visemul.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890
  1. /* visemul.c: Emulation of VIS instructions.
  2. *
  3. * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/errno.h>
  7. #include <linux/thread_info.h>
  8. #include <asm/ptrace.h>
  9. #include <asm/pstate.h>
  10. #include <asm/system.h>
  11. #include <asm/fpumacro.h>
  12. #include <asm/uaccess.h>
  13. /* OPF field of various VIS instructions. */
  14. /* 000111011 - four 16-bit packs */
  15. #define FPACK16_OPF 0x03b
  16. /* 000111010 - two 32-bit packs */
  17. #define FPACK32_OPF 0x03a
  18. /* 000111101 - four 16-bit packs */
  19. #define FPACKFIX_OPF 0x03d
  20. /* 001001101 - four 16-bit expands */
  21. #define FEXPAND_OPF 0x04d
  22. /* 001001011 - two 32-bit merges */
  23. #define FPMERGE_OPF 0x04b
  24. /* 000110001 - 8-by-16-bit partitoned product */
  25. #define FMUL8x16_OPF 0x031
  26. /* 000110011 - 8-by-16-bit upper alpha partitioned product */
  27. #define FMUL8x16AU_OPF 0x033
  28. /* 000110101 - 8-by-16-bit lower alpha partitioned product */
  29. #define FMUL8x16AL_OPF 0x035
  30. /* 000110110 - upper 8-by-16-bit partitioned product */
  31. #define FMUL8SUx16_OPF 0x036
  32. /* 000110111 - lower 8-by-16-bit partitioned product */
  33. #define FMUL8ULx16_OPF 0x037
  34. /* 000111000 - upper 8-by-16-bit partitioned product */
  35. #define FMULD8SUx16_OPF 0x038
  36. /* 000111001 - lower unsigned 8-by-16-bit partitioned product */
  37. #define FMULD8ULx16_OPF 0x039
  38. /* 000101000 - four 16-bit compare; set rd if src1 > src2 */
  39. #define FCMPGT16_OPF 0x028
  40. /* 000101100 - two 32-bit compare; set rd if src1 > src2 */
  41. #define FCMPGT32_OPF 0x02c
  42. /* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
  43. #define FCMPLE16_OPF 0x020
  44. /* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
  45. #define FCMPLE32_OPF 0x024
  46. /* 000100010 - four 16-bit compare; set rd if src1 != src2 */
  47. #define FCMPNE16_OPF 0x022
  48. /* 000100110 - two 32-bit compare; set rd if src1 != src2 */
  49. #define FCMPNE32_OPF 0x026
  50. /* 000101010 - four 16-bit compare; set rd if src1 == src2 */
  51. #define FCMPEQ16_OPF 0x02a
  52. /* 000101110 - two 32-bit compare; set rd if src1 == src2 */
  53. #define FCMPEQ32_OPF 0x02e
  54. /* 000000000 - Eight 8-bit edge boundary processing */
  55. #define EDGE8_OPF 0x000
  56. /* 000000001 - Eight 8-bit edge boundary processing, no CC */
  57. #define EDGE8N_OPF 0x001
  58. /* 000000010 - Eight 8-bit edge boundary processing, little-endian */
  59. #define EDGE8L_OPF 0x002
  60. /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
  61. #define EDGE8LN_OPF 0x003
  62. /* 000000100 - Four 16-bit edge boundary processing */
  63. #define EDGE16_OPF 0x004
  64. /* 000000101 - Four 16-bit edge boundary processing, no CC */
  65. #define EDGE16N_OPF 0x005
  66. /* 000000110 - Four 16-bit edge boundary processing, little-endian */
  67. #define EDGE16L_OPF 0x006
  68. /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
  69. #define EDGE16LN_OPF 0x007
  70. /* 000001000 - Two 32-bit edge boundary processing */
  71. #define EDGE32_OPF 0x008
  72. /* 000001001 - Two 32-bit edge boundary processing, no CC */
  73. #define EDGE32N_OPF 0x009
  74. /* 000001010 - Two 32-bit edge boundary processing, little-endian */
  75. #define EDGE32L_OPF 0x00a
  76. /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
  77. #define EDGE32LN_OPF 0x00b
