powernow-k8.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463
  1. /*
  2. * (c) 2003-2006 Advanced Micro Devices, Inc.
  3. * Your use of this code is subject to the terms and conditions of the
  4. * GNU general public license version 2. See "COPYING" or
  5. * http://www.gnu.org/licenses/gpl.html
  6. *
  7. * Support : mark.langsdorf@amd.com
  8. *
  9. * Based on the powernow-k7.c module written by Dave Jones.
  10. * (C) 2003 Dave Jones on behalf of SuSE Labs
  11. * (C) 2004 Dominik Brodowski <linux@brodo.de>
  12. * (C) 2004 Pavel Machek <pavel@suse.cz>
  13. * Licensed under the terms of the GNU GPL License version 2.
  14. * Based upon datasheets & sample CPUs kindly provided by AMD.
  15. *
  16. * Valuable input gratefully received from Dave Jones, Pavel Machek,
  17. * Dominik Brodowski, Jacob Shin, and others.
  18. * Originally developed by Paul Devriendt.
  19. * Processor information obtained from Chapter 9 (Power and Thermal Management)
  20. * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
  21. * Opteron Processors" available for download from www.amd.com
  22. *
  23. * Tables for specific CPUs can be inferred from
  24. * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
  25. */
  26. #include <linux/kernel.h>
  27. #include <linux/smp.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/cpufreq.h>
  31. #include <linux/slab.h>
  32. #include <linux/string.h>
  33. #include <linux/cpumask.h>
  34. #include <linux/sched.h> /* for current / set_cpus_allowed() */
  35. #include <linux/io.h>
  36. #include <linux/delay.h>
  37. #include <asm/msr.h>
  38. #include <linux/acpi.h>
  39. #include <linux/mutex.h>
  40. #include <acpi/processor.h>
  41. #define PFX "powernow-k8: "
  42. #define VERSION "version 2.20.00"
  43. #include "powernow-k8.h"
  44. /* serialize freq changes */
  45. static DEFINE_MUTEX(fidvid_mutex);
  46. static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  47. static int cpu_family = CPU_OPTERON;
  48. #ifndef CONFIG_SMP
  49. static inline const struct cpumask *cpu_core_mask(int cpu)
  50. {
  51. return cpumask_of(0);
  52. }
  53. #endif
  54. /* Return a frequency in MHz, given an input fid */
  55. static u32 find_freq_from_fid(u32 fid)
  56. {
  57. return 800 + (fid * 100);
  58. }
  59. /* Return a frequency in KHz, given an input fid */
  60. static u32 find_khz_freq_from_fid(u32 fid)
  61. {
  62. return 1000 * find_freq_from_fid(fid);
  63. }
  64. static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  65. u32 pstate)
  66. {
  67. return data[pstate].frequency;
  68. }
  69. /* Return the vco fid for an input fid
  70. *
  71. * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  72. * only from corresponding high fids. This returns "high" fid corresponding to
  73. * "low" one.
  74. */
  75. static u32 convert_fid_to_vco_fid(u32 fid)
  76. {
  77. if (fid < HI_FID_TABLE_BOTTOM)
  78. return 8 + (2 * fid);
  79. else
  80. return fid;
  81. }
  82. /*
  83. * Return 1 if the pending bit is set. Unless we just instructed the processor
  84. * to transition to a new state, seeing this bit set is really bad news.
  85. */
  86. static int pending_bit_stuck(void)
  87. {
  88. u32 lo, hi;
  89. if (cpu_family == CPU_HW_PSTATE)
  90. return 0;
  91. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  92. return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  93. }
  94. /*
  95. * Update the global current fid / vid values from the status msr.
  96. * Returns 1 on error.
  97. */
  98. static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
  99. {
  100. u32 lo, hi;
  101. u32 i = 0;
  102. if (cpu_family == CPU_HW_PSTATE) {
  103. rdmsr(MSR_PSTATE_STATUS, lo, hi);
  104. i = lo & HW_PSTATE_MASK;
  105. data->currpstate = i;
  106. /*
  107. * a workaround for family 11h erratum 311 might cause
  108. * an "out-of-range Pstate if the core is in Pstate-0
  109. */
  110. if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
  111. data->currpstate = HW_PSTATE_0;
  112. return 0;
  113. }
  114. do {
  115. if (i++ > 10000) {
  116. dprintk("detected change pending stuck\n");
  117. return 1;
  118. }
  119. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  120. } while (lo & MSR_S_LO_CHANGE_PENDING);
  121. data->currvid = hi & MSR_S_HI_CURRENT_VID;
  122. data->currfid = lo & MSR_S_LO_CURRENT_FID;
  123. return 0;
  124. }
  125. /* the isochronous relief time */
  126. static void count_off_irt(struct powernow_k8_data *data)
  127. {
  128. udelay((1 << data->irt) * 10);
  129. return;
  130. }
  131. /* the voltage stabilization time */
  132. static void count_off_vst(struct powernow_k8_data *data)
  133. {
  134. udelay(data->vstable * VST_UNITS_20US);
  135. return;
  136. }
  137. /* need to init the control msr to a safe value (for each cpu) */
  138. static void fidvid_msr_init(void)
  139. {
  140. u32 lo, hi;
  141. u8 fid, vid;
  142. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  143. vid = hi & MSR_S_HI_CURRENT_VID;
  144. fid = lo & MSR_S_LO_CURRENT_FID;
  145. lo = fid | (vid << MSR_C_LO_VID_SHIFT);
  146. hi = MSR_C_HI_STP_GNT_BENIGN;
  147. dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
  148. wrmsr(MSR_FIDVID_CTL, lo, hi);
  149. }
  150. /* write the new fid value along with the other control fields to the msr */
