pci_sun4v.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <linux/of_device.h>
  16. #include <asm/iommu.h>
  17. #include <asm/irq.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/prom.h>
  20. #include "pci_impl.h"
  21. #include "iommu_common.h"
  22. #include "pci_sun4v.h"
  23. #define DRIVER_NAME "pci_sun4v"
  24. #define PFX DRIVER_NAME ": "
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. static int iommu_batch_initialized;
  37. /* Interrupts must be disabled. */
  38. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  39. {
  40. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  41. p->dev = dev;
  42. p->prot = prot;
  43. p->entry = entry;
  44. p->npages = 0;
  45. }
  46. /* Interrupts must be disabled. */
  47. static long iommu_batch_flush(struct iommu_batch *p)
  48. {
  49. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  50. unsigned long devhandle = pbm->devhandle;
  51. unsigned long prot = p->prot;
  52. unsigned long entry = p->entry;
  53. u64 *pglist = p->pglist;
  54. unsigned long npages = p->npages;
  55. while (npages != 0) {
  56. long num;
  57. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  58. npages, prot, __pa(pglist));
  59. if (unlikely(num < 0)) {
  60. if (printk_ratelimit())
  61. printk("iommu_batch_flush: IOMMU map of "
  62. "[%08lx:%08llx:%lx:%lx:%lx] failed with "
  63. "status %ld\n",
  64. devhandle, HV_PCI_TSBID(0, entry),
  65. npages, prot, __pa(pglist), num);
  66. return -1;
  67. }
  68. entry += num;
  69. npages -= num;
  70. pglist += num;
  71. }
  72. p->entry = entry;
  73. p->npages = 0;
  74. return 0;
  75. }
  76. static inline void iommu_batch_new_entry(unsigned long entry)
  77. {
  78. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  79. if (p->entry + p->npages == entry)
  80. return;
  81. if (p->entry != ~0UL)
  82. iommu_batch_flush(p);
  83. p->entry = entry;
  84. }
  85. /* Interrupts must be disabled. */
  86. static inline long iommu_batch_add(u64 phys_page)
  87. {
  88. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  89. BUG_ON(p->npages >= PGLIST_NENTS);
  90. p->pglist[p->npages++] = phys_page;
  91. if (p->npages == PGLIST_NENTS)
  92. return iommu_batch_flush(p);
  93. return 0;
  94. }
  95. /* Interrupts must be disabled. */
  96. static inline long iommu_batch_end(void)
  97. {
  98. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  99. BUG_ON(p->npages >= PGLIST_NENTS);
  100. return iommu_batch_flush(p);
  101. }
  102. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  103. dma_addr_t *dma_addrp, gfp_t gfp)
  104. {
  105. unsigned long flags, order, first_page, npages, n;
  106. struct iommu *iommu;
  107. struct page *page;
  108. void *ret;
  109. long entry;
  110. int nid;
  111. size = IO_PAGE_ALIGN(size);
  112. order = get_order(size);
  113. if (unlikely(order >= MAX_ORDER))
  114. return NULL;
  115. npages = size >> IO_PAGE_SHIFT;
  116. nid = dev->archdata.numa_node;
  117. page = alloc_pages_node(nid, gfp, order);
  118. if (unlikely(!page))
  119. return NULL;
  120. first_page = (unsigned long) page_address(page);
  121. memset((char *)first_page, 0, PAGE_SIZE << order);
  122. iommu = dev->archdata.iommu;
  123. spin_lock_irqsave(&iommu->lock, flags);
  124. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  125. spin_unlock_irqrestore(&iommu->lock, flags);
  126. if (unlikely(entry == DMA_ERROR_CODE))
  127. goto range_alloc_fail;
  128. *dma_addrp = (iommu->page_table_map_base +
  129. (entry << IO_PAGE_SHIFT));
  130. ret = (void *) first_page;
  131. first_page = __pa(first_page);
  132. local_irq_save(flags);
  133. iommu_batch_start(dev,
  134. (HV_PCI_MAP_ATTR_READ |
  135. HV_PCI_MAP_ATTR_WRITE),
  136. entry);
  137. for (n = 0; n < npages; n++) {
  138. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  139. if (unlikely(err < 0L))
  140. goto iommu_map_fail;
  141. }
  142. if (unlikely(iommu_batch_end() < 0L))
  143. goto iommu_map_fail;
  144. local_irq_restore(flags);
  145. return ret;