  78. /* 000111110 - distance between 8 8-bit components */
  79. #define PDIST_OPF 0x03e
  80. /* 000010000 - convert 8-bit 3-D address to blocked byte address */
  81. #define ARRAY8_OPF 0x010
  82. /* 000010010 - convert 16-bit 3-D address to blocked byte address */
  83. #define ARRAY16_OPF 0x012
  84. /* 000010100 - convert 32-bit 3-D address to blocked byte address */
  85. #define ARRAY32_OPF 0x014
  86. /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
  87. #define BMASK_OPF 0x019
  88. /* 001001100 - Permute bytes as specified by GSR.MASK */
  89. #define BSHUFFLE_OPF 0x04c
  90. #define VIS_OPF_SHIFT 5
  91. #define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
  92. #define RS1(INSN) (((INSN) >> 14) & 0x1f)
  93. #define RS2(INSN) (((INSN) >> 0) & 0x1f)
  94. #define RD(INSN) (((INSN) >> 25) & 0x1f)
  95. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  96. unsigned int rd, int from_kernel)
  97. {
  98. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  99. if (from_kernel != 0)
  100. __asm__ __volatile__("flushw");
  101. else
  102. flushw_user();
  103. }
  104. }
  105. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  106. {
  107. unsigned long value;
  108. if (reg < 16)
  109. return (!reg ? 0 : regs->u_regs[reg]);
  110. if (regs->tstate & TSTATE_PRIV) {
  111. struct reg_window *win;
  112. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  113. value = win->locals[reg - 16];
  114. } else if (test_thread_flag(TIF_32BIT)) {
  115. struct reg_window32 __user *win32;
  116. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  117. get_user(value, &win32->locals[reg - 16]);
  118. } else {
  119. struct reg_window __user *win;
  120. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  121. get_user(value, &win->locals[reg - 16]);
  122. }
  123. return value;
  124. }
  125. static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
  126. struct pt_regs *regs)
  127. {
  128. BUG_ON(reg < 16);
  129. BUG_ON(regs->tstate & TSTATE_PRIV);
  130. if (test_thread_flag(TIF_32BIT)) {
  131. struct reg_window32 __user *win32;
  132. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  133. return (unsigned long __user *)&win32->locals[reg - 16];
  134. } else {
  135. struct reg_window __user *win;
  136. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  137. return &win->locals[reg - 16];
  138. }
  139. }
  140. static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
  141. struct pt_regs *regs)
  142. {
  143. BUG_ON(reg >= 16);
  144. BUG_ON(regs->tstate & TSTATE_PRIV);
  145. return &regs->u_regs[reg];
  146. }
  147. static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
  148. {
  149. if (rd < 16) {
  150. unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
  151. *rd_kern = val;
  152. } else {
  153. unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
  154. if (test_thread_flag(TIF_32BIT))
  155. __put_user((u32)val, (u32 __user *)rd_user);
  156. else
  157. __put_user(val, rd_user);
  158. }
  159. }
  160. static inline unsigned long fpd_regval(struct fpustate *f,
  161. unsigned int insn_regnum)
  162. {
  163. insn_regnum = (((insn_regnum & 1) << 5) |
  164. (insn_regnum & 0x1e));
  165. return *(unsigned long *) &f->regs[insn_regnum];
  166. }
  167. static inline unsigned long *fpd_regaddr(struct fpustate *f,
  168. unsigned int insn_regnum)
  169. {
  170. insn_regnum = (((insn_regnum & 1) << 5) |
  171. (insn_regnum & 0x1e));