  151. static int write_new_fid(struct powernow_k8_data *data, u32 fid)
  152. {
  153. u32 lo;
  154. u32 savevid = data->currvid;
  155. u32 i = 0;
  156. if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
  157. printk(KERN_ERR PFX "internal error - overflow on fid write\n");
  158. return 1;
  159. }
  160. lo = fid;
  161. lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
  162. lo |= MSR_C_LO_INIT_FID_VID;
  163. dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
  164. fid, lo, data->plllock * PLL_LOCK_CONVERSION);
  165. do {
  166. wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
  167. if (i++ > 100) {
  168. printk(KERN_ERR PFX
  169. "Hardware error - pending bit very stuck - "
  170. "no further pstate changes possible\n");
  171. return 1;
  172. }
  173. } while (query_current_values_with_pending_wait(data));
  174. count_off_irt(data);
  175. if (savevid != data->currvid) {
  176. printk(KERN_ERR PFX
  177. "vid change on fid trans, old 0x%x, new 0x%x\n",
  178. savevid, data->currvid);
  179. return 1;
  180. }
  181. if (fid != data->currfid) {
  182. printk(KERN_ERR PFX
  183. "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
  184. data->currfid);
  185. return 1;
  186. }
  187. return 0;
  188. }
  189. /* Write a new vid to the hardware */
  190. static int write_new_vid(struct powernow_k8_data *data, u32 vid)
  191. {
  192. u32 lo;
  193. u32 savefid = data->currfid;
  194. int i = 0;
  195. if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
  196. printk(KERN_ERR PFX "internal error - overflow on vid write\n");
  197. return 1;
  198. }
  199. lo = data->currfid;
  200. lo |= (vid << MSR_C_LO_VID_SHIFT);
  201. lo |= MSR_C_LO_INIT_FID_VID;
  202. dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
  203. vid, lo, STOP_GRANT_5NS);
  204. do {
  205. wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
  206. if (i++ > 100) {
  207. printk(KERN_ERR PFX "internal error - pending bit "
  208. "very stuck - no further pstate "
  209. "changes possible\n");
  210. return 1;
  211. }
  212. } while (query_current_values_with_pending_wait(data));
  213. if (savefid != data->currfid) {
  214. printk(KERN_ERR PFX "fid changed on vid trans, old "
  215. "0x%x new 0x%x\n",
  216. savefid, data->currfid);
  217. return 1;
  218. }
  219. if (vid != data->currvid) {
  220. printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
  221. "curr 0x%x\n",
  222. vid, data->currvid);
  223. return 1;
  224. }
  225. return 0;
  226. }
  227. /*
  228. * Reduce the vid by the max of step or reqvid.
  229. * Decreasing vid codes represent increasing voltages:
  230. * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
  231. */
  232. static int decrease_vid_code_by_step(struct powernow_k8_data *data,
  233. u32 reqvid, u32 step)
  234. {
  235. if ((data->currvid - reqvid) > step)
  236. reqvid = data->currvid - step;
  237. if (write_new_vid(data, reqvid))
  238. return 1;
  239. count_off_vst(data);
  240. return 0;
  241. }
  242. /* Change hardware pstate by single MSR write */
  243. static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
  244. {
  245. wrmsr(MSR_PSTATE_CTRL, pstate, 0);
  246. data->currpstate = pstate;
  247. return 0;
  248. }
  249. /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
  250. static int transition_fid_vid(struct powernow_k8_data *data,
  251. u32 reqfid, u32 reqvid)
  252. {
  253. if (core_voltage_pre_transition(data, reqvid, reqfid))
  254. return 1;
  255. if (core_frequency_transition(data, reqfid))
  256. return 1;
  257. if (core_voltage_post_transition(data, reqvid))
  258. return 1;
  259. if (query_current_values_with_pending_wait(data))
  260. return 1;
  261. if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
  262. printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
  263. "curr 0x%x 0x%x\n",
  264. smp_processor_id(),
  265. reqfid, reqvid, data->currfid, data->currvid);
  266. return 1;
  267. }
  268. dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
  269. smp_processor_id(), data->currfid, data->currvid);
  270. return 0;
  271. }
  272. /* Phase 1 - core voltage transition ... setup voltage */
  273. static int core_voltage_pre_transition(struct powernow_k8_data *data,
  274. u32 reqvid, u32 reqfid)
  275. {
  276. u32 rvosteps = data->rvo;
  277. u32 savefid = data->currfid;
  278. u32 maxvid, lo, rvomult = 1;
  279. dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
  280. "reqvid 0x%x, rvo 0x%x\n",
  281. smp_processor_id(),
  282. data->currfid, data->currvid, reqvid, data->rvo);
  283. if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
  284. rvomult = 2;
  285. rvosteps *= rvomult;
  286. rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
  287. maxvid = 0x1f & (maxvid >> 16);
  288. dprintk("ph1 maxvid=0x%x\n", maxvid);
  289. if (reqvid < maxvid) /* lower numbers are higher voltages */
  290. reqvid = maxvid;
  291. while (data->currvid > reqvid) {
  292. dprintk("ph1: curr 0x%x, req vid 0x%x\n",
  293. data->currvid, reqvid);
  294. if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
  295. return 1;
  296. }
  297. while ((rvosteps > 0) &&
  298. ((rvomult * data->rvo + data->currvid) > reqvid)) {
  299. if (data->currvid == maxvid) {
  300. rvosteps = 0;
  301. } else {
  302. dprintk("ph1: changing vid for rvo, req 0x%x\n",
