  1705. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1706. if (r < 0)
  1707. goto out;
  1708. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1709. if (r < 0)
  1710. goto out;
  1711. data = ~0;
  1712. r = kvm_write_guest_page(kvm, fn, &data,
  1713. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1714. sizeof(u8));
  1715. if (r < 0)
  1716. goto out;
  1717. ret = 1;
  1718. out:
  1719. return ret;
  1720. }
  1721. static int init_rmode_identity_map(struct kvm *kvm)
  1722. {
  1723. int i, r, ret;
  1724. pfn_t identity_map_pfn;
  1725. u32 tmp;
  1726. if (!enable_ept)
  1727. return 1;
  1728. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1729. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1730. "haven't been allocated!\n");
  1731. return 0;
  1732. }
  1733. if (likely(kvm->arch.ept_identity_pagetable_done))
  1734. return 1;
  1735. ret = 0;
  1736. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1737. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1738. if (r < 0)
  1739. goto out;
  1740. /* Set up identity-mapping pagetable for EPT in real mode */
  1741. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1742. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1743. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1744. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1745. &tmp, i * sizeof(tmp), sizeof(tmp));
  1746. if (r < 0)
  1747. goto out;
  1748. }
  1749. kvm->arch.ept_identity_pagetable_done = true;
  1750. ret = 1;
  1751. out:
  1752. return ret;
  1753. }
  1754. static void seg_setup(int seg)
  1755. {
  1756. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1757. vmcs_write16(sf->selector, 0);
  1758. vmcs_writel(sf->base, 0);
  1759. vmcs_write32(sf->limit, 0xffff);
  1760. vmcs_write32(sf->ar_bytes, 0xf3);
  1761. }
  1762. static int alloc_apic_access_page(struct kvm *kvm)
  1763. {
  1764. struct kvm_userspace_memory_region kvm_userspace_mem;
  1765. int r = 0;
  1766. down_write(&kvm->slots_lock);
  1767. if (kvm->arch.apic_access_page)
  1768. goto out;
  1769. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1770. kvm_userspace_mem.flags = 0;
  1771. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1772. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1773. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1774. if (r)
  1775. goto out;
  1776. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1777. out:
  1778. up_write(&kvm->slots_lock);
  1779. return r;
  1780. }
  1781. static int alloc_identity_pagetable(struct kvm *kvm)
  1782. {
  1783. struct kvm_userspace_memory_region kvm_userspace_mem;
  1784. int r = 0;
  1785. down_write(&kvm->slots_lock);
  1786. if (kvm->arch.ept_identity_pagetable)
  1787. goto out;
  1788. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1789. kvm_userspace_mem.flags = 0;
  1790. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1791. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1792. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1793. if (r)
  1794. goto out;
  1795. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1796. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1797. out:
  1798. up_write(&kvm->slots_lock);
  1799. return r;
  1800. }
  1801. static void allocate_vpid(struct vcpu_vmx *vmx)
  1802. {
  1803. int vpid;
  1804. vmx->vpid = 0;
  1805. if (!enable_vpid)
  1806. return;
  1807. spin_lock(&vmx_vpid_lock);
  1808. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1809. if (vpid < VMX_NR_VPIDS) {
  1810. vmx->vpid = vpid;
  1811. __set_bit(vpid, vmx_vpid_bitmap);
  1812. }
  1813. spin_unlock(&vmx_vpid_lock);
  1814. }
  1815. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1816. {
  1817. int f = sizeof(unsigned long);
  1818. if (!cpu_has_vmx_msr_bitmap())
  1819. return;
  1820. /*
  1821. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1822. * have the write-low and read-high bitmap offsets the wrong way round.
  1823. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1824. */
  1825. if (msr <= 0x1fff) {
  1826. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1827. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1828. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1829. msr &= 0x1fff;
  1830. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1831. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1832. }
  1833. }
  1834. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1835. {
  1836. if (!longmode_only)
  1837. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1838. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1839. }
  1840. /*
  1841. * Sets up the vmcs for emulated real mode.
  1842. */
  1843. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1844. {
  1845. u32 host_sysenter_cs, msr_low, msr_high;
  1846. u32 junk;
  1847. u64 host_pat, tsc_this, tsc_base;
  1848. unsigned long a;
  1849. struct descriptor_table dt;
  1850. int i;
  1851. unsigned long kvm_vmx_return;
  1852. u32 exec_control;
  1853. /* I/O */
  1854. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1855. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1856. if (cpu_has_vmx_msr_bitmap())
  1857. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1858. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1859. /* Control */
  1860. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1861. vmcs_config.pin_based_exec_ctrl);
  1862. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1863. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1864. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1865. #ifdef CONFIG_X86_64
  1866. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1867. CPU_BASED_CR8_LOAD_EXITING;
  1868. #endif
  1869. }
  1870. if (!enable_ept)
  1871. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1872. CPU_BASED_CR3_LOAD_EXITING |
  1873. CPU_BASED_INVLPG_EXITING;
  1874. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1875. if (cpu_has_secondary_exec_ctrls()) {
  1876. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1877. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1878. exec_control &=
  1879. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1880. if (vmx->vpid == 0)
  1881. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1882. if (!enable_ept)
  1883. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1884. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1885. }
  1886. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1887. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1888. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1889. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1890. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1891. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1892. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1893. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1894. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1895. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1896. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1897. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1898. #ifdef CONFIG_X86_64
  1899. rdmsrl(MSR_FS_BASE, a);
  1900. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1901. rdmsrl(MSR_GS_BASE, a);
  1902. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1903. #else
  1904. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1905. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1906. #endif
  1907. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1908. kvm_get_idt(&dt);
  1909. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1910. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1911. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1912. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1913. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1914. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1915. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1916. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1917. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1918. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1919. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1920. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1921. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1922. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1923. host_pat = msr_low | ((u64) msr_high << 32);