  172. return (unsigned long *) &f->regs[insn_regnum];
  173. }
  174. static inline unsigned int fps_regval(struct fpustate *f,
  175. unsigned int insn_regnum)
  176. {
  177. return f->regs[insn_regnum];
  178. }
  179. static inline unsigned int *fps_regaddr(struct fpustate *f,
  180. unsigned int insn_regnum)
  181. {
  182. return &f->regs[insn_regnum];
  183. }
  184. struct edge_tab {
  185. u16 left, right;
  186. };
  187. static struct edge_tab edge8_tab[8] = {
  188. { 0xff, 0x80 },
  189. { 0x7f, 0xc0 },
  190. { 0x3f, 0xe0 },
  191. { 0x1f, 0xf0 },
  192. { 0x0f, 0xf8 },
  193. { 0x07, 0xfc },
  194. { 0x03, 0xfe },
  195. { 0x01, 0xff },
  196. };
  197. static struct edge_tab edge8_tab_l[8] = {
  198. { 0xff, 0x01 },
  199. { 0xfe, 0x03 },
  200. { 0xfc, 0x07 },
  201. { 0xf8, 0x0f },
  202. { 0xf0, 0x1f },
  203. { 0xe0, 0x3f },
  204. { 0xc0, 0x7f },
  205. { 0x80, 0xff },
  206. };
  207. static struct edge_tab edge16_tab[4] = {
  208. { 0xf, 0x8 },
  209. { 0x7, 0xc },
  210. { 0x3, 0xe },
  211. { 0x1, 0xf },
  212. };
  213. static struct edge_tab edge16_tab_l[4] = {
  214. { 0xf, 0x1 },
  215. { 0xe, 0x3 },
  216. { 0xc, 0x7 },
  217. { 0x8, 0xf },
  218. };
  219. static struct edge_tab edge32_tab[2] = {
  220. { 0x3, 0x2 },
  221. { 0x1, 0x3 },
  222. };
  223. static struct edge_tab edge32_tab_l[2] = {
  224. { 0x3, 0x1 },
  225. { 0x2, 0x3 },
  226. };
  227. static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
  228. {
  229. unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
  230. u16 left, right;
  231. maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
  232. orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
  233. orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
  234. if (test_thread_flag(TIF_32BIT)) {
  235. rs1 = rs1 & 0xffffffff;
  236. rs2 = rs2 & 0xffffffff;
  237. }
  238. switch (opf) {
  239. default:
  240. case EDGE8_OPF:
  241. case EDGE8N_OPF:
  242. left = edge8_tab[rs1 & 0x7].left;
  243. right = edge8_tab[rs2 & 0x7].right;
  244. break;
  245. case EDGE8L_OPF:
  246. case EDGE8LN_OPF:
  247. left = edge8_tab_l[rs1 & 0x7].left;
  248. right = edge8_tab_l[rs2 & 0x7].right;
  249. break;
  250. case EDGE16_OPF:
  251. case EDGE16N_OPF:
  252. left = edge16_tab[(rs1 >> 1) & 0x3].left;
  253. right = edge16_tab[(rs2 >> 1) & 0x3].right;
  254. break;
  255. case EDGE16L_OPF:
  256. case EDGE16LN_OPF:
  257. left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
  258. right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
  259. break;
  260. case EDGE32_OPF:
  261. case EDGE32N_OPF:
  262. left = edge32_tab[(rs1 >> 2) & 0x1].left;
  263. right = edge32_tab[(rs2 >> 2) & 0x1].right;
  264. break;
  265. case EDGE32L_OPF:
  266. case EDGE32LN_OPF:
  267. left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
  268. right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
  269. break;
  270. };
  271. if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
  272. rd_val = right & left;
  273. else
  274. rd_val = left;
  275. store_reg(regs, rd_val, RD(insn));
  276. switch (opf) {
  277. case EDGE8_OPF:
  278. case EDGE8L_OPF:
  279. case EDGE16_OPF:
  280. case EDGE16L_OPF:
  281. case EDGE32_OPF:
  282. case EDGE32L_OPF: {
  283. unsigned long ccr, tstate;
  284. __asm__ __volatile__("subcc %1, %2, %%g0\n\t"
  285. "rd %%ccr, %0"
  286. : "=r" (ccr)
  287. : "r" (orig_rs1), "r" (orig_rs2)
  288. : "cc");
  289. tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
