tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <asm/system.h>
  8. #include <asm/page.h>
  9. #include <asm/tlbflush.h>
  10. #include <asm/tlb.h>
  11. #include <asm/mmu_context.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/tsb.h>
  14. #include <asm/oplib.h>
  15. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  16. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  17. {
  18. vaddr >>= hash_shift;
  19. return vaddr & (nentries - 1);
  20. }
  21. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  22. {
  23. return (tag == (vaddr >> 22));
  24. }
  25. /* TSB flushes need only occur on the processor initiating the address
  26. * space modification, not on each cpu the address space has run on.
  27. * Only the TLB flush needs that treatment.
  28. */
  29. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  30. {
  31. unsigned long v;
  32. for (v = start; v < end; v += PAGE_SIZE) {
  33. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  34. KERNEL_TSB_NENTRIES);
  35. struct tsb *ent = &swapper_tsb[hash];
  36. if (tag_compare(ent->tag, v))
  37. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  38. }
  39. }
  40. static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
  41. {
  42. unsigned long i;
  43. for (i = 0; i < mp->tlb_nr; i++) {
  44. unsigned long v = mp->vaddrs[i];
  45. unsigned long tag, ent, hash;
  46. v &= ~0x1UL;
  47. hash = tsb_hash(v, hash_shift, nentries);
  48. ent = tsb + (hash * sizeof(struct tsb));
  49. tag = (v >> 22UL);
  50. tsb_flush(ent, tag);
  51. }
  52. }
  53. void flush_tsb_user(struct mmu_gather *mp)
  54. {
  55. struct mm_struct *mm = mp->mm;
  56. unsigned long nentries, base, flags;
  57. spin_lock_irqsave(&mm->context.lock, flags);
  58. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  59. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  60. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  61. base = __pa(base);
  62. __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
  63. #ifdef CONFIG_HUGETLB_PAGE
  64. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  65. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  66. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  67. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  68. base = __pa(base);
  69. __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
  70. }
  71. #endif
  72. spin_unlock_irqrestore(&mm->context.lock, flags);
  73. }
  74. #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  75. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  76. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  77. #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  78. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
  79. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
  80. #else
  81. #error Broken base page size setting...
  82. #endif
  83. #ifdef CONFIG_HUGETLB_PAGE
  84. #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
  85. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
  86. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
  87. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
  88. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
  89. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
  90. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
  91. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  92. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  93. #else
  94. #error Broken huge page size setting...
  95. #endif
  96. #endif
  97. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  98. {
  99. unsigned long tsb_reg, base, tsb_paddr;
  100. unsigned long page_sz, tte;
  101. mm->context.tsb_block[tsb_idx].tsb_nentries =
  102. tsb_bytes / sizeof(struct tsb);
  103. base = TSBMAP_BASE;
  104. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  105. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  106. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  107. /* Use the smallest page size that can map the whole TSB
  108. * in one TLB entry.
  109. */
  110. switch (tsb_bytes) {
  111. case 8192 << 0:
  112. tsb_reg = 0x0UL;
  113. #ifdef DCACHE_ALIASING_POSSIBLE
  114. base += (tsb_paddr & 8192);
  115. #endif
  116. page_sz = 8192;
  117. break;
  118. case 8192 << 1:
  119. tsb_reg = 0x1UL;
  120. page_sz = 64 * 1024;
  121. break;
  122. case 8192 << 2:
  123. tsb_reg = 0x2UL;
  124. page_sz = 64 * 1024;
  125. break;
  126. case 8192 << 3:
  127. tsb_reg = 0x3UL;
  128. page_sz = 64 * 1024;
  129. break;
  130. case 8192 << 4:
  131. tsb_reg = 0x4UL;
  132. page_sz = 512 * 1024;
  133. break;
  134. case 8192 << 5:
  135. tsb_reg = 0x5UL;
  136. page_sz = 512 * 1024;
  137. break;
  138. case 8192 << 6:
  139. tsb_reg = 0x6UL;
  140. page_sz = 512 * 1024;
  141. break;
  142. case 8192 << 7:
  143. tsb_reg = 0x7UL;
  144. page_sz = 4 * 1024 * 1024;
  145. break;
  146. default:
  147. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  148. current->comm, current->pid, tsb_bytes);
  149. do_exit(SIGSEGV);
  150. };
  151. tte |= pte_sz_bits(page_sz);
  152. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  153. /* Physical mapping, no locked TLB entry for TSB. */
