tsc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <asm/hpet.h>
  14. #include <asm/timer.h>
  15. #include <asm/vgtod.h>
  16. #include <asm/time.h>
  17. #include <asm/delay.h>
  18. #include <asm/hypervisor.h>
  19. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  20. EXPORT_SYMBOL(cpu_khz);
  21. unsigned int __read_mostly tsc_khz;
  22. EXPORT_SYMBOL(tsc_khz);
  23. /*
  24. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  25. */
  26. static int __read_mostly tsc_unstable;
  27. /* native_sched_clock() is called before tsc_init(), so
  28. we must start with the TSC soft disabled to prevent
  29. erroneous rdtsc usage on !cpu_has_tsc processors */
  30. static int __read_mostly tsc_disabled = -1;
  31. static int tsc_clocksource_reliable;
  32. /*
  33. * Scheduler clock - returns current time in nanosec units.
  34. */
  35. u64 native_sched_clock(void)
  36. {
  37. u64 this_offset;
  38. /*
  39. * Fall back to jiffies if there's no TSC available:
  40. * ( But note that we still use it if the TSC is marked
  41. * unstable. We do this because unlike Time Of Day,
  42. * the scheduler clock tolerates small errors and it's
  43. * very important for it to be as fast as the platform
  44. * can achive it. )
  45. */
  46. if (unlikely(tsc_disabled)) {
  47. /* No locking but a rare wrong value is not a big deal: */
  48. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  49. }
  50. /* read the Time Stamp Counter: */
  51. rdtscll(this_offset);
  52. /* return the value in ns */
  53. return __cycles_2_ns(this_offset);
  54. }
  55. /* We need to define a real function for sched_clock, to override the
  56. weak default version */
  57. #ifdef CONFIG_PARAVIRT
  58. unsigned long long sched_clock(void)
  59. {
  60. return paravirt_sched_clock();
  61. }
  62. #else
  63. unsigned long long
  64. sched_clock(void) __attribute__((alias("native_sched_clock")));
  65. #endif
  66. int check_tsc_unstable(void)
  67. {
  68. return tsc_unstable;
  69. }
  70. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  71. #ifdef CONFIG_X86_TSC
  72. int __init notsc_setup(char *str)
  73. {
  74. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  75. "cannot disable TSC completely.\n");
  76. tsc_disabled = 1;
  77. return 1;
  78. }
  79. #else
  80. /*
  81. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  82. * in cpu/common.c
  83. */
  84. int __init notsc_setup(char *str)
  85. {
  86. setup_clear_cpu_cap(X86_FEATURE_TSC);
  87. return 1;
  88. }
  89. #endif
  90. __setup("notsc", notsc_setup);
  91. static int __init tsc_setup(char *str)
  92. {
  93. if (!strcmp(str, "reliable"))
  94. tsc_clocksource_reliable = 1;
  95. return 1;
  96. }
  97. __setup("tsc=", tsc_setup);
  98. #define MAX_RETRIES 5
  99. #define SMI_TRESHOLD 50000
  100. /*
  101. * Read TSC and the reference counters. Take care of SMI disturbance
  102. */
  103. static u64 tsc_read_refs(u64 *p, int hpet)
  104. {
  105. u64 t1, t2;
  106. int i;
  107. for (i = 0; i < MAX_RETRIES; i++) {
  108. t1 = get_cycles();
  109. if (hpet)
  110. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  111. else
  112. *p = acpi_pm_read_early();
  113. t2 = get_cycles();
  114. if ((t2 - t1) < SMI_TRESHOLD)
  115. return t2;
  116. }
  117. return ULLONG_MAX;
  118. }
  119. /*
  120. * Calculate the TSC frequency from HPET reference
  121. */
  122. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  123. {
  124. u64 tmp;
  125. if (hpet2 < hpet1)
  126. hpet2 += 0x100000000ULL;
  127. hpet2 -= hpet1;
  128. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  129. do_div(tmp, 1000000);
  130. do_div(deltatsc, tmp);
  131. return (unsigned long) deltatsc;
  132. }
  133. /*
  134. * Calculate the TSC frequency from PMTimer reference
  135. */
  136. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  137. {
  138. u64 tmp;
  139. if (!pm1 && !pm2)
  140. return ULONG_MAX;
  141. if (pm2 < pm1)
  142. pm2 += (u64)ACPI_PM_OVRRUN;
  143. pm2 -= pm1;
  144. tmp = pm2 * 1000000000LL;
  145. do_div(tmp, PMTMR_TICKS_PER_SEC);
  146. do_div(deltatsc, tmp);
  147. return (unsigned long) deltatsc;
  148. }
  149. #define CAL_MS 10
  150. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  151. #define CAL_PIT_LOOPS 1000
  152. #define CAL2_MS 50
  153. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  154. #define CAL2_PIT_LOOPS 5000
  155. /*
  156. * Try to calibrate the TSC against the Programmable
  157. * Interrupt Timer and return the frequency of the TSC
  158. * in kHz.