  290. regs->tstate = tstate | (ccr << 32UL);
  291. }
  292. };
  293. }
  294. static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
  295. {
  296. unsigned long rs1, rs2, rd_val;
  297. unsigned int bits, bits_mask;
  298. maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
  299. rs1 = fetch_reg(RS1(insn), regs);
  300. rs2 = fetch_reg(RS2(insn), regs);
  301. bits = (rs2 > 5 ? 5 : rs2);
  302. bits_mask = (1UL << bits) - 1UL;
  303. rd_val = ((((rs1 >> 11) & 0x3) << 0) |
  304. (((rs1 >> 33) & 0x3) << 2) |
  305. (((rs1 >> 55) & 0x1) << 4) |
  306. (((rs1 >> 13) & 0xf) << 5) |
  307. (((rs1 >> 35) & 0xf) << 9) |
  308. (((rs1 >> 56) & 0xf) << 13) |
  309. (((rs1 >> 17) & bits_mask) << 17) |
  310. (((rs1 >> 39) & bits_mask) << (17 + bits)) |
  311. (((rs1 >> 60) & 0xf) << (17 + (2*bits))));
  312. switch (opf) {
  313. case ARRAY16_OPF:
  314. rd_val <<= 1;
  315. break;
  316. case ARRAY32_OPF:
  317. rd_val <<= 2;
  318. };
  319. store_reg(regs, rd_val, RD(insn));
  320. }
  321. static void bmask(struct pt_regs *regs, unsigned int insn)
  322. {
  323. unsigned long rs1, rs2, rd_val, gsr;
  324. maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
  325. rs1 = fetch_reg(RS1(insn), regs);
  326. rs2 = fetch_reg(RS2(insn), regs);
  327. rd_val = rs1 + rs2;
  328. store_reg(regs, rd_val, RD(insn));
  329. gsr = current_thread_info()->gsr[0] & 0xffffffff;
  330. gsr |= rd_val << 32UL;
  331. current_thread_info()->gsr[0] = gsr;
  332. }
  333. static void bshuffle(struct pt_regs *regs, unsigned int insn)
  334. {
  335. struct fpustate *f = FPUSTATE;
  336. unsigned long rs1, rs2, rd_val;
  337. unsigned long bmask, i;
  338. bmask = current_thread_info()->gsr[0] >> 32UL;
  339. rs1 = fpd_regval(f, RS1(insn));
  340. rs2 = fpd_regval(f, RS2(insn));
  341. rd_val = 0UL;
  342. for (i = 0; i < 8; i++) {
  343. unsigned long which = (bmask >> (i * 4)) & 0xf;
  344. unsigned long byte;
  345. if (which < 8)
  346. byte = (rs1 >> (which * 8)) & 0xff;
  347. else
  348. byte = (rs2 >> ((which-8)*8)) & 0xff;
  349. rd_val |= (byte << (i * 8));
  350. }
  351. *fpd_regaddr(f, RD(insn)) = rd_val;
  352. }
  353. static void pdist(struct pt_regs *regs, unsigned int insn)
  354. {
  355. struct fpustate *f = FPUSTATE;
  356. unsigned long rs1, rs2, *rd, rd_val;
  357. unsigned long i;
  358. rs1 = fpd_regval(f, RS1(insn));
  359. rs2 = fpd_regval(f, RS2(insn));
  360. rd = fpd_regaddr(f, RD(insn));
  361. rd_val = *rd;
  362. for (i = 0; i < 8; i++) {
  363. s16 s1, s2;
  364. s1 = (rs1 >> (56 - (i * 8))) & 0xff;
  365. s2 = (rs2 >> (56 - (i * 8))) & 0xff;
  366. /* Absolute value of difference. */
  367. s1 -= s2;
  368. if (s1 < 0)
  369. s1 = ~s1 + 1;
  370. rd_val += s1;
  371. }
  372. *rd = rd_val;
  373. }
  374. static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
  375. {
  376. struct fpustate *f = FPUSTATE;
  377. unsigned long rs1, rs2, gsr, scale, rd_val;
  378. gsr = current_thread_info()->gsr[0];
  379. scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
  380. switch (opf) {
  381. case FPACK16_OPF: {
  382. unsigned long byte;
  383. rs2 = fpd_regval(f, RS2(insn));
  384. rd_val = 0;
  385. for (byte = 0; byte < 4; byte++) {
  386. unsigned int val;
  387. s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
  388. int scaled = src << scale;
  389. int from_fixed = scaled >> 7;
  390. val = ((from_fixed < 0) ?
  391. 0 :
  392. (from_fixed > 255) ?