  154. tsb_reg |= tsb_paddr;
  155. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  156. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  157. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  158. } else {
  159. tsb_reg |= base;
  160. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  161. tte |= (tsb_paddr & ~(page_sz - 1UL));
  162. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  163. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  164. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  165. }
  166. /* Setup the Hypervisor TSB descriptor. */
  167. if (tlb_type == hypervisor) {
  168. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  169. switch (tsb_idx) {
  170. case MM_TSB_BASE:
  171. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  172. break;
  173. #ifdef CONFIG_HUGETLB_PAGE
  174. case MM_TSB_HUGE:
  175. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  176. break;
  177. #endif
  178. default:
  179. BUG();
  180. };
  181. hp->assoc = 1;
  182. hp->num_ttes = tsb_bytes / 16;
  183. hp->ctx_idx = 0;
  184. switch (tsb_idx) {
  185. case MM_TSB_BASE:
  186. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  187. break;
  188. #ifdef CONFIG_HUGETLB_PAGE
  189. case MM_TSB_HUGE:
  190. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  191. break;
  192. #endif
  193. default:
  194. BUG();
  195. };
  196. hp->tsb_base = tsb_paddr;
  197. hp->resv = 0;
  198. }
  199. }
  200. static struct kmem_cache *tsb_caches[8] __read_mostly;
  201. static const char *tsb_cache_names[8] = {
  202. "tsb_8KB",
  203. "tsb_16KB",
  204. "tsb_32KB",
  205. "tsb_64KB",
  206. "tsb_128KB",
  207. "tsb_256KB",
  208. "tsb_512KB",
  209. "tsb_1MB",
  210. };
  211. void __init pgtable_cache_init(void)
  212. {
  213. unsigned long i;
  214. for (i = 0; i < 8; i++) {
  215. unsigned long size = 8192 << i;
  216. const char *name = tsb_cache_names[i];
  217. tsb_caches[i] = kmem_cache_create(name,
  218. size, size,
  219. 0, NULL);
  220. if (!tsb_caches[i]) {
  221. prom_printf("Could not create %s cache\n", name);
  222. prom_halt();
  223. }
  224. }
  225. }
  226. int sysctl_tsb_ratio = -2;
  227. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  228. {
  229. unsigned long num_ents = (new_size / sizeof(struct tsb));
  230. if (sysctl_tsb_ratio < 0)
  231. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  232. else
  233. return num_ents + (num_ents >> sysctl_tsb_ratio);
  234. }
  235. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  236. * do_sparc64_fault() invokes this routine to try and grow it.
  237. *
  238. * When we reach the maximum TSB size supported, we stick ~0UL into
  239. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  240. * will not trigger any longer.
  241. *
  242. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  243. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  244. * must be 512K aligned. It also must be physically contiguous, so we
  245. * cannot use vmalloc().
  246. *
  247. * The idea here is to grow the TSB when the RSS of the process approaches
  248. * the number of entries that the current TSB can hold at once. Currently,
  249. * we trigger when the RSS hits 3/4 of the TSB capacity.
  250. */
  251. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  252. {
  253. unsigned long max_tsb_size = 1 * 1024 * 1024;
  254. unsigned long new_size, old_size, flags;
  255. struct tsb *old_tsb, *new_tsb;
  256. unsigned long new_cache_index, old_cache_index;
  257. unsigned long new_rss_limit;
  258. gfp_t gfp_flags;
  259. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  260. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  261. new_cache_index = 0;
  262. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  263. new_rss_limit = tsb_size_to_rss_limit(new_size);
  264. if (new_rss_limit > rss)
  265. break;
  266. new_cache_index++;
  267. }
  268. if (new_size == max_tsb_size)
  269. new_rss_limit = ~0UL;
  270. retry_tsb_alloc:
  271. gfp_flags = GFP_KERNEL;
  272. if (new_size > (PAGE_SIZE * 2))
  273. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  274. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  275. gfp_flags, numa_node_id());
  276. if (unlikely(!new_tsb)) {
  277. /* Not being able to fork due to a high-order TSB
  278. * allocation failure is very bad behavior. Just back
  279. * down to a 0-order allocation and force no TSB
  280. * growing for this address space.
  281. */
  282. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  283. new_cache_index > 0) {
  284. new_cache_index = 0;
  285. new_size = 8192;
  286. new_rss_limit = ~0UL;
  287. goto retry_tsb_alloc;
  288. }
  289. /* If we failed on a TSB grow, we are under serious
  290. * memory pressure so don't try to grow any more.
  291. */
  292. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  293. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  294. return;
  295. }
  296. /* Mark all tags as invalid. */
  297. tsb_init(new_tsb, new_size);
  298. /* Ok, we are about to commit the changes. If we are
  299. * growing an existing TSB the locking is very tricky,
  300. * so WATCH OUT!
