kvm.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245
  1. /*
  2. * KVM paravirt_ops implementation
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. *
  18. * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  19. * Copyright IBM Corporation, 2007
  20. * Authors: Anthony Liguori <aliguori@us.ibm.com>
  21. */
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/kvm_para.h>
  25. #include <linux/cpu.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/hardirq.h>
  29. #include <asm/timer.h>
  30. #define MMU_QUEUE_SIZE 1024
  31. struct kvm_para_state {
  32. u8 mmu_queue[MMU_QUEUE_SIZE];
  33. int mmu_queue_len;
  34. enum paravirt_lazy_mode mode;
  35. };
  36. static DEFINE_PER_CPU(struct kvm_para_state, para_state);
  37. static struct kvm_para_state *kvm_para_state(void)
  38. {
  39. return &per_cpu(para_state, raw_smp_processor_id());
  40. }
  41. /*
  42. * No need for any "IO delay" on KVM
  43. */
  44. static void kvm_io_delay(void)
  45. {
  46. }
  47. static void kvm_mmu_op(void *buffer, unsigned len)
  48. {
  49. int r;
  50. unsigned long a1, a2;
  51. do {
  52. a1 = __pa(buffer);
  53. a2 = 0; /* on i386 __pa() always returns <4G */
  54. r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
  55. buffer += r;
  56. len -= r;
  57. } while (len);
  58. }
  59. static void mmu_queue_flush(struct kvm_para_state *state)
  60. {
  61. if (state->mmu_queue_len) {
  62. kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
  63. state->mmu_queue_len = 0;
  64. }
  65. }
  66. static void kvm_deferred_mmu_op(void *buffer, int len)
  67. {
  68. struct kvm_para_state *state = kvm_para_state();
  69. if (state->mode != PARAVIRT_LAZY_MMU) {
  70. kvm_mmu_op(buffer, len);
  71. return;
  72. }
  73. if (state->mmu_queue_len + len > sizeof state->mmu_queue)
  74. mmu_queue_flush(state);
  75. memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
  76. state->mmu_queue_len += len;
  77. }
  78. static void kvm_mmu_write(void *dest, u64 val)
  79. {
  80. __u64 pte_phys;
  81. struct kvm_mmu_op_write_pte wpte;
  82. #ifdef CONFIG_HIGHPTE
  83. struct page *page;
  84. unsigned long dst = (unsigned long) dest;
  85. page = kmap_atomic_to_page(dest);
  86. pte_phys = page_to_pfn(page);
  87. pte_phys <<= PAGE_SHIFT;
  88. pte_phys += (dst & ~(PAGE_MASK));
  89. #else
  90. pte_phys = (unsigned long)__pa(dest);
  91. #endif
  92. wpte.header.op = KVM_MMU_OP_WRITE_PTE;
  93. wpte.pte_val = val;
  94. wpte.pte_phys = pte_phys;
  95. kvm_deferred_mmu_op(&wpte, sizeof wpte);
  96. }
  97. /*
  98. * We only need to hook operations that are MMU writes. We hook these so that
  99. * we can use lazy MMU mode to batch these operations. We could probably
  100. * improve the performance of the host code if we used some of the information
  101. * here to simplify processing of batched writes.
  102. */
  103. static void kvm_set_pte(pte_t *ptep, pte_t pte)
  104. {
  105. kvm_mmu_write(ptep, pte_val(pte));
  106. }
  107. static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
  108. pte_t *ptep, pte_t pte)
  109. {
  110. kvm_mmu_write(ptep, pte_val(pte));
  111. }
  112. static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
  113. {
  114. kvm_mmu_write(pmdp, pmd_val(pmd));
  115. }
  116. #if PAGETABLE_LEVELS >= 3
  117. #ifdef CONFIG_X86_PAE
  118. static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
  119. {
  120. kvm_mmu_write(ptep, pte_val(pte));
  121. }
  122. static void kvm_pte_clear(struct mm_struct *mm,
  123. unsigned long addr, pte_t *ptep)
  124. {
  125. kvm_mmu_write(ptep, 0);
  126. }
  127. static void kvm_pmd_clear(pmd_t *pmdp)
  128. {
  129. kvm_mmu_write(pmdp, 0);
  130. }
  131. #endif
  132. static void kvm_set_pud(pud_t *pudp, pud_t pud)
  133. {
  134. kvm_mmu_write(pudp, pud_val(pud));
  135. }
  136. #if PAGETABLE_LEVELS == 4
  137. static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
  138. {
  139. kvm_mmu_write(pgdp, pgd_val(pgd));
  140. }
  141. #endif
  142. #endif /* PAGETABLE_LEVELS >= 3 */
  143. static void kvm_flush_tlb(void)
  144. {
  145. struct kvm_mmu_op_flush_tlb ftlb = {
  146. .header.op = KVM_MMU_OP_FLUSH_TLB,
  147. };
  148. kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
  149. }
  150. static void kvm_release_pt(unsigned long pfn)
  151. {
  152. struct kvm_mmu_op_release_pt rpt = {
  153. .header.op = KVM_MMU_OP_RELEASE_PT,
  154. .pt_phys = (u64)pfn << PAGE_SHIFT,
  155. };
  156. kvm_mmu_op(&rpt, sizeof rpt);
  157. }
  158. static void kvm_enter_lazy_mmu(void)
  159. {
  160. struct kvm_para_state *state = kvm_para_state();
  161. paravirt_enter_lazy_mmu();
  162. state->mode = paravirt_get_lazy_mode();
  163. }
  164. static void kvm_leave_lazy_mmu(void)
  165. {
  166. struct kvm_para_state *state = kvm_para_state();
  167. mmu_queue_flush(state);
  168. paravirt_leave_lazy_mmu();
  169. state->mode = paravirt_get_lazy_mode();
  170. }
  171. static void __init paravirt_ops_setup(void)
  172. {
  173. pv_info.name = "KVM";
  174. pv_info.paravirt_enabled = 1;
  175. if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
  176. pv_cpu_ops.io_delay = kvm_io_delay;
  177. if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
  178. pv_mmu_ops.set_pte = kvm_set_pte;
  179. pv_mmu_ops.set_pte_at = kvm_set_pte_at;
  180. pv_mmu_ops.set_pmd = kvm_set_pmd;
  181. #if PAGETABLE_LEVELS >= 3
  182. #ifdef CONFIG_X86_PAE
  183. pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
  184. pv_mmu_ops.pte_clear = kvm_pte_clear;
  185. pv_mmu_ops.pmd_clear = kvm_pmd_clear;
  186. #endif
  187. pv_mmu_ops.set_pud = kvm_set_pud;
  188. #if PAGETABLE_LEVELS == 4
  189. pv_mmu_ops.set_pgd = kvm_set_pgd;
  190. #endif
  191. #endif
  192. pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
  193. pv_mmu_ops.release_pte = kvm_release_pt;
  194. pv_mmu_ops.release_pmd = kvm_release_pt;
  195. pv_mmu_ops.release_pud = kvm_release_pt;
  196. pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
  197. pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
  198. }
  199. #ifdef CONFIG_X86_IO_APIC
  200. no_timer_check = 1;
  201. #endif
  202. }
  203. void __init kvm_guest_init(void)
  204. {
  205. if (!kvm_para_available())
  206. return;
  207. paravirt_ops_setup();
  208. }