  1924. vmcs_write64(HOST_IA32_PAT, host_pat);
  1925. }
  1926. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1927. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1928. host_pat = msr_low | ((u64) msr_high << 32);
  1929. /* Write the default value follow host pat */
  1930. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1931. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1932. vmx->vcpu.arch.pat = host_pat;
  1933. }
  1934. for (i = 0; i < NR_VMX_MSR; ++i) {
  1935. u32 index = vmx_msr_index[i];
  1936. u32 data_low, data_high;
  1937. u64 data;
  1938. int j = vmx->nmsrs;
  1939. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1940. continue;
  1941. if (wrmsr_safe(index, data_low, data_high) < 0)
  1942. continue;
  1943. data = data_low | ((u64)data_high << 32);
  1944. vmx->host_msrs[j].index = index;
  1945. vmx->host_msrs[j].reserved = 0;
  1946. vmx->host_msrs[j].data = data;
  1947. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1948. ++vmx->nmsrs;
  1949. }
  1950. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1951. /* 22.2.1, 20.8.1 */
  1952. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1953. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1954. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1955. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1956. rdtscll(tsc_this);
  1957. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1958. tsc_base = tsc_this;
  1959. guest_write_tsc(0, tsc_base);
  1960. return 0;
  1961. }
  1962. static int init_rmode(struct kvm *kvm)
  1963. {
  1964. if (!init_rmode_tss(kvm))
  1965. return 0;
  1966. if (!init_rmode_identity_map(kvm))
  1967. return 0;
  1968. return 1;
  1969. }
  1970. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1971. {
  1972. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1973. u64 msr;
  1974. int ret;
  1975. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1976. down_read(&vcpu->kvm->slots_lock);
  1977. if (!init_rmode(vmx->vcpu.kvm)) {
  1978. ret = -ENOMEM;
  1979. goto out;
  1980. }
  1981. vmx->vcpu.arch.rmode.vm86_active = 0;
  1982. vmx->soft_vnmi_blocked = 0;
  1983. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1984. kvm_set_cr8(&vmx->vcpu, 0);
  1985. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1986. if (vmx->vcpu.vcpu_id == 0)
  1987. msr |= MSR_IA32_APICBASE_BSP;
  1988. kvm_set_apic_base(&vmx->vcpu, msr);
  1989. fx_init(&vmx->vcpu);
  1990. seg_setup(VCPU_SREG_CS);
  1991. /*
  1992. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1993. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1994. */
  1995. if (vmx->vcpu.vcpu_id == 0) {
  1996. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1997. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1998. } else {
  1999. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2000. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2001. }
  2002. seg_setup(VCPU_SREG_DS);
  2003. seg_setup(VCPU_SREG_ES);
  2004. seg_setup(VCPU_SREG_FS);
  2005. seg_setup(VCPU_SREG_GS);
  2006. seg_setup(VCPU_SREG_SS);
  2007. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2008. vmcs_writel(GUEST_TR_BASE, 0);
  2009. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2010. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2011. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2012. vmcs_writel(GUEST_LDTR_BASE, 0);
  2013. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2014. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2015. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2016. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2017. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2018. vmcs_writel(GUEST_RFLAGS, 0x02);
  2019. if (vmx->vcpu.vcpu_id == 0)
  2020. kvm_rip_write(vcpu, 0xfff0);
  2021. else
  2022. kvm_rip_write(vcpu, 0);
  2023. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2024. vmcs_writel(GUEST_DR7, 0x400);
  2025. vmcs_writel(GUEST_GDTR_BASE, 0);
  2026. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2027. vmcs_writel(GUEST_IDTR_BASE, 0);
  2028. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2029. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2030. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2031. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2032. /* Special registers */
  2033. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2034. setup_msrs(vmx);
  2035. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2036. if (cpu_has_vmx_tpr_shadow()) {
  2037. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2038. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2039. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2040. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2041. vmcs_write32(TPR_THRESHOLD, 0);
  2042. }
  2043. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2044. vmcs_write64(APIC_ACCESS_ADDR,
  2045. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2046. if (vmx->vpid != 0)
  2047. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2048. vmx->vcpu.arch.cr0 = 0x60000010;
  2049. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2050. vmx_set_cr4(&vmx->vcpu, 0);
  2051. vmx_set_efer(&vmx->vcpu, 0);
  2052. vmx_fpu_activate(&vmx->vcpu);
  2053. update_exception_bitmap(&vmx->vcpu);
  2054. vpid_sync_vcpu_all(vmx);
  2055. ret = 0;
  2056. /* HACK: Don't enable emulation on guest boot/reset */
  2057. vmx->emulation_required = 0;
  2058. out:
  2059. up_read(&vcpu->kvm->slots_lock);
  2060. return ret;
  2061. }
  2062. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2063. {
  2064. u32 cpu_based_vm_exec_control;
  2065. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2066. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2067. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2068. }
  2069. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2070. {
  2071. u32 cpu_based_vm_exec_control;
  2072. if (!cpu_has_virtual_nmis()) {
  2073. enable_irq_window(vcpu);
  2074. return;
  2075. }
  2076. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2077. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2078. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2079. }
  2080. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2081. {
  2082. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2083. uint32_t intr;
  2084. int irq = vcpu->arch.interrupt.nr;
  2085. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2086. ++vcpu->stat.irq_injections;
  2087. if (vcpu->arch.rmode.vm86_active) {
  2088. vmx->rmode.irq.pending = true;
  2089. vmx->rmode.irq.vector = irq;
  2090. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2091. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2092. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2093. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2094. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2095. return;
  2096. }
  2097. intr = irq | INTR_INFO_VALID_MASK;
  2098. if (vcpu->arch.interrupt.soft) {
  2099. intr |= INTR_TYPE_SOFT_INTR;
  2100. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2101. vmx->vcpu.arch.event_exit_inst_len);
  2102. } else
  2103. intr |= INTR_TYPE_EXT_INTR;
  2104. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2105. }
  2106. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2107. {
  2108. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2109. if (!cpu_has_virtual_nmis()) {
  2110. /*
  2111. * Tracking the NMI-blocked state in software is built upon
  2112. * finding the next open IRQ window. This, in turn, depends on
  2113. * well-behaving guests: They have to keep IRQs disabled at
  2114. * least as long as the NMI handler runs. Otherwise we may
  2115. * cause NMI nesting, maybe breaking the guest. But as this is
  2116. * highly unlikely, we can live with the residual risk.