  303. data->currvid - 1);
  304. if (decrease_vid_code_by_step(data, data->currvid-1, 1))
  305. return 1;
  306. rvosteps--;
  307. }
  308. }
  309. if (query_current_values_with_pending_wait(data))
  310. return 1;
  311. if (savefid != data->currfid) {
  312. printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
  313. data->currfid);
  314. return 1;
  315. }
  316. dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
  317. data->currfid, data->currvid);
  318. return 0;
  319. }
  320. /* Phase 2 - core frequency transition */
  321. static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
  322. {
  323. u32 vcoreqfid, vcocurrfid, vcofiddiff;
  324. u32 fid_interval, savevid = data->currvid;
  325. if (data->currfid == reqfid) {
  326. printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
  327. data->currfid);
  328. return 0;
  329. }
  330. dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
  331. "reqfid 0x%x\n",
  332. smp_processor_id(),
  333. data->currfid, data->currvid, reqfid);
  334. vcoreqfid = convert_fid_to_vco_fid(reqfid);
  335. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  336. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  337. : vcoreqfid - vcocurrfid;
  338. if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
  339. vcofiddiff = 0;
  340. while (vcofiddiff > 2) {
  341. (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
  342. if (reqfid > data->currfid) {
  343. if (data->currfid > LO_FID_TABLE_TOP) {
  344. if (write_new_fid(data,
  345. data->currfid + fid_interval))
  346. return 1;
  347. } else {
  348. if (write_new_fid
  349. (data,
  350. 2 + convert_fid_to_vco_fid(data->currfid)))
  351. return 1;
  352. }
  353. } else {
  354. if (write_new_fid(data, data->currfid - fid_interval))
  355. return 1;
  356. }
  357. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  358. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  359. : vcoreqfid - vcocurrfid;
  360. }
  361. if (write_new_fid(data, reqfid))
  362. return 1;
  363. if (query_current_values_with_pending_wait(data))
  364. return 1;
  365. if (data->currfid != reqfid) {
  366. printk(KERN_ERR PFX
  367. "ph2: mismatch, failed fid transition, "
  368. "curr 0x%x, req 0x%x\n",
  369. data->currfid, reqfid);
  370. return 1;
  371. }
  372. if (savevid != data->currvid) {
  373. printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
  374. savevid, data->currvid);
  375. return 1;
  376. }
  377. dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
  378. data->currfid, data->currvid);
  379. return 0;
  380. }
  381. /* Phase 3 - core voltage transition flow ... jump to the final vid. */
  382. static int core_voltage_post_transition(struct powernow_k8_data *data,
  383. u32 reqvid)
  384. {
  385. u32 savefid = data->currfid;
  386. u32 savereqvid = reqvid;
  387. dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
  388. smp_processor_id(),
  389. data->currfid, data->currvid);
  390. if (reqvid != data->currvid) {
  391. if (write_new_vid(data, reqvid))
  392. return 1;
  393. if (savefid != data->currfid) {
  394. printk(KERN_ERR PFX
  395. "ph3: bad fid change, save 0x%x, curr 0x%x\n",
  396. savefid, data->currfid);
  397. return 1;
  398. }
  399. if (data->currvid != reqvid) {
  400. printk(KERN_ERR PFX
  401. "ph3: failed vid transition\n, "
  402. "req 0x%x, curr 0x%x",
  403. reqvid, data->currvid);
  404. return 1;
  405. }
  406. }
  407. if (query_current_values_with_pending_wait(data))
  408. return 1;
  409. if (savereqvid != data->currvid) {
  410. dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
  411. return 1;
  412. }
  413. if (savefid != data->currfid) {
  414. dprintk("ph3 failed, currfid changed 0x%x\n",
  415. data->currfid);
  416. return 1;
  417. }
  418. dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
  419. data->currfid, data->currvid);
  420. return 0;
  421. }
  422. static void check_supported_cpu(void *_rc)
  423. {
  424. u32 eax, ebx, ecx, edx;
  425. int *rc = _rc;
  426. *rc = -ENODEV;
  427. if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
  428. return;
  429. eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  430. if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
  431. ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
  432. return;
  433. if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
  434. if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
  435. ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
  436. printk(KERN_INFO PFX
  437. "Processor cpuid %x not supported\n", eax);
  438. return;
  439. }
  440. eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
  441. if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
  442. printk(KERN_INFO PFX
  443. "No frequency change capabilities detected\n");
  444. return;
  445. }
  446. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  447. if ((edx & P_STATE_TRANSITION_CAPABLE)
  448. != P_STATE_TRANSITION_CAPABLE) {
  449. printk(KERN_INFO PFX
  450. "Power state transitions not supported\n");
  451. return;
  452. }
  453. } else { /* must be a HW Pstate capable processor */
  454. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  455. if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
  456. cpu_family = CPU_HW_PSTATE;
  457. else