  146. iommu_map_fail:
  147. /* Interrupts are disabled. */
  148. spin_lock(&iommu->lock);
  149. iommu_range_free(iommu, *dma_addrp, npages);
  150. spin_unlock_irqrestore(&iommu->lock, flags);
  151. range_alloc_fail:
  152. free_pages(first_page, order);
  153. return NULL;
  154. }
  155. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  156. dma_addr_t dvma)
  157. {
  158. struct pci_pbm_info *pbm;
  159. struct iommu *iommu;
  160. unsigned long flags, order, npages, entry;
  161. u32 devhandle;
  162. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  163. iommu = dev->archdata.iommu;
  164. pbm = dev->archdata.host_controller;
  165. devhandle = pbm->devhandle;
  166. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  167. spin_lock_irqsave(&iommu->lock, flags);
  168. iommu_range_free(iommu, dvma, npages);
  169. do {
  170. unsigned long num;
  171. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  172. npages);
  173. entry += num;
  174. npages -= num;
  175. } while (npages != 0);
  176. spin_unlock_irqrestore(&iommu->lock, flags);
  177. order = get_order(size);
  178. if (order < 10)
  179. free_pages((unsigned long)cpu, order);
  180. }
  181. static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page,
  182. unsigned long offset, size_t sz,
  183. enum dma_data_direction direction)
  184. {
  185. struct iommu *iommu;
  186. unsigned long flags, npages, oaddr;
  187. unsigned long i, base_paddr;
  188. u32 bus_addr, ret;
  189. unsigned long prot;
  190. long entry;
  191. iommu = dev->archdata.iommu;
  192. if (unlikely(direction == DMA_NONE))
  193. goto bad;
  194. oaddr = (unsigned long)(page_address(page) + offset);
  195. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  196. npages >>= IO_PAGE_SHIFT;
  197. spin_lock_irqsave(&iommu->lock, flags);
  198. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  199. spin_unlock_irqrestore(&iommu->lock, flags);
  200. if (unlikely(entry == DMA_ERROR_CODE))
  201. goto bad;
  202. bus_addr = (iommu->page_table_map_base +
  203. (entry << IO_PAGE_SHIFT));
  204. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  205. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  206. prot = HV_PCI_MAP_ATTR_READ;
  207. if (direction != DMA_TO_DEVICE)
  208. prot |= HV_PCI_MAP_ATTR_WRITE;
  209. local_irq_save(flags);
  210. iommu_batch_start(dev, prot, entry);
  211. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  212. long err = iommu_batch_add(base_paddr);
  213. if (unlikely(err < 0L))
  214. goto iommu_map_fail;
  215. }
  216. if (unlikely(iommu_batch_end() < 0L))
  217. goto iommu_map_fail;
  218. local_irq_restore(flags);
  219. return ret;
  220. bad:
  221. if (printk_ratelimit())
  222. WARN_ON(1);
  223. return DMA_ERROR_CODE;
  224. iommu_map_fail:
  225. /* Interrupts are disabled. */
  226. spin_lock(&iommu->lock);
  227. iommu_range_free(iommu, bus_addr, npages);
  228. spin_unlock_irqrestore(&iommu->lock, flags);
  229. return DMA_ERROR_CODE;
  230. }
  231. static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
  232. size_t sz, enum dma_data_direction direction)
  233. {
  234. struct pci_pbm_info *pbm;
  235. struct iommu *iommu;
  236. unsigned long flags, npages;
  237. long entry;
  238. u32 devhandle;
  239. if (unlikely(direction == DMA_NONE)) {
  240. if (printk_ratelimit())
  241. WARN_ON(1);
  242. return;
  243. }
  244. iommu = dev->archdata.iommu;
  245. pbm = dev->archdata.host_controller;
  246. devhandle = pbm->devhandle;
  247. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  248. npages >>= IO_PAGE_SHIFT;
  249. bus_addr &= IO_PAGE_MASK;
  250. spin_lock_irqsave(&iommu->lock, flags);
  251. iommu_range_free(iommu, bus_addr, npages);
  252. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  253. do {
  254. unsigned long num;
  255. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  256. npages);
  257. entry += num;
  258. npages -= num;
  259. } while (npages != 0);
  260. spin_unlock_irqrestore(&iommu->lock, flags);