  2117. */
  2118. vmx->soft_vnmi_blocked = 1;
  2119. vmx->vnmi_blocked_time = 0;
  2120. }
  2121. ++vcpu->stat.nmi_injections;
  2122. if (vcpu->arch.rmode.vm86_active) {
  2123. vmx->rmode.irq.pending = true;
  2124. vmx->rmode.irq.vector = NMI_VECTOR;
  2125. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2126. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2127. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2128. INTR_INFO_VALID_MASK);
  2129. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2130. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2131. return;
  2132. }
  2133. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2134. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2135. }
  2136. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2137. {
  2138. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2139. return 0;
  2140. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2141. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2142. GUEST_INTR_STATE_NMI));
  2143. }
  2144. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2145. {
  2146. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2147. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2148. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2149. }
  2150. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2151. {
  2152. int ret;
  2153. struct kvm_userspace_memory_region tss_mem = {
  2154. .slot = TSS_PRIVATE_MEMSLOT,
  2155. .guest_phys_addr = addr,
  2156. .memory_size = PAGE_SIZE * 3,
  2157. .flags = 0,
  2158. };
  2159. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2160. if (ret)
  2161. return ret;
  2162. kvm->arch.tss_addr = addr;
  2163. return 0;
  2164. }
  2165. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2166. int vec, u32 err_code)
  2167. {
  2168. /*
  2169. * Instruction with address size override prefix opcode 0x67
  2170. * Cause the #SS fault with 0 error code in VM86 mode.
  2171. */
  2172. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2173. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2174. return 1;
  2175. /*
  2176. * Forward all other exceptions that are valid in real mode.
  2177. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2178. * the required debugging infrastructure rework.
  2179. */
  2180. switch (vec) {
  2181. case DB_VECTOR:
  2182. if (vcpu->guest_debug &
  2183. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2184. return 0;
  2185. kvm_queue_exception(vcpu, vec);
  2186. return 1;
  2187. case BP_VECTOR:
  2188. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2189. return 0;
  2190. /* fall through */
  2191. case DE_VECTOR:
  2192. case OF_VECTOR:
  2193. case BR_VECTOR:
  2194. case UD_VECTOR:
  2195. case DF_VECTOR:
  2196. case SS_VECTOR:
  2197. case GP_VECTOR:
  2198. case MF_VECTOR:
  2199. kvm_queue_exception(vcpu, vec);
  2200. return 1;
  2201. }
  2202. return 0;
  2203. }
  2204. /*
  2205. * Trigger machine check on the host. We assume all the MSRs are already set up
  2206. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2207. * We pass a fake environment to the machine check handler because we want
  2208. * the guest to be always treated like user space, no matter what context
  2209. * it used internally.
  2210. */
  2211. static void kvm_machine_check(void)
  2212. {
  2213. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2214. struct pt_regs regs = {
  2215. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2216. .flags = X86_EFLAGS_IF,
  2217. };
  2218. do_machine_check(&regs, 0);
  2219. #endif
  2220. }
  2221. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2222. {
  2223. /* already handled by vcpu_run */
  2224. return 1;
  2225. }
  2226. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2227. {
  2228. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2229. u32 intr_info, ex_no, error_code;
  2230. unsigned long cr2, rip, dr6;
  2231. u32 vect_info;
  2232. enum emulation_result er;
  2233. vect_info = vmx->idt_vectoring_info;
  2234. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2235. if (is_machine_check(intr_info))
  2236. return handle_machine_check(vcpu, kvm_run);
  2237. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2238. !is_page_fault(intr_info))
  2239. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2240. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2241. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2242. return 1; /* already handled by vmx_vcpu_run() */
  2243. if (is_no_device(intr_info)) {
  2244. vmx_fpu_activate(vcpu);
  2245. return 1;
  2246. }
  2247. if (is_invalid_opcode(intr_info)) {
  2248. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2249. if (er != EMULATE_DONE)
  2250. kvm_queue_exception(vcpu, UD_VECTOR);
  2251. return 1;
  2252. }
  2253. error_code = 0;
  2254. rip = kvm_rip_read(vcpu);
  2255. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2256. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2257. if (is_page_fault(intr_info)) {
  2258. /* EPT won't cause page fault directly */
  2259. if (enable_ept)
  2260. BUG();
  2261. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2262. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2263. (u32)((u64)cr2 >> 32), handler);
  2264. if (kvm_event_needs_reinjection(vcpu))
  2265. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2266. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2267. }
  2268. if (vcpu->arch.rmode.vm86_active &&
  2269. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2270. error_code)) {
  2271. if (vcpu->arch.halt_request) {
  2272. vcpu->arch.halt_request = 0;
  2273. return kvm_emulate_halt(vcpu);
  2274. }
  2275. return 1;
  2276. }
  2277. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2278. switch (ex_no) {
  2279. case DB_VECTOR:
  2280. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2281. if (!(vcpu->guest_debug &
  2282. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2283. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2284. kvm_queue_exception(vcpu, DB_VECTOR);
  2285. return 1;
  2286. }
  2287. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2288. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2289. /* fall through */
  2290. case BP_VECTOR:
  2291. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2292. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2293. kvm_run->debug.arch.exception = ex_no;
  2294. break;
  2295. default:
  2296. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2297. kvm_run->ex.exception = ex_no;
  2298. kvm_run->ex.error_code = error_code;
  2299. break;
  2300. }
  2301. return 0;
  2302. }
  2303. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2304. struct kvm_run *kvm_run)
  2305. {
  2306. ++vcpu->stat.irq_exits;
  2307. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2308. return 1;
  2309. }
  2310. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2311. {
  2312. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2313. return 0;
  2314. }
  2315. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2316. {
  2317. unsigned long exit_qualification;
  2318. int size, in, string;
  2319. unsigned port;
  2320. ++vcpu->stat.io_exits;
  2321. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2322. string = (exit_qualification & 16) != 0;
  2323. if (string) {
  2324. if (emulate_instruction(vcpu,
  2325. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2326. return 0;
  2327. return 1;
  2328. }
  2329. size = (exit_qualification & 7) + 1;
  2330. in = (exit_qualification & 8) != 0;
  2331. port = exit_qualification >> 16;