  458. return;
  459. }
  460. *rc = 0;
  461. }
  462. static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
  463. u8 maxvid)
  464. {
  465. unsigned int j;
  466. u8 lastfid = 0xff;
  467. for (j = 0; j < data->numps; j++) {
  468. if (pst[j].vid > LEAST_VID) {
  469. printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
  470. j, pst[j].vid);
  471. return -EINVAL;
  472. }
  473. if (pst[j].vid < data->rvo) {
  474. /* vid + rvo >= 0 */
  475. printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
  476. " %d\n", j);
  477. return -ENODEV;
  478. }
  479. if (pst[j].vid < maxvid + data->rvo) {
  480. /* vid + rvo >= maxvid */
  481. printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
  482. " %d\n", j);
  483. return -ENODEV;
  484. }
  485. if (pst[j].fid > MAX_FID) {
  486. printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
  487. " %d\n", j);
  488. return -ENODEV;
  489. }
  490. if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
  491. /* Only first fid is allowed to be in "low" range */
  492. printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
  493. "0x%x\n", j, pst[j].fid);
  494. return -EINVAL;
  495. }
  496. if (pst[j].fid < lastfid)
  497. lastfid = pst[j].fid;
  498. }
  499. if (lastfid & 1) {
  500. printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
  501. return -EINVAL;
  502. }
  503. if (lastfid > LO_FID_TABLE_TOP)
  504. printk(KERN_INFO FW_BUG PFX
  505. "first fid not from lo freq table\n");
  506. return 0;
  507. }
  508. static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
  509. {
  510. data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
  511. }
  512. static void print_basics(struct powernow_k8_data *data)
  513. {
  514. int j;
  515. for (j = 0; j < data->numps; j++) {
  516. if (data->powernow_table[j].frequency !=
  517. CPUFREQ_ENTRY_INVALID) {
  518. if (cpu_family == CPU_HW_PSTATE) {
  519. printk(KERN_INFO PFX
  520. " %d : pstate %d (%d MHz)\n", j,
  521. data->powernow_table[j].index,
  522. data->powernow_table[j].frequency/1000);
  523. } else {
  524. printk(KERN_INFO PFX
  525. " %d : fid 0x%x (%d MHz), vid 0x%x\n",
  526. j,
  527. data->powernow_table[j].index & 0xff,
  528. data->powernow_table[j].frequency/1000,
  529. data->powernow_table[j].index >> 8);
  530. }
  531. }
  532. }
  533. if (data->batps)
  534. printk(KERN_INFO PFX "Only %d pstates on battery\n",
  535. data->batps);
  536. }
  537. static u32 freq_from_fid_did(u32 fid, u32 did)
  538. {
  539. u32 mhz = 0;
  540. if (boot_cpu_data.x86 == 0x10)
  541. mhz = (100 * (fid + 0x10)) >> did;
  542. else if (boot_cpu_data.x86 == 0x11)
  543. mhz = (100 * (fid + 8)) >> did;
  544. else
  545. BUG();
  546. return mhz * 1000;
  547. }
  548. static int fill_powernow_table(struct powernow_k8_data *data,
  549. struct pst_s *pst, u8 maxvid)
  550. {
  551. struct cpufreq_frequency_table *powernow_table;
  552. unsigned int j;
  553. if (data->batps) {
  554. /* use ACPI support to get full speed on mains power */
  555. printk(KERN_WARNING PFX
  556. "Only %d pstates usable (use ACPI driver for full "
  557. "range\n", data->batps);
  558. data->numps = data->batps;
  559. }
  560. for (j = 1; j < data->numps; j++) {
  561. if (pst[j-1].fid >= pst[j].fid) {
  562. printk(KERN_ERR PFX "PST out of sequence\n");
  563. return -EINVAL;
  564. }
  565. }
  566. if (data->numps < 2) {
  567. printk(KERN_ERR PFX "no p states to transition\n");
  568. return -ENODEV;
  569. }
  570. if (check_pst_table(data, pst, maxvid))
  571. return -EINVAL;
  572. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  573. * (data->numps + 1)), GFP_KERNEL);
  574. if (!powernow_table) {
  575. printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
  576. return -ENOMEM;
  577. }
  578. for (j = 0; j < data->numps; j++) {
  579. int freq;
  580. powernow_table[j].index = pst[j].fid; /* lower 8 bits */
  581. powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
  582. freq = find_khz_freq_from_fid(pst[j].fid);
  583. powernow_table[j].frequency = freq;
  584. }
  585. powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
  586. powernow_table[data->numps].index = 0;
  587. if (query_current_values_with_pending_wait(data)) {
  588. kfree(powernow_table);
  589. return -EIO;
  590. }
  591. dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
  592. data->powernow_table = powernow_table;
  593. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  594. print_basics(data);
  595. for (j = 0; j < data->numps; j++)
  596. if ((pst[j].fid == data->currfid) &&
  597. (pst[j].vid == data->currvid))
  598. return 0;
  599. dprintk("currfid/vid do not match PST, ignoring\n");
  600. return 0;
  601. }
  602. /* Find and validate the PSB/PST table in BIOS. */
  603. static int find_psb_table(struct powernow_k8_data *data)
  604. {
  605. struct psb_s *psb;
  606. unsigned int i;
  607. u32 mvs;
  608. u8 maxvid;
  609. u32 cpst = 0;
  610. u32 thiscpuid;
  611. for (i = 0xc0000; i < 0xffff0; i += 0x10) {
  612. /* Scan BIOS looking for the signature. */
  613. /* It can not be at ffff0 - it is too big. */
  614. psb = phys_to_virt(i);
  615. if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
  616. continue;
  617. dprintk("found PSB header at 0x%p\n", psb);
  618. dprintk("table vers: 0x%x\n", psb->tableversion);