  393. 255 : from_fixed);
  394. rd_val |= (val << (8 * byte));
  395. }
  396. *fps_regaddr(f, RD(insn)) = rd_val;
  397. break;
  398. }
  399. case FPACK32_OPF: {
  400. unsigned long word;
  401. rs1 = fpd_regval(f, RS1(insn));
  402. rs2 = fpd_regval(f, RS2(insn));
  403. rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
  404. for (word = 0; word < 2; word++) {
  405. unsigned long val;
  406. s32 src = (rs2 >> (word * 32UL));
  407. s64 scaled = src << scale;
  408. s64 from_fixed = scaled >> 23;
  409. val = ((from_fixed < 0) ?
  410. 0 :
  411. (from_fixed > 255) ?
  412. 255 : from_fixed);
  413. rd_val |= (val << (32 * word));
  414. }
  415. *fpd_regaddr(f, RD(insn)) = rd_val;
  416. break;
  417. }
  418. case FPACKFIX_OPF: {
  419. unsigned long word;
  420. rs2 = fpd_regval(f, RS2(insn));
  421. rd_val = 0;
  422. for (word = 0; word < 2; word++) {
  423. long val;
  424. s32 src = (rs2 >> (word * 32UL));
  425. s64 scaled = src << scale;
  426. s64 from_fixed = scaled >> 16;
  427. val = ((from_fixed < -32768) ?
  428. -32768 :
  429. (from_fixed > 32767) ?
  430. 32767 : from_fixed);
  431. rd_val |= ((val & 0xffff) << (word * 16));
  432. }
  433. *fps_regaddr(f, RD(insn)) = rd_val;
  434. break;
  435. }
  436. case FEXPAND_OPF: {
  437. unsigned long byte;
  438. rs2 = fps_regval(f, RS2(insn));
  439. rd_val = 0;
  440. for (byte = 0; byte < 4; byte++) {
  441. unsigned long val;
  442. u8 src = (rs2 >> (byte * 8)) & 0xff;
  443. val = src << 4;
  444. rd_val |= (val << (byte * 16));
  445. }
  446. *fpd_regaddr(f, RD(insn)) = rd_val;
  447. break;
  448. }
  449. case FPMERGE_OPF: {
  450. rs1 = fps_regval(f, RS1(insn));
  451. rs2 = fps_regval(f, RS2(insn));
  452. rd_val = (((rs2 & 0x000000ff) << 0) |
  453. ((rs1 & 0x000000ff) << 8) |
  454. ((rs2 & 0x0000ff00) << 8) |
  455. ((rs1 & 0x0000ff00) << 16) |
  456. ((rs2 & 0x00ff0000) << 16) |
  457. ((rs1 & 0x00ff0000) << 24) |
  458. ((rs2 & 0xff000000) << 24) |
  459. ((rs1 & 0xff000000) << 32));
  460. *fpd_regaddr(f, RD(insn)) = rd_val;
  461. break;
  462. }
  463. };
  464. }
  465. static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
  466. {
  467. struct fpustate *f = FPUSTATE;
  468. unsigned long rs1, rs2, rd_val;
  469. switch (opf) {
  470. case FMUL8x16_OPF: {
  471. unsigned long byte;
  472. rs1 = fps_regval(f, RS1(insn));
  473. rs2 = fpd_regval(f, RS2(insn));
  474. rd_val = 0;
  475. for (byte = 0; byte < 4; byte++) {
  476. u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
  477. s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
  478. u32 prod = src1 * src2;
  479. u16 scaled = ((prod & 0x00ffff00) >> 8);
  480. /* Round up. */
  481. if (prod & 0x80)
  482. scaled++;
  483. rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
  484. }
  485. *fpd_regaddr(f, RD(insn)) = rd_val;
  486. break;
  487. }
  488. case FMUL8x16AU_OPF:
  489. case FMUL8x16AL_OPF: {
  490. unsigned long byte;
  491. s16 src2;
  492. rs1 = fps_regval(f, RS1(insn));
  493. rs2 = fps_regval(f, RS2(insn));
  494. rd_val = 0;
  495. src2 = (rs2 >> (opf == FMUL8x16AU_OPF) ? 16 : 0);
  496. for (byte = 0; byte < 4; byte++) {
  497. u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
  498. u32 prod = src1 * src2;
  499. u16 scaled = ((prod & 0x00ffff00) >> 8);
  500. /* Round up. */
  501. if (prod & 0x80)
  502. scaled++;
  503. rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
  504. }
  505. *fpd_regaddr(f, RD(insn)) = rd_val;
  506. break;
  507. }
  508. case FMUL8SUx16_OPF:
  509. case FMUL8ULx16_OPF: {
  510. unsigned long byte, ushift;