  2332. skip_emulated_instruction(vcpu);
  2333. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2334. }
  2335. static void
  2336. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2337. {
  2338. /*
  2339. * Patch in the VMCALL instruction:
  2340. */
  2341. hypercall[0] = 0x0f;
  2342. hypercall[1] = 0x01;
  2343. hypercall[2] = 0xc1;
  2344. }
  2345. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2346. {
  2347. unsigned long exit_qualification;
  2348. int cr;
  2349. int reg;
  2350. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2351. cr = exit_qualification & 15;
  2352. reg = (exit_qualification >> 8) & 15;
  2353. switch ((exit_qualification >> 4) & 3) {
  2354. case 0: /* mov to cr */
  2355. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2356. (u32)kvm_register_read(vcpu, reg),
  2357. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2358. handler);
  2359. switch (cr) {
  2360. case 0:
  2361. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2362. skip_emulated_instruction(vcpu);
  2363. return 1;
  2364. case 3:
  2365. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2366. skip_emulated_instruction(vcpu);
  2367. return 1;
  2368. case 4:
  2369. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2370. skip_emulated_instruction(vcpu);
  2371. return 1;
  2372. case 8: {
  2373. u8 cr8_prev = kvm_get_cr8(vcpu);
  2374. u8 cr8 = kvm_register_read(vcpu, reg);
  2375. kvm_set_cr8(vcpu, cr8);
  2376. skip_emulated_instruction(vcpu);
  2377. if (irqchip_in_kernel(vcpu->kvm))
  2378. return 1;
  2379. if (cr8_prev <= cr8)
  2380. return 1;
  2381. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2382. return 0;
  2383. }
  2384. };
  2385. break;
  2386. case 2: /* clts */
  2387. vmx_fpu_deactivate(vcpu);
  2388. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2389. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2390. vmx_fpu_activate(vcpu);
  2391. KVMTRACE_0D(CLTS, vcpu, handler);
  2392. skip_emulated_instruction(vcpu);
  2393. return 1;
  2394. case 1: /*mov from cr*/
  2395. switch (cr) {
  2396. case 3:
  2397. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2398. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2399. (u32)kvm_register_read(vcpu, reg),
  2400. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2401. handler);
  2402. skip_emulated_instruction(vcpu);
  2403. return 1;
  2404. case 8:
  2405. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2406. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2407. (u32)kvm_register_read(vcpu, reg), handler);
  2408. skip_emulated_instruction(vcpu);
  2409. return 1;
  2410. }
  2411. break;
  2412. case 3: /* lmsw */
  2413. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2414. skip_emulated_instruction(vcpu);
  2415. return 1;
  2416. default:
  2417. break;
  2418. }
  2419. kvm_run->exit_reason = 0;
  2420. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2421. (int)(exit_qualification >> 4) & 3, cr);
  2422. return 0;
  2423. }
  2424. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2425. {
  2426. unsigned long exit_qualification;
  2427. unsigned long val;
  2428. int dr, reg;
  2429. dr = vmcs_readl(GUEST_DR7);
  2430. if (dr & DR7_GD) {
  2431. /*
  2432. * As the vm-exit takes precedence over the debug trap, we
  2433. * need to emulate the latter, either for the host or the
  2434. * guest debugging itself.
  2435. */
  2436. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2437. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2438. kvm_run->debug.arch.dr7 = dr;
  2439. kvm_run->debug.arch.pc =
  2440. vmcs_readl(GUEST_CS_BASE) +
  2441. vmcs_readl(GUEST_RIP);
  2442. kvm_run->debug.arch.exception = DB_VECTOR;
  2443. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2444. return 0;
  2445. } else {
  2446. vcpu->arch.dr7 &= ~DR7_GD;
  2447. vcpu->arch.dr6 |= DR6_BD;
  2448. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2449. kvm_queue_exception(vcpu, DB_VECTOR);
  2450. return 1;
  2451. }
  2452. }
  2453. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2454. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2455. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2456. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2457. switch (dr) {
  2458. case 0 ... 3:
  2459. val = vcpu->arch.db[dr];
  2460. break;
  2461. case 6:
  2462. val = vcpu->arch.dr6;
  2463. break;
  2464. case 7:
  2465. val = vcpu->arch.dr7;
  2466. break;
  2467. default:
  2468. val = 0;
  2469. }
  2470. kvm_register_write(vcpu, reg, val);
  2471. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2472. } else {
  2473. val = vcpu->arch.regs[reg];
  2474. switch (dr) {
  2475. case 0 ... 3:
  2476. vcpu->arch.db[dr] = val;
  2477. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2478. vcpu->arch.eff_db[dr] = val;
  2479. break;
  2480. case 4 ... 5:
  2481. if (vcpu->arch.cr4 & X86_CR4_DE)
  2482. kvm_queue_exception(vcpu, UD_VECTOR);
  2483. break;
  2484. case 6:
  2485. if (val & 0xffffffff00000000ULL) {
  2486. kvm_queue_exception(vcpu, GP_VECTOR);
  2487. break;
  2488. }
  2489. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2490. break;
  2491. case 7:
  2492. if (val & 0xffffffff00000000ULL) {
  2493. kvm_queue_exception(vcpu, GP_VECTOR);
  2494. break;
  2495. }
  2496. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2497. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2498. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2499. vcpu->arch.switch_db_regs =
  2500. (val & DR7_BP_EN_MASK);
  2501. }
  2502. break;
  2503. }
  2504. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2505. }
  2506. skip_emulated_instruction(vcpu);
  2507. return 1;
  2508. }
  2509. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2510. {
  2511. kvm_emulate_cpuid(vcpu);
  2512. return 1;
  2513. }
  2514. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2515. {
  2516. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2517. u64 data;
  2518. if (vmx_get_msr(vcpu, ecx, &data)) {
  2519. kvm_inject_gp(vcpu, 0);
  2520. return 1;
  2521. }
  2522. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2523. handler);
  2524. /* FIXME: handling of bits 32:63 of rax, rdx */
  2525. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2526. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2527. skip_emulated_instruction(vcpu);
  2528. return 1;
  2529. }
  2530. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2531. {
  2532. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2533. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2534. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2535. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2536. handler);
  2537. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2538. kvm_inject_gp(vcpu, 0);
  2539. return 1;
  2540. }
  2541. skip_emulated_instruction(vcpu);
  2542. return 1;
  2543. }
  2544. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2545. struct kvm_run *kvm_run)
  2546. {
  2547. return 1;
  2548. }
  2549. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2550. struct kvm_run *kvm_run)
  2551. {
  2552. u32 cpu_based_vm_exec_control;
  2553. /* clear pending irq */
  2554. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2555. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2556. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2557. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2558. ++vcpu->stat.irq_window_exits;
  2559. /*
  2560. * If the user space waits to inject interrupts, exit as soon as
  2561. * possible
  2562. */
  2563. if (!irqchip_in_kernel(vcpu->kvm) &&