  261. }
  262. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  263. int nelems, enum dma_data_direction direction)
  264. {
  265. struct scatterlist *s, *outs, *segstart;
  266. unsigned long flags, handle, prot;
  267. dma_addr_t dma_next = 0, dma_addr;
  268. unsigned int max_seg_size;
  269. unsigned long seg_boundary_size;
  270. int outcount, incount, i;
  271. struct iommu *iommu;
  272. unsigned long base_shift;
  273. long err;
  274. BUG_ON(direction == DMA_NONE);
  275. iommu = dev->archdata.iommu;
  276. if (nelems == 0 || !iommu)
  277. return 0;
  278. prot = HV_PCI_MAP_ATTR_READ;
  279. if (direction != DMA_TO_DEVICE)
  280. prot |= HV_PCI_MAP_ATTR_WRITE;
  281. outs = s = segstart = &sglist[0];
  282. outcount = 1;
  283. incount = nelems;
  284. handle = 0;
  285. /* Init first segment length for backout at failure */
  286. outs->dma_length = 0;
  287. spin_lock_irqsave(&iommu->lock, flags);
  288. iommu_batch_start(dev, prot, ~0UL);
  289. max_seg_size = dma_get_max_seg_size(dev);
  290. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  291. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  292. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  293. for_each_sg(sglist, s, nelems, i) {
  294. unsigned long paddr, npages, entry, out_entry = 0, slen;
  295. slen = s->length;
  296. /* Sanity check */
  297. if (slen == 0) {
  298. dma_next = 0;
  299. continue;
  300. }
  301. /* Allocate iommu entries for that segment */
  302. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  303. npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
  304. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  305. /* Handle failure */
  306. if (unlikely(entry == DMA_ERROR_CODE)) {
  307. if (printk_ratelimit())
  308. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  309. " npages %lx\n", iommu, paddr, npages);
  310. goto iommu_map_failed;
  311. }
  312. iommu_batch_new_entry(entry);
  313. /* Convert entry to a dma_addr_t */
  314. dma_addr = iommu->page_table_map_base +
  315. (entry << IO_PAGE_SHIFT);
  316. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  317. /* Insert into HW table */
  318. paddr &= IO_PAGE_MASK;
  319. while (npages--) {
  320. err = iommu_batch_add(paddr);
  321. if (unlikely(err < 0L))
  322. goto iommu_map_failed;
  323. paddr += IO_PAGE_SIZE;
  324. }
  325. /* If we are in an open segment, try merging */
  326. if (segstart != s) {
  327. /* We cannot merge if:
  328. * - allocated dma_addr isn't contiguous to previous allocation
  329. */
  330. if ((dma_addr != dma_next) ||
  331. (outs->dma_length + s->length > max_seg_size) ||
  332. (is_span_boundary(out_entry, base_shift,
  333. seg_boundary_size, outs, s))) {
  334. /* Can't merge: create a new segment */
  335. segstart = s;
  336. outcount++;
  337. outs = sg_next(outs);
  338. } else {
  339. outs->dma_length += s->length;
  340. }
  341. }
  342. if (segstart == s) {
  343. /* This is a new segment, fill entries */
  344. outs->dma_address = dma_addr;
  345. outs->dma_length = slen;
  346. out_entry = entry;
  347. }
  348. /* Calculate next page pointer for contiguous check */
  349. dma_next = dma_addr + slen;
  350. }
  351. err = iommu_batch_end();
  352. if (unlikely(err < 0L))
  353. goto iommu_map_failed;
  354. spin_unlock_irqrestore(&iommu->lock, flags);
  355. if (outcount < incount) {
  356. outs = sg_next(outs);
  357. outs->dma_address = DMA_ERROR_CODE;
  358. outs->dma_length = 0;
  359. }
  360. return outcount;
  361. iommu_map_failed:
  362. for_each_sg(sglist, s, nelems, i) {
  363. if (s->dma_length != 0) {
  364. unsigned long vaddr, npages;
  365. vaddr = s->dma_address & IO_PAGE_MASK;
  366. npages = iommu_num_pages(s->dma_address, s->dma_length,
  367. IO_PAGE_SIZE);
  368. iommu_range_free(iommu, vaddr, npages);
  369. /* XXX demap? XXX */
  370. s->dma_address = DMA_ERROR_CODE;
  371. s->dma_length = 0;
  372. }
  373. if (s == outs)
  374. break;
  375. }
  376. spin_unlock_irqrestore(&iommu->lock, flags);