  511. rs1 = fpd_regval(f, RS1(insn));
  512. rs2 = fpd_regval(f, RS2(insn));
  513. rd_val = 0;
  514. ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
  515. for (byte = 0; byte < 4; byte++) {
  516. u16 src1;
  517. s16 src2;
  518. u32 prod;
  519. u16 scaled;
  520. src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
  521. src2 = ((rs2 >> (16 * byte)) & 0xffff);
  522. prod = src1 * src2;
  523. scaled = ((prod & 0x00ffff00) >> 8);
  524. /* Round up. */
  525. if (prod & 0x80)
  526. scaled++;
  527. rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
  528. }
  529. *fpd_regaddr(f, RD(insn)) = rd_val;
  530. break;
  531. }
  532. case FMULD8SUx16_OPF:
  533. case FMULD8ULx16_OPF: {
  534. unsigned long byte, ushift;
  535. rs1 = fps_regval(f, RS1(insn));
  536. rs2 = fps_regval(f, RS2(insn));
  537. rd_val = 0;
  538. ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
  539. for (byte = 0; byte < 2; byte++) {
  540. u16 src1;
  541. s16 src2;
  542. u32 prod;
  543. u16 scaled;
  544. src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
  545. src2 = ((rs2 >> (16 * byte)) & 0xffff);
  546. prod = src1 * src2;
  547. scaled = ((prod & 0x00ffff00) >> 8);
  548. /* Round up. */
  549. if (prod & 0x80)
  550. scaled++;
  551. rd_val |= ((scaled & 0xffffUL) <<
  552. ((byte * 32UL) + 7UL));
  553. }
  554. *fpd_regaddr(f, RD(insn)) = rd_val;
  555. break;
  556. }
  557. };
  558. }
  559. static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
  560. {
  561. struct fpustate *f = FPUSTATE;
  562. unsigned long rs1, rs2, rd_val, i;
  563. rs1 = fpd_regval(f, RS1(insn));
  564. rs2 = fpd_regval(f, RS2(insn));
  565. rd_val = 0;
  566. switch (opf) {
  567. case FCMPGT16_OPF:
  568. for (i = 0; i < 4; i++) {
  569. s16 a = (rs1 >> (i * 16)) & 0xffff;
  570. s16 b = (rs2 >> (i * 16)) & 0xffff;
  571. if (a > b)
  572. rd_val |= 1 << i;
  573. }
  574. break;
  575. case FCMPGT32_OPF:
  576. for (i = 0; i < 2; i++) {
  577. s32 a = (rs1 >> (i * 32)) & 0xffff;
  578. s32 b = (rs2 >> (i * 32)) & 0xffff;
  579. if (a > b)
  580. rd_val |= 1 << i;
  581. }
  582. break;
  583. case FCMPLE16_OPF:
  584. for (i = 0; i < 4; i++) {
  585. s16 a = (rs1 >> (i * 16)) & 0xffff;
  586. s16 b = (rs2 >> (i * 16)) & 0xffff;
  587. if (a <= b)
  588. rd_val |= 1 << i;
  589. }
  590. break;
  591. case FCMPLE32_OPF:
  592. for (i = 0; i < 2; i++) {
  593. s32 a = (rs1 >> (i * 32)) & 0xffff;
  594. s32 b = (rs2 >> (i * 32)) & 0xffff;
  595. if (a <= b)
  596. rd_val |= 1 << i;
  597. }
  598. break;
  599. case FCMPNE16_OPF:
  600. for (i = 0; i < 4; i++) {
  601. s16 a = (rs1 >> (i * 16)) & 0xffff;
  602. s16 b = (rs2 >> (i * 16)) & 0xffff;
  603. if (a != b)
  604. rd_val |= 1 << i;
  605. }
  606. break;
  607. case FCMPNE32_OPF:
  608. for (i = 0; i < 2; i++) {
  609. s32 a = (rs1 >> (i * 32)) & 0xffff;
  610. s32 b = (rs2 >> (i * 32)) & 0xffff;
  611. if (a != b)
  612. rd_val |= 1 << i;
  613. }
  614. break;
  615. case FCMPEQ16_OPF:
  616. for (i = 0; i < 4; i++) {
  617. s16 a = (rs1 >> (i * 16)) & 0xffff;
  618. s16 b = (rs2 >> (i * 16)) & 0xffff;
  619. if (a == b)
  620. rd_val |= 1 << i;
  621. }
  622. break;
  623. case FCMPEQ32_OPF:
  624. for (i = 0; i < 2; i++) {
  625. s32 a = (rs1 >> (i * 32)) & 0xffff;
  626. s32 b = (rs2 >> (i * 32)) & 0xffff;
  627. if (a == b)
  628. rd_val |= 1 << i;
  629. }
  630. break;
  631. };
  632. maybe_flush_windows(0, 0, RD(insn), 0);
  633. store_reg(regs, rd_val, RD(insn));
  634. }
  635. /* Emulate the VIS instructions which are not implemented in
  636. * hardware on Niagara.
