process.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <trace/power.h>
  13. #include <asm/system.h>
  14. #include <asm/apic.h>
  15. #include <asm/syscalls.h>
  16. #include <asm/idle.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/i387.h>
  19. #include <asm/ds.h>
  20. unsigned long idle_halt;
  21. EXPORT_SYMBOL(idle_halt);
  22. unsigned long idle_nomwait;
  23. EXPORT_SYMBOL(idle_nomwait);
  24. struct kmem_cache *task_xstate_cachep;
  25. DEFINE_TRACE(power_start);
  26. DEFINE_TRACE(power_end);
  27. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  28. {
  29. *dst = *src;
  30. if (src->thread.xstate) {
  31. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  32. GFP_KERNEL);
  33. if (!dst->thread.xstate)
  34. return -ENOMEM;
  35. WARN_ON((unsigned long)dst->thread.xstate & 15);
  36. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  37. }
  38. return 0;
  39. }
  40. void free_thread_xstate(struct task_struct *tsk)
  41. {
  42. if (tsk->thread.xstate) {
  43. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  44. tsk->thread.xstate = NULL;
  45. }
  46. WARN(tsk->thread.ds_ctx, "leaking DS context\n");
  47. }
  48. void free_thread_info(struct thread_info *ti)
  49. {
  50. free_thread_xstate(ti->task);
  51. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  52. }
  53. void arch_task_cache_init(void)
  54. {
  55. task_xstate_cachep =
  56. kmem_cache_create("task_xstate", xstate_size,
  57. __alignof__(union thread_xstate),
  58. SLAB_PANIC | SLAB_NOTRACK, NULL);
  59. }
  60. /*
  61. * Free current thread data structures etc..
  62. */
  63. void exit_thread(void)
  64. {
  65. struct task_struct *me = current;
  66. struct thread_struct *t = &me->thread;
  67. unsigned long *bp = t->io_bitmap_ptr;
  68. if (bp) {
  69. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  70. t->io_bitmap_ptr = NULL;
  71. clear_thread_flag(TIF_IO_BITMAP);
  72. /*
  73. * Careful, clear this in the TSS too:
  74. */
  75. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  76. t->io_bitmap_max = 0;
  77. put_cpu();
  78. kfree(bp);
  79. }
  80. }
  81. void flush_thread(void)
  82. {
  83. struct task_struct *tsk = current;
  84. #ifdef CONFIG_X86_64
  85. if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
  86. clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
  87. if (test_tsk_thread_flag(tsk, TIF_IA32)) {
  88. clear_tsk_thread_flag(tsk, TIF_IA32);
  89. } else {
  90. set_tsk_thread_flag(tsk, TIF_IA32);
  91. current_thread_info()->status |= TS_COMPAT;
  92. }
  93. }
  94. #endif
  95. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  96. tsk->thread.debugreg0 = 0;
  97. tsk->thread.debugreg1 = 0;
  98. tsk->thread.debugreg2 = 0;
  99. tsk->thread.debugreg3 = 0;
  100. tsk->thread.debugreg6 = 0;
  101. tsk->thread.debugreg7 = 0;
  102. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  103. /*
  104. * Forget coprocessor state..
  105. */
  106. tsk->fpu_counter = 0;
  107. clear_fpu(tsk);
  108. clear_used_math();
  109. }
  110. static void hard_disable_TSC(void)
  111. {
  112. write_cr4(read_cr4() | X86_CR4_TSD);
  113. }
  114. void disable_TSC(void)
  115. {
  116. preempt_disable();
  117. if (!test_and_set_thread_flag(TIF_NOTSC))
  118. /*
  119. * Must flip the CPU state synchronously with
  120. * TIF_NOTSC in the current running context.
  121. */
  122. hard_disable_TSC();
  123. preempt_enable();
  124. }
  125. static void hard_enable_TSC(void)
  126. {
  127. write_cr4(read_cr4() & ~X86_CR4_TSD);
  128. }
  129. static void enable_TSC(void)
  130. {
  131. preempt_disable();
  132. if (test_and_clear_thread_flag(TIF_NOTSC))
  133. /*
  134. * Must flip the CPU state synchronously with
  135. * TIF_NOTSC in the current running context.