  377. return 0;
  378. }
  379. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  380. int nelems, enum dma_data_direction direction)
  381. {
  382. struct pci_pbm_info *pbm;
  383. struct scatterlist *sg;
  384. struct iommu *iommu;
  385. unsigned long flags;
  386. u32 devhandle;
  387. BUG_ON(direction == DMA_NONE);
  388. iommu = dev->archdata.iommu;
  389. pbm = dev->archdata.host_controller;
  390. devhandle = pbm->devhandle;
  391. spin_lock_irqsave(&iommu->lock, flags);
  392. sg = sglist;
  393. while (nelems--) {
  394. dma_addr_t dma_handle = sg->dma_address;
  395. unsigned int len = sg->dma_length;
  396. unsigned long npages, entry;
  397. if (!len)
  398. break;
  399. npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
  400. iommu_range_free(iommu, dma_handle, npages);
  401. entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  402. while (npages) {
  403. unsigned long num;
  404. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  405. npages);
  406. entry += num;
  407. npages -= num;
  408. }
  409. sg = sg_next(sg);
  410. }
  411. spin_unlock_irqrestore(&iommu->lock, flags);
  412. }
  413. static void dma_4v_sync_single_for_cpu(struct device *dev,
  414. dma_addr_t bus_addr, size_t sz,
  415. enum dma_data_direction direction)
  416. {
  417. /* Nothing to do... */
  418. }
  419. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  420. struct scatterlist *sglist, int nelems,
  421. enum dma_data_direction direction)
  422. {
  423. /* Nothing to do... */
  424. }
  425. static const struct dma_ops sun4v_dma_ops = {
  426. .alloc_coherent = dma_4v_alloc_coherent,
  427. .free_coherent = dma_4v_free_coherent,
  428. .map_page = dma_4v_map_page,
  429. .unmap_page = dma_4v_unmap_page,
  430. .map_sg = dma_4v_map_sg,
  431. .unmap_sg = dma_4v_unmap_sg,
  432. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  433. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  434. };
  435. static void __devinit pci_sun4v_scan_bus(struct pci_pbm_info *pbm,
  436. struct device *parent)
  437. {
  438. struct property *prop;
  439. struct device_node *dp;
  440. dp = pbm->op->node;
  441. prop = of_find_property(dp, "66mhz-capable", NULL);
  442. pbm->is_66mhz_capable = (prop != NULL);
  443. pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
  444. /* XXX register error interrupt handlers XXX */
  445. }
  446. static unsigned long __devinit probe_existing_entries(struct pci_pbm_info *pbm,
  447. struct iommu *iommu)
  448. {
  449. struct iommu_arena *arena = &iommu->arena;
  450. unsigned long i, cnt = 0;
  451. u32 devhandle;
  452. devhandle = pbm->devhandle;
  453. for (i = 0; i < arena->limit; i++) {
  454. unsigned long ret, io_attrs, ra;
  455. ret = pci_sun4v_iommu_getmap(devhandle,
  456. HV_PCI_TSBID(0, i),
  457. &io_attrs, &ra);
  458. if (ret == HV_EOK) {
  459. if (page_in_phys_avail(ra)) {
  460. pci_sun4v_iommu_demap(devhandle,
  461. HV_PCI_TSBID(0, i), 1);
  462. } else {
  463. cnt++;
  464. __set_bit(i, arena->map);
  465. }
  466. }
  467. }
  468. return cnt;
  469. }
  470. static int __devinit pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  471. {
  472. static const u32 vdma_default[] = { 0x80000000, 0x80000000 };
  473. struct iommu *iommu = pbm->iommu;
  474. unsigned long num_tsb_entries, sz, tsbsize;
  475. u32 dma_mask, dma_offset;
  476. const u32 *vdma;
  477. vdma = of_get_property(pbm->op->node, "virtual-dma", NULL);
  478. if (!vdma)
  479. vdma = vdma_default;
  480. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  481. printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n",
  482. vdma[0], vdma[1]);
  483. return -EINVAL;
  484. };
  485. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  486. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  487. tsbsize = num_tsb_entries * sizeof(iopte_t);
  488. dma_offset = vdma[0];
  489. /* Setup initial software IOMMU state. */
  490. spin_lock_init(&iommu->lock);
  491. iommu->ctx_lowest_free = 1;