  619. if (psb->tableversion != PSB_VERSION_1_4) {
  620. printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
  621. return -ENODEV;
  622. }
  623. dprintk("flags: 0x%x\n", psb->flags1);
  624. if (psb->flags1) {
  625. printk(KERN_ERR FW_BUG PFX "unknown flags\n");
  626. return -ENODEV;
  627. }
  628. data->vstable = psb->vstable;
  629. dprintk("voltage stabilization time: %d(*20us)\n",
  630. data->vstable);
  631. dprintk("flags2: 0x%x\n", psb->flags2);
  632. data->rvo = psb->flags2 & 3;
  633. data->irt = ((psb->flags2) >> 2) & 3;
  634. mvs = ((psb->flags2) >> 4) & 3;
  635. data->vidmvs = 1 << mvs;
  636. data->batps = ((psb->flags2) >> 6) & 3;
  637. dprintk("ramp voltage offset: %d\n", data->rvo);
  638. dprintk("isochronous relief time: %d\n", data->irt);
  639. dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
  640. dprintk("numpst: 0x%x\n", psb->num_tables);
  641. cpst = psb->num_tables;
  642. if ((psb->cpuid == 0x00000fc0) ||
  643. (psb->cpuid == 0x00000fe0)) {
  644. thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  645. if ((thiscpuid == 0x00000fc0) ||
  646. (thiscpuid == 0x00000fe0))
  647. cpst = 1;
  648. }
  649. if (cpst != 1) {
  650. printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
  651. return -ENODEV;
  652. }
  653. data->plllock = psb->plllocktime;
  654. dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
  655. dprintk("maxfid: 0x%x\n", psb->maxfid);
  656. dprintk("maxvid: 0x%x\n", psb->maxvid);
  657. maxvid = psb->maxvid;
  658. data->numps = psb->numps;
  659. dprintk("numpstates: 0x%x\n", data->numps);
  660. return fill_powernow_table(data,
  661. (struct pst_s *)(psb+1), maxvid);
  662. }
  663. /*
  664. * If you see this message, complain to BIOS manufacturer. If
  665. * he tells you "we do not support Linux" or some similar
  666. * nonsense, remember that Windows 2000 uses the same legacy
  667. * mechanism that the old Linux PSB driver uses. Tell them it
  668. * is broken with Windows 2000.
  669. *
  670. * The reference to the AMD documentation is chapter 9 in the
  671. * BIOS and Kernel Developer's Guide, which is available on
  672. * www.amd.com
  673. */
  674. printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
  675. return -ENODEV;
  676. }
  677. static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
  678. unsigned int index)
  679. {
  680. acpi_integer control;
  681. if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
  682. return;
  683. control = data->acpi_data.states[index].control;
  684. data->irt = (control >> IRT_SHIFT) & IRT_MASK;
  685. data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
  686. data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
  687. data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
  688. data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
  689. data->vstable = (control >> VST_SHIFT) & VST_MASK;
  690. }
  691. static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
  692. {
  693. struct cpufreq_frequency_table *powernow_table;
  694. int ret_val = -ENODEV;
  695. acpi_integer control, status;
  696. if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
  697. dprintk("register performance failed: bad ACPI data\n");
  698. return -EIO;
  699. }
  700. /* verify the data contained in the ACPI structures */
  701. if (data->acpi_data.state_count <= 1) {
  702. dprintk("No ACPI P-States\n");
  703. goto err_out;
  704. }
  705. control = data->acpi_data.control_register.space_id;
  706. status = data->acpi_data.status_register.space_id;
  707. if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  708. (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  709. dprintk("Invalid control/status registers (%x - %x)\n",
  710. control, status);
  711. goto err_out;
  712. }
  713. /* fill in data->powernow_table */
  714. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  715. * (data->acpi_data.state_count + 1)), GFP_KERNEL);
  716. if (!powernow_table) {
  717. dprintk("powernow_table memory alloc failure\n");
  718. goto err_out;
  719. }
  720. if (cpu_family == CPU_HW_PSTATE)
  721. ret_val = fill_powernow_table_pstate(data, powernow_table);
  722. else
  723. ret_val = fill_powernow_table_fidvid(data, powernow_table);
  724. if (ret_val)
  725. goto err_out_mem;
  726. powernow_table[data->acpi_data.state_count].frequency =
  727. CPUFREQ_TABLE_END;
  728. powernow_table[data->acpi_data.state_count].index = 0;
  729. data->powernow_table = powernow_table;
  730. /* fill in data */
  731. data->numps = data->acpi_data.state_count;
  732. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  733. print_basics(data);
  734. powernow_k8_acpi_pst_values(data, 0);
  735. /* notify BIOS that we exist */
  736. acpi_processor_notify_smm(THIS_MODULE);
  737. if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
  738. printk(KERN_ERR PFX
  739. "unable to alloc powernow_k8_data cpumask\n");
  740. ret_val = -ENOMEM;
  741. goto err_out_mem;
  742. }
  743. return 0;
  744. err_out_mem:
  745. kfree(powernow_table);
  746. err_out:
  747. acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
  748. /* data->acpi_data.state_count informs us at ->exit()
  749. * whether ACPI was used */
  750. data->acpi_data.state_count = 0;
  751. return ret_val;
  752. }