  136. */
  137. hard_enable_TSC();
  138. preempt_enable();
  139. }
  140. int get_tsc_mode(unsigned long adr)
  141. {
  142. unsigned int val;
  143. if (test_thread_flag(TIF_NOTSC))
  144. val = PR_TSC_SIGSEGV;
  145. else
  146. val = PR_TSC_ENABLE;
  147. return put_user(val, (unsigned int __user *)adr);
  148. }
  149. int set_tsc_mode(unsigned int val)
  150. {
  151. if (val == PR_TSC_SIGSEGV)
  152. disable_TSC();
  153. else if (val == PR_TSC_ENABLE)
  154. enable_TSC();
  155. else
  156. return -EINVAL;
  157. return 0;
  158. }
  159. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  160. struct tss_struct *tss)
  161. {
  162. struct thread_struct *prev, *next;
  163. prev = &prev_p->thread;
  164. next = &next_p->thread;
  165. if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
  166. test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
  167. ds_switch_to(prev_p, next_p);
  168. else if (next->debugctlmsr != prev->debugctlmsr)
  169. update_debugctlmsr(next->debugctlmsr);
  170. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  171. set_debugreg(next->debugreg0, 0);
  172. set_debugreg(next->debugreg1, 1);
  173. set_debugreg(next->debugreg2, 2);
  174. set_debugreg(next->debugreg3, 3);
  175. /* no 4 and 5 */
  176. set_debugreg(next->debugreg6, 6);
  177. set_debugreg(next->debugreg7, 7);
  178. }
  179. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  180. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  181. /* prev and next are different */
  182. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  183. hard_disable_TSC();
  184. else
  185. hard_enable_TSC();
  186. }
  187. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  188. /*
  189. * Copy the relevant range of the IO bitmap.
  190. * Normally this is 128 bytes or less:
  191. */
  192. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  193. max(prev->io_bitmap_max, next->io_bitmap_max));
  194. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  195. /*
  196. * Clear any possible leftover bits:
  197. */
  198. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  199. }
  200. }
  201. int sys_fork(struct pt_regs *regs)
  202. {
  203. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  204. }
  205. /*
  206. * This is trivial, and on the face of it looks like it
  207. * could equally well be done in user mode.
  208. *
  209. * Not so, for quite unobvious reasons - register pressure.
  210. * In user mode vfork() cannot have a stack frame, and if
  211. * done by calling the "clone()" system call directly, you
  212. * do not have enough call-clobbered registers to hold all
  213. * the information you need.
  214. */
  215. int sys_vfork(struct pt_regs *regs)
  216. {
  217. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  218. NULL, NULL);
  219. }
  220. /*
  221. * Idle related variables and functions
  222. */
  223. unsigned long boot_option_idle_override = 0;
  224. EXPORT_SYMBOL(boot_option_idle_override);
  225. /*
  226. * Powermanagement idle function, if any..
  227. */
  228. void (*pm_idle)(void);
  229. EXPORT_SYMBOL(pm_idle);
  230. #ifdef CONFIG_X86_32
  231. /*
  232. * This halt magic was a workaround for ancient floppy DMA
  233. * wreckage. It should be safe to remove.
  234. */
  235. static int hlt_counter;
  236. void disable_hlt(void)
  237. {
  238. hlt_counter++;
  239. }
  240. EXPORT_SYMBOL(disable_hlt);
  241. void enable_hlt(void)
  242. {
  243. hlt_counter--;
  244. }
  245. EXPORT_SYMBOL(enable_hlt);
  246. static inline int hlt_use_halt(void)
  247. {
  248. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  249. }
  250. #else
  251. static inline int hlt_use_halt(void)
  252. {
  253. return 1;
  254. }
  255. #endif
  256. /*
  257. * We use this if we don't have any better
  258. * idle routine..