  2564. kvm_run->request_interrupt_window &&
  2565. !kvm_cpu_has_interrupt(vcpu)) {
  2566. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2567. return 0;
  2568. }
  2569. return 1;
  2570. }
  2571. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2572. {
  2573. skip_emulated_instruction(vcpu);
  2574. return kvm_emulate_halt(vcpu);
  2575. }
  2576. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2577. {
  2578. skip_emulated_instruction(vcpu);
  2579. kvm_emulate_hypercall(vcpu);
  2580. return 1;
  2581. }
  2582. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2583. {
  2584. kvm_queue_exception(vcpu, UD_VECTOR);
  2585. return 1;
  2586. }
  2587. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2588. {
  2589. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2590. kvm_mmu_invlpg(vcpu, exit_qualification);
  2591. skip_emulated_instruction(vcpu);
  2592. return 1;
  2593. }
  2594. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2595. {
  2596. skip_emulated_instruction(vcpu);
  2597. /* TODO: Add support for VT-d/pass-through device */
  2598. return 1;
  2599. }
  2600. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2601. {
  2602. unsigned long exit_qualification;
  2603. enum emulation_result er;
  2604. unsigned long offset;
  2605. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2606. offset = exit_qualification & 0xffful;
  2607. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2608. if (er != EMULATE_DONE) {
  2609. printk(KERN_ERR
  2610. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2611. offset);
  2612. return -ENOTSUPP;
  2613. }
  2614. return 1;
  2615. }
  2616. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2617. {
  2618. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2619. unsigned long exit_qualification;
  2620. u16 tss_selector;
  2621. int reason, type, idt_v;
  2622. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2623. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2624. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2625. reason = (u32)exit_qualification >> 30;
  2626. if (reason == TASK_SWITCH_GATE && idt_v) {
  2627. switch (type) {
  2628. case INTR_TYPE_NMI_INTR:
  2629. vcpu->arch.nmi_injected = false;
  2630. if (cpu_has_virtual_nmis())
  2631. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2632. GUEST_INTR_STATE_NMI);
  2633. break;
  2634. case INTR_TYPE_EXT_INTR:
  2635. case INTR_TYPE_SOFT_INTR:
  2636. kvm_clear_interrupt_queue(vcpu);
  2637. break;
  2638. case INTR_TYPE_HARD_EXCEPTION:
  2639. case INTR_TYPE_SOFT_EXCEPTION:
  2640. kvm_clear_exception_queue(vcpu);
  2641. break;
  2642. default:
  2643. break;
  2644. }
  2645. }
  2646. tss_selector = exit_qualification;
  2647. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2648. type != INTR_TYPE_EXT_INTR &&
  2649. type != INTR_TYPE_NMI_INTR))
  2650. skip_emulated_instruction(vcpu);
  2651. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2652. return 0;
  2653. /* clear all local breakpoint enable flags */
  2654. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2655. /*
  2656. * TODO: What about debug traps on tss switch?
  2657. * Are we supposed to inject them and update dr6?
  2658. */
  2659. return 1;
  2660. }
  2661. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2662. {
  2663. unsigned long exit_qualification;
  2664. gpa_t gpa;
  2665. int gla_validity;
  2666. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2667. if (exit_qualification & (1 << 6)) {
  2668. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2669. return -ENOTSUPP;
  2670. }
  2671. gla_validity = (exit_qualification >> 7) & 0x3;
  2672. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2673. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2674. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2675. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2676. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2677. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2678. (long unsigned int)exit_qualification);
  2679. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2680. kvm_run->hw.hardware_exit_reason = 0;
  2681. return -ENOTSUPP;
  2682. }
  2683. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2684. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2685. }
  2686. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2687. {
  2688. u32 cpu_based_vm_exec_control;
  2689. /* clear pending NMI */
  2690. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2691. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2692. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2693. ++vcpu->stat.nmi_window_exits;
  2694. return 1;
  2695. }
  2696. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2697. struct kvm_run *kvm_run)
  2698. {
  2699. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2700. enum emulation_result err = EMULATE_DONE;
  2701. preempt_enable();
  2702. local_irq_enable();
  2703. while (!guest_state_valid(vcpu)) {
  2704. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2705. if (err == EMULATE_DO_MMIO)
  2706. break;
  2707. if (err != EMULATE_DONE) {
  2708. kvm_report_emulation_failure(vcpu, "emulation failure");
  2709. return;
  2710. }
  2711. if (signal_pending(current))
  2712. break;
  2713. if (need_resched())
  2714. schedule();
  2715. }
  2716. local_irq_disable();
  2717. preempt_disable();
  2718. vmx->invalid_state_emulation_result = err;
  2719. }
  2720. /*
  2721. * The exit handlers return 1 if the exit was handled fully and guest execution
  2722. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2723. * to be done to userspace and return 0.
  2724. */
  2725. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2726. struct kvm_run *kvm_run) = {
  2727. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2728. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2729. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2730. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2731. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2732. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2733. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2734. [EXIT_REASON_CPUID] = handle_cpuid,
  2735. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2736. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2737. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2738. [EXIT_REASON_HLT] = handle_halt,
  2739. [EXIT_REASON_INVLPG] = handle_invlpg,
  2740. [EXIT_REASON_VMCALL] = handle_vmcall,
  2741. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2742. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2743. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2744. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2745. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2746. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2747. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2748. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2749. [EXIT_REASON_VMON] = handle_vmx_insn,
  2750. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2751. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2752. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2753. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2754. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2755. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2756. };
  2757. static const int kvm_vmx_max_exit_handlers =
  2758. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2759. /*
  2760. * The guest has exited. See if we can fix it or if we need userspace
  2761. * assistance.