  159. *
  160. * Return ULONG_MAX on failure to calibrate.
  161. */
  162. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  163. {
  164. u64 tsc, t1, t2, delta;
  165. unsigned long tscmin, tscmax;
  166. int pitcnt;
  167. /* Set the Gate high, disable speaker */
  168. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  169. /*
  170. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  171. * count mode), binary count. Set the latch register to 50ms
  172. * (LSB then MSB) to begin countdown.
  173. */
  174. outb(0xb0, 0x43);
  175. outb(latch & 0xff, 0x42);
  176. outb(latch >> 8, 0x42);
  177. tsc = t1 = t2 = get_cycles();
  178. pitcnt = 0;
  179. tscmax = 0;
  180. tscmin = ULONG_MAX;
  181. while ((inb(0x61) & 0x20) == 0) {
  182. t2 = get_cycles();
  183. delta = t2 - tsc;
  184. tsc = t2;
  185. if ((unsigned long) delta < tscmin)
  186. tscmin = (unsigned int) delta;
  187. if ((unsigned long) delta > tscmax)
  188. tscmax = (unsigned int) delta;
  189. pitcnt++;
  190. }
  191. /*
  192. * Sanity checks:
  193. *
  194. * If we were not able to read the PIT more than loopmin
  195. * times, then we have been hit by a massive SMI
  196. *
  197. * If the maximum is 10 times larger than the minimum,
  198. * then we got hit by an SMI as well.
  199. */
  200. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  201. return ULONG_MAX;
  202. /* Calculate the PIT value */
  203. delta = t2 - t1;
  204. do_div(delta, ms);
  205. return delta;
  206. }
  207. /*
  208. * This reads the current MSB of the PIT counter, and
  209. * checks if we are running on sufficiently fast and
  210. * non-virtualized hardware.
  211. *
  212. * Our expectations are:
  213. *
  214. * - the PIT is running at roughly 1.19MHz
  215. *
  216. * - each IO is going to take about 1us on real hardware,
  217. * but we allow it to be much faster (by a factor of 10) or
  218. * _slightly_ slower (ie we allow up to a 2us read+counter
  219. * update - anything else implies a unacceptably slow CPU
  220. * or PIT for the fast calibration to work.
  221. *
  222. * - with 256 PIT ticks to read the value, we have 214us to
  223. * see the same MSB (and overhead like doing a single TSC
  224. * read per MSB value etc).
  225. *
  226. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  227. * them each to take about a microsecond on real hardware.
  228. * So we expect a count value of around 100. But we'll be
  229. * generous, and accept anything over 50.
  230. *
  231. * - if the PIT is stuck, and we see *many* more reads, we
  232. * return early (and the next caller of pit_expect_msb()
  233. * then consider it a failure when they don't see the
  234. * next expected value).
  235. *
  236. * These expectations mean that we know that we have seen the
  237. * transition from one expected value to another with a fairly
  238. * high accuracy, and we didn't miss any events. We can thus
  239. * use the TSC value at the transitions to calculate a pretty
  240. * good value for the TSC frequencty.
  241. */
  242. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  243. {
  244. int count;
  245. u64 tsc = 0;
  246. for (count = 0; count < 50000; count++) {
  247. /* Ignore LSB */
  248. inb(0x42);
  249. if (inb(0x42) != val)
  250. break;
  251. tsc = get_cycles();
  252. }
  253. *deltap = get_cycles() - tsc;
  254. *tscp = tsc;
  255. /*
  256. * We require _some_ success, but the quality control
  257. * will be based on the error terms on the TSC values.
  258. */
  259. return count > 5;
  260. }
  261. /*
  262. * How many MSB values do we want to see? We aim for
  263. * a maximum error rate of 500ppm (in practice the
  264. * real error is much smaller), but refuse to spend
  265. * more than 25ms on it.