  259. */
  260. void default_idle(void)
  261. {
  262. if (hlt_use_halt()) {
  263. struct power_trace it;
  264. trace_power_start(&it, POWER_CSTATE, 1);
  265. current_thread_info()->status &= ~TS_POLLING;
  266. /*
  267. * TS_POLLING-cleared state must be visible before we
  268. * test NEED_RESCHED:
  269. */
  270. smp_mb();
  271. if (!need_resched())
  272. safe_halt(); /* enables interrupts racelessly */
  273. else
  274. local_irq_enable();
  275. current_thread_info()->status |= TS_POLLING;
  276. trace_power_end(&it);
  277. } else {
  278. local_irq_enable();
  279. /* loop is done by the caller */
  280. cpu_relax();
  281. }
  282. }
  283. #ifdef CONFIG_APM_MODULE
  284. EXPORT_SYMBOL(default_idle);
  285. #endif
  286. void stop_this_cpu(void *dummy)
  287. {
  288. local_irq_disable();
  289. /*
  290. * Remove this CPU:
  291. */
  292. set_cpu_online(smp_processor_id(), false);
  293. disable_local_APIC();
  294. for (;;) {
  295. if (hlt_works(smp_processor_id()))
  296. halt();
  297. }
  298. }
  299. static void do_nothing(void *unused)
  300. {
  301. }
  302. /*
  303. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  304. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  305. * handler on SMP systems.
  306. *
  307. * Caller must have changed pm_idle to the new value before the call. Old
  308. * pm_idle value will not be used by any CPU after the return of this function.
  309. */
  310. void cpu_idle_wait(void)
  311. {
  312. smp_mb();
  313. /* kick all the CPUs so that they exit out of pm_idle */
  314. smp_call_function(do_nothing, NULL, 1);
  315. }
  316. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  317. /*
  318. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  319. * which can obviate IPI to trigger checking of need_resched.
  320. * We execute MONITOR against need_resched and enter optimized wait state
  321. * through MWAIT. Whenever someone changes need_resched, we would be woken
  322. * up from MWAIT (without an IPI).
  323. *
  324. * New with Core Duo processors, MWAIT can take some hints based on CPU
  325. * capability.
  326. */
  327. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  328. {
  329. struct power_trace it;
  330. trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
  331. if (!need_resched()) {
  332. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  333. clflush((void *)&current_thread_info()->flags);
  334. __monitor((void *)&current_thread_info()->flags, 0, 0);
  335. smp_mb();
  336. if (!need_resched())
  337. __mwait(ax, cx);
  338. }
  339. trace_power_end(&it);
  340. }
  341. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  342. static void mwait_idle(void)
  343. {
  344. struct power_trace it;
  345. if (!need_resched()) {
  346. trace_power_start(&it, POWER_CSTATE, 1);
  347. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  348. clflush((void *)&current_thread_info()->flags);
  349. __monitor((void *)&current_thread_info()->flags, 0, 0);
  350. smp_mb();
  351. if (!need_resched())
  352. __sti_mwait(0, 0);
  353. else
  354. local_irq_enable();
  355. trace_power_end(&it);
  356. } else
  357. local_irq_enable();
  358. }
  359. /*
  360. * On SMP it's slightly faster (but much more power-consuming!)
  361. * to poll the ->work.need_resched flag instead of waiting for the
  362. * cross-CPU IPI to arrive. Use this option with caution.
  363. */
  364. static void poll_idle(void)
  365. {
  366. struct power_trace it;
  367. trace_power_start(&it, POWER_CSTATE, 0);
  368. local_irq_enable();
  369. while (!need_resched())
  370. cpu_relax();
  371. trace_power_end(&it);
  372. }
  373. /*
  374. * mwait selection logic:
  375. *
  376. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  377. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  378. * then depend on a clock divisor and current Pstate of the core. If
  379. * all cores of a processor are in halt state (C1) the processor can
  380. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  381. * happen.
  382. *
  383. * idle=mwait overrides this decision and forces the usage of mwait.