  2762. */
  2763. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2764. {
  2765. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2766. u32 exit_reason = vmx->exit_reason;
  2767. u32 vectoring_info = vmx->idt_vectoring_info;
  2768. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2769. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2770. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2771. * we just return 0 */
  2772. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2773. if (guest_state_valid(vcpu))
  2774. vmx->emulation_required = 0;
  2775. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2776. }
  2777. /* Access CR3 don't cause VMExit in paging mode, so we need
  2778. * to sync with guest real CR3. */
  2779. if (enable_ept && is_paging(vcpu)) {
  2780. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2781. ept_load_pdptrs(vcpu);
  2782. }
  2783. if (unlikely(vmx->fail)) {
  2784. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2785. kvm_run->fail_entry.hardware_entry_failure_reason
  2786. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2787. return 0;
  2788. }
  2789. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2790. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2791. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2792. exit_reason != EXIT_REASON_TASK_SWITCH))
  2793. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2794. "(0x%x) and exit reason is 0x%x\n",
  2795. __func__, vectoring_info, exit_reason);
  2796. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2797. if (vmx_interrupt_allowed(vcpu)) {
  2798. vmx->soft_vnmi_blocked = 0;
  2799. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2800. vcpu->arch.nmi_pending) {
  2801. /*
  2802. * This CPU don't support us in finding the end of an
  2803. * NMI-blocked window if the guest runs with IRQs
  2804. * disabled. So we pull the trigger after 1 s of
  2805. * futile waiting, but inform the user about this.
  2806. */
  2807. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2808. "state on VCPU %d after 1 s timeout\n",
  2809. __func__, vcpu->vcpu_id);
  2810. vmx->soft_vnmi_blocked = 0;
  2811. }
  2812. }
  2813. if (exit_reason < kvm_vmx_max_exit_handlers
  2814. && kvm_vmx_exit_handlers[exit_reason])
  2815. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2816. else {
  2817. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2818. kvm_run->hw.hardware_exit_reason = exit_reason;
  2819. }
  2820. return 0;
  2821. }
  2822. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2823. {
  2824. if (irr == -1 || tpr < irr) {
  2825. vmcs_write32(TPR_THRESHOLD, 0);
  2826. return;
  2827. }
  2828. vmcs_write32(TPR_THRESHOLD, irr);
  2829. }
  2830. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2831. {
  2832. u32 exit_intr_info;
  2833. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2834. bool unblock_nmi;
  2835. u8 vector;
  2836. int type;
  2837. bool idtv_info_valid;
  2838. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2839. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2840. /* Handle machine checks before interrupts are enabled */
  2841. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2842. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2843. && is_machine_check(exit_intr_info)))
  2844. kvm_machine_check();
  2845. /* We need to handle NMIs before interrupts are enabled */
  2846. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2847. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2848. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2849. asm("int $2");
  2850. }
  2851. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2852. if (cpu_has_virtual_nmis()) {
  2853. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2854. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2855. /*
  2856. * SDM 3: 27.7.1.2 (September 2008)
  2857. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2858. * a guest IRET fault.
  2859. * SDM 3: 23.2.2 (September 2008)
  2860. * Bit 12 is undefined in any of the following cases:
  2861. * If the VM exit sets the valid bit in the IDT-vectoring
  2862. * information field.
  2863. * If the VM exit is due to a double fault.
  2864. */
  2865. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2866. vector != DF_VECTOR && !idtv_info_valid)
  2867. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2868. GUEST_INTR_STATE_NMI);
  2869. } else if (unlikely(vmx->soft_vnmi_blocked))
  2870. vmx->vnmi_blocked_time +=
  2871. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2872. vmx->vcpu.arch.nmi_injected = false;
  2873. kvm_clear_exception_queue(&vmx->vcpu);
  2874. kvm_clear_interrupt_queue(&vmx->vcpu);
  2875. if (!idtv_info_valid)
  2876. return;
  2877. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2878. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2879. switch (type) {
  2880. case INTR_TYPE_NMI_INTR:
  2881. vmx->vcpu.arch.nmi_injected = true;
  2882. /*
  2883. * SDM 3: 27.7.1.2 (September 2008)
  2884. * Clear bit "block by NMI" before VM entry if a NMI
  2885. * delivery faulted.
  2886. */
  2887. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2888. GUEST_INTR_STATE_NMI);
  2889. break;
  2890. case INTR_TYPE_SOFT_EXCEPTION:
  2891. vmx->vcpu.arch.event_exit_inst_len =
  2892. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2893. /* fall through */
  2894. case INTR_TYPE_HARD_EXCEPTION:
  2895. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2896. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2897. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2898. } else
  2899. kvm_queue_exception(&vmx->vcpu, vector);
  2900. break;
  2901. case INTR_TYPE_SOFT_INTR:
  2902. vmx->vcpu.arch.event_exit_inst_len =
  2903. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2904. /* fall through */
  2905. case INTR_TYPE_EXT_INTR:
  2906. kvm_queue_interrupt(&vmx->vcpu, vector,
  2907. type == INTR_TYPE_SOFT_INTR);
  2908. break;
  2909. default:
  2910. break;
  2911. }
  2912. }
  2913. /*
  2914. * Failure to inject an interrupt should give us the information
  2915. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2916. * when fetching the interrupt redirection bitmap in the real-mode
  2917. * tss, this doesn't happen. So we do it ourselves.