  266. */
  267. #define MAX_QUICK_PIT_MS 25
  268. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  269. static unsigned long quick_pit_calibrate(void)
  270. {
  271. int i;
  272. u64 tsc, delta;
  273. unsigned long d1, d2;
  274. /* Set the Gate high, disable speaker */
  275. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  276. /*
  277. * Counter 2, mode 0 (one-shot), binary count
  278. *
  279. * NOTE! Mode 2 decrements by two (and then the
  280. * output is flipped each time, giving the same
  281. * final output frequency as a decrement-by-one),
  282. * so mode 0 is much better when looking at the
  283. * individual counts.
  284. */
  285. outb(0xb0, 0x43);
  286. /* Start at 0xffff */
  287. outb(0xff, 0x42);
  288. outb(0xff, 0x42);
  289. /*
  290. * The PIT starts counting at the next edge, so we
  291. * need to delay for a microsecond. The easiest way
  292. * to do that is to just read back the 16-bit counter
  293. * once from the PIT.
  294. */
  295. inb(0x42);
  296. inb(0x42);
  297. if (pit_expect_msb(0xff, &tsc, &d1)) {
  298. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  299. if (!pit_expect_msb(0xff-i, &delta, &d2))
  300. break;
  301. /*
  302. * Iterate until the error is less than 500 ppm
  303. */
  304. delta -= tsc;
  305. if (d1+d2 < delta >> 11)
  306. goto success;
  307. }
  308. }
  309. printk("Fast TSC calibration failed\n");
  310. return 0;
  311. success:
  312. /*
  313. * Ok, if we get here, then we've seen the
  314. * MSB of the PIT decrement 'i' times, and the
  315. * error has shrunk to less than 500 ppm.
  316. *
  317. * As a result, we can depend on there not being
  318. * any odd delays anywhere, and the TSC reads are
  319. * reliable (within the error). We also adjust the
  320. * delta to the middle of the error bars, just
  321. * because it looks nicer.
  322. *
  323. * kHz = ticks / time-in-seconds / 1000;
  324. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  325. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  326. */
  327. delta += (long)(d2 - d1)/2;
  328. delta *= PIT_TICK_RATE;
  329. do_div(delta, i*256*1000);
  330. printk("Fast TSC calibration using PIT\n");
  331. return delta;
  332. }
  333. /**
  334. * native_calibrate_tsc - calibrate the tsc on boot
  335. */
  336. unsigned long native_calibrate_tsc(void)
  337. {
  338. u64 tsc1, tsc2, delta, ref1, ref2;
  339. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  340. unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz;
  341. int hpet = is_hpet_enabled(), i, loopmin;
  342. hv_tsc_khz = get_hypervisor_tsc_freq();
  343. if (hv_tsc_khz) {
  344. printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
  345. return hv_tsc_khz;
  346. }
  347. local_irq_save(flags);
  348. fast_calibrate = quick_pit_calibrate();
  349. local_irq_restore(flags);
  350. if (fast_calibrate)
  351. return fast_calibrate;
  352. /*
  353. * Run 5 calibration loops to get the lowest frequency value
  354. * (the best estimate). We use two different calibration modes
  355. * here:
  356. *
  357. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  358. * load a timeout of 50ms. We read the time right after we
  359. * started the timer and wait until the PIT count down reaches
  360. * zero. In each wait loop iteration we read the TSC and check
  361. * the delta to the previous read. We keep track of the min
  362. * and max values of that delta. The delta is mostly defined
  363. * by the IO time of the PIT access, so we can detect when a
  364. * SMI/SMM disturbance happend between the two reads. If the
  365. * maximum time is significantly larger than the minimum time,
  366. * then we discard the result and have another try.
  367. *
  368. * 2) Reference counter. If available we use the HPET or the
  369. * PMTIMER as a reference to check the sanity of that value.
  370. * We use separate TSC readouts and check inside of the
  371. * reference read for a SMI/SMM disturbance. We dicard
  372. * disturbed values here as well. We do that around the PIT
  373. * calibration delay loop as we have to wait for a certain
  374. * amount of time anyway.
  375. */
  376. /* Preset PIT loop values */
  377. latch = CAL_LATCH;
  378. ms = CAL_MS;
  379. loopmin = CAL_PIT_LOOPS;
  380. for (i = 0; i < 3; i++) {
  381. unsigned long tsc_pit_khz;
  382. /*
  383. * Read the start value and the reference count of
  384. * hpet/pmtimer when available. Then do the PIT
  385. * calibration, which will take at least 50ms, and
  386. * read the end value.