  492. iommu->page_table_map_base = dma_offset;
  493. iommu->dma_addr_mask = dma_mask;
  494. /* Allocate and initialize the free area map. */
  495. sz = (num_tsb_entries + 7) / 8;
  496. sz = (sz + 7UL) & ~7UL;
  497. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  498. if (!iommu->arena.map) {
  499. printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n");
  500. return -ENOMEM;
  501. }
  502. iommu->arena.limit = num_tsb_entries;
  503. sz = probe_existing_entries(pbm, iommu);
  504. if (sz)
  505. printk("%s: Imported %lu TSB entries from OBP\n",
  506. pbm->name, sz);
  507. return 0;
  508. }
  509. #ifdef CONFIG_PCI_MSI
  510. struct pci_sun4v_msiq_entry {
  511. u64 version_type;
  512. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  513. #define MSIQ_VERSION_SHIFT 32
  514. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  515. #define MSIQ_TYPE_SHIFT 0
  516. #define MSIQ_TYPE_NONE 0x00
  517. #define MSIQ_TYPE_MSG 0x01
  518. #define MSIQ_TYPE_MSI32 0x02
  519. #define MSIQ_TYPE_MSI64 0x03
  520. #define MSIQ_TYPE_INTX 0x08
  521. #define MSIQ_TYPE_NONE2 0xff
  522. u64 intx_sysino;
  523. u64 reserved1;
  524. u64 stick;
  525. u64 req_id; /* bus/device/func */
  526. #define MSIQ_REQID_BUS_MASK 0xff00UL
  527. #define MSIQ_REQID_BUS_SHIFT 8
  528. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  529. #define MSIQ_REQID_DEVICE_SHIFT 3
  530. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  531. #define MSIQ_REQID_FUNC_SHIFT 0
  532. u64 msi_address;
  533. /* The format of this value is message type dependent.
  534. * For MSI bits 15:0 are the data from the MSI packet.
  535. * For MSI-X bits 31:0 are the data from the MSI packet.
  536. * For MSG, the message code and message routing code where:
  537. * bits 39:32 is the bus/device/fn of the msg target-id
  538. * bits 18:16 is the message routing code
  539. * bits 7:0 is the message code
  540. * For INTx the low order 2-bits are:
  541. * 00 - INTA
  542. * 01 - INTB
  543. * 10 - INTC
  544. * 11 - INTD
  545. */
  546. u64 msi_data;
  547. u64 reserved2;
  548. };
  549. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  550. unsigned long *head)
  551. {
  552. unsigned long err, limit;
  553. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  554. if (unlikely(err))
  555. return -ENXIO;
  556. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  557. if (unlikely(*head >= limit))
  558. return -EFBIG;
  559. return 0;
  560. }
  561. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  562. unsigned long msiqid, unsigned long *head,
  563. unsigned long *msi)
  564. {
  565. struct pci_sun4v_msiq_entry *ep;
  566. unsigned long err, type;
  567. /* Note: void pointer arithmetic, 'head' is a byte offset */
  568. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  569. (pbm->msiq_ent_count *
  570. sizeof(struct pci_sun4v_msiq_entry))) +
  571. *head);
  572. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  573. return 0;
  574. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  575. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  576. type != MSIQ_TYPE_MSI64))
  577. return -EINVAL;
  578. *msi = ep->msi_data;
  579. err = pci_sun4v_msi_setstate(pbm->devhandle,
  580. ep->msi_data /* msi_num */,
  581. HV_MSISTATE_IDLE);
  582. if (unlikely(err))
  583. return -ENXIO;
  584. /* Clear the entry. */
  585. ep->version_type &= ~MSIQ_TYPE_MASK;
  586. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  587. if (*head >=
  588. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  589. *head = 0;
  590. return 1;
  591. }
  592. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  593. unsigned long head)
  594. {
  595. unsigned long err;
  596. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  597. if (unlikely(err))
  598. return -EINVAL;
  599. return 0;
  600. }
  601. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  602. unsigned long msi, int is_msi64)
  603. {
  604. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  605. (is_msi64 ?