  301. *
  302. * We have to hold mm->context.lock while committing to the
  303. * new TSB, this synchronizes us with processors in
  304. * flush_tsb_user() and switch_mm() for this address space.
  305. *
  306. * But even with that lock held, processors run asynchronously
  307. * accessing the old TSB via TLB miss handling. This is OK
  308. * because those actions are just propagating state from the
  309. * Linux page tables into the TSB, page table mappings are not
  310. * being changed. If a real fault occurs, the processor will
  311. * synchronize with us when it hits flush_tsb_user(), this is
  312. * also true for the case where vmscan is modifying the page
  313. * tables. The only thing we need to be careful with is to
  314. * skip any locked TSB entries during copy_tsb().
  315. *
  316. * When we finish committing to the new TSB, we have to drop
  317. * the lock and ask all other cpus running this address space
  318. * to run tsb_context_switch() to see the new TSB table.
  319. */
  320. spin_lock_irqsave(&mm->context.lock, flags);
  321. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  322. old_cache_index =
  323. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  324. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  325. sizeof(struct tsb));
  326. /* Handle multiple threads trying to grow the TSB at the same time.
  327. * One will get in here first, and bump the size and the RSS limit.
  328. * The others will get in here next and hit this check.
  329. */
  330. if (unlikely(old_tsb &&
  331. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  332. spin_unlock_irqrestore(&mm->context.lock, flags);
  333. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  334. return;
  335. }
  336. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  337. if (old_tsb) {
  338. extern void copy_tsb(unsigned long old_tsb_base,
  339. unsigned long old_tsb_size,
  340. unsigned long new_tsb_base,
  341. unsigned long new_tsb_size);
  342. unsigned long old_tsb_base = (unsigned long) old_tsb;
  343. unsigned long new_tsb_base = (unsigned long) new_tsb;
  344. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  345. old_tsb_base = __pa(old_tsb_base);
  346. new_tsb_base = __pa(new_tsb_base);
  347. }
  348. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  349. }
  350. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  351. setup_tsb_params(mm, tsb_index, new_size);
  352. spin_unlock_irqrestore(&mm->context.lock, flags);
  353. /* If old_tsb is NULL, we're being invoked for the first time
  354. * from init_new_context().
  355. */
  356. if (old_tsb) {
  357. /* Reload it on the local cpu. */
  358. tsb_context_switch(mm);
  359. /* Now force other processors to do the same. */
  360. preempt_disable();
  361. smp_tsb_sync(mm);
  362. preempt_enable();
  363. /* Now it is safe to free the old tsb. */
  364. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  365. }
  366. }
  367. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  368. {
  369. #ifdef CONFIG_HUGETLB_PAGE
  370. unsigned long huge_pte_count;
  371. #endif
  372. unsigned int i;
  373. spin_lock_init(&mm->context.lock);
  374. mm->context.sparc64_ctx_val = 0UL;
  375. #ifdef CONFIG_HUGETLB_PAGE
  376. /* We reset it to zero because the fork() page copying
  377. * will re-increment the counters as the parent PTEs are
  378. * copied into the child address space.
  379. */
  380. huge_pte_count = mm->context.huge_pte_count;
  381. mm->context.huge_pte_count = 0;
  382. #endif
  383. /* copy_mm() copies over the parent's mm_struct before calling
  384. * us, so we need to zero out the TSB pointer or else tsb_grow()
  385. * will be confused and think there is an older TSB to free up.
  386. */
  387. for (i = 0; i < MM_NUM_TSBS; i++)
  388. mm->context.tsb_block[i].tsb = NULL;
  389. /* If this is fork, inherit the parent's TSB size. We would
  390. * grow it to that size on the first page fault anyways.
  391. */
  392. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  393. #ifdef CONFIG_HUGETLB_PAGE
  394. if (unlikely(huge_pte_count))
  395. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  396. #endif
  397. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  398. return -ENOMEM;
  399. return 0;
  400. }
  401. static void tsb_destroy_one(struct tsb_config *tp)
  402. {
  403. unsigned long cache_index;
  404. if (!tp->tsb)
  405. return;
  406. cache_index = tp->tsb_reg_val & 0x7UL;
  407. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  408. tp->tsb = NULL;
  409. tp->tsb_reg_val = 0UL;
  410. }
  411. void destroy_context(struct mm_struct *mm)
  412. {
  413. unsigned long flags, i;
  414. for (i = 0; i < MM_NUM_TSBS; i++)
  415. tsb_destroy_one(&mm->context.tsb_block[i]);
  416. spin_lock_irqsave(&ctx_alloc_lock, flags);
  417. if (CTX_VALID(mm->context)) {
  418. unsigned long nr = CTX_NRBITS(mm->context);
  419. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  420. }
  421. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  422. }