  387. */
  388. local_irq_save(flags);
  389. tsc1 = tsc_read_refs(&ref1, hpet);
  390. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  391. tsc2 = tsc_read_refs(&ref2, hpet);
  392. local_irq_restore(flags);
  393. /* Pick the lowest PIT TSC calibration so far */
  394. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  395. /* hpet or pmtimer available ? */
  396. if (!hpet && !ref1 && !ref2)
  397. continue;
  398. /* Check, whether the sampling was disturbed by an SMI */
  399. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  400. continue;
  401. tsc2 = (tsc2 - tsc1) * 1000000LL;
  402. if (hpet)
  403. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  404. else
  405. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  406. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  407. /* Check the reference deviation */
  408. delta = ((u64) tsc_pit_min) * 100;
  409. do_div(delta, tsc_ref_min);
  410. /*
  411. * If both calibration results are inside a 10% window
  412. * then we can be sure, that the calibration
  413. * succeeded. We break out of the loop right away. We
  414. * use the reference value, as it is more precise.
  415. */
  416. if (delta >= 90 && delta <= 110) {
  417. printk(KERN_INFO
  418. "TSC: PIT calibration matches %s. %d loops\n",
  419. hpet ? "HPET" : "PMTIMER", i + 1);
  420. return tsc_ref_min;
  421. }
  422. /*
  423. * Check whether PIT failed more than once. This
  424. * happens in virtualized environments. We need to
  425. * give the virtual PC a slightly longer timeframe for
  426. * the HPET/PMTIMER to make the result precise.
  427. */
  428. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  429. latch = CAL2_LATCH;
  430. ms = CAL2_MS;
  431. loopmin = CAL2_PIT_LOOPS;
  432. }
  433. }
  434. /*
  435. * Now check the results.
  436. */
  437. if (tsc_pit_min == ULONG_MAX) {
  438. /* PIT gave no useful value */
  439. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  440. /* We don't have an alternative source, disable TSC */
  441. if (!hpet && !ref1 && !ref2) {
  442. printk("TSC: No reference (HPET/PMTIMER) available\n");
  443. return 0;
  444. }
  445. /* The alternative source failed as well, disable TSC */
  446. if (tsc_ref_min == ULONG_MAX) {
  447. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  448. "failed.\n");
  449. return 0;
  450. }
  451. /* Use the alternative source */
  452. printk(KERN_INFO "TSC: using %s reference calibration\n",
  453. hpet ? "HPET" : "PMTIMER");
  454. return tsc_ref_min;
  455. }
  456. /* We don't have an alternative source, use the PIT calibration value */
  457. if (!hpet && !ref1 && !ref2) {
  458. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  459. return tsc_pit_min;
  460. }
  461. /* The alternative source failed, use the PIT calibration value */
  462. if (tsc_ref_min == ULONG_MAX) {
  463. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  464. "Using PIT calibration\n");
  465. return tsc_pit_min;
  466. }
  467. /*
  468. * The calibration values differ too much. In doubt, we use
  469. * the PIT value as we know that there are PMTIMERs around
  470. * running at double speed. At least we let the user know:
  471. */
  472. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  473. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  474. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  475. return tsc_pit_min;
  476. }
  477. int recalibrate_cpu_khz(void)
  478. {
  479. #ifndef CONFIG_SMP
  480. unsigned long cpu_khz_old = cpu_khz;
  481. if (cpu_has_tsc) {
  482. tsc_khz = calibrate_tsc();
  483. cpu_khz = tsc_khz;
  484. cpu_data(0).loops_per_jiffy =
  485. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  486. cpu_khz_old, cpu_khz);
  487. return 0;
  488. } else
  489. return -ENODEV;
  490. #else
  491. return -ENODEV;
  492. #endif
  493. }
  494. EXPORT_SYMBOL(recalibrate_cpu_khz);
  495. /* Accelerators for sched_clock()
  496. * convert from cycles(64bits) => nanoseconds (64bits)
  497. * basic equation:
  498. * ns = cycles / (freq / ns_per_sec)
  499. * ns = cycles * (ns_per_sec / freq)
  500. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  501. * ns = cycles * (10^6 / cpu_khz)
  502. *
  503. * Then we use scaling math (suggested by george@mvista.com) to get:
  504. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  505. * ns = cycles * cyc2ns_scale / SC
  506. *
  507. * And since SC is a constant power of two, we can convert the div
  508. * into a shift.