  606. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  607. return -ENXIO;
  608. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  609. return -ENXIO;
  610. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  611. return -ENXIO;
  612. return 0;
  613. }
  614. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  615. {
  616. unsigned long err, msiqid;
  617. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  618. if (err)
  619. return -ENXIO;
  620. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  621. return 0;
  622. }
  623. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  624. {
  625. unsigned long q_size, alloc_size, pages, order;
  626. int i;
  627. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  628. alloc_size = (pbm->msiq_num * q_size);
  629. order = get_order(alloc_size);
  630. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  631. if (pages == 0UL) {
  632. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  633. order);
  634. return -ENOMEM;
  635. }
  636. memset((char *)pages, 0, PAGE_SIZE << order);
  637. pbm->msi_queues = (void *) pages;
  638. for (i = 0; i < pbm->msiq_num; i++) {
  639. unsigned long err, base = __pa(pages + (i * q_size));
  640. unsigned long ret1, ret2;
  641. err = pci_sun4v_msiq_conf(pbm->devhandle,
  642. pbm->msiq_first + i,
  643. base, pbm->msiq_ent_count);
  644. if (err) {
  645. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  646. err);
  647. goto h_error;
  648. }
  649. err = pci_sun4v_msiq_info(pbm->devhandle,
  650. pbm->msiq_first + i,
  651. &ret1, &ret2);
  652. if (err) {
  653. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  654. err);
  655. goto h_error;
  656. }
  657. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  658. printk(KERN_ERR "MSI: Bogus qconf "
  659. "expected[%lx:%x] got[%lx:%lx]\n",
  660. base, pbm->msiq_ent_count,
  661. ret1, ret2);
  662. goto h_error;
  663. }
  664. }
  665. return 0;
  666. h_error:
  667. free_pages(pages, order);
  668. return -EINVAL;
  669. }
  670. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  671. {
  672. unsigned long q_size, alloc_size, pages, order;
  673. int i;
  674. for (i = 0; i < pbm->msiq_num; i++) {
  675. unsigned long msiqid = pbm->msiq_first + i;
  676. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  677. }
  678. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  679. alloc_size = (pbm->msiq_num * q_size);
  680. order = get_order(alloc_size);
  681. pages = (unsigned long) pbm->msi_queues;
  682. free_pages(pages, order);
  683. pbm->msi_queues = NULL;
  684. }
  685. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  686. unsigned long msiqid,
  687. unsigned long devino)
  688. {
  689. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  690. if (!virt_irq)
  691. return -ENOMEM;
  692. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  693. return -EINVAL;
  694. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  695. return -EINVAL;
  696. return virt_irq;
  697. }
  698. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  699. .get_head = pci_sun4v_get_head,
  700. .dequeue_msi = pci_sun4v_dequeue_msi,
  701. .set_head = pci_sun4v_set_head,
  702. .msi_setup = pci_sun4v_msi_setup,
  703. .msi_teardown = pci_sun4v_msi_teardown,
  704. .msiq_alloc = pci_sun4v_msiq_alloc,
  705. .msiq_free = pci_sun4v_msiq_free,
  706. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  707. };
  708. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  709. {