  753. static int fill_powernow_table_pstate(struct powernow_k8_data *data,
  754. struct cpufreq_frequency_table *powernow_table)
  755. {
  756. int i;
  757. u32 hi = 0, lo = 0;
  758. rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
  759. data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
  760. for (i = 0; i < data->acpi_data.state_count; i++) {
  761. u32 index;
  762. index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
  763. if (index > data->max_hw_pstate) {
  764. printk(KERN_ERR PFX "invalid pstate %d - "
  765. "bad value %d.\n", i, index);
  766. printk(KERN_ERR PFX "Please report to BIOS "
  767. "manufacturer\n");
  768. invalidate_entry(data, i);
  769. continue;
  770. }
  771. rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
  772. if (!(hi & HW_PSTATE_VALID_MASK)) {
  773. dprintk("invalid pstate %d, ignoring\n", index);
  774. invalidate_entry(data, i);
  775. continue;
  776. }
  777. powernow_table[i].index = index;
  778. /* Frequency may be rounded for these */
  779. if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
  780. powernow_table[i].frequency =
  781. freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
  782. } else
  783. powernow_table[i].frequency =
  784. data->acpi_data.states[i].core_frequency * 1000;
  785. }
  786. return 0;
  787. }
  788. static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
  789. struct cpufreq_frequency_table *powernow_table)
  790. {
  791. int i;
  792. int cntlofreq = 0;
  793. for (i = 0; i < data->acpi_data.state_count; i++) {
  794. u32 fid;
  795. u32 vid;
  796. u32 freq, index;
  797. acpi_integer status, control;
  798. if (data->exttype) {
  799. status = data->acpi_data.states[i].status;
  800. fid = status & EXT_FID_MASK;
  801. vid = (status >> VID_SHIFT) & EXT_VID_MASK;
  802. } else {
  803. control = data->acpi_data.states[i].control;
  804. fid = control & FID_MASK;
  805. vid = (control >> VID_SHIFT) & VID_MASK;
  806. }
  807. dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
  808. index = fid | (vid<<8);
  809. powernow_table[i].index = index;
  810. freq = find_khz_freq_from_fid(fid);
  811. powernow_table[i].frequency = freq;
  812. /* verify frequency is OK */
  813. if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
  814. dprintk("invalid freq %u kHz, ignoring\n", freq);
  815. invalidate_entry(data, i);
  816. continue;
  817. }
  818. /* verify voltage is OK -
  819. * BIOSs are using "off" to indicate invalid */
  820. if (vid == VID_OFF) {
  821. dprintk("invalid vid %u, ignoring\n", vid);
  822. invalidate_entry(data, i);
  823. continue;
  824. }
  825. /* verify only 1 entry from the lo frequency table */
  826. if (fid < HI_FID_TABLE_BOTTOM) {
  827. if (cntlofreq) {
  828. /* if both entries are the same,
  829. * ignore this one ... */
  830. if ((freq != powernow_table[cntlofreq].frequency) ||
  831. (index != powernow_table[cntlofreq].index)) {
  832. printk(KERN_ERR PFX
  833. "Too many lo freq table "
  834. "entries\n");
  835. return 1;
  836. }
  837. dprintk("double low frequency table entry, "
  838. "ignoring it.\n");
  839. invalidate_entry(data, i);
  840. continue;
  841. } else
  842. cntlofreq = i;
  843. }
  844. if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
  845. printk(KERN_INFO PFX "invalid freq entries "
  846. "%u kHz vs. %u kHz\n", freq,
  847. (unsigned int)
  848. (data->acpi_data.states[i].core_frequency
  849. * 1000));
  850. invalidate_entry(data, i);
  851. continue;
  852. }
  853. }
  854. return 0;
  855. }
  856. static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
  857. {
  858. if (data->acpi_data.state_count)
  859. acpi_processor_unregister_performance(&data->acpi_data,
  860. data->cpu);
  861. free_cpumask_var(data->acpi_data.shared_cpu_map);
  862. }
  863. static int get_transition_latency(struct powernow_k8_data *data)
  864. {
  865. int max_latency = 0;
  866. int i;
  867. for (i = 0; i < data->acpi_data.state_count; i++) {
  868. int cur_latency = data->acpi_data.states[i].transition_latency
  869. + data->acpi_data.states[i].bus_master_latency;
  870. if (cur_latency > max_latency)
  871. max_latency = cur_latency;
  872. }
  873. if (max_latency == 0) {
  874. /*
  875. * Fam 11h always returns 0 as transition latency.
  876. * This is intended and means "very fast". While cpufreq core
  877. * and governors currently can handle that gracefully, better
  878. * set it to 1 to avoid problems in the future.
  879. * For all others it's a BIOS bug.
  880. */
  881. if (!boot_cpu_data.x86 == 0x11)
  882. printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
  883. "latency\n");
  884. max_latency = 1;
  885. }
  886. /* value in usecs, needs to be in nanoseconds */
  887. return 1000 * max_latency;
  888. }
  889. /* Take a frequency, and issue the fid/vid transition command */
  890. static int transition_frequency_fidvid(struct powernow_k8_data *data,
  891. unsigned int index)
  892. {
  893. u32 fid = 0;
  894. u32 vid = 0;
  895. int res, i;
  896. struct cpufreq_freqs freqs;
  897. dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
  898. /* fid/vid correctness check for k8 */
  899. /* fid are the lower 8 bits of the index we stored into
  900. * the cpufreq frequency table in find_psb_table, vid
  901. * are the upper 8 bits.