  384. */
  385. static int __cpuinitdata force_mwait;
  386. #define MWAIT_INFO 0x05
  387. #define MWAIT_ECX_EXTENDED_INFO 0x01
  388. #define MWAIT_EDX_C1 0xf0
  389. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  390. {
  391. u32 eax, ebx, ecx, edx;
  392. if (force_mwait)
  393. return 1;
  394. if (c->cpuid_level < MWAIT_INFO)
  395. return 0;
  396. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  397. /* Check, whether EDX has extended info about MWAIT */
  398. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  399. return 1;
  400. /*
  401. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  402. * C1 supports MWAIT
  403. */
  404. return (edx & MWAIT_EDX_C1);
  405. }
  406. /*
  407. * Check for AMD CPUs, which have potentially C1E support
  408. */
  409. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  410. {
  411. if (c->x86_vendor != X86_VENDOR_AMD)
  412. return 0;
  413. if (c->x86 < 0x0F)
  414. return 0;
  415. /* Family 0x0f models < rev F do not have C1E */
  416. if (c->x86 == 0x0f && c->x86_model < 0x40)
  417. return 0;
  418. return 1;
  419. }
  420. static cpumask_var_t c1e_mask;
  421. static int c1e_detected;
  422. void c1e_remove_cpu(int cpu)
  423. {
  424. if (c1e_mask != NULL)
  425. cpumask_clear_cpu(cpu, c1e_mask);
  426. }
  427. /*
  428. * C1E aware idle routine. We check for C1E active in the interrupt
  429. * pending message MSR. If we detect C1E, then we handle it the same
  430. * way as C3 power states (local apic timer and TSC stop)
  431. */
  432. static void c1e_idle(void)
  433. {
  434. if (need_resched())
  435. return;
  436. if (!c1e_detected) {
  437. u32 lo, hi;
  438. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  439. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  440. c1e_detected = 1;
  441. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  442. mark_tsc_unstable("TSC halt in AMD C1E");
  443. printk(KERN_INFO "System has AMD C1E enabled\n");
  444. set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
  445. }
  446. }
  447. if (c1e_detected) {
  448. int cpu = smp_processor_id();
  449. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  450. cpumask_set_cpu(cpu, c1e_mask);
  451. /*
  452. * Force broadcast so ACPI can not interfere. Needs
  453. * to run with interrupts enabled as it uses
  454. * smp_function_call.
  455. */
  456. local_irq_enable();
  457. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  458. &cpu);
  459. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  460. cpu);
  461. local_irq_disable();
  462. }
  463. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  464. default_idle();
  465. /*
  466. * The switch back from broadcast mode needs to be
  467. * called with interrupts disabled.
  468. */
  469. local_irq_disable();
  470. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  471. local_irq_enable();
  472. } else
  473. default_idle();
  474. }
  475. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  476. {
  477. #ifdef CONFIG_SMP
  478. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  479. printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
  480. " performance may degrade.\n");
  481. }
  482. #endif
  483. if (pm_idle)
  484. return;
  485. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  486. /*
  487. * One CPU supports mwait => All CPUs supports mwait
  488. */
  489. printk(KERN_INFO "using mwait in idle threads.\n");
  490. pm_idle = mwait_idle;
  491. } else if (check_c1e_idle(c)) {
  492. printk(KERN_INFO "using C1E aware idle routine\n");
  493. pm_idle = c1e_idle;
  494. } else
  495. pm_idle = default_idle;
  496. }
  497. void __init init_c1e_mask(void)
  498. {
  499. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  500. if (pm_idle == c1e_idle) {
  501. alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  502. cpumask_clear(c1e_mask);
  503. }
  504. }
  505. static int __init idle_setup(char *str)
  506. {
  507. if (!str)
  508. return -EINVAL;
  509. if (!strcmp(str, "poll")) {
  510. printk("using polling idle threads.\n");
  511. pm_idle = poll_idle;
  512. } else if (!strcmp(str, "mwait"))
  513. force_mwait = 1;
  514. else if (!strcmp(str, "halt")) {
  515. /*
  516. * When the boot option of idle=halt is added, halt is
  517. * forced to be used for CPU idle. In such case CPU C2/C3
  518. * won't be used again.
  519. * To continue to load the CPU idle driver, don't touch
  520. * the boot_option_idle_override.
  521. */
  522. pm_idle = default_idle;
  523. idle_halt = 1;
  524. return 0;
  525. } else if (!strcmp(str, "nomwait")) {
  526. /*
  527. * If the boot option of "idle=nomwait" is added,
  528. * it means that mwait will be disabled for CPU C2/C3
  529. * states. In such case it won't touch the variable
  530. * of boot_option_idle_override.
  531. */
  532. idle_nomwait = 1;
  533. return 0;
  534. } else
  535. return -1;
  536. boot_option_idle_override = 1;
  537. return 0;
  538. }
  539. early_param("idle", idle_setup);
  540. unsigned long arch_align_stack(unsigned long sp)
  541. {
  542. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  543. sp -= get_random_int() % 8192;
  544. return sp & ~0xf;
  545. }
  546. unsigned long arch_randomize_brk(struct mm_struct *mm)
  547. {
  548. unsigned long range_end = mm->brk + 0x02000000;
  549. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  550. }