  710. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  711. }
  712. #else /* CONFIG_PCI_MSI */
  713. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  714. {
  715. }
  716. #endif /* !(CONFIG_PCI_MSI) */
  717. static int __devinit pci_sun4v_pbm_init(struct pci_pbm_info *pbm,
  718. struct of_device *op, u32 devhandle)
  719. {
  720. struct device_node *dp = op->node;
  721. int err;
  722. pbm->numa_node = of_node_to_nid(dp);
  723. pbm->pci_ops = &sun4v_pci_ops;
  724. pbm->config_space_reg_bits = 12;
  725. pbm->index = pci_num_pbms++;
  726. pbm->op = op;
  727. pbm->devhandle = devhandle;
  728. pbm->name = dp->full_name;
  729. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  730. printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node);
  731. pci_determine_mem_io_space(pbm);
  732. pci_get_pbm_props(pbm);
  733. err = pci_sun4v_iommu_init(pbm);
  734. if (err)
  735. return err;
  736. pci_sun4v_msi_init(pbm);
  737. pci_sun4v_scan_bus(pbm, &op->dev);
  738. pbm->next = pci_pbm_root;
  739. pci_pbm_root = pbm;
  740. return 0;
  741. }
  742. static int __devinit pci_sun4v_probe(struct of_device *op,
  743. const struct of_device_id *match)
  744. {
  745. const struct linux_prom64_registers *regs;
  746. static int hvapi_negotiated = 0;
  747. struct pci_pbm_info *pbm;
  748. struct device_node *dp;
  749. struct iommu *iommu;
  750. u32 devhandle;
  751. int i, err;
  752. dp = op->node;
  753. if (!hvapi_negotiated++) {
  754. err = sun4v_hvapi_register(HV_GRP_PCI,
  755. vpci_major,
  756. &vpci_minor);
  757. if (err) {
  758. printk(KERN_ERR PFX "Could not register hvapi, "
  759. "err=%d\n", err);
  760. return err;
  761. }
  762. printk(KERN_INFO PFX "Registered hvapi major[%lu] minor[%lu]\n",
  763. vpci_major, vpci_minor);
  764. dma_ops = &sun4v_dma_ops;
  765. }
  766. regs = of_get_property(dp, "reg", NULL);
  767. err = -ENODEV;
  768. if (!regs) {
  769. printk(KERN_ERR PFX "Could not find config registers\n");
  770. goto out_err;
  771. }
  772. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  773. err = -ENOMEM;
  774. if (!iommu_batch_initialized) {
  775. for_each_possible_cpu(i) {
  776. unsigned long page = get_zeroed_page(GFP_KERNEL);
  777. if (!page)
  778. goto out_err;
  779. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  780. }
  781. iommu_batch_initialized = 1;
  782. }
  783. pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
  784. if (!pbm) {
  785. printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n");
  786. goto out_err;
  787. }
  788. iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL);
  789. if (!iommu) {
  790. printk(KERN_ERR PFX "Could not allocate pbm iommu\n");
  791. goto out_free_controller;
  792. }
  793. pbm->iommu = iommu;
  794. err = pci_sun4v_pbm_init(pbm, op, devhandle);
  795. if (err)
  796. goto out_free_iommu;
  797. dev_set_drvdata(&op->dev, pbm);
  798. return 0;
  799. out_free_iommu:
  800. kfree(pbm->iommu);
  801. out_free_controller:
  802. kfree(pbm);
  803. out_err:
  804. return err;
  805. }
  806. static struct of_device_id __initdata pci_sun4v_match[] = {
  807. {
  808. .name = "pci",
  809. .compatible = "SUNW,sun4v-pci",
  810. },
  811. {},
  812. };
  813. static struct of_platform_driver pci_sun4v_driver = {
  814. .name = DRIVER_NAME,
  815. .match_table = pci_sun4v_match,
  816. .probe = pci_sun4v_probe,
  817. };
  818. static int __init pci_sun4v_init(void)
  819. {
  820. return of_register_driver(&pci_sun4v_driver, &of_bus_type);
  821. }
  822. subsys_initcall(pci_sun4v_init);