  902. */
  903. fid = data->powernow_table[index].index & 0xFF;
  904. vid = (data->powernow_table[index].index & 0xFF00) >> 8;
  905. dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
  906. if (query_current_values_with_pending_wait(data))
  907. return 1;
  908. if ((data->currvid == vid) && (data->currfid == fid)) {
  909. dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
  910. fid, vid);
  911. return 0;
  912. }
  913. dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
  914. smp_processor_id(), fid, vid);
  915. freqs.old = find_khz_freq_from_fid(data->currfid);
  916. freqs.new = find_khz_freq_from_fid(fid);
  917. for_each_cpu(i, data->available_cores) {
  918. freqs.cpu = i;
  919. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  920. }
  921. res = transition_fid_vid(data, fid, vid);
  922. freqs.new = find_khz_freq_from_fid(data->currfid);
  923. for_each_cpu(i, data->available_cores) {
  924. freqs.cpu = i;
  925. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  926. }
  927. return res;
  928. }
  929. /* Take a frequency, and issue the hardware pstate transition command */
  930. static int transition_frequency_pstate(struct powernow_k8_data *data,
  931. unsigned int index)
  932. {
  933. u32 pstate = 0;
  934. int res, i;
  935. struct cpufreq_freqs freqs;
  936. dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
  937. /* get MSR index for hardware pstate transition */
  938. pstate = index & HW_PSTATE_MASK;
  939. if (pstate > data->max_hw_pstate)
  940. return 0;
  941. freqs.old = find_khz_freq_from_pstate(data->powernow_table,
  942. data->currpstate);
  943. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  944. for_each_cpu(i, data->available_cores) {
  945. freqs.cpu = i;
  946. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  947. }
  948. res = transition_pstate(data, pstate);
  949. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  950. for_each_cpu(i, data->available_cores) {
  951. freqs.cpu = i;
  952. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  953. }
  954. return res;
  955. }
  956. /* Driver entry point to switch to the target frequency */
  957. static int powernowk8_target(struct cpufreq_policy *pol,
  958. unsigned targfreq, unsigned relation)
  959. {
  960. cpumask_t oldmask;
  961. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  962. u32 checkfid;
  963. u32 checkvid;
  964. unsigned int newstate;
  965. int ret = -EIO;
  966. if (!data)
  967. return -EINVAL;
  968. checkfid = data->currfid;
  969. checkvid = data->currvid;
  970. /* only run on specific CPU from here on */
  971. oldmask = current->cpus_allowed;
  972. set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
  973. if (smp_processor_id() != pol->cpu) {
  974. printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
  975. goto err_out;
  976. }
  977. if (pending_bit_stuck()) {
  978. printk(KERN_ERR PFX "failing targ, change pending bit set\n");
  979. goto err_out;
  980. }
  981. dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
  982. pol->cpu, targfreq, pol->min, pol->max, relation);
  983. if (query_current_values_with_pending_wait(data))
  984. goto err_out;
  985. if (cpu_family != CPU_HW_PSTATE) {
  986. dprintk("targ: curr fid 0x%x, vid 0x%x\n",
  987. data->currfid, data->currvid);
  988. if ((checkvid != data->currvid) ||
  989. (checkfid != data->currfid)) {
  990. printk(KERN_INFO PFX
  991. "error - out of sync, fix 0x%x 0x%x, "
  992. "vid 0x%x 0x%x\n",
  993. checkfid, data->currfid,
  994. checkvid, data->currvid);
  995. }
  996. }
  997. if (cpufreq_frequency_table_target(pol, data->powernow_table,
  998. targfreq, relation, &newstate))
  999. goto err_out;
  1000. mutex_lock(&fidvid_mutex);
  1001. powernow_k8_acpi_pst_values(data, newstate);
  1002. if (cpu_family == CPU_HW_PSTATE)
  1003. ret = transition_frequency_pstate(data, newstate);
  1004. else
  1005. ret = transition_frequency_fidvid(data, newstate);
  1006. if (ret) {
  1007. printk(KERN_ERR PFX "transition frequency failed\n");
  1008. ret = 1;
  1009. mutex_unlock(&fidvid_mutex);
  1010. goto err_out;
  1011. }
  1012. mutex_unlock(&fidvid_mutex);
  1013. if (cpu_family == CPU_HW_PSTATE)
  1014. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1015. newstate);
  1016. else
  1017. pol->cur = find_khz_freq_from_fid(data->currfid);
  1018. ret = 0;
  1019. err_out:
  1020. set_cpus_allowed_ptr(current, &oldmask);
  1021. return ret;
  1022. }
  1023. /* Driver entry point to verify the policy and range of frequencies */
  1024. static int powernowk8_verify(struct cpufreq_policy *pol)
  1025. {
  1026. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1027. if (!data)
  1028. return -EINVAL;
  1029. return cpufreq_frequency_table_verify(pol, data->powernow_table);
  1030. }
  1031. struct init_on_cpu {
  1032. struct powernow_k8_data *data;
  1033. int rc;
  1034. };
  1035. static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
  1036. {
  1037. struct init_on_cpu *init_on_cpu = _init_on_cpu;
  1038. if (pending_bit_stuck()) {
  1039. printk(KERN_ERR PFX "failing init, change pending bit set\n");
  1040. init_on_cpu->rc = -ENODEV;
  1041. return;
  1042. }
  1043. if (query_current_values_with_pending_wait(init_on_cpu->data)) {
  1044. init_on_cpu->rc = -ENODEV;
  1045. return;
  1046. }
  1047. if (cpu_family == CPU_OPTERON)
  1048. fidvid_msr_init();
  1049. init_on_cpu->rc = 0;
  1050. }
  1051. /* per CPU init entry point to the driver */
  1052. static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
  1053. {
  1054. static const char ACPI_PSS_BIOS_BUG_MSG[] =
  1055. KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
  1056. FW_BUG PFX "Try again with latest BIOS.\n";
  1057. struct powernow_k8_data *data;
  1058. struct init_on_cpu init_on_cpu;
  1059. int rc;
  1060. if (!cpu_online(pol->cpu))
  1061. return -ENODEV;
  1062. smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
  1063. if (rc)
  1064. return -ENODEV;
  1065. data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
  1066. if (!data) {
  1067. printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
  1068. return -ENOMEM;
  1069. }
  1070. data->cpu = pol->cpu;
  1071. data->currpstate = HW_PSTATE_INVALID;
  1072. if (powernow_k8_cpu_init_acpi(data)) {
  1073. /*
  1074. * Use the PSB BIOS structure. This is only availabe on
  1075. * an UP version, and is deprecated by AMD.