  2918. */
  2919. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2920. {
  2921. vmx->rmode.irq.pending = 0;
  2922. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2923. return;
  2924. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2925. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2926. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2927. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2928. return;
  2929. }
  2930. vmx->idt_vectoring_info =
  2931. VECTORING_INFO_VALID_MASK
  2932. | INTR_TYPE_EXT_INTR
  2933. | vmx->rmode.irq.vector;
  2934. }
  2935. #ifdef CONFIG_X86_64
  2936. #define R "r"
  2937. #define Q "q"
  2938. #else
  2939. #define R "e"
  2940. #define Q "l"
  2941. #endif
  2942. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2943. {
  2944. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2945. /* Record the guest's net vcpu time for enforced NMI injections. */
  2946. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2947. vmx->entry_time = ktime_get();
  2948. /* Handle invalid guest state instead of entering VMX */
  2949. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2950. handle_invalid_guest_state(vcpu, kvm_run);
  2951. return;
  2952. }
  2953. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2954. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2955. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2956. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2957. /*
  2958. * Loading guest fpu may have cleared host cr0.ts
  2959. */
  2960. vmcs_writel(HOST_CR0, read_cr0());
  2961. set_debugreg(vcpu->arch.dr6, 6);
  2962. asm(
  2963. /* Store host registers */
  2964. "push %%"R"dx; push %%"R"bp;"
  2965. "push %%"R"cx \n\t"
  2966. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2967. "je 1f \n\t"
  2968. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2969. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2970. "1: \n\t"
  2971. /* Check if vmlaunch of vmresume is needed */
  2972. "cmpl $0, %c[launched](%0) \n\t"
  2973. /* Load guest registers. Don't clobber flags. */
  2974. "mov %c[cr2](%0), %%"R"ax \n\t"
  2975. "mov %%"R"ax, %%cr2 \n\t"
  2976. "mov %c[rax](%0), %%"R"ax \n\t"
  2977. "mov %c[rbx](%0), %%"R"bx \n\t"
  2978. "mov %c[rdx](%0), %%"R"dx \n\t"
  2979. "mov %c[rsi](%0), %%"R"si \n\t"
  2980. "mov %c[rdi](%0), %%"R"di \n\t"
  2981. "mov %c[rbp](%0), %%"R"bp \n\t"
  2982. #ifdef CONFIG_X86_64
  2983. "mov %c[r8](%0), %%r8 \n\t"
  2984. "mov %c[r9](%0), %%r9 \n\t"
  2985. "mov %c[r10](%0), %%r10 \n\t"
  2986. "mov %c[r11](%0), %%r11 \n\t"
  2987. "mov %c[r12](%0), %%r12 \n\t"
  2988. "mov %c[r13](%0), %%r13 \n\t"
  2989. "mov %c[r14](%0), %%r14 \n\t"
  2990. "mov %c[r15](%0), %%r15 \n\t"
  2991. #endif
  2992. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2993. /* Enter guest mode */
  2994. "jne .Llaunched \n\t"
  2995. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2996. "jmp .Lkvm_vmx_return \n\t"
  2997. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2998. ".Lkvm_vmx_return: "
  2999. /* Save guest registers, load host registers, keep flags */
  3000. "xchg %0, (%%"R"sp) \n\t"
  3001. "mov %%"R"ax, %c[rax](%0) \n\t"
  3002. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3003. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3004. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3005. "mov %%"R"si, %c[rsi](%0) \n\t"
  3006. "mov %%"R"di, %c[rdi](%0) \n\t"
  3007. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3008. #ifdef CONFIG_X86_64
  3009. "mov %%r8, %c[r8](%0) \n\t"
  3010. "mov %%r9, %c[r9](%0) \n\t"
  3011. "mov %%r10, %c[r10](%0) \n\t"
  3012. "mov %%r11, %c[r11](%0) \n\t"
  3013. "mov %%r12, %c[r12](%0) \n\t"
  3014. "mov %%r13, %c[r13](%0) \n\t"
  3015. "mov %%r14, %c[r14](%0) \n\t"
  3016. "mov %%r15, %c[r15](%0) \n\t"
  3017. #endif
  3018. "mov %%cr2, %%"R"ax \n\t"
  3019. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3020. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3021. "setbe %c[fail](%0) \n\t"
  3022. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3023. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3024. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3025. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3026. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3027. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3028. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3029. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3030. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3031. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3032. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3033. #ifdef CONFIG_X86_64
  3034. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3035. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3036. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3037. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3038. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3039. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3040. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3041. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3042. #endif
  3043. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3044. : "cc", "memory"
  3045. , R"bx", R"di", R"si"
  3046. #ifdef CONFIG_X86_64
  3047. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3048. #endif
  3049. );
  3050. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3051. vcpu->arch.regs_dirty = 0;
  3052. get_debugreg(vcpu->arch.dr6, 6);
  3053. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3054. if (vmx->rmode.irq.pending)
  3055. fixup_rmode_irq(vmx);
  3056. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3057. vmx->launched = 1;
  3058. vmx_complete_interrupts(vmx);
  3059. }
  3060. #undef R
  3061. #undef Q
  3062. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3063. {
  3064. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3065. if (vmx->vmcs) {
  3066. vcpu_clear(vmx);
  3067. free_vmcs(vmx->vmcs);
  3068. vmx->vmcs = NULL;
  3069. }
  3070. }
  3071. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3072. {
  3073. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3074. spin_lock(&vmx_vpid_lock);
  3075. if (vmx->vpid != 0)
  3076. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3077. spin_unlock(&vmx_vpid_lock);
  3078. vmx_free_vmcs(vcpu);
  3079. kfree(vmx->host_msrs);
  3080. kfree(vmx->guest_msrs);
  3081. kvm_vcpu_uninit(vcpu);
  3082. kmem_cache_free(kvm_vcpu_cache, vmx);
  3083. }
  3084. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3085. {
  3086. int err;
  3087. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3088. int cpu;
  3089. if (!vmx)
  3090. return ERR_PTR(-ENOMEM);
  3091. allocate_vpid(vmx);
  3092. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3093. if (err)
  3094. goto free_vcpu;
  3095. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3096. if (!vmx->guest_msrs) {
  3097. err = -ENOMEM;
  3098. goto uninit_vcpu;
  3099. }
  3100. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3101. if (!vmx->host_msrs)
  3102. goto free_guest_msrs;
  3103. vmx->vmcs = alloc_vmcs();
  3104. if (!vmx->vmcs)
  3105. goto free_msrs;
  3106. vmcs_clear(vmx->vmcs);
  3107. cpu = get_cpu();
  3108. vmx_vcpu_load(&vmx->vcpu, cpu);
  3109. err = vmx_vcpu_setup(vmx);
  3110. vmx_vcpu_put(&vmx->vcpu);
  3111. put_cpu();
  3112. if (err)
  3113. goto free_vmcs;
  3114. if (vm_need_virtualize_apic_accesses(kvm))
  3115. if (alloc_apic_access_page(kvm) != 0)
  3116. goto free_vmcs;
  3117. if (enable_ept)
  3118. if (alloc_identity_pagetable(kvm) != 0)
  3119. goto free_vmcs;
  3120. return &vmx->vcpu;
  3121. free_vmcs:
  3122. free_vmcs(vmx->vmcs);
  3123. free_msrs:
  3124. kfree(vmx->host_msrs);
  3125. free_guest_msrs:
  3126. kfree(vmx->guest_msrs);
  3127. uninit_vcpu:
  3128. kvm_vcpu_uninit(&vmx->vcpu);
  3129. free_vcpu:
  3130. kmem_cache_free(kvm_vcpu_cache, vmx);
  3131. return ERR_PTR(err);
  3132. }
  3133. static void __init vmx_check_processor_compat(void *rtn)
  3134. {
  3135. struct vmcs_config vmcs_conf;
  3136. *(int *)rtn = 0;
  3137. if (setup_vmcs_config(&vmcs_conf) < 0)
  3138. *(int *)rtn = -EIO;
  3139. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3140. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3141. smp_processor_id());
  3142. *(int *)rtn = -EIO;
  3143. }
  3144. }
  3145. static int get_ept_level(void)
  3146. {
  3147. return VMX_EPT_DEFAULT_GAW + 1;
  3148. }
  3149. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3150. {
  3151. u64 ret;
  3152. /* For VT-d and EPT combination
  3153. * 1. MMIO: always map as UC
  3154. * 2. EPT with VT-d:
  3155. * a. VT-d without snooping control feature: can't guarantee the
  3156. * result, try to trust guest.