  637. */
  638. int vis_emul(struct pt_regs *regs, unsigned int insn)
  639. {
  640. unsigned long pc = regs->tpc;
  641. unsigned int opf;
  642. BUG_ON(regs->tstate & TSTATE_PRIV);
  643. if (test_thread_flag(TIF_32BIT))
  644. pc = (u32)pc;
  645. if (get_user(insn, (u32 __user *) pc))
  646. return -EFAULT;
  647. save_and_clear_fpu();
  648. opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
  649. switch (opf) {
  650. default:
  651. return -EINVAL;
  652. /* Pixel Formatting Instructions. */
  653. case FPACK16_OPF:
  654. case FPACK32_OPF:
  655. case FPACKFIX_OPF:
  656. case FEXPAND_OPF:
  657. case FPMERGE_OPF:
  658. pformat(regs, insn, opf);
  659. break;
  660. /* Partitioned Multiply Instructions */
  661. case FMUL8x16_OPF:
  662. case FMUL8x16AU_OPF:
  663. case FMUL8x16AL_OPF:
  664. case FMUL8SUx16_OPF:
  665. case FMUL8ULx16_OPF:
  666. case FMULD8SUx16_OPF:
  667. case FMULD8ULx16_OPF:
  668. pmul(regs, insn, opf);
  669. break;
  670. /* Pixel Compare Instructions */
  671. case FCMPGT16_OPF:
  672. case FCMPGT32_OPF:
  673. case FCMPLE16_OPF:
  674. case FCMPLE32_OPF:
  675. case FCMPNE16_OPF:
  676. case FCMPNE32_OPF:
  677. case FCMPEQ16_OPF:
  678. case FCMPEQ32_OPF:
  679. pcmp(regs, insn, opf);
  680. break;
  681. /* Edge Handling Instructions */
  682. case EDGE8_OPF:
  683. case EDGE8N_OPF:
  684. case EDGE8L_OPF:
  685. case EDGE8LN_OPF:
  686. case EDGE16_OPF:
  687. case EDGE16N_OPF:
  688. case EDGE16L_OPF:
  689. case EDGE16LN_OPF:
  690. case EDGE32_OPF:
  691. case EDGE32N_OPF:
  692. case EDGE32L_OPF:
  693. case EDGE32LN_OPF:
  694. edge(regs, insn, opf);
  695. break;
  696. /* Pixel Component Distance */
  697. case PDIST_OPF:
  698. pdist(regs, insn);
  699. break;
  700. /* Three-Dimensional Array Addressing Instructions */
  701. case ARRAY8_OPF:
  702. case ARRAY16_OPF:
  703. case ARRAY32_OPF:
  704. array(regs, insn, opf);
  705. break;
  706. /* Byte Mask and Shuffle Instructions */
  707. case BMASK_OPF:
  708. bmask(regs, insn);
  709. break;
  710. case BSHUFFLE_OPF:
  711. bshuffle(regs, insn);
  712. break;
  713. };
  714. regs->tpc = regs->tnpc;
  715. regs->tnpc += 4;
  716. return 0;
  717. }