  1076. */
  1077. if (num_online_cpus() != 1) {
  1078. printk_once(ACPI_PSS_BIOS_BUG_MSG);
  1079. goto err_out;
  1080. }
  1081. if (pol->cpu != 0) {
  1082. printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
  1083. "CPU other than CPU0. Complain to your BIOS "
  1084. "vendor.\n");
  1085. goto err_out;
  1086. }
  1087. rc = find_psb_table(data);
  1088. if (rc)
  1089. goto err_out;
  1090. /* Take a crude guess here.
  1091. * That guess was in microseconds, so multiply with 1000 */
  1092. pol->cpuinfo.transition_latency = (
  1093. ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
  1094. ((1 << data->irt) * 30)) * 1000;
  1095. } else /* ACPI _PSS objects available */
  1096. pol->cpuinfo.transition_latency = get_transition_latency(data);
  1097. /* only run on specific CPU from here on */
  1098. init_on_cpu.data = data;
  1099. smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
  1100. &init_on_cpu, 1);
  1101. rc = init_on_cpu.rc;
  1102. if (rc != 0)
  1103. goto err_out_exit_acpi;
  1104. if (cpu_family == CPU_HW_PSTATE)
  1105. cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
  1106. else
  1107. cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
  1108. data->available_cores = pol->cpus;
  1109. if (cpu_family == CPU_HW_PSTATE)
  1110. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1111. data->currpstate);
  1112. else
  1113. pol->cur = find_khz_freq_from_fid(data->currfid);
  1114. dprintk("policy current frequency %d kHz\n", pol->cur);
  1115. /* min/max the cpu is capable of */
  1116. if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
  1117. printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
  1118. powernow_k8_cpu_exit_acpi(data);
  1119. kfree(data->powernow_table);
  1120. kfree(data);
  1121. return -EINVAL;
  1122. }
  1123. cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
  1124. if (cpu_family == CPU_HW_PSTATE)
  1125. dprintk("cpu_init done, current pstate 0x%x\n",
  1126. data->currpstate);
  1127. else
  1128. dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
  1129. data->currfid, data->currvid);
  1130. per_cpu(powernow_data, pol->cpu) = data;
  1131. return 0;
  1132. err_out_exit_acpi:
  1133. powernow_k8_cpu_exit_acpi(data);
  1134. err_out:
  1135. kfree(data);
  1136. return -ENODEV;
  1137. }
  1138. static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
  1139. {
  1140. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1141. if (!data)
  1142. return -EINVAL;
  1143. powernow_k8_cpu_exit_acpi(data);
  1144. cpufreq_frequency_table_put_attr(pol->cpu);
  1145. kfree(data->powernow_table);
  1146. kfree(data);
  1147. return 0;
  1148. }
  1149. static void query_values_on_cpu(void *_err)
  1150. {
  1151. int *err = _err;
  1152. struct powernow_k8_data *data = __get_cpu_var(powernow_data);
  1153. *err = query_current_values_with_pending_wait(data);
  1154. }
  1155. static unsigned int powernowk8_get(unsigned int cpu)
  1156. {
  1157. struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
  1158. unsigned int khz = 0;
  1159. int err;
  1160. if (!data)
  1161. return -EINVAL;
  1162. smp_call_function_single(cpu, query_values_on_cpu, &err, true);
  1163. if (err)
  1164. goto out;
  1165. if (cpu_family == CPU_HW_PSTATE)
  1166. khz = find_khz_freq_from_pstate(data->powernow_table,
  1167. data->currpstate);
  1168. else
  1169. khz = find_khz_freq_from_fid(data->currfid);
  1170. out:
  1171. return khz;
  1172. }
  1173. static struct freq_attr *powernow_k8_attr[] = {
  1174. &cpufreq_freq_attr_scaling_available_freqs,
  1175. NULL,
  1176. };
  1177. static struct cpufreq_driver cpufreq_amd64_driver = {
  1178. .verify = powernowk8_verify,
  1179. .target = powernowk8_target,
  1180. .init = powernowk8_cpu_init,
  1181. .exit = __devexit_p(powernowk8_cpu_exit),
  1182. .get = powernowk8_get,
  1183. .name = "powernow-k8",
  1184. .owner = THIS_MODULE,
  1185. .attr = powernow_k8_attr,
  1186. };
  1187. /* driver entry point for init */
  1188. static int __cpuinit powernowk8_init(void)
  1189. {
  1190. unsigned int i, supported_cpus = 0;
  1191. for_each_online_cpu(i) {
  1192. int rc;
  1193. smp_call_function_single(i, check_supported_cpu, &rc, 1);
  1194. if (rc == 0)
  1195. supported_cpus++;
  1196. }
  1197. if (supported_cpus == num_online_cpus()) {
  1198. printk(KERN_INFO PFX "Found %d %s "
  1199. "processors (%d cpu cores) (" VERSION ")\n",
  1200. num_online_nodes(),
  1201. boot_cpu_data.x86_model_id, supported_cpus);
  1202. return cpufreq_register_driver(&cpufreq_amd64_driver);
  1203. }
  1204. return -ENODEV;
  1205. }
  1206. /* driver entry point for term */
  1207. static void __exit powernowk8_exit(void)
  1208. {
  1209. dprintk("exit\n");
  1210. cpufreq_unregister_driver(&cpufreq_amd64_driver);
  1211. }
  1212. MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
  1213. "Mark Langsdorf <mark.langsdorf@amd.com>");
  1214. MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
  1215. MODULE_LICENSE("GPL");
  1216. late_initcall(powernowk8_init);
  1217. module_exit(powernowk8_exit);