  509. *
  510. * We can use khz divisor instead of mhz to keep a better precision, since
  511. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  512. * (mathieu.desnoyers@polymtl.ca)
  513. *
  514. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  515. */
  516. DEFINE_PER_CPU(unsigned long, cyc2ns);
  517. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  518. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  519. {
  520. unsigned long long tsc_now, ns_now, *offset;
  521. unsigned long flags, *scale;
  522. local_irq_save(flags);
  523. sched_clock_idle_sleep_event();
  524. scale = &per_cpu(cyc2ns, cpu);
  525. offset = &per_cpu(cyc2ns_offset, cpu);
  526. rdtscll(tsc_now);
  527. ns_now = __cycles_2_ns(tsc_now);
  528. if (cpu_khz) {
  529. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  530. *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
  531. }
  532. sched_clock_idle_wakeup_event(0);
  533. local_irq_restore(flags);
  534. }
  535. #ifdef CONFIG_CPU_FREQ
  536. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  537. * changes.
  538. *
  539. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  540. * not that important because current Opteron setups do not support
  541. * scaling on SMP anyroads.
  542. *
  543. * Should fix up last_tsc too. Currently gettimeofday in the
  544. * first tick after the change will be slightly wrong.
  545. */
  546. static unsigned int ref_freq;
  547. static unsigned long loops_per_jiffy_ref;
  548. static unsigned long tsc_khz_ref;
  549. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  550. void *data)
  551. {
  552. struct cpufreq_freqs *freq = data;
  553. unsigned long *lpj;
  554. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  555. return 0;
  556. lpj = &boot_cpu_data.loops_per_jiffy;
  557. #ifdef CONFIG_SMP
  558. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  559. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  560. #endif
  561. if (!ref_freq) {
  562. ref_freq = freq->old;
  563. loops_per_jiffy_ref = *lpj;
  564. tsc_khz_ref = tsc_khz;
  565. }
  566. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  567. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  568. (val == CPUFREQ_RESUMECHANGE)) {
  569. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  570. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  571. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  572. mark_tsc_unstable("cpufreq changes");
  573. }
  574. set_cyc2ns_scale(tsc_khz, freq->cpu);
  575. return 0;
  576. }
  577. static struct notifier_block time_cpufreq_notifier_block = {
  578. .notifier_call = time_cpufreq_notifier
  579. };
  580. static int __init cpufreq_tsc(void)
  581. {
  582. if (!cpu_has_tsc)
  583. return 0;
  584. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  585. return 0;
  586. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  587. CPUFREQ_TRANSITION_NOTIFIER);
  588. return 0;
  589. }
  590. core_initcall(cpufreq_tsc);
  591. #endif /* CONFIG_CPU_FREQ */
  592. /* clocksource code */
  593. static struct clocksource clocksource_tsc;
  594. /*
  595. * We compare the TSC to the cycle_last value in the clocksource
  596. * structure to avoid a nasty time-warp. This can be observed in a
  597. * very small window right after one CPU updated cycle_last under
  598. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  599. * is smaller than the cycle_last reference value due to a TSC which
  600. * is slighty behind. This delta is nowhere else observable, but in
  601. * that case it results in a forward time jump in the range of hours
  602. * due to the unsigned delta calculation of the time keeping core
  603. * code, which is necessary to support wrapping clocksources like pm
  604. * timer.
  605. */
  606. static cycle_t read_tsc(struct clocksource *cs)
  607. {
  608. cycle_t ret = (cycle_t)get_cycles();
  609. return ret >= clocksource_tsc.cycle_last ?