  3157. * b. VT-d with snooping control feature: snooping control feature of
  3158. * VT-d engine can guarantee the cache correctness. Just set it
  3159. * to WB to keep consistent with host. So the same as item 3.
  3160. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3161. * consistent with host MTRR
  3162. */
  3163. if (is_mmio)
  3164. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3165. else if (vcpu->kvm->arch.iommu_domain &&
  3166. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3167. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3168. VMX_EPT_MT_EPTE_SHIFT;
  3169. else
  3170. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3171. | VMX_EPT_IGMT_BIT;
  3172. return ret;
  3173. }
  3174. static struct kvm_x86_ops vmx_x86_ops = {
  3175. .cpu_has_kvm_support = cpu_has_kvm_support,
  3176. .disabled_by_bios = vmx_disabled_by_bios,
  3177. .hardware_setup = hardware_setup,
  3178. .hardware_unsetup = hardware_unsetup,
  3179. .check_processor_compatibility = vmx_check_processor_compat,
  3180. .hardware_enable = hardware_enable,
  3181. .hardware_disable = hardware_disable,
  3182. .cpu_has_accelerated_tpr = report_flexpriority,
  3183. .vcpu_create = vmx_create_vcpu,
  3184. .vcpu_free = vmx_free_vcpu,
  3185. .vcpu_reset = vmx_vcpu_reset,
  3186. .prepare_guest_switch = vmx_save_host_state,
  3187. .vcpu_load = vmx_vcpu_load,
  3188. .vcpu_put = vmx_vcpu_put,
  3189. .set_guest_debug = set_guest_debug,
  3190. .get_msr = vmx_get_msr,
  3191. .set_msr = vmx_set_msr,
  3192. .get_segment_base = vmx_get_segment_base,
  3193. .get_segment = vmx_get_segment,
  3194. .set_segment = vmx_set_segment,
  3195. .get_cpl = vmx_get_cpl,
  3196. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3197. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3198. .set_cr0 = vmx_set_cr0,
  3199. .set_cr3 = vmx_set_cr3,
  3200. .set_cr4 = vmx_set_cr4,
  3201. .set_efer = vmx_set_efer,
  3202. .get_idt = vmx_get_idt,
  3203. .set_idt = vmx_set_idt,
  3204. .get_gdt = vmx_get_gdt,
  3205. .set_gdt = vmx_set_gdt,
  3206. .cache_reg = vmx_cache_reg,
  3207. .get_rflags = vmx_get_rflags,
  3208. .set_rflags = vmx_set_rflags,
  3209. .tlb_flush = vmx_flush_tlb,
  3210. .run = vmx_vcpu_run,
  3211. .handle_exit = vmx_handle_exit,
  3212. .skip_emulated_instruction = skip_emulated_instruction,
  3213. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3214. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3215. .patch_hypercall = vmx_patch_hypercall,
  3216. .set_irq = vmx_inject_irq,
  3217. .set_nmi = vmx_inject_nmi,
  3218. .queue_exception = vmx_queue_exception,
  3219. .interrupt_allowed = vmx_interrupt_allowed,
  3220. .nmi_allowed = vmx_nmi_allowed,
  3221. .enable_nmi_window = enable_nmi_window,
  3222. .enable_irq_window = enable_irq_window,
  3223. .update_cr8_intercept = update_cr8_intercept,
  3224. .set_tss_addr = vmx_set_tss_addr,
  3225. .get_tdp_level = get_ept_level,
  3226. .get_mt_mask = vmx_get_mt_mask,
  3227. };
  3228. static int __init vmx_init(void)
  3229. {
  3230. int r;
  3231. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3232. if (!vmx_io_bitmap_a)
  3233. return -ENOMEM;
  3234. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3235. if (!vmx_io_bitmap_b) {
  3236. r = -ENOMEM;
  3237. goto out;
  3238. }
  3239. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3240. if (!vmx_msr_bitmap_legacy) {
  3241. r = -ENOMEM;
  3242. goto out1;
  3243. }
  3244. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3245. if (!vmx_msr_bitmap_longmode) {
  3246. r = -ENOMEM;
  3247. goto out2;
  3248. }
  3249. /*
  3250. * Allow direct access to the PC debug port (it is often used for I/O
  3251. * delays, but the vmexits simply slow things down).
  3252. */
  3253. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3254. clear_bit(0x80, vmx_io_bitmap_a);
  3255. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3256. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3257. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3258. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3259. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3260. if (r)
  3261. goto out3;
  3262. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3263. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3264. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3265. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3266. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3267. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3268. if (enable_ept) {
  3269. bypass_guest_pf = 0;
  3270. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3271. VMX_EPT_WRITABLE_MASK);
  3272. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3273. VMX_EPT_EXECUTABLE_MASK);
  3274. kvm_enable_tdp();
  3275. } else
  3276. kvm_disable_tdp();
  3277. if (bypass_guest_pf)
  3278. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3279. ept_sync_global();
  3280. return 0;
  3281. out3:
  3282. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3283. out2:
  3284. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3285. out1:
  3286. free_page((unsigned long)vmx_io_bitmap_b);
  3287. out:
  3288. free_page((unsigned long)vmx_io_bitmap_a);
  3289. return r;
  3290. }
  3291. static void __exit vmx_exit(void)
  3292. {
  3293. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3294. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3295. free_page((unsigned long)vmx_io_bitmap_b);
  3296. free_page((unsigned long)vmx_io_bitmap_a);
  3297. kvm_exit();
  3298. }
  3299. module_init(vmx_init)
  3300. module_exit(vmx_exit)