  610. ret : clocksource_tsc.cycle_last;
  611. }
  612. #ifdef CONFIG_X86_64
  613. static cycle_t __vsyscall_fn vread_tsc(void)
  614. {
  615. cycle_t ret;
  616. /*
  617. * Surround the RDTSC by barriers, to make sure it's not
  618. * speculated to outside the seqlock critical section and
  619. * does not cause time warps:
  620. */
  621. rdtsc_barrier();
  622. ret = (cycle_t)vget_cycles();
  623. rdtsc_barrier();
  624. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  625. ret : __vsyscall_gtod_data.clock.cycle_last;
  626. }
  627. #endif
  628. static struct clocksource clocksource_tsc = {
  629. .name = "tsc",
  630. .rating = 300,
  631. .read = read_tsc,
  632. .mask = CLOCKSOURCE_MASK(64),
  633. .shift = 22,
  634. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  635. CLOCK_SOURCE_MUST_VERIFY,
  636. #ifdef CONFIG_X86_64
  637. .vread = vread_tsc,
  638. #endif
  639. };
  640. void mark_tsc_unstable(char *reason)
  641. {
  642. if (!tsc_unstable) {
  643. tsc_unstable = 1;
  644. printk("Marking TSC unstable due to %s\n", reason);
  645. /* Change only the rating, when not registered */
  646. if (clocksource_tsc.mult)
  647. clocksource_change_rating(&clocksource_tsc, 0);
  648. else
  649. clocksource_tsc.rating = 0;
  650. }
  651. }
  652. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  653. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  654. {
  655. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  656. d->ident);
  657. tsc_unstable = 1;
  658. return 0;
  659. }
  660. /* List of systems that have known TSC problems */
  661. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  662. {
  663. .callback = dmi_mark_tsc_unstable,
  664. .ident = "IBM Thinkpad 380XD",
  665. .matches = {
  666. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  667. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  668. },
  669. },
  670. {}
  671. };
  672. static void __init check_system_tsc_reliable(void)
  673. {
  674. #ifdef CONFIG_MGEODE_LX
  675. /* RTSC counts during suspend */
  676. #define RTSC_SUSP 0x100
  677. unsigned long res_low, res_high;
  678. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  679. /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
  680. if (res_low & RTSC_SUSP)
  681. tsc_clocksource_reliable = 1;
  682. #endif
  683. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  684. tsc_clocksource_reliable = 1;
  685. }
  686. /*
  687. * Make an educated guess if the TSC is trustworthy and synchronized
  688. * over all CPUs.
  689. */
  690. __cpuinit int unsynchronized_tsc(void)
  691. {
  692. if (!cpu_has_tsc || tsc_unstable)
  693. return 1;
  694. #ifdef CONFIG_SMP
  695. if (apic_is_clustered_box())
  696. return 1;
  697. #endif
  698. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  699. return 0;
  700. /*
  701. * Intel systems are normally all synchronized.
  702. * Exceptions must mark TSC as unstable:
  703. */
  704. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  705. /* assume multi socket systems are not synchronized: */
  706. if (num_possible_cpus() > 1)
  707. tsc_unstable = 1;
  708. }
  709. return tsc_unstable;
  710. }
  711. static void __init init_tsc_clocksource(void)
  712. {
  713. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  714. clocksource_tsc.shift);
  715. if (tsc_clocksource_reliable)
  716. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  717. /* lower the rating if we already know its unstable: */
  718. if (check_tsc_unstable()) {
  719. clocksource_tsc.rating = 0;
  720. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  721. }
  722. clocksource_register(&clocksource_tsc);
  723. }
  724. void __init tsc_init(void)
  725. {
  726. u64 lpj;
  727. int cpu;
  728. if (!cpu_has_tsc)
  729. return;
  730. tsc_khz = calibrate_tsc();
  731. cpu_khz = tsc_khz;
  732. if (!tsc_khz) {
  733. mark_tsc_unstable("could not calculate TSC khz");
  734. return;
  735. }
  736. #ifdef CONFIG_X86_64
  737. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  738. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  739. cpu_khz = calibrate_cpu();
  740. #endif
  741. printk("Detected %lu.%03lu MHz processor.\n",
  742. (unsigned long)cpu_khz / 1000,
  743. (unsigned long)cpu_khz % 1000);
  744. /*
  745. * Secondary CPUs do not run through tsc_init(), so set up
  746. * all the scale factors for all CPUs, assuming the same
  747. * speed as the bootup CPU. (cpufreq notifiers will fix this
  748. * up if their speed diverges)
  749. */
  750. for_each_possible_cpu(cpu)
  751. set_cyc2ns_scale(cpu_khz, cpu);
  752. if (tsc_disabled > 0)
  753. return;
  754. /* now allow native_sched_clock() to use rdtsc */
  755. tsc_disabled = 0;
  756. lpj = ((u64)tsc_khz * 1000);
  757. do_div(lpj, HZ);
  758. lpj_fine = lpj;
  759. use_tsc_delay();
  760. /* Check and install the TSC clocksource */
  761. dmi_check_system(bad_tsc_dmi_table);
  762. if (unsynchronized_tsc())
  763. mark_tsc_unstable("TSCs unsynchronized");
  764. check_system_tsc_reliable();
  765. init_tsc_clocksource();
  766. }